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ABSTRACT

Graph Neural Networks (GNNs) have been increasingly deployed in
aplethora of applications. However, the graph data used for training
may contain sensitive personal information of the involved indi-
viduals. Once trained, GNNs typically encode such information in
their learnable parameters. As a consequence, privacy leakage may
happen when the trained GNNs are deployed and exposed to poten-
tial attackers. Facing such a threat, machine unlearning for GNNs
has become an emerging technique that aims to remove certain
personal information from a trained GNN. Among these techniques,
certified unlearning stands out, as it provides a solid theoretical
guarantee of the information removal effectiveness. Nevertheless,
most of the existing certified unlearning methods for GNNs are
only designed to handle node and edge unlearning requests. Mean-
while, these approaches are usually tailored for either a specific
design of GNN or a specially designed training objective. These
disadvantages significantly jeopardize their flexibility. In this pa-
per, we propose a principled framework named IDEA to achieve
flexible and certified unlearning for GNNs. Specifically, we first
instantiate four types of unlearning requests on graphs, and then
we propose an approximation approach to flexibly handle these
unlearning requests over diverse GNNs. We further provide theo-
retical guarantee of the effectiveness for the proposed approach as
a certification. Different from existing alternatives, IDEA is not de-
signed for any specific GNNs or optimization objectives to perform
certified unlearning, and thus can be easily generalized. Extensive
experiments on real-world datasets demonstrate the superiority of
IDEA in multiple key perspectives.
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1 INTRODUCTION

Graph-structured data is ubiquitous among various real-world appli-
cations, such as online social platform [19], finance system [50], and
chemical discovery [21]. In recent years, Graph Neural Networks
(GNN5s) have exhibited promising performance in various graph-
based downstream tasks [19, 62, 65, 76]. The success of GNNs is
mainly attributed to its message-passing mechanism, which enables
each node to take advantage of the information from its multi-hop
neighbors [19, 25]. Therefore, GNNs have been widely adopted in
a plethora of realms [10, 14, 54, 61, 74, 77].

Despite the success of GNNS, their widespread usage has also
raised social concerns about the issue of privacy protection [7,
59, 75]. It is worth noting that, in practice, the graph data used for
training may contain sensitive personal information of the involved
individuals [35, 56, 59]. Once trained, these GNNs typically encode
such personal information in the learnable parameters. As a conse-
quence, privacy leakage may happen when the trained GNNs are
deployed and exposed to potential attackers [35, 56]. For example,
the similarity of the health records between patients could pro-
vide key information for disease diagnosis [71]. Therefore, GNNs
can be trained on patient networks for disease prediction, where
the connections between patients indicate high similarity scores
of their health records. However, malicious attackers can easily
reveal the patients’ health records that are used for training via
membership inference attack [35], which severely threatens pri-
vacy. Facing such a threat of privacy leakage, legislation such as the
General Data Protection Regulation (GDPR) (GDPR 2016) [40], the
California Consumer Privacy Act (CCPA) (CCPA 2018) [37], and
the Personal Information Protection and Electronic Documents Act
(PIPEDA 2000) [1] have emphasized the importance of the right to
be forgotten [27]. Specifically, users should have the right to request
the deletion of their personal information from those learning mod-
els that encode it. Such an urgent need poses challenges towards
removing certain personal information from the trained GNNs.
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The need for information removal from these trained models has
led to the development of machine unlearning [2, 63]. Specifically,
the ultimate goal of machine unlearning is to remove information
regarding certain training data from a previously trained model. A
straightforward approach is to perform model re-training. However,
on the one hand, the model owner may not have full access to the
training data; on the other hand, re-training can be prohibitively ex-
pensive even if training data is fully accessible [13]. To achieve more
efficient information removal, a series of existing works [2, 3, 22]
proposed to directly modify the parameters of the trained models.
Nevertheless, most of these works only achieve unlearning empiri-
cally and fail to provide any theoretical guarantee. This problem has
led to the emerging of certified unlearning [16, 44], which aims to
develop unlearning approaches with theoretical guarantee on their
effectiveness. In the domain of graph learning, a few recent works,
such as [7, 59], have explored to achieve certified unlearning for
GNNs. However, a major limitation of these approaches is their low
flexibility. First, most approaches are designed to completely un-
learn a given set of nodes or edges, while this may not comply with
certain unlearning needs in real-world applications. For example,
on a social network platform, a user may decide to stop disclosing
certain personal information to the GNN-based friend recommen-
dation model but continue using the platform. In such a case, the
attribute information of this user should then be partially removed
from the GNN model, which protects the user’s privacy and main-
tains algorithmic personalization as well. Therefore, it is desired
to develop flexible certified unlearning approaches for GNNs to
handle unlearning requests centered on node attributes. Second,
existing certified unlearning approaches are mostly designed for
a specific type of GNNs [7] or the GNNs trained following a spe-
cially designed objective function [7, 59]. However, various GNNs
and objectives have been adopted for diverse real-world applica-
tions, and thus it is also desired to develop more flexible certified
unlearning approaches for different GNNs trained with different
objectives. Nevertheless, existing exploration in developing flexible
and certified unlearning approaches for GNNs remains nascent.

In this paper, we study a novel and critical problem of developing
a certifiable unlearning framework that can flexibly unlearn per-
sonal information in graphs and generalize across GNNs. We note
that this is a non-trivial task. In essence, we mainly face three chal-
lenges. (i) Characterizing node dependencies. Different from tabular
data, the nodes in graph data usually have dependencies with each
other. Properly characterizing node dependencies thus becomes
the first challenge to achieve unlearning for GNNs. (ii) Achieving
flexible unlearning. Unlearning requests may be initiated towards
nodes, node attributes (partial or full), and edges. Meanwhile, vari-
ous GNNs have been adopted for different applications, and most
of these GNNs have different model structures and optimization ob-
jectives. Therefore, achieving flexible unlearning for different types
of unlearning requests, GNN structures, and objectives becomes
the second challenge. (iii) Obtaining certification for unlearning. To
reduce the risk of privacy leakage, it is critical for the model owner
to ensure that the information needed to be removed has been com-
pletely wiped out before model deployment. However, GNNs may
have complex structures, and it is difficult to examine whether cer-
tain sensitive personal information remains being encoded or not.
Meanwhile, certified unlearning for GNNs usually requires strict
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conditions (e.g., assuming that GNNs are trained under a specially
designed objective [7, 59]) and thus sacrifices flexibility. Properly
certifying the effectiveness of unlearning is our third challenge.

Our Contributions. We propose IDEA (flexIble anD cErtified
unleArning), which is a flexible framework of certified unlearning
for GNNs. Specifically, to tackle the first two challenges, we propose
to model the intermediate state between the optimization objectives
with and without the instances (e.g., nodes, edges, and attributes) to
be unlearned. Meanwhile, four different types of common unlearn-
ing requests are instantiated, and GNN parameters after unlearning
can be efficiently approximated with flexible unlearning request
specifications. To tackle the third challenge, we propose a novel
theoretical certification on the unlearning effectiveness of IDEA.
We show that our certification method brings an empirically tighter
bound on the distance between the approximated and actual GNN
parameters compared to other existing alternatives. We summarize
our contributions as: (1) Problem Formulation. We formulate
and make an initial investigation on a novel research problem of
flexible and certified unlearning for GNNs. (2) Algorithm Design.
We propose IDEA, a flexible framework of certified unlearning
for GNNs without relying on any specific GNN structures or any
specially designed objective functions, which shows significant
value for practical use. (3) Experimental Evaluation. We conduct
comprehensive experiments on real-world datasets to verify the
superiority of IDEA over existing alternatives in multiple key per-
spectives, including bound tightness, unlearning efficiency, model
utility, and unlearning effectiveness.

2 PRELIMINARIES

2.1 Notations

We use bold uppercase letters (e.g., A), bold lowercase letters (e.g.,
x), and normal lowercase letters (e.g., n) to denote matrices, vectors,
and scalars, respectively. We represent an attributed graph as G =
{V,&,X}. Here V = {vy, ...,un} denotes the set of nodes, where
n is the total number of nodes. & ¢ V X V represents the set
of edges. X = {x1,1,....xnc} is the set of node attribute values,
where ¢ is the total number of node attribute dimensions, and
x;,j represents the attribute value of node v; at the j-th attribute
dimension (1 < i < n,1 < j < c). We utilize fy to represent a GNN
model parameterized by the learnable parameters in 6.

In this paper, we focus on the commonly studied node classifica-
tion task, which widely exists in real-world applications. Specifi-
cally, we are given the labels of a set of training nodes Virn (Virn C
V) as Y. Here Yo = {Y1, ..., Y}, where Y; € {1,..,c} (1 <i <
m) is the node label of v;; ¢ is the total number of possible classes;
and m represents the number of training nodes, i.e., m = |Vi|. Our
goal here is to optimize the parameter 6 of the GNN model f with k
message-passing layers as 0* w.r.t. certain objective function over
Vi, such that fg- is able to achieve accurate predictions for the
nodes in the test set Vist (Vist N Virn = 9).

2.2 Problem Statement

In this subsection, we formally present the problem formulation of
Flexible and Certified Unlearning for GNNs. We first elaborate on the
mathematical formulation of certified unlearning for GNNs. Specif-
ically, certified unlearning requires that the unlearning strategy
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have a theoretical guarantee of unlearning effectiveness. We adopt
a commonly used criterion for the effectiveness of unlearning, i.e.,
(¢ = 8) Certified Unlearning. Here ¢ and § are two parameters con-
trolling the relaxation of such a criterion. We present the definition
of (e — ) certified unlearning for GNNs below.

DEFINITION 1. (¢ — §) Certified Unlearning for GNNs. Let H
be the hypothesis space of a GNN model parameters and A be the
associated optimization process. Given a graph G for GNN optimiza-
tion and a AG that characterizes the information to be unlearned, U
is an (¢ — 8) certified unlearning process iff V7 C H, we have

Pr(U(G,AG,A(G)) €T) <efPr(A(GOAG) €T)+6, and
Pr(A(GOAG) €T) < e Pr(U(G,AG, A(G)) € T) +56,

where G © AG represents the graph data with the information char-
acterized by AG being removed.

The intuition of Definition 1 is that, once the two inequalities
above are satisfied, the difference between the distribution of the
unlearned GNN parameters and that of the re-trained GNN param-
eters over G © AG is bounded by a small threshold ¢ and relaxed
by a probability §. We note that, different from most existing litera-
ture on GNN unlearning, the information to be unlearned does not
necessarily come from a node or an edge in Definition 1. Such an
extension paves the way towards more flexible certified unlearning
for GNNs. We now formally present the problem formulation of
Flexible and Certified Unlearning for GNNs below.

ProBLEM 1. Flexible and Certified Unlearning for GNNs.
Given a GNN model fg+ optimized over G and any request to un-
learn information characterized by AG, our goal is to achieve (& — §)
certified unlearning over fg-«.

3 UNLEARNING REQUEST INSTANTIATIONS

We instantiate the unlearning requests characterized by AG, namely
Node Unlearning Request, Edge Unlearning Request, and Attribute
Unlearning Request. We present an illustration in Figure 1.

Node Unlearning Request. The most common unlearning re-
quest in GNN applications is to unlearn a given set of nodes. For
example, in a social network platform, a GNN model can be trained
on the friendship network formed by the platform users to perform
friendship recommendation. When a user has decided to quit such
a platform and withdrawn the consent of using her private data,
this user may request to unlearn the node associated with her from
the social network. In such a case, the information to be unlearned
is characterized by AG = {AV, ke (AV), kx (AV)}. Here ke and kx
return the set of the direct edges and node attributes associated
with nodes in AV, respectively.

Edge Unlearning Request. In addition to the information encoded
by the nodes, edges can also encode critical private information and
may need to be unlearned as well. In fact, it has been empirically
proved that malicious attackers can easily infer the edges used for
training, which directly threatens privacy [20]. In such a case, the
information to be unlearned is characterized by AG = {@, AE, T}.
Attribute Unlearning Request. Both requests above fail to repre-
sent cases where only node attributes are requested to be unlearned.
Here we show two common node attribute unlearning requests.
(1) Full Attribute Unlearning. In this case, all information regarding
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Figure 1: An illustration of common unlearning requests.

the attributes of a set of nodes is requested to be unlearned. For
example, a social network platform user may withdraw the consent
for the GNN-based friend recommendation algorithm to encode any
of its attributes during training. In such a case, the information to
be unlearned is characterized by AG = {@, @, AX}, where for node
v;,if x; j € AX, thenVj € {1,...,c},x;j € AX. (2) Partial Attribute
Unlearning. The attributes of a node may also be requested to be
partially unlearned. For example, in a social network, a user may
withdraw the consent of using the information regarding certain at-
tribute(s) due to various reasons, e.g., feeling being unfairly treated.
However, this user may still continue using such a platform, and
thus other attributes should not be unlearned to ensure satisfying
personalized service quality. In such a case, the information to be
unlearned is characterized by AG = {@, &, AX}, where for node
v;, if xjj € AX, then 3j € {1,..,c},x;; ¢ AX. Note that the two
types of attribute unlearning can be requested together. Hence, we
utilize AX to characterize a mixture of both types of attributes.

Based on the instantiations above, we denote AG = {AV,AE U
Ke(AV),AX U kx(AV)} as a potential combination of all types of
unlearning requests. Accordingly, we formally define G © AG =
{VAAYV, E\AE\ke (AV), X\AX \Kkx (AV)}.

4 METHODOLOGY

In this section, we present our proposed framework IDEA, which
aims to achieve flexible and certified unlearning for GNNs. We first
present the general formulation of flexible unlearning for GNNs.
Then, we introduce a unified modeling integrating different instanti-
ations of unlearning requests. We finally propose a novel theoretical
guarantee on the effectiveness of IDEA as the certification.

4.1 Flexible Unlearning for GNNs

We first present a unified formulation of flexible unlearning for
GNNss. In general, our rationale here is to design a framework to di-
rectly approximate the change in the (optimal) learnable parameter
0 during unlearning. Specifically, we first review the training pro-
cess of a given GNN model f over graph data G. Then, we consider
the training objective with information of AG being removed as a
perturbed training objective over G. We are now able to analyze
how the optimal learnable parameter 8* would change when the
objective function is modified. Note that we adopt a generalized
formulation of such modification over the objective function, such
that our analysis can be adapted to different unlearning requests.
In a typical training process of a given GNN model f over graph
data G, the optimal learnable parameter 0™ is obtained via solving



KDD ’24, August 25-29, 2024, Barcelona, Spain

the optimization problem of

o1
argmelna Z Z(0,0;,G),

0;€ Vi

1

where a typical choice of .Z is cross-entropy loss in node classifica-
tion tasks. Here we consider that the computation of . also relies
on other necessary information such as ¥; by default and omit them
for simplicity. As a comparison, the optimal learnable parameter
trained over G © AG, which we denoted as 0*, is obtained via
solving the problem of

. 1
arg min

_ i AG) .
6" m— AV £ (6,06 ©46)

;€ Vi \AV

@

To study how the optimal parameters change when transforming
from Equation (1) to Equation (2), it is necessary to analyze how
the objective function and optimal solution change between the
two cases. To systematically compare Equation (1) and Equation (2),
here we define ¢y (-) as a function that takes a node and a graph as
its input and outputs the set of nodes in the computation graph of
the input node (excluding the input node itself). Here a computation
graph is a subgraph centered on a given node with neighboring
nodes up to k hops away, where k is the layer number of the studied
GNN. Then we have the following proposition.

ProrosITION 1. Localized Equivalence of Training Nodes.
Given AG = {AV,AE,AX} to be unlearned and an objective £
computed over fg, £ (0,v;,G) = £ (0,0;,G © AG) holds Yv; ¢
P (vj) U{vj},0; € AV Uye(AE) Uyx(AX). Here ye and yx return
the set of nodes that directly connect to the edges in & and that have
associated attribute(s) in X, respectively.

The intuition of Proposition 1 is that, under a given fp, the value
of . maintains the same between Equation (1) and Equation (2) for
those training nodes that are not topologically close to the instances
(i.e., nodes, attributes, and edges) in AG. To bridge Equation (1)
and Equation (2), we then propose a formulation to characterize
the intermediate state. Inspired by a series of previous works such
as [58, 59], we add an additional term by defining 67 G.E with

« .1
Orge = argmin Z Z(0,0i,G) + & (Laga — ZLswn) - )
0;€ Vi
We then introduce the modeling of .%, 44 and Zy,p. Specifically, we
propose to formulate %, 44 with

L= ) L(0,0,.G00G) +az ), £ (0,0,G 6 AG)
viE(Vl ZJiE(Vz

ta3 ). L (0,0,600G) +as )| L (0,0,G6AG). (4)

v;i€EVs v; €V,

Here a1, a2, a3, a4 € {0, 1} are used to flag whether the requests of
node unlearning, full attribute unlearning, partial node attribute
unlearning, and edge unlearning exist or not, respectively. We now
introduce Vi, Va, Vs, and Vy. Specifically, V; represents the set of
training nodes whose computation graph includes those nodes to be
unlearned. We denote the sets of nodes associated with AX when
their unlearned attributes are replaced with any non-informative
numbers (e.g., 0) as V;Fuu) and (V,gpartial) for full and partial attribute
unlearning, respectively. V2 and V5 include training nodes whose
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computation graph includes attributes to be unlearned fully and
partially plus the nodes in (V,EFUH) and ‘V,ﬁpartiaD, respectively; Vy is
the set of nodes whose computation graph includes those edges to
be unlearned. Mathematically, we formulate V;, Va2, V3, and Vy as

Vi =Uyeaw (9k(0i) N Vi), (5)
Yy = (V)gFull) U {05 < 01 € $g(07) N Vi, 0; € (V)EFull)}, ©)
Vs = (V)gPartiaI) U {01 £ 01 € ¢ (o) N Viems 0 € (V)EPartial)}, @)
Vi =Uyep.a8) (P (0i) N Virn) (8)

We then formulate %y, as
Lap=a1 y L(0.0,6)+a » Z(0,0,6)

vie(f/l UiE(VZ
vy Y LO0Gra Y L(0.0,6), O
UiE({/s UiE(‘}4

where V; includes all nodes in AV and the training nodes within
k hops away from the nodes in AV; We denote the sets of nodes
~ (Full)
Vi and
(V,Epamal) for full and partial attribute unlearning, respectively. V,
and V3 include training nodes whose computation graph includes
attributes to be unlearned fully and partially plus the nodes in
‘V,EF“H) and ~§Partial), respectively; V, is the set of nodes whose
computation graph includes those edges to be unlearned, i.e., Vy =
Vy. Mathematically, we have

associated with AX with their vanilla attributes as

V1 = Ugeay (9 (0) N Vin) U AV, (10)
V= ~)£Fu11) U{oi : 0; € ¢ (vj) N Vi, 05 € (‘}JEFHH)}, (11)
Py = pRartiad e G107 0 Vien, 0; € pPartial)y ()
Vy =V (13)

We then have the complete formulation of Equation (3) given Equa-
tion (4) to (13). Based on the modeling above, we have the optimal
equivalence between Equation (3) and Equation (2) below.

Lemma 1. Optimal Equivalence. The optimal solution to Equa-
tion (3) (denoted as OZQ g) equals to the optimal solution to Equation

(2) (denoted as 6* ) when &= %

Now we have successfully bridged the gap between Equation
(1) and Equation (2) by modeling their intermediate states with
Equation (3). More importantly, Lemma 1 paves the way towards
directly approximating 6* based on 6* by giving Theorem 1 below.

THEOREM 1. Approximation with Infinitesimal Residual.
Given a graph data G, AG = {AV,AE, AX} to be unlearned, and
an objective £ computed over an fg+, using 0* + %Aé* as an ap-
proximation of 6* only brings a first-order infinitesimal residual
writ. [|0% = 0%|l2, where A0* = —Hy! (VoLuga ~ VoLoup), and
Hp- = vg% YoV, L (0,0, G).

We note that the approximation strategy above relies on the
assumption that VV; N V; = @ and YV N "f/j = g forij €
{1,2,3,4} wheni # j. However, it can also handle cases where such
an assumption does not hold. We show this in Proposition 2.
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Figure 2: Distances between 0%, 6*, and 6*. Here, 0* denotes
the optimal parameter before unlearning; 0 is the ideal op-
timal parameter after unlearning, which is obtained via re-
training; 6* is an approximation of 6* give by Theorem 1.

PROPOSITION 2. Serializability of Approximation. Any mix-
ture of unlearning request instantiations can be split into multiple
sets of unlearning requests, where each set of unlearning requests
satisfiesVV; NV = @ andV(f/i ﬂ’\?j = fori, j € {1,2,3,4} when
i # j. Serially performing approximation following these request sets
achieves upper-bounded error.

Unlearning in Practice. The approximation approach given by
Theorem 1 requires computing the inverse matrix of the Hessian
matrix, which usually leads to high computational costs. Here we
propose to utilize the stochastic estimation method [8] to perform
estimation based on an iterative approach, which reduces the time
complexity to O(tp). Here t is the total number of iterations adopted
by the stochastic estimation method, and p represents the total
number of learnable parameters in 6.

4.2 Unlearning Certification

In this subsection, we introduce a novel certification based on The-
orem 1. According to the unlearning process given by Definition 1,
our goal is to achieve guaranteed closeness between 6* (ie., the
ideal unlearned parameter derived from Equation (2)) and the ap-
proximation of such a parameter (denoted as 8*). In this way, we
are able to achieve certifiable unlearning effectiveness.

Although certified unlearning for GNNss is studied by some re-
cent explorations [7, 59], these approaches can only be applied
when the studied GNN model is trained following a specially modi-
fied objective. In particular, such a modification requires adding an
additional regularization term of 8 scaled by a random vector onto
the objective, which is specially designed for certification purposes.
However, most GNNs are optimized following common objectives
(e.g., cross-entropy loss) instead of such a modified objective. There-
fore, these certified unlearning approaches cannot be flexibly used
across different GNNs in real-world applications. Here we aim to
develop a certified unlearning approach based on Theorem 1, such
that it is not tailored for any optimization objective and thus can
be easily generalized across various GNNs. Towards this goal, we
first review the £, distances between 0*, 8*, and 8*. We present
an illustration in Figure 2. It is difficult to directly analyze the £
distance between 6* and 6*. We thus start by analyzing the £ dis-
tance between 6* and 8*. We found that the £, distance between
6* and 6* is upper bounded under common assumptions, which
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are widely adopted in other existing works tackling unlearning
problems [7, 17, 59]. We first present these assumptions below.

AsSUMPTION 1. For the training objective of a given GNN model,
we have: (1) The loss values of optimal points are bounded: |.£ (0*)| <
C and |.£(0%)| < C; (2) The loss function % is L-Lipschitz continu-
ous; (3) The loss function £ is A-strongly convex.

Based on Assumption 1, we now present the bound between 6*
and 6" in Theorem 2.

THEOREM 2. Distance Bound in Optimals. The {, distance
bound between 0 and 6" is given by

LIAV| + \4mACIV| + L2 AV P

0% _ p* <
10" — 672 < — (14)
Denote (VJC(F+P) = (V;Fu”) U (Vx(Partml) L andV is given by
5 _ (F+P)
V=3V UVsU {uv; :Ui€¢k(0j)ﬂ(vtm, vj € Vy 1. (15)

Here the rationale of V is to describe the set of nodes whose
computation graphs involve any instance (i.e., nodes, attributes,
and edges) to be unlearned. Noticing the relationship between 6%,
6*, and 6* give by Figure 2, we further show the bound between
6* and 6* in Proposition 3.

PRoPOSITION 3. Distance Bound in Approximation. The ¢,
distance bound between 0* and 0* is given by

DAz + LIAV] + AAmACIV] + L2| AV
6" — 072 < - (

mA

16)

The rationale of Proposition 3 is to characterize the maximum ¢,
distance between the ideal unlearning optimal and the approxima-
tion of unlearning optimal given by Theorem 1. Finally, based on
Proposition 3, we are able to present the certification in Theorem 3.

THEOREM 3. Let 0* = A (G) be the empirical minimizer over G,
0 =A (G © AG) be the empirical minimizer over G © AG and 6*
be an approximation of 8. Define { as an upper bound of ||0* — 6* .
We have U (G, AG, A (G)) = 0*+b is an (e~ ) certified unlearning

process, where b ~ N (0,0%I) and o > é;V\IZIn(l.ZS/(S).

Therefore, according to Theorem 3, we are able to achieve cer-
tified unlearning by adding zero-mean Gaussian noise over the
approximation derived from Theorem 1.

5 EXPERIMENTAL EVALUATIONS

We empirically evaluate the performance of IDEA in this section.
In particular, we aim to answer the following research questions.
RQ1: How tight can IDEA bound the ¢, distance between the ideal
optimal 6* and the approximation 6*? RQ2: How well can IDEA
improve the efficiency of unlearning compared with re-training and
other alternatives? RQ3: How well can IDEA maintain the utility
of the original GNN model? RQ4: How well can IDEA unlearn the
information requested to be removed from the GNN?
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Figure 3: Bounds and actual value of the ¢, distance between 6* and 0%, ie., ||é* — 0*||2, over Cora, CiteSeer and PubMed datasets.
CEU Worst, CEU Data Dependent, IDEA, and Actual represent the worst bound based on CEU, the data-dependent bound based
on CEU, the bound based on IDEA, and the actual value of ||0* — 8*||; derived from re-training, respectively.

5.1 Experimental Setup

Downstream Task and Datasets. We adopt the widely studied
node classification task as the downstream task, which accounts
for a wide range of real-world applications based on GNNs. We per-
form experiments over five real-world datasets, including Cora [26],
Citeseer [26], PubMed [26], Coauthor-CS [4, 46], and Coauthor-
Physics [4, 46]. These datasets usually serve as commonly used
benchmark datasets for GNN performance over node classifica-
tion tasks. Specifically, Cora, Citeseer, and PubMed are citation
networks, where nodes denote research publications and edges
represent the citation relationship between any pair of publications.
The node attributes are bag-of-words representations of the pub-
lication keywords. Coauthor-CS, and Coauthor-Physics are two
coauthor networks, where nodes represent authors and edges de-
note the collaboration relationship between any pair of authors.
We leave more dataset details, e.g., their statistics, in Appendix.
Backbone GNNs. To evaluate the generalization ability of IDEA
across different GNNs, we propose to utilize two types of GNNs,
including linear and non-linear GNN. In terms of linear GNNs, we
adopt the popular SGC [57]; in terms of non-linear GNNs, we adopt
three popular ones, including GCN [26], GAT [49], and GIN [66].
Unlearning Requests. We consider all unlearning requests pre-
sented in Section 3. For each type of request, we perform experi-
ments over a wide range of scales in terms of the number of un-
learned instances (e.g., nodes and edges). For experiments with
fixed ratios, we adopt a ratio of 5% to perform unlearning for nodes
or edges unless otherwise specified.

Threat Models. To evaluate the effectiveness of the unlearning
strategy, we propose to adopt different types of threat models. Al-
though IDEA is able to flexibly perform four different types of
unlearning requests, there are only limited threat models can be
chosen from. In our experiments, we adopt two state-of-the-art
threat models, namely MIA-Graph [35] and StealLink [20], for node
membership inference attack and link stealing attack, respectively.
Baselines. We adopt five types of baselines for performance com-
parison. (1) Re-Training. We adopt the re-training approach to obtain
an ideal model based on the optimization problem given by Equa-
tion (2). (2) Exact Unlearning. We adopt the popular GraphEraser [4]
as a representative method for exact unlearning. Specifically, exact
unlearning methods aim to achieve the exact same probability dis-
tribution in the model space (after unlearning) compared with the
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re-trained model. As a comparison, IDEA aims to approximate the
distribution of the re-trained model through unlearning. (3) Certi-
fied Unlearning. Finally, we adopt two representative approaches for
certified unlearning, namely Certified Graph Unlearning (CGU) [6]
and Certified Edge Unlearning (CEU) [59]. CGU is able to unlearn
nodes, attributes, and edges. However, it is only applicable for the
SGC model. As a comparison, CEU can be adapted to different
GNN . Nevertheless, it is specially designed for edge unlearning.
Evaluation Metrics. We evaluate IDEA with different metrics to
answer the four research questions. (1) Bound Tightness. We propose
to compare the numerical values of the bounds given by IDEA,
the bounds given by other baselines, and the actual ¢, distance of
model parameters yielded by re-training. A smaller bound on the
{5 distance indicates better tightness. (2) Model Utility. We utilize
the F1 score to measure the model utility after unlearning. A higher
F1 score indicates better performance. (3) Unlearning Efficiency. We
utilize the running time (in seconds) that the unlearning methods
take to measure efficiency, and a shorter running time indicates
better efficiency. (4) Unlearning Effectiveness. We use the attack
successful rate after unlearning to measure unlearning effectiveness.
Lower attack successful rates indicate better effectiveness.

5.2 Evaluation of Bound Tightness

To answer RQ1, we first evaluate how tight the derived bound
between 6* and 8* can be across different GNNss, graph datasets,
and unlearning ratios. We also compare the bound derived based
on IDEA and other bounds in existing works. To the best of our
knowledge, CEU [59] is the only existing certified unlearning ap-
proach that provides generalizable bounds across different GNNS.
In particular, CEU provides bounds over the objective function after
unlearning, and we adapt such bounds over the objective function
to ¢, distance bounds between 8* and 6* based on the common as-
sumption of the objective function being Lipschitz continuous [59].
We compare the bounds and the ¢, distances below. (1) CEU Worst
Bound. We compute the theoretical worst bound derived based on
CEU as a baseline of the £, distance bound between 6* and 6*.
(2) CEU Data-Dependent Bound. We compute the data-dependent
bound derived based on CEU as a baseline of the £, distance bound
between 6* and 6*. A data-dependent bound is tighter than the
Worst Bound. (3) IDEA Bound. We compute the bound given by
Equation 3 as the bound for the £, distance between 6* and 6*. (4)
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Table 1: F1 score on five real-world graph datasets under node classification task. All numerical values are reported in percentage,

and the F1 scores given by the proposed framework IDEA are marked in bold.

Cora CiteSeer PubMed CS Physics
Re-Training 76.88 = 0.3 67.27 £ 0.6 76.20 £ 0.0 86.79 £ 0.3 92.30 £ 0.0
Random 4797 £ 0.5 46.25 £ 5.6 70.98 £ 0.1 80.64 £ 0.3 7523 £0.1
GCN BEKM 50.68 £ 2.0 46.85 £ 4.9 69.64 £ 0.1 80.30 £ 0.2 74.85 + 0.1
BLPA 43.79 £ 2.2 40.24 £ 8.3 63.42 £5.7 85.10 £ 0.3 78.93 £ 0.5
IDEA 72.08 +£ 1.2 61.56 = 1.2 73.11+ 0.0 86.13 + 0.4 91.93 £ 0.1
Re-Training 76.14 £ 0.6 65.77 £ 0.0 75.90 £ 0.0 87.10 £ 0.1 92.01 £0.0
Random 46.00 £ 0.7 4525+ 3.0 69.03 £0.1 81.30 £ 0.3 80.81 £ 0.1
SGC BEKM 48.83 £ 1.8 4645+ 04 69.76 £ 0.1 80.08 £ 0.2 74.87 £0.2
BLPA 6359 +£14 3944 £ 238 62.98 £ 4.6 86.95 £ 0.1 87.38 £0.1
IDEA 72.94 + 1.9 63.16 = 1.0 73.63 £ 0.8 84.68 + 0.3 91.21 £ 0.1
Re-Training 82.90 £ 0.6 74.27 £ 0.5 8531 £ 0.6 90.28 £0.2 9557 £0.2
Random 69.25 £ 6.3 51.85 + 2.7 83.64 £1.2 89.17 £ 0.1 91.74 £ 0.5
GIN BEKM 74.05 £ 3.5 65.17 £ 2.8 8435+ 0.3 89.39 £ 0.5 9230 £0.3
BLPA 62.48 +£2.9 55.06 + 7.2 82.25 £ 1.6 62.29 = 0.7 71.66 = 1.4
IDEA 72.57 £ 2.8 66.37 + 4.6 82.33 + 0.2 88.48 + 0.6 94.63 + 0.1
Re-Training 83.76 £ 0.3 75.88 £0.1 85.02 £0.1 92.24 £0.1 95.28 £0.1
Random 58.18 £ 2.0 5543 £ 4.3 68.20 £ 6.9 80.75 £ 0.1 78.26 £ 0.1
GAT BEKM 64.20 = 1.5 57.35 238 71.67 £ 0.2 80.37 = 0.3 77.47 0.2
BLPA 60.88 + 1.0 58.26 + 2.6 67.34 £ 3.4 85.22+£0.2 86.12 £ 0.2
IDEA 84.38 + 0.6 75.78 £ 0.9 84.92 + 0.2 92.20 £ 0.2 95.41 0.0

Actual Values. We compare the bounds above with the actual ¢,
distance between 8* and 8*. Note that we focus on edge unlearning
tasks to analyze the tightness of the derived bounds, since this is
the only unlearning task CEU supports. We use Unlearn Ratio to
refer to the ratio of edges to be unlearned from the GNN.

We present the bounds and the actual value of the ¢, distance
between 6* and 6* over a wide range of unlearn ratios (from 1%
to 10%), which covers common values, in Figure 3. We also have
similar observations in other cases (see Appendix). We summarize
the observations below. (1) From the perspective of the general
tendency, we observe that larger unlearn ratios usually lead to
larger values in both the derived bounds and the actual ¢, distance
between 6* and 6. This reveals that a larger unlearn ratio tends
to make the approximation of 8* (with the calculated 8*) more
difficult, which is in alignment with existing works [59]. (2) From
the perspective of the bound tightness, we found that IDEA is able
to give tighter bounds in all cases compared with the bounds given
by CEU, especially in cases with larger unlearn ratios. This reveals
that the approximation of 0* given by IDEA can better characterize
the difference between 6* and 6* compared with CEU.

5.3 Evaluation of Unlearning Efficiency

To answer RQ2, we then evaluate the efficiency of IDEA in perform-
ing unlearning. Specifically, we adopt the common node unlearning
task as an example, and we measure the running time of unlearning
in seconds. We note that CGU only supports performing unlearning
on SGC, and thus we adopt SGC as the backbone GNN for IDEA
and all other baselines for a fair comparison. We use Unlearn Ratio
to refer to the ratio of training nodes to be unlearned from the
GNN. Here we present a comparison between IDEA and baselines
on Cora dataset in Figure 4. We also have similar observations on
other GNNss and datasets (see Appendix). We summarize the ob-
servations below. (1) From the perspective of the general tendency,
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we observe that the running time of re-training does not change
across different unlearning ratios. This is because the number of
optimization epochs dominates the running time of re-training,
while the total epoch number does not change no matter how many
training nodes are removed. However, the efficiency of all other
baselines is sensitive to the unlearning ratio, and this is because
their running time is closely dependent on the total number of
nodes to be unlearned. Finally, we found that the running time
of IDEA is not sensitive to the unlearn ratio. This is because the
number of nodes to be unlearned will only marginally influence
the computational costs associated with Theorem 1. The stable
running time across different numbers of nodes to be unlearned
serves as a key superiority of IDEA over other baselines. (2) From
the perspective of time comparison, we found that IDEA achieves
significant superiority over all other baselines across the wide range
of unlearning ratios, especially on relatively large ones (e.g., 10%).
Such an observation indicates that IDEA is able to perform unlearn-
ing with satisfying efficiency, which further reveals its practical
significance in real-world applications.

5.4 Evaluation of Model Utility

To answer RQ3, we now compare model utility after performing un-
learning with IDEA and other baselines. We note that GraphEraser
is the only baseline that supports flexible generalization across dif-
ferent GNN backbones. Therefore, we adopt the three variants of
GraphEraser, i.e., Random, BEKM, and BLPA, as the correspond-
ing baselines for comparison. We adopt the most common task
of node unlearning, and we adopt the F1 score (of node classifica-
tion) to measure the model utility after re-training/unlearning. We
present comprehensive empirical results (including four different
GNN backbones and all five real-world datasets) in Table 1. In addi-
tion to the baselines, we also report the performance of re-training,
i.e., the F1 score given by a re-trained model with the unlearned
nodes being removed from the training graph, for comparison.



KDD ’24, August 25-29, 2024, Barcelona, Spain

[ZZA Re-Training [ CGU [ BLPA
[ BEKM [ Random [ IDEA
=)
S
=2
1
ﬁ
o 10°
0.1% % 5% 10%

Unlearn Ratio

Figure 4: Efficiency comparison between IDEA and other
baselines including retraining. Running time is measured
with seconds and presented in log scale.

We summarize the observations below, and similar observations
are also found in different settings (see Appendix). (1) From the
perspective of the general tendency, we observe that unlearning
approaches are usually associated with worse utility performance
compared with re-training. Such a sacrifice is usually considered
acceptable, since these unlearning approaches can bring significant
improvement in efficiency compared with re-training. (2) From the
perspective of model utility, we found that IDEA achieves competi-
tive utility compared with other baselines. Specifically, compared
with re-training, IDEA only sacrifices limited utility performance
in most cases, and even shows better performance in certain cases.
Furthermore, compared with other alternatives, IDEA also shows
consistent superiority in most cases.

5.5 Evaluation of Unlearning Effectiveness

To answer RQ4, we compare the unlearning effectiveness of IDEA
and other baselines. Specifically, we utilize the state-of-the-art at-
tack methods MIA-Graph and StealLink to evaluate the unlearning
effectiveness of node and edge unlearning tasks, respectively. To
also have CGU as a baseline, we adopt SGC as the backbone GNN
to ensure a fair comparison. We present the attack successful rates
after node and edge unlearning in Table 2. All attacks are per-
formed over those unlearned nodes/edges, and thus a lower AUC
score represents better unlearning performance. In terms of node
attributes unlearning, we note that to the best of our knowledge,
no existing membership inference attack method supports the asso-
ciated attack. Here we use the average loss value as an unlearning
performance indicator. Specifically, we perform partial attribute un-
learning under different ratios (20%, 50%, 80%) of unlearn attribute
dimensions to the total attribute dimensions. Note that partial at-
tribute unlearning aims to twist the GNN model such that the GNN
model behaves as if it were trained on those nodes with the un-
learn attribute values being set to non-informative numbers (as
in Section 3). Here we follow a common choice [6] to set such a
number as zero. Accordingly, we evaluate the performance with the
average loss values regarding the nodes with the unlearn attributes
being set to zeros, and a lower loss value indicates better unlearn-
ing effectiveness. We present the results in Table 3. Note that CGU
only supports full attribute unlearning, while the three variants
of GraphEraser only support node/edge unlearning. Therefore, we
perform attribute unlearning and node unlearning for CGU and
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Table 2: Attack AUC scores after node and edge unlearning
on Cora. The results given by IDEA are marked in bold.

Node Unlearning (|) Edge Unlearning (|)
Random 50.38 = 0.5 55.64 + 2.8
BEKM 50.35+ 1.2 51.81+0.3
BLPA 50.30 + 0.4 50.84 + 3.4
CGU 54.67 = 2.9 66.52 + 0.6
IDEA 50.86 + 1.8 50.11 +£ 0.9

Table 3: Average loss values on Cora regarding the nodes with
the unlearn attributes being set to zeros. Ratio of unlearn
node attribute dimensions to all attribute dimensions varies
across 20%, 50%, and 80%. Lower values represent better per-
formance, and results from IDEA are marked in bold.

20% (1) 50% (1) 80% (1)
Random 1.32 £ 0.06 1.38 £ 0.06 1.35 £ 0.09
BEKM 1.41 £ 0.16 1.47 £0.14 1.39 + 0.12
BLPA 1.47 £ 0.11 1.69 + 0.37 1.50 + 0.05
CGU 1.62 £ 0.02 1.73 £ 0.04 1.78 £ 0.06
IDEA 129+0.01  1.31+0.01  1.33+0.01

GraphEraser, respectively. Based on the settings above, we have
the observations below, and consistent observations are also found
under different settings (see Appendix). (1) From the perspective of
node and edge unlearning, we observe that the attack AUC scores
over IDEA are among the lowest in both unlearning tasks. Noticing
that the AUC scores given by IDEA are only marginally above 50%,
the unlearned node/edge information has been almost completely
removed from the trained GNNs. (2) From the perspective of at-
tribute unlearning, IDEA exhibits the lowest average loss values in
all (attribute) unlearn ratios. This indicates the superior attribute
unlearning performance.

6 RELATED WORK

Certified Machine Unlearning. The general desiderata of ma-
chine unlearning is to remove the influence of certain training
data on the model parameters, such that the model can behave
as if it never saw such data [2, 15, 34, 52, 63, 68]. Re-training the
model without making the unlearning data visible is an ideal way
to achieve such a goal, while it is usually infeasible in practice
due to various reasons such as prohibitively high computational
costs [39, 43, 64, 70]. A popular way to approach the goal of un-
learning is to directly approximate the re-trained model parameters,
ak.a., approximate unlearning [48, 63]. Certified machine unlearn-
ing is under the umbrella of approximate unlearning [30, 72], and
it has stood out due to the capability of providing theoretical guar-
antee on the unlearning effectiveness. A commonly used criterion
of certified unlearning is (¢ — ) certified unlearning [9, 16, 29, 44],
which utilizes two parameters ¢ and § to describe the proximity
between the re-trained model parameter distribution and approxi-
mated model parameter distribution in the model space. In recent
years, various techniques have been proposed to achieve certified
unlearning [32, 55, 73]. However, they overwhelmingly focus on
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independent, identically distributed (i.i.d.) data and fail to consider
the dependency between data points. Therefore, they cannot be di-
rectly adopted to perform unlearning over GNNs [58, 59]. Different
from the works mentioned above, our paper proposes a certified
unlearning approach for GNNs, necessitating the modeling of de-
pendencies between instances in graphs (e.g., nodes and edges).

Machine Unlearning for Graph Neural Networks. Over the
years, GNNs have been increasingly deployed in a plethora of appli-
cations [11, 12, 18, 23, 28, 31, 33, 47, 51, 60, 69, 76]. Similar to other
machine learning models, these GNN models also face the risk of
privacy leakage [24, 38, 42, 45, 53, 67], where the private informa-
tion is usually considered to be encoded in the training data [41].
Such a threat has prompted the emerging of unlearning approaches
for GNNs [4, 5, 36, 58]. However, these works are only able to
achieve unlearning for GNNs empirically, failing to provide any
theoretical guarantee on the effectiveness. To further strengthen
the power of unlearning for GNNs and enhance the confidence
of model owners before model deployment, a few recent works
have initiated explorations on certified unlearning for GNNs. Wu
et al. [59] propose CEU to unlearn edges that are visible to GNNs
during training, while edge unlearning is the only type of request
it is able to handle. Chien et al. [6] proposed a different certified
unlearning approach for GNNs to also handle node and attribute
unlearning requests, while such an approach is only applicable to a
specially simplified GNN model. Meanwhile, these approaches can
only handle limited types of unlearning requests, which further
jeopardizes their flexibility in real-world applications. Different
from them, our paper proposes a flexible unlearning framework
that can handle different types of unlearning requests. On top of
this framework, an effectiveness certification is further proposed
without relying on any specific GNN structure or objective function.

7 CONCLUSION

In this paper, we propose IDEA, a flexible framework of certified un-
learning for GNNs. Specifically, we first formulate and study a novel
problem of flexible and certified unlearning for GNNs, which aims
to flexibly handle different unlearning requests with theoretical
guarantee. To tackle this problem, we develop IDEA by analyzing
the objective difference before and after certain information is re-
moved from the graph. We further present theoretical guarantee
as the certification for unlearning effectiveness. Extensive experi-
ments on real-world datasets demonstrate the superiority of IDEA
in multiple key perspectives. Meanwhile, two future directions are
worth further investigation. First, we focus on the common node
classification task in this paper, and we will extend the proposed
framework to other tasks, such as graph classification. Second, con-
sidering that GNNs may be trained in a decentralized manner, it is
critical to study GNN unlearning under a distributed setting.
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