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ABSTRACT

Federated Graph Learning (FGL) aims to learn graph learning mod-
els over graph data distributed in multiple data owners, which has
been applied in various applications such as social recommenda-
tion and financial fraud detection. Inherited from generic Federated
Learning (FL), FGL similarly has the data heterogeneity issue where
the label distribution may vary significantly for distributed graph
data across clients. For instance, a client can have the majority
of nodes from a class, while another client may have only a few
nodes from the same class. This issue results in divergent local
objectives and impairs FGL convergence for node-level tasks, es-
pecially for node classification. Moreover, FGL also encounters a
unique challenge for the node classification task: the nodes from a
minority class in a client are more likely to have biased neighboring
information, which prevents FGL from learning expressive node
embeddings with Graph Neural Networks (GNNs). To grapple with
the challenge, we propose FedSpray, a novel FGL framework that
learns local class-wise structure proxies in the latent space and
aligns them to obtain global structure proxies in the server. Our
goal is to obtain the aligned structure proxies that can serve as reli-
able, unbiased neighboring information for node classification. To
achieve this, FedSpray trains a global feature-structure encoder and
generates unbiased soft targets with structure proxies to regularize
local training of GNN models in a personalized way. We conduct
extensive experiments over four datasets, and experiment results
validate the superiority of FedSpray compared with other baselines.
Our code is available at https://github.com/xbfu/FedSpray.
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1 INTRODUCTION

Graph Neural Networks (GNNs) [46] are a prominent approach
for learning expressive representations from graph-structured data.
Typically, GNNs follow a message-passing mechanism, where the
embedding of each node is computed by aggregating attribute in-
formation from its neighbors [11, 17, 44]. Thanks to their powerful
capacity for jointly embedding attribute and graph structure in-
formation, GNNs have been widely adopted in a wide variety of
applications, such as node classification [9, 12] and link predic-
tion [2, 5]. The existing GNNs are mostly trained in a centralized
manner where graph data is collected on a single machine before
training. In the real world, however, a large number of graph data
is generated by multiple data owners. These graph data cannot be
assembled for training due to privacy concerns and commercial
competitions [41], which prevents the traditional centralized man-
ner from training powerful GNNs. Taking a financial system with
four banks in Figure 1 as an example, each bank in the system has
its local customer dataset and transactions between customers. As
we take the customers in a bank as nodes and transactions between
them as edges, the bank’s local data can naturally form a graph.
These banks aim to jointly train a GNN model for classification
tasks, such as predicting a customer’s occupation (i.e., Doctor or
Teacher) without sharing their local data with each other.
Federated Learning (FL) [25] is a prevalent distributed learning
scheme that enables multiple data owners (i.e., clients) to collab-
oratively train machine learning models under the coordination
of a central server without sharing their private data. One critical
challenge in FL is data heterogeneity, where data samples are not
independent and identically distributed (i.e., non-IID) across the
clients. For instance, assume that Bank A in Figure 1 locates in a
community adjacent to a hospital. Then most customers in Bank
A are therefore likely to be labeled as Doctor while only a few cus-
tomers are from other occupations (e.g., Teacher). In contrast, Bank
C adjoining a school has customers labeled mostly as Teacher and
only a few as Doctor. Typically, the nodes from a class that claims
the very large proportion of the overall data in a client are the
majority nodes (e.g., Doctor in Bank A) while minority nodes (e.g.,
Teacher in Bank A) account for much fewer samples. The data het-
erogeneity issue results in divergent local objectives on the clients
and consequently impairs the performance of FL [15]. A number
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Figure 1: An example of a financial system including four
banks. The four banks aim to jointly train a model for pre-
dicting a customer’s occupation (i.e., Doctor or Teacher) or-
chestrated by a third-party company over their local data
while keeping their private data locally.

of approaches have been proposed to address this issue, to name a
few [20, 42, 45].

When we train GNNs over distributed graph data in a federated
manner, however, the data heterogeneity issue can get much more
severe. This results from a unique challenge in Federated Graph
Learning (FGL) [10]: the high heterophily of minority nodes,
i.e., their neighbors are mostly from other classes [35]. A majority
node in a client (e.g., Teacher in Bank D) can benefit from the
message-passing mechanism and obtain an expressive embedding
as its neighbors are probably from the same class. On the contrary,
a minority node in another client (e.g., Teacher in Bank A) may
obtain biased information from its neighbors when they are from
other classes (e.g., Doctor in Bank A). In FGL, this challenge is
usually entangled with the data heterogeneity issue. As a result, the
minority nodes will finally get underrepresented embeddings given
adverse neighboring information and be more likely to be predicted
as the major class, which results in unsatisfactory performance.
Although a few studies have investigated the data heterogeneity
issue about graph structures in FGL [38, 47], they did not fathom
the divergent impact of neighboring information across clients for
node classification.

To tackle the aforementioned challenges in FGL, we propose
FedSpray, a novel FGL framework with structure proxy alignment
in this study. The goal of FedSpray is to learn personalized GNN
models for each client while avoiding underrepresented embed-
dings of the minority nodes in each client caused by their adverse
neighboring information in FGL. To achieve this goal, we first intro-
duce global class-wise structure proxies [7] which aim to provide
nodes with informative, unbiased neighboring information, espe-
cially for those from the minority classes in each client. Moreover,
FedSpray learns a global feature-structure encoder to obtain reli-
able soft targets that only depend on node features and aligned
structure proxies. Then, FedSpray uses the soft targets to regu-
larize local training of personalized GNN models via knowledge
distillation [13]. We conduct extensive experiments over five graph
datasets, and experimental results corroborate the effectiveness of
the proposed FedSpray compared with other baselines.

We summarize the main contributions of this study as follows.

¢ Problem Formulation. We formulate and make an initial
investigation on a unique issue of unfavorable neighboring
information for minority nodes in FGL.
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e Algorithmic Design. We propose a novel framework Fed-
Spray to tackle the above problem in FGL. FedSpray aims
to learn unbiased soft targets by a global feature-structure
encoder with aligned class-wise structure proxies which
provide informative, unbiased neighboring information for
nodes and guide local training of personalized GNN models.

¢ Experimental Evaluation. We conduct extensive experi-
ments over four graph datasets to verify the effectiveness
of the proposed FedSpray. The experimental results demon-
strate that our FedSpray consistently outperforms the state-
of-the-art baselines.

2 PROBLEM FORMULATION

2.1 Preliminaries

2.1.1 Notations. We use bold uppercase letters (e.g., X) to repre-
sent matrices. For any matrix, e.g., X, we denote its i-th row vector
as x;. We use letters in calligraphy font (e.g., V) to denote sets. |V|
denotes the cardinality of set V.

2.1.2  Graph Neural Networks. Let G = (V, &E,X) denote an
undirected attributed graph, where V = {v1, 0y, - ,v,} is the set
of |'V| nodes, & is the edge set,and X € RIVIXdx i the node feature
matrix. dy is the number of node features. Given each node v; € V,
N (v;) denotes the set of its neighbors. The ground-truth label of
each node v; € V can be denoted as a d.-dimensional one-hot
vector y; where d. is the number of classes. The node homophily
[23, 49] is defined as

~ Hojloj € N(v) andy; =y}
T IN (vi)] ’

where | N (v;)| denotes the degree of node v;. Typically, an L-layer
GNN model f parameterized by § maps each node to the outcome
space via a message-passing mechanism [11, 17]. Specifically, each
node v; aggregates information from its neighbors in the I-th layer
of a GNN model by

1)

h = fi(hi™" (™" 0 € N(ui)}s0), @)

where hg is the embedding of node v; after the I-th layer f;, and
0; is the parameters of the message-passing function in f;. The
raw feature of each node v; is used as the input layer, i.e., h? = Xj.
For the node classification task, the node embedding h{f after the
final layer is used to compute the predicted label distribution y; =
Softmax(hiL ) € R by the softmax operator.

2.1.3 Personalized FL. Given a set of K clients, each client k has
K

its private dataset D) = {(xgk),ygk))}ﬁ(l ), where N®) is the

number of samples in client k. The overall objective of the clients is

O NE 6 ). g0
i - k), gk, 3
(9(1>’9(IZI)1’1'I'1"9(K))1<Z:; N L ) ®)

where £) (0(%)) is the local average loss (e.g., the cross-entropy
loss) over local data in client k, and N = 2115:1 N Standard FL
methods aim to learn a global model § = 0 = 9@ = ... =
0X) _ As a representative method in FL, FedAvg [25] performs local
updates in each client and uploads local model parameters to a
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Table 1: The statistics of the majority class and other minority
classes in 7 clients from the PubMed dataset. Majority and
Minority represent the majority class and other minority
classes, respectively.

. Majority Num. of Nodes Avg. Homophily

Client o L o .
Class Majority Minority | Majority Minority

1 1 1,384 384 0.91 0.33

2 1 1,263 152 0.97 0.24

3 2 2,001 286 0.92 0.17

4 2 1,236 97 0.98 0.48

5 1 1,160 140 0.95 0.41

6 0 934 467 0.84 0.47

7 2 948 806 0.83 0.70

central server, where they are averaged by
K N *)

0= Z 0 )

k=1
during each round. However, a single global model may have poor
performance due to the data heterogeneity issue in FL [19]. To
remedy this, personalized FL [37] allows a customized 0) in each
client k with better performance on local data while still benefiting
from collaborative training.

2.2 Problem Setup

Given a set of K clients, each client k owns a local graph G =
(’V(k), &) x(k) ). For the labeled node set (VL(k) c V& in client
k, each node vl.(k) € (VL(k) is associated with its label yl(k). The goal
of these clients is to train personalized GNN models f (6% in each
client k for the node classification task while keeping their private
graph data locally. Based on the aforementioned challenge and pre-
liminary analysis, this study aims to enhance collaborative training
by mitigating the impact of adverse neighboring information on
node classification, especially for minority nodes.

3 MOTIVATION

In this section, we first conduct an empirical study on the PubMed
dataset [31] to investigate the impact of divergent neighboring in-
formation across clients on minority nodes when jointly training
GNNss in FGL. The observation from this study is consistent with
our example in Figure 1 and motivates us to learn global structure
proxies as favorable neighboring information. We then develop the-
oretical analysis to explain how aligning neighboring information
across clients can benefit node classification tasks in FGL.

3.1 Empirical Observations

To better understand the divergent neighboring information across
clients with its impact on the node classification task in FGL, we
conduct preliminary experiments to compare the performance of
federated node classification with MLP and GNNs as local models
on the PubMed dataset [31]. Following the data partition strategy in
previous studies [14, 51], we synthesize the distributed graph data
by splitting each dataset into multiple communities via the Louvain
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Figure 2: Classification accuracy (%) of minority nodes in
each client by training MLP and GNN via FedAvg over the
PubMed dataset. Average accuracy for all nodes: 82.35% for
MLP VS 87.06% for GNN.

algorithm [1]. We retain seven communities with the largest number
of nodes; each community is regarded as an entire graph in a client.

Table 1 shows the statistics of each client. According to Table 1,
although one client may have the majority class different from
another, the average node-level homophily of the majority class
is consistently higher than that of the other classes for all the
clients. For instance, the nodes in client 2 that do not belong to
class 1 have only 24% neighbors from the same class on average. It
means that the minority nodes will absorb unfavorable neighboring
information via GNNs and probably be classified incorrectly.

To validate our conjecture, we perform collaborative training
for MLPs and GNN s following the standard FedAvg [25] over the
PubMed dataset. Figure 2 illustrates the classification accuracy of
minority nodes in each client by MLPs and GNNs. We can observe
that MLPs consistently perform better than GNNs on minority
nodes across the clients, although GNNs have higher overall accu-
racy for all nodes. Given that MLPs and GNNss are trained over the
same node label distribution, we argue that the performance gap
on minority nodes results from aggregating adverse neighboring
information from other classes via the message-passing mechanism
in GNNss, especially from the majority class. On the contrary, MLPs
only need node features and do not require neighboring informa-
tion throughout the training; therefore, they can avoid predicting
more nodes as the majority class.

3.2 Theoretical Motivation

According to the above empirical observations, minority nodes
with the original neighboring information are more likely to be
misclassified. One straightforward approach to this issue is enabling
nodes to leverage favorable neighboring information from other
clients for generating node embeddings. Specifically, we consider
constructing global neighboring information in the feature space.
The server collects neighboring feature vectors from each client
and computes the global class-wise neighboring information via
FedAvg [25]. We aim to theoretically investigate whether the global
neighboring information can benefit node classification tasks when
replacing the original neighbors of nodes. Following prevalent ways
of graph modeling [8, 24, 40], we first generate random graphs in
each client using a variant of contextual stochastic block model
[40] with two classes.

3.2.1 Random Graph Generation. The generative model gen-
erates a random graph in each client via the following strategy.
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Figure 3: (a) An overview of the proposed FedSpray. The backbone of FedSpray is personalized GNN models f(6(%)). A global
feature-structure encoder g(w) with structure proxies S is also employed in FedSpray to tackle underrepresented node embed-
dings caused by adverse neighboring information in FGL. (b) An illustration of the feature-structure encoder in FedSpray.

In the generated graph G¥) in client k, the nodes are labeled by
(k)
i

tor xgk) € R% is sampled from a Gaussian distribution N(py, 1)

two classes ¢ and c3. For each node v;"’, its initial feature vec-

if labeled as class c¢; or N(p,,I) if labeled as class co (u; € R,
iy € R% and p; # ). For each client k, a neighbor of each node
is from the majority with probability p(¥) and from the minority
with probability 1 — p(%). The ratio of minority nodes and major-
ity nodes is q(k). In our setting, we assume % < p(k) < 1and
0 < ¢ < 1. We denote each graph generated from the above
strategy in client k as G ~ Gen(p;, pz,p(k), qk)).

3.2.2 Better Separability with Global Neighboring Informa-
tion. To figure out the influence of global neighboring information,
we focus on the separability of the linear GNN classifiers with the
largest margin when leveraging global neighboring information.
Concretely, we aim to find the expected Euclidean distance from
each class to the decision boundary of the optimal linear GNN
classifier when it uses either the original neighboring information
or the global neighboring information. We use dist and dist’ to
denote the expected Euclidean distances in these two scenarios,
respectively. We summarize the results in the following proposition.

PROPOSITION 3.1. Given a set of K clients, each client k owns a
local graph g ~ Gen(pq, pz,p(k), q(k)), dist = M, which
is smaller than dist’ = (1 + Zle(l —q®)(pt) - %)) M

A detailed proof can be found in Appendix A. According to
Proposition 3.1, we will have a larger expected distance dist” when
using the global neighboring information. Typically, the larger
the distance is, the smaller the misclassification probability is [24].
Therefore, the optimal linear GNN classifier will obtain better clas-
sification performance.

However, directly uploading neighboring feature vectors is im-
plausible in FGL since it contains many sensitive raw features in
the clients. To overcome this issue, we propose a novel framework

830

FedSpray to learn global structure proxies in the latent space and
elaborate on the details of FedSpray in Section 4.

4 METHODOLOGY

In this section, we present the proposed FedSpray in detail. Figure
3(a) illustrates an overview of FedSpray. The goal of FedSpray is
to let the clients learn personalized GNN models over their private
graph data while achieving higher performance by mitigating the
impact of adverse neighboring information in GNN models. To
reach this goal, FedSpray employs a lightweight global feature-
structure encoder which learns class-wise structure proxies and
aligns them on the central server. The feature-structure encoder
generates reliable unbiased soft targets for nodes given their raw
features and the aligned structure proxies to regularize local train-
ing of GNN models.

4.1 Personalized GNN Model
We first introduce personalized GNN models in FedSpray.

4.1.1 GNN backbone Model. Considering their exceptional abil-
ity to model graph data, we use GNNs as the backbone of the pro-
posed framework. In this study, we propose to learn GNN models
for each client in a personalized manner to tackle the data hetero-
geneity issue in FGL. Specifically, the personalized GNN model
f (6%)) in client k outputs the predicted label distribution ?Ek) for

each node vl.(k) € (VL(k). Note that FedSpray is flexible. Any GNNs
that follow the message-passing mechanism as the structure of Eq.
(2) can be used as the backbone, such as GCN [17] and SGC [44].

4.1.2 Loss formulation. During local training, 0) can be up-

dated by minimizing the cross-entropy loss between ylgk) and ?Ek)
for each labeled node vl.(k) € (VL(k)
k 1 k) . (k
Lé )CE =—0 Z CE(Y,( ),YE ). ®)
B VT g gy
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where CE( ) denotes the cross-entropy loss. However, simply min-

imizing L can lead 0%) to overfitting during local training

G_ CE
[19, 39]. In addition, the minority nodes are particularly prone to
obtaining underrepresented embeddings due to biased neighboring
information, as discussed above. To tackle this challenge, we pro-
pose to design an extra knowledge distillation term and use it to
regularize local training of 0k) More concretely, we first employ
(k) ¢ R for each node U(k) V() generated by

the global feature-structure encoder to gurde local training of 0k)

(k)

the soft target p;

in client k. Typically, we hope p;™ to be generated with unbiased

()(

we will elaborate on how

o) 4

neighboring information for node v

to obtain proper p( )

in Section 4.2). Then, we encourage ¥;
approximate p( ) by minimizing the discrepancy between p( ) and

l( ) for each node v( ) e V&) in client k. Specifically, we achieve
this via knowledge drstillation [13] as

k)~ (k
> kg,
oM ey k)

by __ 1
G_KD |(V(k)|

(6)

where KL(-||-) is to compute the Kullback-Leibler divergence (KL-
divergence). Therefore, the overall loss for training 6% in client k
can be formulated by combining the two formulations together

8 - 18l 0

where A; is a predefined hyperparameter that controls the contribu-

tion of the knowledge distillation term in .Eék). When 1 is set as
0, FedSpray will be equivalent to training GNN models individually
in each client.

4.2 Global Feature-Structure Encoder with
Structure Proxies

In this subsection, we will elucidate our design for the global feature-
structure encoder and class-wise structure proxies in FedSpray. The
feature-structure encoder aims to generate a reliable soft target (i.e.,
pgk) ) for each node with its raw features and structure proxy.

4.2.1 Structure Proxies. As discussed above, a minority node
can obtain adverse neighboring information from its neighbors via
the message-passing mechanism, given its neighbors are proba-
bly from other classes. To mitigate this issue, we propose to learn
unbiased class-wise structure proxies in FedSpray, providing favor-
able neighboring information for each node. Here, we formulate
each structure proxy in a vectorial form. Let S € R¥%*ds denote
class-wise structure proxies, and each row s; € S denotes the d-
dimensional structure proxy of the j-th node class. For each node

Ui(k) € (VL(k>, its structure proxy sgk) will be s; if it is from the j-th
class. Then, the structure proxies will be used as the input of the

feature-structure encoder.

4.2.2 Feature-Structure Encoder. In FedSpray, we employ a
lightweight feature-structure encoder to generate a reliable soft
target for a node with its raw feature and structure proxy as the
input. Figure 3(b) illustrates our design for the feature-structure
encoder. Let g(w) denote the feature-structure encoder g param-

() ¢ k)

eterized by . Given a node v; the feature-structure
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(k)

encoder g generates its soft target p;

(k)

with its feature vector x;

and structure proxy sfk) by

k k k
p" =9(x{. s 0). ®)
Fusion of node features and structure proxies. Here, the prob-
lem is to determine a proper scheme for fusing a node’s raw feature
and its structure proxy in the feature-structure encoder. A straight-

*) and s(k) together as the input of

®

forward way is to combine x;

the feature-structure encoder. Ideally, s
(k)

can serve as surrogate

neighboring information of node v; "’ in the feature space. In this

®),

case, it requires s( ) to have the same dimension as that of x

However, this brings us a new challenge: when XI( ) is of high di-
mension in graph data (e.g., 500 for PubMed [31]), directly learning

high-dimensional s.k in the feature space will be intractable. Con-

sidering this, we propose to learn s( ) in the latent space instead.
Specifically, we split the feature- structure encoder into an embed-
ding layer ge (we) and a classifier gy (wp). The embedding layer first

maps the raw feature x( ) of a node v}k) € V&) into the latent

space to obtain its low-dimensional feature embedding egk). Then

(k)

we combine the feature embedding e;

( ) together as the input of the classifier to get the soft target p;
Mathematlcally, we can formulate this procedure as

and the structure proxy

(k)

k k k k
pl( ):g(xg ),sg ); w) = gp(Combrne(e( ), ( )) wp) (9
where e( ) = Je (x (k) ; we). Here, Combine(, ) is the operation to
combine e( ) and s( ) together (e.g., addition).

Structure proxies for unlabeled nodes. The feature-structure

encoder can generate soft targets only for labeled nodes by Eq. (9)
(k)

because the structure proxy s;"’ requires the ground-truth label

information of node v§ ) To better regularize local training of the
GNN model, we need to obtain soft targets for unlabeled nodes

and use them to compute L by Eq. (6). To achieve this, we

G KD
design a projector gq(wq) in the feature-structure encoder. It has
the same structure as the classifier g,,. The difference is that the

projector gq generates soft targets only based on feature embed-
dings. Specifically, we can obtain the soft label ql(k) for each node
vgk) e v\ (VL(k) with its feature embedding egk) by

qo® ®), 0.

=9gq(e; s (10)

Therefore, we obtain the structure proxy s (q(k) S) by com-
puting the product of qf ) and  for each node vgk) e vk \(VL(k).

Since q< ) is normalized by the softmax operation, the inner prod-
uct can also be viewed as the weighted average of S.

4.2.3 Loss formulation. During local training, we aim to update
® = {we, wp, wg} and S using both ground-truth labels and predic-
tions from the GNN model. Specifically, we formulate the overall
loss for training w and S in client k as

_ p) (k)
=Ly cp t ALy kp

L}k) (11)
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where A3 is a hyperparameter. Here .CI(:k)CE is the average cross-

entropy loss between y( ) and qfk) for e;lch node Ui(k) € ’VL(k)
k) __ 1 k) (k)
FeE= >, cEyY.q). (12)
(VT o gy
.Ll(,k}(D is the average KL-divergence between p( ) and y(k) to
encourage p( ) to approach y( ) for each node v(k) € "V(k)
k) __1 (k) o (k)
Leko= o 2, KGR 09)
VLT oo gy

4.3 Server Update

As stated above, FedSpray will learn the feature-structure encoder
and the structure proxies globally. In this subsection, we present
the global update in the central server for the feature-structure
encoder and the structure proxies, respectively.

4.3.1 Update global feature-structure encoder. During each
round r, the server performs weighted averaging of local feature-
structure encoders following the standard FedAvg [25] with each
coeflicient determined by the local node size

w,HZN(k)

4.3.2 Structure proxy alignment. Instead of using the local
node size, we propose to assign higher weights to majority classes
than minority classes for structure proxy alignment. More specif-
ically, the server updates global structure proxy s;, € S, during
round r by

o, (14)

2%
k
sj,<—z ’. j(r), (15)
where aj.k) is the ratio of nodes from the j-th class among (V(k)
client k and a; = Zk 1 ;k).

4.4 Overall Algorithm

Algorithm 1 shows the overall algorithm of the proposed FedSpray.
During each round, each client performs local updates with two
phases. In Phase 1, each client trains its personalized GNN models

for E epochs. We first compute p(k) for node v.(k) by the global
(k)

feature-structure encoder g(wr—1) with its feature x;"’ and cor-

responding structure proxy sl( ) (line 5). Then p§ ) is utilized to

compute Lék) (line 9) for training the GNN model (line 10). In
Phase 2, the feature-structure encoder and structure proxies will

be optimized for E epochs. In client k, we first obtain ?gk

Ul.(k) by the up-to-date GNN model (line 14). 9§k) for node v(k)

) for node

will be used to compute Ll(ck) (line 19). Then we update a)(k) and

(k) via gradient descent (line 20-21). At the end of each round,

sj € S( ) will be updated by averaging s( ) of nodes from the Jj-th
class (line 23). At the end of each round, the local feature-structure
encoder and structure proxies will be sent to the central server
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Algorithm 1 FedSpray

Input: initial personalized 6%) for each client k, global wy and So
foreachroundr=1,--- ,Rdo
for each client k in parallel do
w r(k)’ S 5k)
end for
Update w, by Eq. (14)
Update S, by Eq. (15)
end for

« LocalUpdate (w;-1,Sr-1)

LocalUpdate(w;—1,S,-1):

1: ================== Phase 1 =====================
e 2 s

3: qfk) —9q(e§k);wq,r-1)

4: Compute local slgk) from S, _1

5 (k) —gp(Combme(e( ), (k)) wpr-1)

6 9“‘) 0,1

7. fort =1,-

s Agk) f(X(k) g(k) e(k))
9:  Compute .Eé ) by Eq. (7) using ng)

10:  Update the local GNN model Gr(k) — Hr(k) - qu.C(Gk)
11: end for

12: ================== Phase 2 =====================
13: w(k) =w
: r—1
14 *(k) _f( (k) g(k) Q(k))
15: for t=1,---,Edo
16: (k) (x(k) wé,kr))
k k k
17 ql( )—gq(e( ). ¢ ))
18: (k) =gp (Combme(e(k), (k)) (k))
19: Compute .L(k) by Eq. (11) using y(k)
20:  Update the local feature-structure encoder
mﬁk) — wﬁk) — ngV.[:}(,k)
21:  Update the local structure proxy
sgk) — sgk) - qu.[j;k)
22: end for
23: Update s; € sﬁ") by averaging sgk) of nodes from class j
24: return w©, 8%
: r »9r

for training in the next round (line 24). In the central server, Fed-
Spray updates the feature-structure encoder by Eq. (14) and aligns
structure proxies by Eq. (15).

4.5 Discussion

FedSpray exhibits superior advantages from various perspectives,
including communication efficiency, privacy preservation, and com-
putational cost. We provide an in-depth discussion about FedSpray’s
principal properties as follows.

4.5.1 Privacy Preservation. The proposed FedSpray uploads the
parameters of local feature-structure encoders following the preva-
lent frameworks in FL [18-20]. Here, we mainly discuss the privacy
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Table 2: Classification accuracy (Average+Std) of FedSpray and other baselines on node classification over four datasets. Overall
and Minority represent all nodes and minority nodes in the test sets, respectively.

GCN SGC GraphSAGE

Dataset Method Overall Minority Overall Minority Overall Minority
Local 87.49 £ 0.24 51.00 = 1.20 86.27 £ 0.34 40.83 +£0.93 86.86 £ 0.26 48.66 £ 1.14
Fedavg 87.06 £ 0.61 55.77 £ 0.90 82.23 +1.89 56.21 £ 1.38 85.92 £ 0.87 61.35+2.76
PubMed APFL 86.44 + 0.66 49.25 £ 2.07 83.10 £ 0.34 28.25 £5.69 86.23 £ 0.55 45.41 £1.50
GCFL 86.74 £ 0.69 48.85 £3.25 71.81 £ 8.22 51.10 £ 8.66 85.35 £ 0.46 45.60 £ 2.53

FedStar 81.25 £ 0.67 12.01 + 2.89 82.06 + 1.32 19.24 +£7.71 80.57 £ 1.21 7.78 £7.01
FedLit 57.95 + 3.82 47.39 £ 2.84 84.82 +0.72 57.54 £ 1.76 70.73 £7.61 57.15 £ 8.35
FedSpray 87.71 £ 0.65 62.12 £ 2.73 87.13 £1.41 59.23 £1.25 87.02 £1.01 61.59 £ 0.96
Local 81.43 +£0.58 41.36 £1.78 81.66 + 0.62 40.02 = 1.41 81.57 £0.35 42.93 £1.85
Fedavg 80.53 £0.74 35.48 + 2.52 79.90 + 0.60 34.24 £1.17 80.23 £0.20 47.60 £0.99
WikiCS APFL 79.81 £0.72 38.33 £5.43 78.46 + 0.63 27.40 £1.52 80.54 + 0.64 42.16 £1.21
GCFL 75.79 £ 1.56 36.94 + 1.80 74.85 £ 1.65 29.08 £ 0.69 73.34 £3.24 37.79 = 2.90
FedStar 75.61 £ 0.53 16.72 £ 3.23 76.95 £ 0.73 21.90 £ 2.82 74.48 £ 0.51 10.66 = 1.71
FedLit 49.08 £ 4.98 29.85 + 2.85 56.18 + 9.39 32.79 £3.73 60.37 £ 4.33 36.90 + 4.32
FedSpray 81.51 £ 0.45 47.43 £1.31 81.87 £0.59 46.60 + 0.00 81.93 £ 0.30 52.04 £ 0.51
Local 94.62 £ 0.16 72.75 £ 0.73 94.82 £ 0.28 76.24 £9.07 94.14 £ 0.30 69.50 + 0.97
Fedavg 94.13 £ 0.40 66.45 £ 2.28 94.40 £ 0.25 66.58 + 1.01 94.60 £ 0.34 74.27 £ 0.95
Physics APFL 94.27 £0.20 72.83 £3.73 94.52 £ 0.27 69.27 £ 1.67 84.31 £3.76 38.65 + 7.33
GCFL 88.97 £ 2.61 60.90 + 2.04 94.02 £ 0.29 66.54 + 1.87 80.71 £ 3.91 50.22 +£5.20
FedStar 89.86 £ 0.43 33.44 +3.27 91.37 £ 0.40 45.27 £ 4.73 89.78 £ 0.41 32.91+3.52
FedLit 85.11 £ 2.58 60.57 £ 2.42 87.57 £1.47 61.96 £ 0.81 86.68 £ 0.27 66.36 £ 0.88
FedSpray 95.59 £ 0.24 80.98 +1.39 95.08 +£0.32 82.43 +£1.62 94.73 £ 0.37 83.26 £1.25
Local 43.18 £ 0.55 25.96 £ 1.94 46.82 £ 0.93 25.39 £ 1.46 49.72 £ 0.85 25.25+1.70
Fedavg 44.53 £ 1.36 26.45 + 0.46 47.03 +£1.39 27.24 £ 2.52 47.51 £1.40 26.13 +0.82
Flickr APFL 32.27 £3.58 19.44 + 6.16 46.93 £ 0.50 23.50 £ 0.49 34.59 + 2.83 18.39 + 2.96
GCFL 47.31 £1.29 19.71 £ 2.20 46.56 £ 1.71 26.48 £ 3.60 44.84 £ 2.10 16.76 + 2.45
FedStar 47.73 £ 0.85 13.82 +3.05 48.45 +£0.58 14.59 + 3.39 46.36 + 1.04 11.33 £ 4.38
FedLit 4538 +1.73 23.62 £8.74 49.62 + 0.36 24.46 +0.81 44.06 + 2.26 18.12 + 2.30
FedSpray 48.21 +1.03 29.72 £ 0.75 50.07 £ 0.75 28.46 £ 2.12 51.45 £ 0.72 27.52 £ 0.42

concern about uploading local structure proxies first. In fact, struc-
ture proxies naturally protect data privacy. First, they are synthetic
1D vectors to provide high-quality neighboring information in the
latent space. In other words, they do not possess any raw feature
information. Second, they are generated by averaging the structure
proxies from the same class, which is an irreversible operation.
Moreover, we can employ various privacy-preserving techniques
to further improve confidentiality.

4.5.2 Communication Efficiency. The proposed FedSpray re-
quires clients to upload local feature-structure encoders and struc-
ture proxies. As we introduced above, the feature-structure encoder
is a relatively lightweight model. As for structure proxies, their
size is generally much smaller than that of model parameters given
ds < dy.In addition, we can further reduce the number of uploaded
parameters by setting smaller d.

4.5.3 Computational Cost. The additional computational cost
in FedSpray is mainly on local updates for the feature-structure
encoder and structure proxies. Compared with GNN models, the
feature-structure encoder and structure proxies require fewer oper-
ations for updating parameters. Training GNN models is usually
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time-consuming since GNN models need to aggregate node infor-
mation via the message-passing mechanism during the forward
pass [52]. However, the feature-structure encoder only incorpo-
rates node features and structure proxies with fully connected
layers to obtain soft targets. Therefore, the time complexity of local
updates for the feature-structure encoder and structure proxies will
be smaller than GNN models. Let N, dy, and E denote the number
of nodes of the local graph in a client, the number of node fea-
tures, and the number of edges, respectively. Considering a 2-layer
GCN model with hidden size dj, its computational complexity is
approximately O(Ndjdy + Edy). Similarly, we can conclude that
the computational complexity of the feature-structure encoder with
the dg-dimensional structure proxy is about O(Ndgdy ), apparently
smaller than the GCN model when we set dj, = dg. Therefore, the
feature-structure encoder in FedSpray does not introduce signifi-
cant extra computational costs compared with FedAvg using GCN.
Furthermore, setting a smaller d can also reduce computation costs.

5 EXPERIMENTS

In this section, we conduct empirical experiments to demonstrate
the effectiveness of the proposed framework FedSpray and perform
detailed analysis of FedSpray.
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Figure 4: Classification accuracy (%) of FedSpray on all nodes
and minority nodes in the test sets with different values of
A1 over (a) PubMed and (b) WikiCS with GraphSAGE.

5.1 Experiment Setup

5.1.1 Datasets. We synthesize the distributed graph data based
on four common real-world datasets from various domains, i.e.,
PubMed [31], WikiCS [26], Coauthor Physics [33], and Flickr [50].
We follow the strategy in Section 3.1 to simulate the distributed
graph data and summarize the statistics and basic information about
the datasets in Appendix B.1. We randomly select nodes in clients
and let 40% for training, 30% for validation, and the remaining for
testing. We report the average classification accuracy for all nodes
and minority nodes over the clients for five random repetitions.

5.1.2 Baselines. We compare FedSpray with six baselines includ-
ing (1) Local where each client train its GNN model individually; (2)
FedAvg [25], the standard FL algorithm; (3) APFL [6], an adaptive
approach in personalized FL; (4) GCFL [47], (5) FedStar [38], and
(6) FedLit [48], three state-of-the-art FGL methods. More details
about the above baselines can be found in Appendix B.2.

5.1.3 Hyperparameter setting. As stated previously, FedSpray
is compatible with most existing GNN architectures. In the exper-
iments, we adopt three representative ones as backbone models:
GCN [17], SGC [44], and GraphSAGE [11]. Each GNN model in-
cludes two layers with a hidden size of 64. The size of feature
embeddings and structure proxies is also set as 64. Therefore, the
feature-structure encoder has similar amounts of parameters with
GNN models. Each component in the feature-structure encoder
is implemented with one layer. We use an Adam optimizer [16]
with learning rates of 0.003 for the global feature-structure encoder
and personalized GNN models, 0.02 for structure proxies. The two
hyperparameters A; and A are set as 5 and 1, respectively. We run
all the methods for 300 rounds, and the local epoch is set as 5.

5.2 Effectiveness of FedSpray

We first show the performance of FedSpray and other baselines on
node classification over the four datasets with three backbone GNN
models. Table 2 reports the average classification accuracy on all
nodes and minority nodes in the test set across clients.

First, we analyze the results of overall accuracy on all test nodes.
According to Table 2, our FedSpray consistently outperforms all
the baselines on node classification accuracy for overall test nodes
across clients. Local and FedAvg achieve comparable performance
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Figure 5: Classification accuracy (%) of FedSpray on all nodes
and minority nodes in the test sets with different d; over (a)
WikiCS and (b) Physics with GCN.

over the four datasets. In the meantime, APFL does not surpass
Local and FedAvg. As for FGL methods, GCFL, FedStar, FedLit fail
to show remarkable performance gain. Although GCFL and FedStar
tackle the data heterogeneity issue of graph structures across clients
in FGL, they do not take the node-level heterophily into account.
While FedLit models latent link types between nodes via multi-
channel GNNE, it involves more GNN parameters that are hard to
be well trained within limited communication rounds.

Second, we analyze the results of accuracy on minority nodes
in the test set. Note that FedSpray aims to learn reliable unbiased
structure information for guiding local training of personalized
GNN models, particularly for minority nodes. We can observe that
FedSpray outperforms all the baselines by a notable margin. Even
though Local and FedAvg achieve comparable performance on
overall test nodes, they show different accuracy results on minority
nodes. Among the three FGL methods, FedStar encounters signifi-
cant performance degradation on minority nodes since the design
of structure embeddings in FedStar does not provide beneficial
neighboring information for node-level tasks.

5.3 Analysis of FedSpray

5.3.1 Influence of hyperparameter ;. The hyperparameter
A1 controls the contribution of the regularization term in Lg (k).
We conduct the sensitivity analysis on A; in FedSpray. Figure 4
reports the classification accuracy of FedSpray on all nodes and
test nodes in the test sets with different values of A1 over PubMed
(left) and WikiCS (right) with GraphSAGE. The accuracy on all
nodes remains high when 1; is relatively small (i.e., Ay = 0.1,1,5).
However, the accuracy of minority nodes will decrease when 4 is
too small because the feature-structure encoder cannot sufficiently
regularize local training of GNN models with too small ;. When
A1 gets too large, the accuracy of all nodes decreases in both figures.
In this case, the regularization term weighs overwhelmingly in
the loss for training GNN models; then GNN models cannot be
sufficiently trained with label information. According to the above
observations, we will recommend 10 for PubMed with GraphSAGE
and 5 for WikiCS with GraphSAGE as the best setting for A;.

5.3.2 Influence to structure proxy dimension. Since FedSpray
incorporates structure proxies in the feature-structure encoder, we
may set a different dimension ds of structure proxies. We evaluate
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Table 3: Classification accuracy (Average=Std) of FedSpray
with S = 0 over PubMed and Physics with GCN.

Dataset Method Overall Minority
FedSpray 8771+ 065 6212+2.73
PubMed  poiSpray (§=0)  77.11+043 42,01+ 0.81
Phvsics FedSpray 9559 + 024  80.98 +1.39
¥ FedSpray (S =0)  93.23+0.27  72.57+0.38

the performance of FedSpray with different values of ds while
fixing the hidden dimension of the GNN model as 64. Figure 5
demonstrates the classification accuracy of FedSpray on all nodes
and test nodes in the test sets with different values of ds over
WikiCS (left) and Physics (right) with GCN as the backbone. We
can observe that FedSpray can obtain comparable accuracy with
dg smaller than 64 (e.g., ds = 32). In the meantime, FedSpray does
not obtain significant performance gain when d; is larger than 64.
From the above observation, we can reduce communication and
computation costs by setting ds a smaller value such as 32.

5.3.3 Effectiveness of structure proxies. In this study, we de-
sign structure proxies in FedSpray to serve as global unbiased neigh-
boring information for guiding local training of GNN models. To
validate the effectiveness of structure proxies, we investigate the
performance of the proposed framework when structure proxies
are removed. Specifically, we set class-wise structure proxies S as
0 consistently during training. We report the performance of Fed-
Spray with 8 = 0 over PubMed and WikiCS in Table 3. According
to Table 3, we can observe that FedSpray suffers from significant
performance degradation when removing structure proxies. It sug-
gests that structure proxies play a significant role in FedSpray.
Without them, the feature-structure encoder generates soft targets
only based on node features [52]. In this case, the soft labels can
be unreliable when node labels are not merely dependent on node
features and, therefore, provide inappropriate guidance on local
training of personalized GNN models in FedSpray.

5.3.4 More Experimental Results. Due to the page limit, we
provide experimental results of FedSpray with varying local epochs
in Appendix B.3.

6 RELATED WORK
6.1 Federated Learning

Recent years have witnessed the booming of techniques in FL and its
various applications in a wide range of domains, such as computer
vision [3, 28], healthcare [21, 36], and social recommendation [22,
43]. The most important challenge in FL is data heterogeneity across
clients (i.e., the non-IID problem). A growing number of studies
have been proposed to mitigate the impact of data heterogeneity. For
instance, FedProx [20] adds a proximal term to the local training
loss to keep the updated parameters close to the global model.
Moon [18] uses a contrastive loss to increase the distance between
the current and previous local models. FedDecorr [34] mitigates
dimensional collapse to prevent representations from residing in
a lower-dimensional space. In the meantime, a battery of studies
proposed personalized model-based methods. For example, pFedHN
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[32] trains a central hypernetwork to output a unique personalized
model for each client. APFL [6] learns a mixture of local and global
models as the personalized model. FedProto [39] and FedProc [27]
utilize the prototypes to regularize local model training. FedBABU
[28] proposes to keep the global classifier unchanged during the
feature representation learning and perform local adoption by fine-
tuning in each client.

6.2 Federated Graph Learning

Due to the great prowess of FL, it is natural to apply FL to graph
data and solve the data isolation issue. Recently, a cornucopia of
studies has extended FL to graph data for different downstream
tasks, such as node classification [48], knowledge graph completion
[4], and graph classification [38, 47], cross-client missing informa-
tion completion [29, 51]. Compared with generic FL, node attributes
and graph structures get entangled simultaneously in the data het-
erogeneity issue of FGL. To handle this issue, a handful of studies
proposed their approaches. For example, GCFL [47] and FedStar
[38] are two recent frameworks for graph classification in FGL. The
authors of GCFL [47] investigate common and diverse properties in
intra- and cross-domain graphs. They employ Clustered FL [30] in
GCFL to encourage clients with similar properties to share model
parameters. A following work FedStar [38] aims to jointly train a
global structure encoder in the feature-structure decoupled GNN
across clients. FedLit [48] mitigates the impact of link-type hetero-
geneity underlying homogeneous graphs in FGL via an EM-based
clustering algorithm.

7 CONCLUSION

In this study, we investigate the problem of divergent neighbor-
ing information in FGL. With the high node heterophily, minority
nodes in a client can aggregate adverse neighboring information
in GNN models and obtain biased node embeddings. To grapple
with this issue, we propose FedSpray, a novel FGL framework that
aims to learn personalized GNN models for each client. FedSpray
extracts and shares class-wise structure proxies learned by a global
feature-structure encoder. The structure proxies serve as unbiased
neighboring information to obtain soft targets generated by the
feature-structure encoder. Then, FedSpray uses the soft labels to reg-
ularize local training of the GNN models and, therefore, eliminate
the impact of adverse neighboring information on node embeddings.
We conduct extensive experiments over four real-world datasets
to validate the effectiveness of FedSpray. The experimental results
demonstrate the superiority of our proposed FedSpray compared
with the state-of-the-art baselines.
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Federated Graph Learning with Structure Proxy Alignment

A  PROOF OF PROPOSITION 3.1

ProposITION 3.1. Given a set of K clients, each client k owns a local
graph G%) ~ Gen(py, pp, p®), q\K)), dist = w, which is
(1 + 3K (1-¢®)p® - %)) M

smaller than dist’ =

Proor. Without loss of generality, we assume that the majority
class is ¢; for each client k = 1,2,--- ,M and ¢y for each client
k=M+1,M+2,---,K.Based on the neighborhood distributions,
the neighboring features aggregated by the message-passing mech-
anism in GNNs follow Gaussian distribution

(k) (k) (k) !
b <N [p®p + (1= p Oy ———|  (10)
: ( ! ? VINGD
for each clientk =1,2,--- , M, and
(k) (k) (k) I
b ~ N1 =p™ )+ py —— (17)
: ( ! ? VINGD

foreach clientk =M+1,M+2,--- K.

The expectation of node embeddings after the message-passing
mechanism will be E, [x; (k) h(k)] for class ¢1 and E, [x; (k) h(k)]
for class cp. We omit the hnear transformation because it can be
absorbed in the linear GNN classifiers. The decision boundary of
the optimal linear classifier is defined by the hyperplane ¥ that is
orthogonal to

Ee, [xF + h™] — B, [x*) + 1P

(18)
k k k k
=, [x! ( N+ B, [0F] -, [xF] - B, [0F)]
For each client k, we have E, [h;k)] =E,, [hlgk) ]. Therefore,
B, [x; (k) 4 h(k)] — [xgk) +h§k)]
(k) (k) (19)
=Ee,[x; '] = Ec,[x; '] = py — py,
and the distance from each class to P is
dist = w (20)
2

Let the server collect neighboring information from each client
via FedAvg. The global neighboring information will be

_Zh(k) " Z q(k)h(k) 1)
k=M+1
for class 1 and
_Zq(k)h(k) + Z h(k) (22)

k=M+1

for class 2. In this case, we replace h; ) in Eq. (19) and get the new
hyperplane P’ that is orthogonal to

Ee, [x\¥) + 1] = B¢, [x\") +5,]

=Ee, [x\"] + B, [s1] - Ee, [x\F] ~ B, [s2]
=Ee, [x\M] — Ee, [x] + B, [s1] - Ee, [s2]
=y =ty + Ee [s1] — Eq, [s2],

(23)

where

Ec, [s1] - Ec, [s2]
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Given the balanced global distribution where we have the same
J(a=gFh-3K (-
q(k)) in the second term will be equal to 0. Therefore, the above
equation can be simplified as

number of nodes from class ¢1 and ¢y, Z

1
Ee, 511~ B, [s2] Z(l ¢NGW - - ). @29
Then the new hyperplane 7” is orthogonal to
ul 1
(1+Z(1 ~q" )™ - 5)) (py = ), (25)
k=1

which is in the same direction of y; — p,. Given 0 < q(k) < 1land
% < p(k> < 1 for each client k, the distance from each class to £’ is

dist’ = (1+Z(1_ (k))(p(k) )) 1y 2”2”2, (26)

which completes the proof.
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Table 4: The statistics and basic information about the four
datasets adopted for our experiments.

Dataset PubMed WikiCS Physics Flickr

Clients 7 12 12 20
Node Features 500 300 8,415 500
Average Nodes 1,608 861 2,651 4,441
Average Edges 3,600 11,721 14,790 14,331

Classes 3 10 5 7

Table 5: Classification accuracy of FedSpray and Fedavg on
node classification over WikiCS with GCN.

Epochs Node sets FedAvg FedSpray
E=3 Overall 80.38 +0.85 81.37 £0.39
Minority 35.04 £2.79 47.43 £1.39

F=s Overall 80.53 £0.74 81.51+0.45
Minority 35.48 £ 2.52 47.43 £ 1.31

E=10 Overall 80.23 £0.70 81.43 £ 0.51
Minority 35.13 £2.47 46.85+1.18

B EXPERIMENT DETAILS
B.1 Datasets

Here we provide a detailed description of the four datasets we
adopted to support our argument. These datasets are commonly
used in graph learning from various domains: PubMed in citation
network, WikiCS in web knowledge, Physics in co-author graph,
and Flickr in social images. Table 4 summarizes the statistics and
basic information of the distributed graph data.

B.2 Baselines

We compare our FedSpray with six baselines in our experiments.
We provide the details of these baselines as follows.
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e Local: Models are locally trained on each client using its
local data, without any communication with the server or
other clients for collaborative training.

e FedAvg [25]: It is a foundation method of FL that operates
by aggregating local updates from clients and computing a
weighted average of the updates to update the global model.
APFL [6]: APFL empowers clients to utilize a combination
of local and global models as their personalized model. Ad-
ditionally, during training, APFL autonomously determines
the optimal mixing parameter for each client, ensuring su-
perior generalization performance, even in the absence of
prior knowledge regarding the diversity among the data of
different clients.

GCFL [47]: GCFL employs a clustering mechanism based

on gradient sequences to dynamically group local models

using GNN gradients, effectively mitigating heterogeneity
in both graph structures and features.

e FedStar [38]: FedStar is devised to extract and share struc-
tural information among graphs. It accomplishes this through

the utilization of structure embeddings and an independent
structure encoder, which is shared across clients while pre-

serving personalized feature-based knowledge.

o FedLit [48]: FedLit is an FL framework tailored for graphs
with latent link-type heterogeneity. It employs a clustering al-
gorithm to dynamically identify latent link types and utilizes
multiple convolution channels to adapt message-passing ac-
cording to these distinct link types.

B.3 Extra Experimental Results

B.3.1 Results with Varying Local Epochs. In FL, clients usually
perform multiple local training epochs before global aggregation to
reduce communication costs. We show the results of FedSpray and
FedAvg with varying local epochs in Table 5. The results demon-
strate that FedSpray can consistently outperform FedAvg with dif-
ferent local epochs.
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