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We study the category of wheeled PROPs using tools from Invariant Theory. A 
typical example of a wheeled PROP is the mixed tensor algebra V = T (V ) ⊗T (V �), 
where T (V ) is the tensor algebra on an n-dimensional vector space over a field 
K of characteristic 0. First we classify all the ideals of the initial object Z in the 
category of wheeled PROPs. We show that non-degenerate sub-wheeled PROPs of 
V are exactly subalgebras of the form VG where G is a closed, reductive subgroup 
of the general linear group GL(V ). When V is a finite dimensional Hilbert space, a 
similar description of invariant tensors for an action of a compact group was given 
by Schrijver. We also generalize the theorem of Procesi that says that trace rings 
satisfying the n-th Cayley-Hamilton identity can be embedded in an n × n matrix 
ring over a commutative algebra R. Namely, we prove that a wheeled PROP can be 
embedded in R ⊗ V for a commutative K-algebra R if and only if it satisfies certain 
relations.

© 2022 Published by Elsevier B.V.

1. Introduction

PROPs were introduced by Adams and MacLane (see [12]) in the context of Category Theory and 

formalize functors that may have several inputs and outputs. The abbreviation PROP stands for PROduct 

and Permutation category. Wheeled PROPs were introduced by Markl, Merkulov and Shadrin [14]. Besides 

the (tensor) product and permutations, wheeled PROPs also have contractions. From the viewpoint of 

Classical Invariant Theory, wheeled PROPs have exactly the right structure. Throughout this paper we will 

assume that K is a ûxed ûeld of characteristic 0. We will give the precise deûnition of a wheeled PROP in 

the next section, but for now we will give some important examples.
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Suppose that V is an n-dimensional K-vector space. The q-fold tensor product is deûned by

V ⊗q := V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
q

.

By convention, V ⊗0 = K. Let V � be the dual space and deûne Vp
q = (V �)⊗p ⊗ V ⊗q. There are actions of 

the symmetric groups Σp and Σq on Vp
q . Tensor product gives a bilinear map Vp1

q1
× Vp2

q2
→ Vp1+p2

q1+q2
. Taking 

partial traces give linear maps Vp
q → Vp−1

q−1 . This combined structure makes V =
⊕

p,q≥0 Vp
q into a wheeled 

PROP. If V is a representation of an algebraic group G, then the space VG =
⊕

p,q≥0(Vp
q )G of G-invariant 

tensors is also a wheeled PROP. Another example of a wheeled PROP is R ⊗ V where R is a commutative 

K-algebra with identity.

The main goal of this paper is to develop the language of wheeled PROPs in the context of Classical 

Invariant Theory. One ingredient of the language is the use of wire diagrams (see [10, §2.11]). Such diagrams 

were already used by Clifford in the 19th century and also appear in the work of Feynman and Penrose. 

One can use a graphical calculus to do computations in representation theory. See for example the book [3]

of Cvitanović, who calls such diagrams bird tracks. A tensor in Vp
q can be represented by a black box with 

p inputs and q outputs. We also will represent tensors in a more compact form using a notation for tensors 

that is similar to Einstein’s (see [6]). The main results are as follows:

• The initial object in the category of wheeled PROPs (over K) is denoted by Z. We give a complete 

classiûcation of the ideals of Z in Section 4. We also classify all prime ideals of Z. There is a natural 

analogy between the category of wheeled PROPs and the category of commutative rings with identity. 

The initial object in the category of commutative rings with identity is the ring of integers Z. Under-

standing the ideals and prime ideals of Z is essential for understanding more complicated commutative 

rings. Similarly, the classiûcation of ideals and prime ideals of Z is essential for understanding wheeled 

PROPs.

• In Section 5, we give an equivalence of categories between wheeled PROPs that appear as sub-wheeled 

PROPs of R ⊗ V for some commutative K-algebra R and the category of commutative K-algebras with 

a rational action of GL(V ).

• In the case where V is an n-dimensional complex Hilbert space, Schrijver gave in [19] a correspondence 

between compact subgroups of the unitary group U ⊆ GL(V ) and subspaces of V that are closed under 

the permutation actions, tensor product, contractions and the star operation (that comes from the 

isomorphism V ∼= V�). We formulate and prove a similar result for reductive groups instead of compact 

groups in Section 6. This gives a correspondence between closed reductive subgroups of GL(V ) and 

simple sub-wheeled PROPs of V.

• Procesi proved that a trace ring can be embedded into the matrix ring Matn(R) with coefficients in 

some commutative ring R with identity if and only if the trace ring satisûes the n-th Cayley-Hamilton 

relation (see [17]). In Section 7, we give a similar characterization of wheeled PROPs that appear as 

sub-wheeled PROPs of R ⊗ V for some commutative K-algebras. This generalizes Procesi’s theorem.

In Section 2 we will give the deûnition of a wheeled PROPs and in Section 3 we will study their properties.

2. Definition of wheeled PROPs

Fix an algebraically closed ûeld K of characteristic 0.
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2.1. Mixed tensor algebra

The archetypal example of a wheeled PROP is the mixed tensor algebra. We introduce the mixed tensor 

algebra, so as to illustrate the various features of wheeled PROPs in a very concrete fashion. Let V be an 

n-dimensional vector space over K and V � be its dual space. The tensor algebra on V is T (V ) =
⊕∞

q=0 V ⊗q

where

V ⊗q := V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
q

is the q-fold tensor product. For p, q ≥ 0 we deûne Vp
q := (V �)⊗p ⊗ V ⊗q. In the notation Vp

q , the upper 

index p corresponds to the contravariant part, and the lower index q corresponds to the covariant part of 

the tensor product. We consider the mixed tensor algebra

V := T (V � ⊕ V ) ∼= T (V �) ⊗ T (V ) ∼=
⊕

p,q∈Z≥0

Vp
q .

This is a bigraded associative algebra with multiplication ⊗ and unit 1 ∈ V0
0 = K. There is another special 

element, the identity id ∈ V1
1 = End(V ). Let Σn denote the symmetric group on n letters. We have an action 

of Σp × Σq on Vp
q by permuting the tensor factors. Other interesting operations on V are the contraction 

maps ∂j
i : Vp

q → Vp−1
q−1 given by

∂j
i (f1 ⊗ · · · ⊗ fp ⊗ v1 ⊗ · · · ⊗ vq) = fj(vi)(f1 ⊗ · · · fj−1 ⊗ fj+1 · · · ⊗ fp ⊗ v1 ⊗ · · · vi−1 ⊗ vi+1 · · · ⊗ vq).

We can identify Vp
q with Hom(V ⊗p, V ⊗q). Under this identiûcation, ∂j

i is a partial trace.

We introduce a pictorial representation of V, which will serve as a motivational tool for deûning wheeled 

PROPs. An element in Vp
q can be thought of as a map from V ⊗p to V ⊗q. We will visualize this as a black 

box with p inputs on top and q outputs at the bottom. For example, we visualize A ∈ V2
1 with the following 

picture:

The contraction ∂j
i can be visualized as connecting the jth input and the ith output. We visualize ∂2

1(A)

by the diagram

The tensor product corresponds to simply putting the diagrams next to each other. For example, if 

A ∈ V2
1 and B ∈ V0

1 , then we have
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The space V1
1

∼= End(V ) is a ring with unity. For example, if A, B ∈ V1
1 , then the product is given by 

AB = ∂1
2(A ⊗ B):

The identity id ∈ V1
1 will be denoted by a single directed edge without any labels:

If we connect the output of the identity to its input, then we get Tr(id) = n, the dimension of V :

That the element id ∈ V1
1 acts as the identity can be listed out as a set of conditions, and the following 

picture gives an example.

For σ ∈ Σn, we look at the map σ : V ⊗n → V ⊗n given by v1 ⊗ · · · ⊗ vn 	→ vσ−1(1) ⊗ · · · ⊗ vσ−1(n). For 

example, the permutation 3124 (in one line notation) is represented by the picture below.

We denote the diagram above by [σ].
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If R is a commutative K-algebra, then we can consider R ⊗ V =
⊕

p,q∈Z≥0
R ⊗ Vp

q , where the tensor 

product is over the ûeld K. We may view V ∼= K ⊗ V as a subspace of R ⊗ V. In particular, R ⊗ V0
0 contains 

the one element 1 ∈ V0
0 and R ⊗ V1

1 contains the identity tensor id ∈ V1
1 . The multiplication ⊗ : V × V → V

extends to an R-bilinear multiplication R ⊗ V × R ⊗ V → R ⊗ V and a contraction ∂i
j : Vp

q → Vp−1
q−1 uniquely 

extends to an R-module homomorphism R⊗Vp
q → R⊗Vp−1

q−1 . To every permutation σ ∈ Σn we can associate 

a tensor [σ] ∈ Vp
p ⊆ R ⊗ Vp

p .

2.2. Pre-wheeled PROPs

We ûrst deûne pre-wheeled PROPs. Wheeled PROPs are pre-wheeled PROPs that satisfy certain axioms. 

Instead of giving a list of axioms, we will deûne free wheeled PROPs and then deûne wheeled PROPs as 

quotients of free wheeled PROPs. Because it can be visualized, the notion of a free wheeled PROP is easy 

to grasp.

Definition 2.1. A pre-wheeled PROP is a bigraded K-vector space R =
⊕

p,q∈Z≥0
Rp

q together with

(1) a special element 1R ∈ R0
0;

(2) a special element ↓R∈ R1
1 called the identity;

(3) a bilinear map ⊗ : Rp1
q1

× Rp2
q2

→ Rp1+p2

q1+q2
for all p1, p2, q1, q2 ≥ 0;

(4) and for all i, j, p, q with 1 ≤ i ≤ p and 1 ≤ j ≤ q a linear map ∂i
j : Rp

q → Rp−1
q−1.

For a wheeled-PROP R there is an action of Σp ×Σq on Rp
q . Since the action of Σp ×Σq can be expressed 

in terms of tensor products and contractions, we will not use this action in the deûnition of a pre-wheeled 

PROP.

Definition 2.2. If R, S are pre-wheeled PROPs, then a homomorphism φ : R → S of pre-wheeled PROPs is 

a linear map φ : R → S such that

(1) φ(Rp
q) ⊆ Sp

q for all p, q ≥ 0, i.e., φ preserves the bigrading;

(2) φ(1R) = 1S ;

(3) φ(↓R) =↓S ;

(4) φ(A ⊗ B) = φ(A) ⊗ φ(B) for A ∈ Rp1
q1

, B ∈ Rp2
q2

;

(5) φ(∂i
j(A)) = ∂i

j(φ(A)) for A ∈ Rp
q .

If S is a pre-wheeled PROP and Rp
q ⊆ Sp

q is a subspace for all p, q ≥ 0, then R =
⊕

p,q≥0 Rp
q is a 

sub-pre-wheeled PROP when it contains 1R, ↓R and it is closed under ⊗ and ∂i
j for all i, j. If R is a sub-

pre-wheeled PROP of S then it is easy to see that it is a pre-wheeled PROP and that the inclusion R ↪→ S

is a homomorphism of pre-wheeled PROPs.

If S is a pre-wheeled PROP and G ⊆
⋃

p,q≥0 Sp
q is a subset, then we say that G generates S if the smallest 

sub-pre-wheeled PROP of S containing G is S itself. This is exactly the case when every element of S can 

be obtained from G ∪ {1, ↓} by using operations ⊗, ∂i
j (i, j ≥ 1) and taking K-linear combinations. It is 

clear that if G generates S and ψ1, ψ2 : S → R are homomorphisms of pre-wheeled PROPs, then ψ1 = ψ2

if and only if the restrictions of ψ1 and ψ2 to G are equal.

Definition 2.3. Suppose that R is a pre-wheeled PROP. An ideal J of R is a subspace J =
⊕

p,q∈Z≥0
J p

q

with J p
q ⊆ Rp

q for all p, q such that

(1) if A ∈ Rp1
q1

and B ∈ J p2
q2

then A ⊗ B, B ⊗ A ∈ J p1+p2

q1+q2
;
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(2) if A ∈ J p
q then ∂i

j(A) ∈ J p−1
q−1 .

The following lemma is left to the reader.

Lemma 2.4.

(1) If φ : R → S is a homomorphism of pre-wheeled PROPs, then ker(φ) is an ideal;

(2) if J is an ideal of the pre-wheeled PROP R then the quotient R/J =
⊕

p,q∈Z≥0
Rp

q/J p
q has the structure 

of a pre-wheeled PROP where

(a) 1R/J = 1R + J 0
0 ∈ R0

0/J 0
0 ;

(b) ↓R/J =↓R +J 1
1 ∈ R1

1/J 1
1 ;

(c) (A + J p1
q1

) ⊗ (B + J p2
q2

) = A ⊗ B + J p1+p2

q1+q2
when A ∈ Rp1

q1
and B ∈ Rp2

q2
;

(d) ∂i
j(A + J p

q ) = ∂i
j(A) + J p−1

q−1 when A ∈ Rp
q .

It is easy to see that V deûned in Section 2.1 has the structure of a pre-wheeled PROP.

2.3. Free wheeled PROPs

To deûne wheeled PROPs, we will ûrst deûne free wheeled PROPs. Arbitrary wheeled PROPs will then 

be deûned as pre-wheeled PROPs that are quotients of free wheeled PROPs. To construct a free wheeled 

PROP, we start with a set G of generators, and a function type : G → Z
2
≥0. We also ûx a countable inûnite 

set X of variables. A generator A ∈ G with type(A) =
(

p
q

)
will be graphically represented as a black box 

labeled A with p inputs (next to each other) and q outputs. (The type is called biarity in [14].)

Definition 2.5. An atom is an expression of one of the following forms:

(1) A
x1,x2,...,xp
y1,y2,...,yq where A is a generator of type 

(
p
q

)
, x1, x2, . . . , xp are distinct variables, and y1, y2, . . . , yq

are distinct variables;

(2) ↓x
y where x and y are variables.

Variables that appear as an upper index will be referred to as input variables and variables that appear as 

lower index are called output variables. An atom A
x1,x2,...,xp
y1,y2,...,yq of the ûrst kind is graphically represented as the 

generator A where the inputs are labeled x1, x2, . . . , xp clockwise and the outputs are labeled y1, y2, . . . , yq

counterclockwise.

An atom ↓x
y of the second kind will graphically be represented by an arrow where the tail is labeled by 

x and the head is labeled by y:
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x

y

Example 2.6. Suppose that G = {A, B} and A and B are of type 
(

2
1

)
and 

(
0
1

)
respectively, and X =

{w, x, y, z, . . . }. Then examples of atoms are

Ax,y
z , Az,y

z , Bx, ↓x
y , ↓z

z .

But Ax,x
y is not an atom because the variable x appears as an input twice.

Definition 2.7. A molecule is an unordered ûnite sequence M (or set) of atoms where every variable appears 

at most once as an input variable of an atom and at most once as an output variable of an atom in M . An 

input variable of the molecule M is a variable that appears as an input of an atom, but not as an output of 

an atom in M . An output variable of M is a variable that appears as an output of an atom, but not as an 

input of an atom in M . A bound variable is a variable that appears as an input variable of an atom, and as 

an output variable of an atom in the molecule. A free variable is a variable that is an input or an output 

variable. If x1, x2, . . . , xp are the input variables of M ordered from small to large, and y1, y2, . . . , yq are the 

output variables of M ordered from small to large then we denote the molecule by M
x1,x2,...,xp
y1,y2,...,yq .

Example 2.8. Let G = {A, B} and X as in Example 2.6. The expression Ax,z
y ↓y

w Bx is a molecule where 

{x, y} are the bound variables, z is an input variable, w is an output variable and {z, w} are the free 

variables. The expression ↓s
s Az,x

y Ay,w
w ↓t

z is a molecule with bound variables {w, y, z, s}, input variables 

{t, x} and no output variables.

Graphically, we represent a molecule by ûrst drawing all the atoms in the molecule. Whenever some vari-

able x appears as an output and input label, then we connect that output and input. It may be unavoidable 

that some connections intersect.

Example 2.9. The diagram of the molecule ↓s
s Az,x

y Ay,w
w ↓t

z from Example 2.8 is:

Definition 2.10. We deûne an equivalence relation ∼ on molecules. The equivalence relation is generated by 

the following rules: M is equivalent to N if N is obtained from M by

(1) replacing ↓x
y↓y

z by ↓x
z ;

(2) replacing ↓yi
z A

x1,x2,...,xp
y1,y2,...,yq by A

x1,x2,...,xp
y1,...,yi−1,z,yi+1,...,yq for A ∈ G of type 

(
p
q

)
and all i;

(3) replacing ↓z
xi

A
x1,x2,...,xp
y1,y2,...,yq by A

x1,...,xi−1,z,xi+1,...xp
y1,y2,...,yq for A ∈ G of type 

(
p
q

)
and all i.
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Moreover, the molecules M and N are equivalent when

(4) there exists a bijection ϕ : X → X such that ϕ(z) = z for every free variable z of M and N is obtained 

from M by replacing z by ϕ(z) for every bound variable of M .

The equivalence class of M is denoted by [M ]. If M and N are molecules that do not have common 

input variables, or common output variables, then we can deûne the product [M ][N ] as follows. We can 

choose molecules M ′ and N ′ such that M ∼ M ′, N ∼ N ′ such that the bound variables of M ′ do not 

appear in N ′ and the bound variables of N ′ do not appear in M ′. Then we deûne [M ][N ] = [M ′N ′]. It 

is easy to verify that this product is well-deûned and commutative. If M (1), M (2), . . . , M (r) are molecules 

such that every variable appears at most once as an input variable, and every variable appears at most 

once as an output variable. Then the product [M (1)][M (2)] · · · [M (r)] is well-deûned and independent of 

the order in which we multiply the equivalence classes of molecules. Indeed, we can choose molecules 

N (1), . . . , N (r) such that for all i 
= j no bound variable of N (i) appears as a variable in N (j). Then 

we have [M (1)][M (2)] · · · [M (r)] = [N (1)N (2) · · · N (r)].

Suppose that M is a molecule and [M ] is its equivalence class. By rules (1)–(3) we can ûnd an equivalent 

molecule M ′ such that for every atom of the form ↓x
y with x and y distinct, x is an input variable and y is 

an output variable of M ′. Such a molecule M ′ we will call reduced. To draw the diagram of [M ] we draw 

the diagram of M ′ where we omit all the labels that are bound variables, because the equivalence class [M ]

does not depend on the labels of the bound variables in M ′.

Example 2.11. The diagram of the equivalence class [↓s
s Az,x

y Ay,w
w ↓t

z] of the molecule from Example 2.8

is

Definition 2.12. An ordered molecule is a molecule M with a total ordering x1 < x2 < · · · < xp on the free 

input variables and a total ordering y1 < y2 < · · · < yq on the free output variables. We will denote such 

an ordered molecule by M
x1,...,xp
y1,...,yq .

We want to view an ordered molecule M
x1,...,xp
y1,...,yq as a <function= whose inputs are labeled x1, x2, . . . , xp

and outputs are labeled y1, . . . , yq. So, changing the labels of the inputs and outputs should not change the 

<function= and we capture this in the deûnition of a monomial below.

Definition 2.13. A monomial is an equivalence class of ordered molecules. Two ordered molecules M
x1,...,xp
y1,...,yq

and N
s1,...,sp

t1,...,tq
are equivalent if the molecule N is equivalent to the molecule M̃ obtained from M by replacing 

xi with si and yj with tj for all i, j. We denote the equivalence class of M
x1,...,xp
y1,...,yq by [M ]

x1,...,xp
y1,...,yq .

The diagram of a monomial is similar to the diagram of an equivalence class of a molecule except that we 

also ensure that free input variables are ordered from left to right (clockwise) and the free output variables 

are ordered from left to right (counterclockwise).
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Example 2.14. The diagram of the monomial [↓s
s Az,x

y Ay,w
w ↓t

z]t,x is

Remark 2.15. If A ∈ G is a generator of type 
(

p
q

)
then we can view A as a monomial by identifying it with 

[A
x1,...,xp
y1,...,yq ]

x1,...,xp
y1,...,yq .

Definition 2.16. For a set G of generators and a function type : G → Z
2
≥0 we deûne the free wheeled PROP 

generated by G as the bigraded vector space Z〈G 〉 =
⊕

p,q∈Z≥0
Z〈G 〉p

q where Z〈G 〉p
q is the K-vector space 

with a basis consisting of all monomials with p inputs and q outputs. To give Z〈G 〉 the structure of a 

pre-wheeled PROP, we deûne:

(1) 1 = [ ] = [∅] (equivalence class of the empty molecule);

(2) ↓= [↓x
y ]xy (where x, y are distinct variables);

(3) if [M ]
x1,...,xp
y1,...,yq and [N ]z1,...,zr

w1,...,ws
have disjoint variables, then we deûne

[M ]x1,...,xp
y1,...,yq

⊗ [N ]z1,...,zr
w1,...,ws

= [M ][N ]x1,...,xp,z1,...,zr
y1,...,yq,w1,...,ws

.

In terms of diagrams, we get the diagram of [M ]
x1,...,xp
y1,...,yq ⊗ [N ]z1,...,zr

w1,...,ws
by drawing the diagram of 

[N ]z1,...,zr
w1,...,ws

to the right of the diagram of [M ]
x1,...,xp
y1,...,yq .

(4) we deûne

∂i
j [M ]x1,...,xp

y1,...,yq
= [M ′]x1,...,xi−1,xi+1,...,xp

y1,...,yj−1,yj+1,...,yq
,

where M ′ is obtained from M by replacing yj by xi. So the diagram of ∂i
j [M ]

x1,...,xp
y1,...,yq is obtained by 

connecting the j-th output of [M ]
x1,...,xp
y1,...,yq to the i-th input.

Definition 2.17. A wheeled PROP is a pre-wheeled PROP A such that there exists a surjective homomor-

phism of pre-wheeled PROPs Z〈G 〉 → A for some set of generators G . If R and S are wheeled PROPs then 

a homomorphism ψ : R → S is just a homomorphism of pre-wheeled PROPs.

For a free wheeled PROP Z〈G 〉 there is an action of Σp × Σq on Z〈G 〉p
q by permuting the inputs and 

outputs. The action of an element in Σp or Σq can be constructed by taking the tensor product with 

copies of ↓ and doing certain contractions. For example, ∂i
q+1(A⊗ ↓R) is equivalent to applying the cyclic 

permutation (i + 1 i + 2 · · · p i) to the inputs. Such cycles generate Σp. A similar thing can be done for 

the outputs. In particular, ideals in the free wheeled PROP are stable under the action of Σp × Σq and 

Σp ×Σq also acts on the quotient. This means that for every wheeled PROP R we have an action of Σp ×Σq

on Rp
q . By expressing the action of Σp × Σq in terms of tensor product and contractions, we see that for 

a homomorphism of wheeled PROPs φ : R → S the map φ : Rp
q → Sp

q is equivariant with respect to the 

group Σp × Σq. Also, if S is a sub-wheeled PROP or an ideal of R, then Sp
q is stable under the action of 

Σp × Σq for all p, q.
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3. Properties of free wheeled PROPs

3.1. The universal property

Proposition 3.1 (Universal property of free wheeled PROPs). Suppose that G is a generator set, type :

G → Z
2
≥0 is a function, R is a wheeled PROP and ψ : G → R is a function such that ψ(A) ∈ Rp

q

for all A ∈ G with type(A) =
(

p
q

)
. Then ψ extends uniquely to a homomorphism of wheeled PROPs 

ψ : Z〈G 〉 → R.

Proof. The extension, if it exists, is unique because Z〈G 〉 is generated by G . We only need to show the 

existence of the extension. For this, we may assume without loss of generality that R = Z〈H 〉 is a free 

wheeled-PROP.

For simplicity, let us ûrst assume that ψ(A) is a monomial for every A ∈ G . If [M ]
x1,...,xp
y1,...,yp ∈ Z〈G 〉p

q is 

a monomial, then the diagram of ψ([M ]
x1,...,xp
y1,...,yp ) is obtained from the diagram of [M ]

x1,...,xp
y1,...,yp by replacing 

every atom A
s1,...,sq

t1,...,tr
appearing in the diagram by the diagram of the monomial ψ(A).

Suppose that for example, G = {A} with A of type 
(

2
2

)
, H = {B} with B of type 

(
1
1

)
and ψ(A) = [↓x

w

By
z ]x,y

z,w. In diagrams this means that

So we get ψ([Ax,y
x,zAv,w

y,v ]wz ) = [↓x
z By

x ↓v
v Bw

y ]wz = [By
xBw

y ↓v
v]wz and in diagrams:

Since the monomials form a basis of Z〈G 〉, ψ extends to a K-linear map ψ : Z〈G 〉 → Z〈H 〉. It is easy 

to verify that ψ is a homomorphism of wheeled PROPs.

If ψ(A) is not a monomial for every generator A ∈ G then we deûne ψ([M ]
x1,...,xp
y1,...,yp ) by viewing it as a 

multi-linear expression in the atoms that appear in [M ]
x1,...,xp
y1,...,yp . For example, suppose that G = {A} with A

of type 
(

2
2

)
, H = ∅ and ψ(A) = 2[↓x

z ↓y
w]x,y

z,w − [↓x
w↓y

z ]x,y
z,w. So we have

Using multilinearity, we get
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ψ([Ax,y
z,wAw,t

u,v]x,y,t
z,u,v) = [(2 ↓x

z ↓y
w − ↓x

w↓y
z)(2 ↓w

u ↓t
v − ↓w

v ↓t
u)]x,y,t

z,u,v =

= 4[↓x
z ↓y

w↓w
u ↓t

v]x,y,t
z,u,v − 2[↓x

z ↓y
w↓w

v ↓t
u]x,y,t

z,u,v − 2[↓x
w↓y

z↓w
u ↓t

v]x,y,t
z,u,v + [↓x

w↓y
z↓w

v ↓t
u]x,y,t

z,u,v =

4[↓x
z ↓y

u↓t
v]x,y,t

z,u,v − 2[↓x
z ↓y

v↓t
u]x,y,t

z,u,v − 2[↓x
u↓y

z↓t
v]x,y,t

z,u,v + [↓x
v↓y

z↓t
u]x,y,t

z,u,v.

Using the linearity of ∂i
j and the bi-linearity of ⊗ it is easy to verify that extending ψ to a linear map gives 

a homomorphism of wheeled PROPs. �

3.2. The initial object Z

From the universal property it is clear that the free wheeled PROP Z = Z〈∅〉 is the initial object in the 

category of wheeled PROPs (and also in the category of pre-wheeled PROPs). This means that for every 

wheeled PROP P there exists a unique homorphism of wheeled PROPs ψ : Z → P.

If there are no generators, the only atoms are of the form ↓x
y. So all the molecules, up to equivalence, are 

of the form

↓x1
y1

↓x2
y2

· · · ↓xp
yp

↓z1
z1

↓z2
z2

· · · ↓zr
zr

,

where x1, x2, . . . , xp, y1, y2, . . . , yp, z1, z2, . . . , zr are distinct variables. Now [↓z
z] corresponds to the loop di-

agram �. We set t = [↓z
z] ∈ Z0

0 , and for σ ∈ Σp we deûne

[σ] = [↓x1
yσ(1)

↓x2
yσ(2)

· · · ↓xp
yσ(p)

]x1,x2,...,xp
y1,y2,...,yp

.

From the description of the molecules follows

Corollary 3.2. If p 
= q then Zp
q = 0, and Zp

p is the free K[t]-module with basis [σ], σ ∈ Σp. In particular 

Z0
0 = K[t].

Remark 3.3. There is an analogy between the category of wheeled PROPs and the category of commutative 

rings with identity. The initial object in the category of commutative rings is the ring of integers Z. For 

any commutative ring R with identity there exists a unique ring homomorphism ψ : Z → R. The kernel is 

an ideal of Z of the form (p) where p is a nonnegative integer. If R is an integral domain then p = 0 or p

is prime and p is the characteristic of R. From this it is clear that the understanding of the ideals of the 

ring of integers is essential for studying the category of commutative rings with identity in general. Using 

the analogy, it is clear that studying the ideals and prime ideals (which we will deûne later) in the wheeled 

PROP Z is fundamental. Using the representation theory of symmetric groups, we classify all the ideals of 

Z.

Theorem 3.4 (Theorem 4.15 rephrased). There is a 1 − 1 correspondence between ideals in Z and tuples of 

the form (f, S) where f ∈ K[t] is a monic polynomial, and S is a finite subset of Z2
>0.

We will refer to the ideal corresponding to (f, S) by I(f, S).

3.3. Representations of wheeled PROPs and Lie algebras

Definition 3.5. A representation of a wheeled PROP R is a homomorphism of wheeled PROPs ψ : R → V

where V is the mixed tensor algebra on some ûnite dimensional vector space V .

When ψ : R → V is a representation then V is called an algebra over R. One can deûne various wheeled 

PROPs (or just PROPs) that incorporate the axioms of certain types of algebras, for example associative 
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algebras, Lie algebras, Jordan algebras and so forth. As an example, we will see next that one can use 

wheeled PROPs to axiomatize semi-simple Lie algebras.

The structure of Lie algebras can be captured using PROPs or operads. As an illustration of wheeled

PROPs we will also show how the structure of ûnite dimensional semisimple Lie algebras can be captured. 

Suppose V is a ûnite dimensional K-vector space, and [·, ·] : V × V → V is a Lie bracket. We can identify 

[·, ·] with a tensor L ∈ V � ⊗ V � ⊗ V . The well-known axioms of a Lie algebra are

(1) [a, b] = −[b, a];

(2) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The ûrst axiom translates to La,b
c + Lb,a

c = 0:

and the second axiom translates to La,d
e Lb,c

d + Lb,d
e Lc,a

d + Lc,d
e La,b

d = 0 which is, using (1), equivalent to 

La,d
e Lb,c

d = La,c
d Lb,d

e + La,b
d Lc,d

e :

The Killing form » : (a, b) 	→ Tr(ad(a) ad(b)) can be viewed as a tensor in V � ⊗ V � and is equal to 

»a,b = La,c
d Lb,d

c .

The Lie algebra is semi-simple if and only if the Killing form is nondegenerate. This is the case when »

as a linear map from V to V � has an inverse C : V � → V which we can view as a tensor in V ⊗ V . The 

tensor C ∈ S2(V ) ⊆ V ⊗ V can be thought of as the Casimir element. Saying that C is the inverse of »

translates to La,c
d Lb,d

c Cb,e = »a,bCb,e =↓a
e . Let R = Z〈L, C〉/J be the wheeled PROP generated by L of 

type 
(

2
1

)
and C of type 

(
0
2

)
modulo the ideal J generated by La,b

c + Lb,a
c , La,d

e Lb,c
d + Lb,d

e Lc,a
d + Lc,d

e La,b
d and 

La,c
d Lb,d

c Cb,e− ↓a
e . Then semi-simple Lie algebra structures on V correspond to homomorphisms of wheeled 

PROPs from R to V (mixed tensor algebra over V ).

Using the Killing form » and its inverse C, we can identify V with V � and view the Lie bracket L ∈ V2
1

in V3
0 . Using the relations one can verify that, as a tensor in V3

0 , L is alternating.
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4. The classification of ideals in Z

4.1. Representations of symmetric groups

We recall some useful results on the representation theory of symmetric groups. Standard references 

for this subject are [7,11,18]. It is well known that the irreducible representations of Σn are indexed by 

partitions of n. For ¼ � n, we denote the corresponding irreducible representation by Vλ. In particular, V(n)

is the trivial representation, and V(1n) is the sign representation.

We will consider the group algebra KΣn as a subspace of K[t]Σn = Zn
n . The group algebra KΣn is a 

Σn × Σn-bimodule. The ûrst copy of Σn acts by composing permutations on the left, and the second copy 

acts by composing on the right. The action on the right as stated is a right action, but can be converted 

to a left action via any anti-automorphism such as the inverse map. From the Artin-Wedderburn Theorem, 

we get:

Proposition 4.1. We have a decomposition of ideals and Σn × Σn representations:

KΣn =
⊕

λ�n

Jλ =
⊕

λ�n

Vλ ⊗ V̂λ,

where Jλ = Vλ ⊗ V̂λ is a simple, two-sided ideal, and V̂λ denotes the irreducible representation of the second 

copy of Σn.

The representations Jλ, ¼ � n of Σn × Σn are irreducible and pairwise non-isomorphic.

For ¼ � n, a standard Young tableaux T of shape ¼ is a ûlling of the Young diagram corresponding to the 

partition ¼ with the numbers 1, 2, . . . , n, with increasing rows and columns. The picture below is a standard 

Young tableaux of shape (4, 3, 3, 1).

1 3 4 9
2 6 7
5 8 10
11

(1)

For a standard Young tableau T , we deûne an element in the group algebra KΣn called the Young 

symmetrizer. The row stabilizer group R(T ) is deûned as the subgroup of Σn that ûxes the rows of T and 

the column stabilizer group C(T ) is the subgroup that ûxes the columns of T .

Definition 4.2. For a standard Young tableaux T , we deûne the Young symmetrizer yT by the following:

yT =
∑

σ∈R(T ),μ∈C(T )

sgn(μ)[μσ] ∈ KΣn

Young symmetrizers allow us to concretely understand the isomorphism in Proposition 4.1. The results 

we use about them can be summarized in the following proposition.

Proposition 4.3. For ¼ � n, let T be a standard Young tableaux of shape ¼. Then we have

KΣn · (yT ) · KΣn = Jλ.

We have inclusion maps Σn−1 ↪→ Σn ↪→ Σn+1. For an irreducible representation Vλ of Σn, we have a rule 

for understand the restriction to Σn−1 and a rule for understanding the induced representation for Σn+1. 

In the language of symmetric functions, this is often called Pieri’s rule.
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Proposition 4.4. Let ¼ � n, then we have

(1) Resn
n−1Vλ

∼=
⊕

ζ=λ−�

Vζ ;

(2) Indn+1
n Vλ = KΣn+1 ⊗KΣn

Vλ
∼=

⊕
ζ=λ∪�

Vζ .

The notation ζ = ¼ −� (resp. ζ = ¼ ∪�) means that ζ runs over all partitions obtained from ¼ by deleting 

(resp. adding) a box.

We use matrix notation to give coordinates to the boxes in a partition. For example, in the standard 

Young tableaux given above in (1), 7 is entered in the box with coordinates (2, 3). We say (i, j) ∈ ¼ if ¼

contains the box with coordinates (i, j), which happens precisely when ¼i ≥ j. We say a box is on diagonal 

d if j − i = d. Hence in the Young tableaux in (1), the box containing 7 is on diagonal 1.

4.2. Preliminary results on Z

In this section, we want to understand how the operations of contraction and tensor interact with the 

action of Σn × Σn in the wheeled PROP Z. In order to do so, we will need to use the results on the 

representation theory of the symmetric groups that we recalled in the previous section.

We have an isotypic decomposition

Zn
n = K[t]Σn =

⊕

λ�n

K[t] ⊗ Jλ,

where Jλ = Vλ ⊗ V̂λ.

Lemma 4.5. For a partition ¼ � n we have in KΣn+1 that

KΣn+1 · (Jλ ⊗ id) · KΣn+1 =
⊕

ν=λ∪�

Jν

Proof. This follows from the second part of Proposition 4.4. �

Proposition 4.6. The space ∂n
n(Jλ) is the direct sum of all (t + j − i)Jν where ν is a partition obtained from 

¼ by deleting a box at position (i, j).

In order to prove the proposition, it will be necessary to do some computations. Let us consider the 

standard Young tableau of shape (2, 1).

T = 1 2
3

Consider the Young symmetrizer corresponding to the tableaux yT = (e − (13))(e + (12)), i.e.,

yT =
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Now, let us apply ∂n
n :

∂n
n(yT ) =

Observe that this is just (t − 1)yT ′ = (t − 1)(e + (12)), where T ′ is the tableaux obtained by deleting the 

box containing 3. This computation generalizes. In more complicated examples, there is some cancellation 

as well. We give a complete argument.

Lemma 4.7. Let T be a standard Young tableaux of shape ¼, with ¼ � n. Let T ′ denote the standard Young 

tableaux obtained by removing the box containing n. Then we have ∂n
n(yT ) = (t + j − i)yT ′ , where (i, j) is 

the position of the box in the tableau T containing n.

Proof. Recall that

yT =
∑

σ∈R(T ),μ∈C(T )

sgn(μ)[μσ].

We need to compute ∂n
n(yT ). There are four types of terms. We will count the contributions of each of 

these types independently, and then put them together. Before we do that, we compute ∂n
n[μσ] according 

to several cases.

Case 1: σ(n) = n and μ(n) = n.

There is a natural 1 − 1 correspondence between permutations in R(T ′) and permutations in R(T ) that 

ûx n. For σ ∈ R(T ) ûxing n, we will denote its image in R(T ′) under this correspondence by σ′. This can 

be better expressed in terms of our notation as [σ′] ⊗ id = [σ]. In pictures, we have

We have a similar correspondence for permutations in C(T ) ûxing n and permutations in C(T ′). Since 

(μσ)(n) = n, when we perform the contraction, we get an exceptional loop, and the rest of the permutation 

is not disturbed, i.e., [μσ] = [μ′σ′] ⊗ id. So we have

∂n
n [μσ] = ∂n

n([μ′σ′] ⊗ id) = t · [μ′σ′].

In pictures, we have

Further, the sign of μ and μ′ are the same. Thus, the contribution of these terms is t · yT ′ .
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Case 2: σ(l) = n and μ(n) = n with l 
= n.

In order to have σ(l) = n, we need l to be in the same row as n. Now, for each such l, there is a 1 − 1

correspondence between permutations in R(T ) that ûx n, and permutations in R(T ) that send l to n, given 

by π ↔ π (l n).

So, we can write σ = π (l n) with π ∈ R(T ) that ûxes n. We have ∂n
n [μσ] = ∂n

n [μπ (l n)] = [μ′π′]. In 

pictures, we have

∂n
n [μσ] = ∂n

n [μπ (l n)] = ∂n
n([μ′π′ ⊗ id][(l n)]) = = [μ′π′].

Hence we get a contribution of yT ′ for each l 
= n in the same row as n in T . If n is in position (i, j) of 

the tableau T , then the contribution is (j − 1)yT ′ .

Case 3: σ(n) = n and μ(n) = k, with k 
= n.

A similar argument shows that the contribution of these terms −(i − 1)yT ′ if (i, j) is the position of n in 

the tableau T . The negative sign comes because the terms μ and (k n) μ have opposite signs.

Case 4: σ(n) = p and μ(q) = n where p 
= n 
= q.

The contribution of these terms is 0. We will give a sign reversing involution of these terms. The number 

p must be in the same row as n, and q must be in the same column as n. Let r be the entry in the box that 

is in the row of q and column of p. The involution is given by μσ ↔ μ̃σ̃, where σ̃ = (p r) σ, and μ̃ = μ (q r). 

We leave it to the reader to check that this is a sign reversing involution. Further, upon applying ∂n
n, the 

two terms give the same permutation in Σn−1 but with different signs. Thus the contribution of these terms 

is 0.

Combining the cases above gives ∂n
n(yT ) = (t + j − i)(yT ). �

Proof of Proposition 4.6. We have Resn
n−1Vλ =

⊕
ν=λ−�

Vν . Hence

Resn
n−1Jλ =

⊕

ν1=λ−�

⊕

ν2=λ−�

Vν1
⊗ V̂ν2

.

Since ∂n
n is equivariant with respect to the action of Σn−1×Σn−1, the image of Jλ can only contain irreducible 

representations of the form Vν1
⊗V̂ν2

where both ν1 and ν2 are obtained by removing a box from ¼, each with 

multiplicity at most 1. On the other hand, we know Zn−1
n−1 only contains irreducible representations of the 

form Vν ⊗ V̂ν . So it follows that each of the representations Vν ⊗ V̂ν can appear in ∂n
n(Jλ) with multiplicity 

at most 1.

Let yT be the Young symmetrizer corresponding to a standard Young tableau of shape ¼ and suppose 

that the box of T containing n is in position (i, j). Then we have ∂n
n(yT ) = (t + j − i)yT ′ where T ′

is the tableau obtained by removing the box containing n as shown in the above lemma. Thus we have 

(t + j − i)Jν ⊆ ∂n
n(Jλ), where ν is the partition obtained by removing the box containing n.

For any ν that can be obtained from ¼ by removing a box, we can take a standard Young tableau T ′ of 

shape ν, and consider a standard Young tableaux T of shape ¼ obtained by putting n in the box that was 

removed. The above argument then shows that (t + j − i)Jν ⊆ ∂n
n(Jλ).
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We have already seen that each Jν = Vν ⊗ V̂ν can appear in ∂n
n(Jλ) with multiplicity at most 1, so ∂n

n(Jλ)

is the sum of all spaces (t + j − i)Jν , where ν is obtained from ¼ by removing a box at position (i, j). �

4.3. Ideals of Z

The aim of this section is to classify all the ideals of Z. Let I ⊆ Z be an ideal. Clearly, we have Im
n = 0

for m 
= n. For a polynomial f ∈ K[t], we denote the ideal generated by f by (f).

Lemma 4.8. We have In
n =

⊕
λ�n

(gλ) ⊗ Jλ, where gλ is either a monic polynomial or 0.

Proof. The space In
n is a Σn ×Σn-stable subset of Zn

n = K[t][Σn]. Further In
n is stable under multiplication 

by Z0
0 = K[t]. Since Zn

n =
⊕
λ�n

K[t] ⊗ Jλ, we have In
n =

⊕
λ�n

Lλ ⊗ Jλ, where Lλ is an ideal of K[t]. If Lλ 
= 0

then there is a unique monic polynomial gλ such that Lλ = (gλ). �

We let ∅ denote the empty partition. By deûnition g∅ generates I0
0 ⊆ K[t] = Z0

0 and g∅ = 0 or g∅ is a 

monic polynomial.

Lemma 4.9. Let I be a non-zero ideal of Z, then g∅ 
= 0.

Proof. Since I is a non-zero ideal, we have 0 
= a ∈ Id
d for some d. Write a =

∑
σ∈Σd

fσ[σ], with fσ ∈ K[t]. 

Without loss of generality, we can assume fid = 1. (If not, we can pick μ such that fμ 
= 0 and consider 

instead 1
fμ

(μ−1 · a) ∈ Id
d .)

Observe that ∂1
1∂2

2 · · · ∂d
d(a) = td+ lower order terms, giving a non-zero element in I0

0 . �

Corollary 4.10. If I is a non-zero ideal, we have that g∅ ∈ (gλ). In particular, gλ 
= 0 for all ¼.

Proof. We have g∅ 
= 0. Thus g∅ · Jλ ∈ I, and hence g∅ ∈ (gλ). �

Definition 4.11. A collection of monic polynomials {qλ} indexed by partitions ¼ is called compatible if for 

any two partitions ¼ and μ such that ¼ = μ ∪ one box, with the additional box on diagonal d, then either 

qμ = qλ or qμ = qλ · (t + d).

Given an ideal I we have In
n =

⊕
λ�n

(gλ) ⊗ Jλ. This gives us a collection of polynomials {gλ}.

Theorem 4.12. Given an ideal I, the collection of polynomials {gλ} is compatible. Conversely, given a 

compatible collection qλ, we can define an ideal J by J n
n =

⊕
λ�n

(qλ) ⊗ Jλ.

Proof. By deûnition, a subset I =
⊕

Im
n is an ideal if and only if each Im

n is stable under the action of 

Σm × Σn, and is closed under contractions and the tensor product. In fact, since Z is generated by the 

identity, it suffices to consider tensoring by id. Hence, the theorem follows directly from Lemma 4.5 and 

Proposition 4.6. �

Thus it suffices to classify all the compatible collections of monic polynomials. Given a ûnite collection of 

boxes {(i1, j1), (i2, j2) . . . (ik, jk)} and a monic polynomial f , we deûne a compatible collection {gλ} given 

by gλ = f ·
k∏

p=1
(t + dp)εp , where dp = jp − ip, and εp = 0 if (ip, jp) ∈ ¼, and 1 otherwise. Since the collection 

of boxes is ûnite, it is contained in some large enough rectangular partition. Hence, we can pictorially show 

the collection as a rectangular partition with some boxes shaded in. For example, if we have the collection 
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{(1, 1), (1, 3), (4, 2)}, this is contained in the rectangular partition (3, 3, 3, 3), and the picture is given as 

follows:

In fact, we will show that all collections of compatible polynomials are of this form. Let {gλ} be a 

compatible collection of monic polynomials. We say that ¼ has an (i, j)-jump if (i, j) is a removable box, 

and gλ 
= gλ−(i,j). The compatibility condition forces gλ−(i,j) = (t + d)gλ where d = j − i.

Lemma 4.13. Suppose ¼1 and ¼2 are partitions such that (i, j) is a removable box in both of them. Then 

either both have an (i, j)-jump or neither have an (i, j)-jump.

Proof. We can assume ¼2 is the rectangular partition ji = (j, j, . . . , j)︸ ︷︷ ︸
i times

. Observe that we have ¼2 ⊂ ¼1. To 

go from gλ1
to gλ2−(i,j), we can remove removable boxes from ¼1 and track the jumps.

By removing boxes from ¼1 we can reach ¼2 − (i, j) in two ways. So, we can get to gλ2−(i,j) from gλ1
in 

two ways as shown in the picture below.

gλ1
gλ2

gλ1−(i,j) gλ2−(i,j)

The horizontal transformations come out of removing boxes from the skew partition ¼1 � ¼2, and hence 

none of the jumps affect the multiplicity of t + d, where d = j − i. This is because none of the boxes in the 

skew partition are on diagonal d. Thus either both vertical arrows are jumps or neither are jumps. �

The above lemma shows that jumps are determined not by the partitions themselves, but rather the 

position of the removable boxes. Since g∅ is a polynomial of a ûnite degree, we can only have a ûnite number 

of jumps. Thus collections of compatible monic polynomials are indexed by (f, C) where f ∈ K[t] is a monic 

polynomial, and C is a ûnite subset of Z2
>0.

Definition 4.14. Given a monic polynomial f ∈ K[t] and a ûnite subset C = {(i1, j1), . . . , (ik, jk)} ⊂ Z
2
>0, 

let gλ = f ·
∏k

p=1(t + dp)εp where dp = jp − ip, and εp = 0 if (ip, jp) ∈ ¼ and εp = 1 otherwise. We deûne an 

ideal I =
⊕

p∈Z≥0
Ip

p , where

Ip
p =

⊕

λ�p

(gλ) ⊗ Jλ.

Note in particular that g∅ = f ·
∏k

p=1(t + dp).

We summarize the above discussion:

Theorem 4.15. Every nonzero ideal of Z is of the form I(f, C) for some monic polynomial f ∈ K[t], and C

is a finite subset of Z2
>0.

Note that the monic polynomial f could be 1.
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4.4. Prime ideals and maximal ideals

We will now classify the prime ideals and maximal ideals of Z.

Definition 4.16. An ideal I of a wheeled PROP A is a prime ideal if for a ∈ Ap
q and b ∈ Ar

s, we have 

a ⊗b ∈ I =⇒ a ∈ I or b ∈ I. The ideal I is called maximal if I 
= A and for every ideal J with I ⊆ J ⊆ A

we have J = I or J = A.

Lemma 4.17. A maximal ideal of A is prime.

Proof. Suppose that M is a maximal ideal and a ⊗ b ∈ M where a ∈ Ap
q and b ∈ Ar

s. Assume that a /∈ M. 

Then 1 lies in the ideal generated by a and M and 1 ⊗ b lies in the ideal generated by a ⊗ b and M ⊗ b, 

which is contained in M. This shows that b = 1 ⊗ b ∈ M. �

Remark 4.18. For a prime ideal P of a wheeled PROP A, we have that P0
0 is a prime ideal of the commutative 

ring A0
0.

Let P be a prime ideal in the wheeled PROP Z, and let Pn
n =

⊕
λ�n

(gλ) ⊗ Jλ, where the gλs are monic 

polynomials or zero.

Proposition 4.19. The prime ideals of Z are 0, I(t −a, ∅) for some a ∈ K or I(1, {(i, j)}) for some i, j ∈ Z>0.

Proof. Suppose that P is a prime ideal of Z. By the remark above, P0
0 is a prime ideal of Z0

0 = K[t], so it is 

equal to 0 or to (t − a) for some a ∈ K. If P0
0 = 0, then we get P = 0. Suppose that P0

0 = (t − a). We have 

P = I(f, C) where f ∈ K[t] is monic and C is ûnite, and t − a = f
∏

(i,j)∈C(t + j − i). There are 2 cases:

(1) f = t − a and C = ∅, or

(2) f = 1, C = {(i, j)} and a = i − j.

This shows that every other ideal is not prime. However, we still need to show that the ideals 0, I(t −a, ∅)

for some a ∈ K or I(1, {(i, j)}) for some i, j ∈ Z>0 are prime. It is clear that 0 is prime as well as I(t −a, ∅)

for a ∈ K.

To show that I(1, {(i, j)}) for some i, j ∈ Z>0 is prime, we will show that Z/I(1, {(i, j)}) embeds into 

the mixed tensor algebra of a super vector space, which is clearly a domain. Let V = Ki−1 ⊕ Kj−1 be 

a Z/2-graded vector space (i.e., a super vector space) with an (i − 1)-dimensional vector space in even 

degree and (j − 1)-dimensional vector space in the odd degree. Then, consider the mixed tensor algebra 

V = ⊕p,q∈Z≥0
(V ∗)⊗q ⊗ V ⊗p, which is a wheeled PROP where tensor product is deûned in the obvious way 

(respecting degrees), but contractions have to be deûned a bit more carefully, i.e., the even and odd parts 

are orthogonal, the contraction on the even part is as usual, but the contraction on the odd part is twisted 

by a negative sign. In particular, trace of the identity is (i − 1) − (j − 1) rather than (i − 1) + (j − 1). We 

leave it to the reader to check that this is indeed a wheeled PROP.

We have a map from the initial object Z → V. Since the trace of the identity is i − j, this map factors 

through the quotient, i.e., it factors as a composition Z → Z/I(t − (i − j), ∅) → V. For a Young diagram 

T , let yT be the image of yT ∈ Z in Z/I(t − (i − j), ∅). Observe that Z/I(t − (i − j), ∅) can be identiûed 

with ⊕n≥0K[Σn] and using the result of Berele and Regev [1, Theorem 3.20], we get that the kernel of 

Z/I(t − (i − j), ∅) → V is precisely the sum of all the isotypic components (viewed as an Σn × Σn-

representation) corresponding to partitions that contain the i × j rectangle T := (ij). So the kernel is 

generated by all yS where S is a Young diagram that contains T . It follows that the kernel is generated by 

yT . The kernel of Z → V is generated by t − (i − j) and yT . So this kernel is precisely I(1, {(i, j)}). �
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Remark 4.20. Observe that we have inûnite chains of prime ideals. Yet, every ideal is ûnitely generated, i.e., 

we have Noetherianity.

Corollary 4.21. The maximal ideals of Z are I(t −a, ∅) with a ∈ K\Z and I(1, {(n +1, 1)}), I(1, {(1, n +1)})

with n ∈ Z≥0.

Proof. Maximal ideals are exactly the prime ideals that are not properly contained in other prime ideals. 

Now the corollary follows from the classiûcation of prime ideals. �

5. Representable wheeled PROPs

5.1. An equivalence of categories

Suppose that G is an affine algebraic group (over K) and K[G] is the coordinate ring of G and W is a 

K-vector space. An action of G on W is called rational if there exists a K-linear map γ : W → K[G] ⊗ W

with the following property: if γ(w) =
∑r

j=1 fj ⊗ wj for some r, functions f1, . . . , fr ∈ K[G] and vectors 

w1, . . . , wr ∈ W , then g · w =
∑r

j=1 fj(g)wj for all g ∈ G. A G-algebra is a commutative K-algebra R with 

a rational action of G such that G acts by K-algebra automorphisms.

For this section, let V denote an n-dimensional vector space, and let V =
⊕

p,q∈Z≥0
Vp

q denote the mixed 

tensor algebra over V . We introduce two categories:

A (n): In the category A (n) the objects are commutative GL(V )-algebras and morphisms are GL(V )-

equivariant K-algebra homomorphisms.

W (n): A wheeled PROP is called n-representable if it is isomorphic to a sub-wheeled PROP of R ⊗ V

where R is a commutative K-algebra. The objects of W (n) are n-representable wheeled PROPs. 

The morphisms in W (n) are homomorphisms of wheeled PROPs.

We construct a covariant functor Φ : A (n) → W (n) as follows. Suppose that R is a GL(V )-algebra. Note 

that GL(V ) acts on R as well as on the algebra V. We deûne

Φ(R) = (R ⊗ V)GL(V ) =
⊕

p,q∈Z≥0

(R ⊗ Vp
q )GL(V ).

It is easy to see that (R ⊗ V)GL(V ) is closed under ⊗ and ∂i
j . So Φ(R) = (R ⊗ V)GL(V ) is a sub-wheeled 

PROP of R ⊗ V, and hence an object of W (n).

Suppose that ψ : R → S is a GL(V )-equivariant ring homomorphism. Then ψ induces a GL(V )-

equivariant homomorphism of wheeled PROPs

ψ ⊗ id : R ⊗ V −→ S ⊗ V.

Taking GL(V )-invariants on both sides gives us a homomorphism of wheeled PROPs

Φ(R) = (R ⊗ V)GL(V ) −→ Φ(S) = (S ⊗ V)GL(V )

which we will denote by Φ(ψ). We leave it to the reader to check that Φ is indeed a functor.

Before we deûne a functor in the other direction, we need the following lemma.

Lemma 5.1. For an object A in W (n), there exists a unique commutative K-algebra R and a homomorphism 

ρ : A → R⊗V of wheeled PROPs with the following universal property: If S is a commutative K-algebra and 
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¼ : A → S ⊗ V is a homomorphism of wheeled PROPs, then there exists a unique K-algebra homomorphism 

ψ : R → S such that (ψ ⊗ id) ◦ ρ = ¼. In diagrams:

A
ρ

��

λ

��

R ⊗ V

ψ⊗id
��

S ⊗ V

.

Proof. Suppose that ρi : A → Ri ⊗ V, i ∈ I are, up to isomorphism, all homomorphisms of wheeled PROPs 

where Ri is a commutative K-algebra whose cardinality is at most the cardinality of A (this to ensure that 

I is still a set). Deûne

ρ =
∏

i∈I

ρi : A → (
∏

i∈I

Ri) ⊗ V.

Deûne R as the smallest subring of 
∏

i∈I Ri such that ρ(A) ⊆ R ⊗ V. One can now easily show that 

ρ : A → R ⊗ V has the desired universal property. The uniqueness of R follows from the universal property, 

as usual. �

We deûne a functor Θ : W (n) → A (n) as follows. For an object A in W (n), deûne Θ(A) = R, where 

ρ : A → R ⊗ V is as in Lemma 5.1. We can deûne a rational GL(V )-action on R as follows. The action of 

GL(V ) on V corresponds to a map

γ : V → K[GL(V )] ⊗ V.

If we tensor with R we get a map

id ⊗γ : R ⊗ V → R ⊗ K[GL(V )] ⊗ V.

The composition

(id ⊗γ) ◦ ρ : A → R ⊗ K[GL(V )] ⊗ V

is a homomorphism of wheeled PROPs. The universal property of ρ : A → R ⊗ V implies that there is a 

unique homomorphism μ : R → R ⊗ K[GL(V )] such that (id ⊗γ) ◦ ρ = (μ ⊗ id) ◦ ρ:

A
ρ

��

ρ

��

R ⊗ V

id ⊗γ

��

R ⊗ V
μ⊗id

�� R ⊗ K[GL(V )] ⊗ V

.

The reader may check, using universality, that μ : R → R ⊗ K[GL(V )] deûnes a rational right action of 

GL(V ) on R. In other words, if μ(f) =
∑

i fi ⊗ hi then

f · g :=
∑

i

fihi(g), g ∈ GL(V )

deûnes a right action of GL(V ) on R. Of course, we may view R as an algebra with a rational left GL(V )

action by deûning
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g · f := f · g−1.

This shows that R is a GL(V )-algebra. Left and right multiplication (on R or on V) by g ∈ GL(n) shall be 

denoted by Lg and Rg respectively. The above reasoning shows that

(Lg−1 ⊗ id) ◦ ρ = (Rg ⊗ id) ◦ ρ = (id ⊗Lg) ◦ ρ : A → R ⊗ V

and therefore

(Lg ⊗ Lg) ◦ ρ = ρ.

This shows that ρ(A) ⊆ (R ⊗ V)GL(V ), where GL(V ) acts on the left on R and V.

Suppose that φ : A → B is a homomorphism of n-representable wheeled PROPs. Let ρA : A → R ⊗ V

and ρB : B → S ⊗ V be the universal maps as in Lemma 5.1. Consider the composition ρB ◦ φ : A → S ⊗ V. 

There exists a unique ring homomorphism ψ : R → S such that (ψ ⊗ id) ◦ ρA = ρB ◦ φ:

A
ρA

��

φ

��

R ⊗ V

ψ⊗id

��

B
ρB

�� S ⊗ V

.

Deûne Θ(φ) = ψ. The reader may check that Θ deûnes a functor.

Theorem 5.2. Φ and Θ are each other’s inverses, i.e., the categories A (n) and W (n) are equivalent.

Proof. Suppose that A =
⊕

p,q∈Z≥0
Ap

q is an n-representable wheeled PROP. So there exists an injective 

homomorphism of wheeled PROPs ¼ : A → S ⊗V for some commutative K-algebra S. Let ρ : A → R⊗V be 

as in Lemma 5.1. By the universal property there exists a K-algebra homomorphism μ : R → S such that 

(μ ⊗ id) ◦ ρ = ¼. Since ¼ is injective, ρ is injective. We have seen that ρ(A) ⊆ (R ⊗ V)GL(V ). We claim that 

equality holds. Let T be the subring generated by all 〈ρ(a), v〉 where a ∈ Ap
q for some p, q ∈ Z≥0, v ∈ Vq

p

and 〈·, ·〉 is the bilinear pairing Vp
q × Vq

p → K which naturally extends to a pairing (R ⊗ Vp
q ) × Vq

p → R. 

Clearly

〈ρ(a1 ⊗ a2), v1 ⊗ v2〉 = 〈ρ(a1), v1〉〈ρ(a2), v2〉

so T is the K-vector space spanned by all 〈ρ(a), v〉, with a ∈ Ap
q and v ∈ Vq

p and p, q ∈ Z≥0. We have 

ρ(A) ⊆ T ⊗ V. From the universal property of ρ : A → R ⊗ V follows that T = R.

Suppose that u ∈ (R ⊗ Vp
q )GL(V ) for some p, q ∈ Z≥0. Then there exist ai ∈ Api

qi
, vi ∈ Vqi

pi
and wi ∈ Vp

q

such that u =
∑r

i=1〈ρ(ai), vi〉wi. Let fi = vi ⊗ wi ∈ Hom(Vpi
qi

, Vp
q ). Then we have

u =

r∑

i=1

fi(ρ(ai)).

Consider the action of GL(V ). The elements u, and ρ(ai), i = 1, 2, . . . , r are GL(V )-invariant, but f1, . . . , fr

may not be. By applying the Reynolds operator on both sides, we may assume that f1, . . . , fr are GL(V )-

invariant as well. Now fi is a GL(V )-invariant tensor in

Hom(Vpi
qi

, Vp
q ) ∼= Vqi

pi
⊗ Vp

q
∼= Vp+qi

q+pi
.
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The ûrst fundamental theorem in invariant theory for GL(V ) tells us exactly what such a tensor looks like. 

This means that fi as a linear map, is a composition of contractions and tensoring with the identity in 

V � ⊗ V . But ρ(A) is closed under contractions and tensoring with the identity. This shows that fi(ρ(ai))

lies in the image of ρ. But then u lies in the image of ρ. So ρ deûnes an isomorphism between A and 

(R ⊗ V)GL(V ) = Φ(Θ(A)). We leave it to the reader to show that Φ ◦ Θ is naturally equivalent to identity 

functor.

Suppose that R is a GL(V )-algebra. Let A = Φ(R) = (R ⊗ V)GL(V ) and let R̃ = Θ(A) = Θ(Φ(R)). 

Deûne ρ : A → R̃ ⊗ V as in Lemma 5.1. Consider the inclusion ¼ : (R ⊗ V)GL(V ) → R ⊗ V. The universal 

property implies that there exists a K-algebra homomorphism ψ : R̃ → R such that (ψ ⊗ id) ◦ ρ = ¼. Now 

ψ ⊗ id : R̃ ⊗ V → R ⊗ V restricts to a map of wheeled PROPs

ψ′ : (R̃ ⊗ V)GL(V ) → (R ⊗ V)GL(V ) = A

On the other hand, we have seen before that ρ : A → (R̃⊗V) induces an isomorphism ρ′ : A → (R̃⊗V)GL(V ). 

We have (ψ ⊗ id) ◦ ρ = ¼ and if we restrict the codomain to (R ⊗ V)GL(V ), then we get ψ′ ◦ ρ′ = id. Since 

ρ′ is an isomorphism, so is ψ′.

For an irreducible representation W of GL(V ), let RW be the W -isotypic components of R. As a rep-

resentation of GL(V ), RW is isomorphic to (RW ⊗ W �)GL(V ) ⊗ W . We have an isotypic decomposition 

R =
⊕

W RW , where W runs over all irreducible representations of GL(V ). Similarly, we also have an iso-

typic decomposition R̃ =
⊕

W R̃W . Since ψ is GL(V )-equivariant, it respects the isotypic decompositions, 

i.e., ψ(R̃W ) ⊆ RW and ψ restricts to a GL(V )-equivariant map ψW : R̃W → RW . If we identify R̃W (respec-

tively RW ) with (R̃⊗W �)GL(V ) ⊗W (respectively (R⊗W �)GL(V ) ⊗W ), then ψW is equal to γW ⊗idW where 

γW : (R̃⊗W �)GL(V ) → (R⊗W �)GL(V ) is a restriction of ψ ⊗ idW � : R̃⊗W � → R⊗W �. The dual space W �

is a subrepresentation of Vp
q for some p and q. Now the isomorphism (ψ′)p

q : (R̃⊗Vp
q )GL(V ) → (R⊗Vp

q )GL(V )

restricts to γW : (R̃ ⊗ W �)GL(V ) → (R̃ ⊗ W �)GL(V ). So γW and ψW = γW ⊗ idW are isomorphisms. It 

follows that ψ =
∑

W ψW is an isomorphism. So Θ(Φ(R)) ∼= R. Again, we leave it to the reader to verify 

that the composition functor Θ ◦ Φ is naturally equivalent to the identity. �

We now discuss a useful result.

Proposition 5.3. Suppose R is a GL(V )-algebra and A = Φ(R) = (R ⊗ V)GL(V ). Let I be an ideal of A. 

Then there exists a GL(V )-stable ideal I of R such that I = (I ⊗ V)GL(V ).

Proof of Proposition 5.3. Let S = Θ(A/I). Applying Θ to the morphism of wheeled PROPs π : A → A/I

gives an GL(V )-equivariant algebra homomorphism Θ(π) : R → S. Let I be the kernel of Θ(π). From the 

exact sequence 0 → I → R → S follows that

0 → (I ⊗ V)GL(V ) → (R ⊗ V)GL(V ) → (S ⊗ V)GL(V )

is exact. The morphism on the right is just Φ(Θ(π)) = π. So (I ⊗ V)GL(V ) is the kernel of π : A → A/I

which is I. �

Proposition 5.3 shows there is a bijection between GL(V )-stable ideals of R and ideals of A = (R ⊗

V)GL(V ). If A is a wheeled PROP and I ⊆ A is an ideal, then A/I has a natural structure of a wheeled 

PROP because it can be identiûed with the image of some homomorphism φ : A → B of a wheeled PROP.

Remark 5.4. If A = (R ⊗ V)GL(V ) is an n-representable wheeled PROP, and I ⊆ A is an ideal, then A/I is 

a wheeled PROP. Proposition 5.3 implies that I = (I ⊗ V)GL(V ) for some GL(V )-stable ideal I. If we apply 

Φ to R/I we get
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((R/I) ⊗ V)GL(V ) ∼= (R ⊗ V)GL(V )/(I ⊗ V)GL(V ) = A/I.

This shows that A/I ∼= Φ(R/I) is an n-representable wheeled PROP as well. So W (n) is closed under 

homomorphic images.

6. Sub-wheeled PROPs of the mixed tensor algebra

For K = C and V a ûnite dimensional vector space with a positive deûnite hermitian form 〈·, ·〉, the 

mixed tensor algebra was studied by Schrijver in [19]. If v ∈ V , then we deûne v� = 〈·, v〉 ∈ V �. More 

general, if f ∈ Vp
q then one can deûne a dual element f� ∈ Vq

p , and one has f�� = f . Schrijver showed that 

a subset A ⊆ V is of the form VG for some subgroup G of the unitary group if and only if A is a contraction 

closed nondegenerate graded subalgebra of V, closed under ∗.

We prove a generalization of this over an arbitrary ûeld of characteristic 0. We refer the reader to [8,21]

for details on algebraic groups and [4,16] for invariant theory.

Definition 6.1. A wheeled PROP A is simple if it has exactly 2 ideals, namely the zero ideal and A itself.

Suppose M is an ideal of A. It is clear from the deûnitions that A/M is simple if and only if M is a 

maximal ideal. In particular, A is simple if and only if the zero ideal is maximal.

Theorem 6.2. There is a bijection between simple sub-wheeled PROPs of V and Zariski closed reductive 

subgroups G ⊆ GL(V ) which are defined over K.

Lemma 6.3.

Φ(K[GL(V )]) ∼= V

Proof. Suppose that the action of GL(V ) on V is given by

γ : V → K[GL(V )] ⊗ V.

Let Δ� : K[GL(V )] ⊗ K[GL(V )] → K[GL(V )] be given by f ⊗ h 	→ fh. The composition

(Δ� ⊗ id) ◦ (id ⊗γ) : K[GL(V )] ⊗ V → K[GL(V )] ⊗ K[GL(V )] ⊗ V → K[GL(V )] ⊗ V

is a GL(V )-equivariant isomorphism

K[GL(V )] ⊗ V → K[GL(V )] ⊗ V

of wheeled PROPs.

Here GL(V ) acts on the left-hand K[GL(V )] ⊗ V by acting on K[GL(V )] and on V as usual. But GL(V )

acts on the right-hand K[GL(V )] ⊗ V by acting as usual on K[GL(V )] and acting trivially on V. Taking 

GL(V )-invariants gives us an isomorphism

Φ(K[GL(V )]) = (K[GL(V )] ⊗ V)GL(V ) ∼= V. �

Corollary 6.4. There is a bijection between GL(V )-stable subalgebras of K[GL(V )] and sub-wheeled PROPs 

of V.
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Proof. It is easy to see that a GL(V )-equivariant homomorphism ψ : R → S of K-algebras is injective if 

and only if Φ(ψ) is injective. So the corollary follows from Lemma 6.3. �

If A is a wheeled PROP then we have pairing

〈·, ·〉Ap
q × Aq

p → A0
0

so that 〈u, v〉 is obtained by contracting all the outputs of u with the inputs of v and vice versa. More 

precisely,

〈u, v〉 = ∂1
1 · · · ∂1

1︸ ︷︷ ︸
q

∂1
q+1 · · · ∂1

q+1︸ ︷︷ ︸
p

(u ⊗ v)

Proposition 6.5. A wheeled PROP A is simple if and only if L := A0
0 is a field, and the L-bilinear pairing

〈·, ·〉Ap
q × Aq

p → L

is nondegenerate for all p, q.

Proof. Suppose that A is simple. If J is an ideal of A0
0 = L, then JA ⊆ A is an ideal. So J = 0 or J = L. 

Therefore, L must be a ûeld. Deûne I =
⊕

p,q∈Z≥0
Ip

q as follows. The space Ip
q is the set of all u ∈ Ap

q

such that 〈u, ·〉 : Aq
p → L is the zero map. The reader may check that this deûnes an ideal. Clearly I 
= A

because 1 ∈ L = A0
0 does not lie in I, so I = 0. This shows that the bilinear pairing is nondegenerate.

Conversely, suppose that A0
0 = L is a ûeld and that 〈·, ·〉 : Ap

q × Aq
p → L is nondegenerate. Suppose 

that I is a nonzero ideal of A. Let u ∈ Ip
q be nonzero for some p, q. Then there exists a v ∈ Iq

p such that 

〈u, v〉 = 1 ∈ I0
0 . So I = A. Hence A is simple. �

Proof of Theorem 6.2. Suppose that G ⊆ GL(V ) is a closed reductive subgroup. The group GL(V ) × G

acts on GL(V ) by (g1, g2) · h = g1hg−1
2 , so this group also acts on K[GL(V )]. Since the GL(V ) action and 

the G-action on K[GL(V )] commutate, the group GL(V ) also acts on R := K[GL(V )]G. We have

A := Φ(R) = (K[GL(V )]G ⊗ V)GL(V ) ∼= VG.

Let u ∈ Ap
q = (Vp

q )G. Because G is linearly reductive, there exists a v ∈ Aq
p = (Vq

p)G such that 〈u, v〉 = 1. 

Also A0
0 = K. So A is simple by Proposition 6.5. Conversely, suppose that A ⊆ V is a simple sub-wheeled 

PROP. Then R := Θ(A) is a subalgebra of K[GL(V )]. The only GL(V )-stable ideals of R := Θ(A) are 

0 and R itself. We claim that R is ûnitely generated. Indeed, let J be the set of all f ∈ R such that the 

localization Rf is ûnitely generated, together with 0. This is the ûnite generation ideal discussed in [5]. 

The ideal is nonzero, because R is a subalgebra of a ûnitely generated domain (see [5, Proposition 2.7]). 

Since J is a nonzero ideal that is also clearly GL(V )-stable, we must have J = R, so 1 ∈ J and R = R1 is 

ûnitely generated. So we may think of R as K[X], the coordinate ring of some affine variety X. Now we have 

a rational GL(V )-action on X. Since K[X] has no nontrivial GL(V )-invariant ideals, X must be a single 

GL(V ) orbit. So X = GL(V )/G for some Zariski closed subgroup of GL(V ). In order for GL(V )/G to be 

affine, G must be reductive by Matsushima’s criterion (see [2,13,15]). Hence R = K[X] = K[GL(V )]G. �

Corollary 6.6. Simple sub-wheeled PROPs of V are always finitely generated.

Example 6.7. Φ(K) = VGL(V ).
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7. A characterization of n-representable wheeled PROPs

7.1. A theorem of Procesi

An interesting problem in the theory of polynomial identities is to determine the necessary conditions to 

be able to embed an algebra R into Matn(S), the ring of n × n matrices over a commutative ring S. While 

this problem does not seem to have a good answer, Procesi proved a remarkable result by considering rings 

with trace instead.

Definition 7.1. A K-algebra with trace is an algebra R with a K-linear map Tr : R → R satisfying

• Tr(a)b = b Tr(a);

• Tr(ab) = Tr(ba);

• Tr(Tr(a)b) = Tr(a) Tr(b).

A typical example of a trace algebra is the matrix ring Matn(S) where S is a commutative K-algebra. 

The map Tr : Matn(S) → Matn(S) is given by Tr(A) = tr(A)I where tr(A) ∈ K is the trace of the matrix 

A ∈ Matn(S) and I is the n × n identity matrix. If A ∈ Matn(S), then it has a characteristic polynomial

χA(T ) = T n + f1(A)T n−1 + · · · + fn−1(A)T + fn(A).

The coefficients f1(A), . . . , fn(A) can be expressed in terms of traces. The Cayley-Hamilton identity states 

that χA(A) = 0. For example, if n = 2 then we have

χA(T ) = T 2 − tr(A)T + 1
2 (tr(A)2 − tr(A2)) ∈ K[T ]

The Cayley-Hamilton identity for n = 2 states that

χA(A) = A2 − tr(A)A + 1
2 (tr(A)2 − tr(A2))I = 0 ∈ Mat2,2(S).

Theorem 7.2 ([17]). If R is a K-algebra with trace satisfying the n-th Cayley-Hamilton identity, then we 

have an embedding R ↪→ Matn(S) for some commutative K-algebra S.

We prove a similar result for wheeled PROPs. Let V be a vector space of dimension n, and denote by V, 

the mixed tensor algebra of V . For any commutative algebra R, it is easy to check that the wheeled PROP 

R⊗V satisûes the relations Altn+1 :=
∑

σ∈Σn+1

sgn(σ)[σ] and � −n. Note here that � denotes the exceptional 

loop ∂1
1(↓). Since Z is the initial object, we have a unique homomorphism Z → P for any wheeled PROP 

P and hence Altn+1 can be considered as an element of P. It turns out that these relations are sufficient to 

guarantee an embedding.

Theorem 7.3. If P is a wheeled PROP satisfying the relations Altn+1 and � −n, then we have an embedding 

P ↪→ R ⊗ V for some commutative algebra R.

7.2. Generic tensors

Let V be an n-dimensional K-vector space with basis e1, e2, . . . , en, and denote the dual basis in V � by 

e1, e2, . . . , en. We will use the short-hand notation

e
i1,...,ip

j1,...,jq
= ei1 ⊗ · · · ⊗ eip ⊗ ej1

⊗ · · · ⊗ ejq
∈ Vp

q .
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We will study relations among generic tensors. For simplicity, we illustrate the proof by looking at a 

special example. We assume that there are just 2 generic tensors, namely a tensor A of type 
(

1
2

)
, i.e., two 

inputs and one output, and a tensor of type 
(

0
2

)
. We write

A =
∑

i,j,k

ai,j
k ei,j

k

and

B =
∑

i,j

bi,jei,j ,

where {ak
i,j} and {bi,j} are indeterminates. So, we can view A as an element of R ⊗ V2

1 and B as an element 

of R ⊗ V0
2 , where R is the polynomial ring K[{ai,j

k }, {bi,j}]. Let W ⊂ R ⊗ V be the sub-wheeled PROP 

generated by A and B.

Suppose we have a relation of type 
(

1
2

)
. Such a relation must be of the form 

∑r
k=1 ¼kDk, where 

D1, D2, . . . Dr are decorated graphs of type 
(

1
2

)
using only A, B, and exceptional edges (id) and excep-

tional loops. Since we are working in W ⊂ R ⊗ V, an exceptional loop is equal to the integer n. Thus we 

can assume that there are no exceptional loops in D1, . . . , Dr.

W inherits a bigrading from the polynomial ring K[{ai,j
k }, {bi,j}], where the a-variables have degree (1, 0)

and the b-variables have degree (0, 1). We only have to consider relations that are homogeneous with respect 

to this bigrading as well. Let us assume that D1, . . . , Dk have bidegree (1, 1). Hence, in each of the decorated 

graphs Di, A and B occur exactly once.

Let C =
∑

i,j,k ci,j
k ei,j

k be a generic tensor of type 
(

1
2

)
. Let S = K[{ai,j

k }, {bi,j}, {ci,j
k }]. Then A ∈ R⊗V2

1 ⊆

S ⊗ V2
1 , B ∈ S ⊗ V0

2 and C ∈ S ⊗ V2
1 . We have a natural pairing 〈·, ·〉 : S ⊗ V2

1 × S ⊗ V1
2 → S. We have

r∑

i=1

¼i 〈Di, C〉 = 0.

The element 〈Di, C〉 is obtained by contracting the outputs of Di with the inputs of C and vice versa. 

We assumed that Di has bidegree (1, 1) which means that it is obtained from 1 copy of A, 1 copy of 

B and some copies of exceptional edges by applying some contractions. So 〈Di, C〉 is obtained by taking 

A ⊗ B ⊗ C ⊗ id ⊗ · · · ⊗ id and contracting all inputs and outputs in some way. Contracting with the identity 

tensor does not do anything, so 〈Di, C〉 can be obtained from A ⊗ B ⊗ C by contracting the 4 inputs with 

the 4 outputs in some way. This means that we can write 〈Di, C〉 = 〈A ⊗ B ⊗ C, σi〉, where σi ∈ V4
4 , where 

σi is just a permutation. So, we have

0 =

〈
A ⊗ B ⊗ C,

r∑

i=1

¼iσi

〉
=

∑

i,j,k,l,p,q,r,s

ai,j
k bl,pcq,r

s

〈
ei,j,q,r

k,l,p,s,

r∑

t=1

¼tσt

〉
.

Since the monomials are linearly independent, we get

〈
ei,j,q,r

k,l,p,s,
r∑

t=1

¼tσt

〉
= 0

for all i, j, k, l, p, q, r, s. It follows that 
∑r

t=1 ¼tσt = 0. Thus the relation 
∑r

t=1 ¼tDt is obtained from con-

tracting 
∑r

t=1 ¼tσt with A ⊗ B. In other words, the relation lies in the ideal of a relation that does not 

involve A and B.
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The above argument works for any number of generic tensors, as long as the relation involves each generic 

tensor at most once. Suppose we have a relation that contains A k times and B l times. Using polarization 

(see [16, 9.1] and [9, §4]), we get a relation in generic tensors A1, . . . , Ak, B1, . . . , Bl exactly once, where Ai

are of the same type as A and Bj are of the same type as B. This multilinear relation lies in the ideal of a 

relation that does not involve any of the Ai’s. Setting Ai = A and Bi = B shows that the original relation 

is also in the ideal generated by a relation that does not involve A or B.

The multilinear version of the First Fundamental Theorem of Invariant Theory (see [9, §4.3] and [16, 

§9.3, §9.5]) implies that the permutations in Vp
p are generating invariants for the action of GL(V ), and the 

Second Fundamental Theorem (see [16, §9.4]) implies that the relations among these are a consequence of 

Altn+1. Hence it follows that every relation among generic tensors is a consequence of � −n and Altn+1.

Proof of Theorem 7.3. Given a wheeled PROP A satisfying � −n and Altn+1, we want to show that it is 

n-representable, i.e., A ∈ Obj(W (n)).

Write A in terms of generators and relations, i.e., A = Z〈Ai | i ∈ I〉/I, where Ai ∈ Api
qi

. Since, the ideal 

I contains � −n and Altn+1, we see that A is a homomorphic image of B := Z〈Ai | i ∈ I〉/ 〈� −n, Altn+1〉. 

Since the category W (n) is closed under homomorphic images, it suffices to show that B is in W (n).

We want to get an injective map B → R⊗V. We take R = K[{a
r1,...,rpi
s1,...,sqi

}| i ∈ I], and consider R⊗V. Then 

we can map each Ai →
∑

a
r1,...,rpi
s1,...,sqi

e
r1,...,rpi
s1,...,sqi

to a generic element in R ⊗ V. This map is well deûned because 

both the relations � −n and Altn+1 hold in R ⊗ V. This map is injective by the above discussion. �

We will sketch how Theorem 7.3 implies Procesi’s Theorem.

Proof. Suppose (R, Tr) is a trace algebra over a ûeld K of characteristic 0 satisfying the n-th Cayley-

Hamilton identity. Let S be the subalgebra of R generated by all Tr(a), a ∈ R. To every element a ∈ R

we introduce a generator 〈a〉 of type 
(

1
1

)
. Let G be the set of all generators. In Z〈G 〉, let I be the ideal 

generated by

(1) � −n;

(2) 〈¼a + μb〉 − ¼〈a〉 − μ〈b〉 with ¼, μ ∈ K and a, b ∈ R;

(3) 〈ab〉 − 〈a〉〈b〉 with a, b ∈ R;

(4) 〈Tr(a)〉 − ∂1
1(〈a〉) ↓ with a ∈ R.

We set R = Z〈G 〉/I. Using these relations, one can show the following linear isomorphism

Rn
n

∼= R ⊗S R ⊗S · · · ⊗S R︸ ︷︷ ︸
n

[Σn].

Let J ⊆ R be the ideal generated by Altn+1. Elements in J 1
1 are contractions of Altn+1 ∈ Rn+1

n+1 with 

elements a1 ⊗ a2 ⊗ · · · ⊗ an ∈ Rn
n. Such a contraction is exactly the n-th multi-linear Cayley-Hamilton 

identity for a1, a2, . . . , an ∈ R and is therefore equal to 0. This shows that J 1
1 = 0. Let S = R/J . Since 

S satisûes the relations Altn+1 and � −n, we can view S as a sub-wheeled PROP of T ⊗ V where T is 

some commutative K-algebra and V is a vector space of dimension n. In particular, R is a subalgebra of 

R1
1 = S1

1 ⊆ T ⊗ V1
1 = T ⊗ End(V ). In other words, R is a subalgebra of Matn(T ). �

7.3. Schrijver’s characterization of traces of tensor representations of diagrams

In [20], Schrijver introduces T -diagrams and characterizes which functions of T -diagrams are traces. We 

will translate the main results in [20] in terms of wheeled PROPs and reprove them in this context.
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In this subsection we assume that K is algebraically closed of characteristic 0. Consider a set of generators 

G and a function type : G → Z
2
≥0. Let M p

q be the set of all monomials of type 
(

p
q

)
. Recall that M p

q is 

a K-basis of Z〈G 〉p
q . If A ∈ M p

q and B ∈ M q
p then we can contract the outputs of A with the inputs of 

B and the inputs of A with the outputs of B to get a diagram 〈A, B〉 ∈ M 0
0 . This extends to a bilinear 

pairing Z〈G 〉p
q × Z〈G 〉q

p → Z〈G 〉0
0. A function f : M 0

0 → K is called multiplicative if f(1) = 1 and 

f(A · B) = f(A)f(B) for all monomials A, B ∈ M 0
0 . Here the product A · B is just the disjoint union of 

diagrams. Note that such a function extends uniquely to an algebra homomorphism f : Z〈G 〉0
0 → K. If 

A ∈ M p
q (or more generally A ∈ Z〈G 〉p

q) then we say that f annihilates A if and only if f(〈A, B〉) = 0 for 

all B ∈ M q
p (or equivalently, for all B ∈ Z〈G 〉q

p). Suppose that V is an n-dimensional K-vector space as 

usual. A tensor representation of G of dimension n is a map ρ : G → V such that ρ(A) ∈ Vp
q for all A ∈ G

of type 
(

p
q

)
. If ρ is such a tensor representation, then it extends uniquely to a morphism of wheeled PROPs 

ρ : Z〈G 〉 → V and ρ0
0 : Z〈G 〉0

0 → V0
0 = K restricts to a multiplicative map ρ : M 0

0 → K. The following 

result is Schrijver’s theorem in [20].

Theorem 7.4. Suppose that f : M 0
0 → K. Then there exists a tensor representation ρ : G → V of dimension 

≤ d such that ρ = f if and only if f is multiplicative and annihilates Altd+1.

Let I ⊆ Z〈G 〉 be the ideal generated by Altd+1. We can reformulate this theorem using more of the 

wheeled PROP terminology:

Theorem 7.5. Suppose that f : Z〈G 〉0
0 → K is an algebra homomorphism. Then there exists a homomorphism 

of wheeled PROPs ρ : Z〈G 〉 → V for some vector space V of dimension n ≤ d with ρ0
0 = f if and only if 

f(I0
0 ) = 0.

Proof. Suppose that f = ρ0
0 where ρ : Z〈G 〉 → V is a homomorphism of wheeled PROPs and V is an n-

dimensional vector space. Clearly, f = ρ0
0 : Z〈G 〉0

0 → K is an algebra homomorphism. The relation Altn+1

lies in the kernel of ρ and therefore, I0
0 is contained in the kernel of f = ρ0

0.

Conversely, suppose that f : Z〈G 〉0
0 → K is an algebra homomorphism and f(I0

0) = 0. Let t =�. We 

have 0 = f(〈Altd+1, ↓↓ · · · ↓〉) = f(t(t − 1)(t − 2) · · · (t − d)) = f(t)f(t − 1) · · · f(t − d). It follows that 

f(t − n) = 0 for some n ∈ {0, 1, 2, . . . , d}. Let J ⊆ Z〈G 〉0
0 be the kernel of f and let J = JZ〈G 〉 be the ideal 

in Z〈G 〉 generated by J . Since Altn+1 lies in the ideal generated by t − n and Altd+1, we get that Altn+1

lies in J . Note that I0
0 ⊆ J 0

0 , because f(I0
0 ) = 0. Since the ideal I + J contains Altn+1 and t − n, there 

exists a ûnitely generated commutative K-algebra R and an injective homomorphism of wheeled PROPs

ψ : Z〈G 〉/(I + J ) → R ⊗ V

where V is an n-dimensional vector space. We can choose an arbitrary maximal ideal m of R. Because R

is ûnitely generated, and K is algebraically closed, we have R/m ∼= K by Hilbert’s Nullstellensatz. Now 

consider the composition

ρ : Z〈G 〉 �� �� Z〈G 〉/(I + J )
�

�
ψ

�� R ⊗ V �� �� R/m ⊗ V ∼= V

By construction ρ0
0 : Z〈G 〉0

0 → V0
0 = K is nonzero and contains I0

0 in its kernel. It follows that ρ0
0 = f . �
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