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where T(V) is the tensor algebra on an n-dimensional vector space over a field
K of characteristic 0. First we classify all the ideals of the initial object Z in the
category of wheeled PROPs. We show that non-degenerate sub-wheeled PROPs of
V are exactly subalgebras of the form V& where G is a closed, reductive subgroup
of the general linear group GL(V). When V is a finite dimensional Hilbert space, a
similar description of invariant tensors for an action of a compact group was given
by Schrijver. We also generalize the theorem of Procesi that says that trace rings
satisfying the n-th Cayley-Hamilton identity can be embedded in an n X n matrix
ring over a commutative algebra R. Namely, we prove that a wheeled PROP can be
embedded in R® V for a commutative K-algebra R if and only if it satisfies certain
relations.

© 2022 Published by Elsevier B.V.

1. Introduction

PROPs were introduced by Adams and MacLane (see [12]) in the context of Category Theory and
formalize functors that may have several inputs and outputs. The abbreviation PROP stands for PROduct
and Permutation category. Wheeled PROPs were introduced by Markl, Merkulov and Shadrin [14]. Besides
the (tensor) product and permutations, wheeled PROPs also have contractions. From the viewpoint of
Classical Invariant Theory, wheeled PROPs have exactly the right structure. Throughout this paper we will
assume that K is a fixed field of characteristic 0. We will give the precise definition of a wheeled PROP in
the next section, but for now we will give some important examples.
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Suppose that V is an n-dimensional K-vector space. The g-fold tensor product is defined by

VO =V Ve V.
—_— ——

q

By convention, V®? = K. Let V* be the dual space and define V? = (V*)®? @ V4. There are actions of

P1+Dp2
Vql +q2

partial traces give linear maps VI — Vé’__ll . This combined structure makes V = €p,, .-, V} into a wheeled

PROP. If V is a representation of an algebraic group G, then the space V¢ = EB% qZO(V};)G of G-invariant
tensors is also a wheeled PROP. Another example of a wheeled PROP is R ® V where R is a commutative

the symmetric groups X, and ¥, on VP. Tensor product gives a bilinear map VIt x VP2 — . Taking

K-algebra with identity.

The main goal of this paper is to develop the language of wheeled PROPs in the context of Classical
Invariant Theory. One ingredient of the language is the use of wire diagrams (see [10, §2.11]). Such diagrams
were already used by Clifford in the 19th century and also appear in the work of Feynman and Penrose.
Omne can use a graphical calculus to do computations in representation theory. See for example the book [3]
of Cvitanovi¢, who calls such diagrams bird tracks. A tensor in VI can be represented by a black box with
p inputs and ¢ outputs. We also will represent tensors in a more compact form using a notation for tensors
that is similar to Einstein’s (see [6]). The main results are as follows:

o The initial object in the category of wheeled PROPs (over K) is denoted by Z. We give a complete
classification of the ideals of Z in Section 4. We also classify all prime ideals of Z. There is a natural
analogy between the category of wheeled PROPs and the category of commutative rings with identity.
The initial object in the category of commutative rings with identity is the ring of integers Z. Under-
standing the ideals and prime ideals of Z is essential for understanding more complicated commutative
rings. Similarly, the classification of ideals and prime ideals of Z is essential for understanding wheeled
PROPs.

e In Section 5, we give an equivalence of categories between wheeled PROPs that appear as sub-wheeled
PROPs of R®V for some commutative K-algebra R and the category of commutative K-algebras with
a rational action of GL(V).

o In the case where V is an n-dimensional complex Hilbert space, Schrijver gave in [19] a correspondence
between compact subgroups of the unitary group U C GL(V') and subspaces of V that are closed under
the permutation actions, tensor product, contractions and the star operation (that comes from the
isomorphism V' 2 V*). We formulate and prove a similar result for reductive groups instead of compact
groups in Section 6. This gives a correspondence between closed reductive subgroups of GL(V) and
simple sub-wheeled PROPs of V.

o Procesi proved that a trace ring can be embedded into the matrix ring Mat, (R) with coefficients in
some commutative ring R with identity if and only if the trace ring satisfies the n-th Cayley-Hamilton
relation (see [17]). In Section 7, we give a similar characterization of wheeled PROPs that appear as
sub-wheeled PROPs of R ® V for some commutative K-algebras. This generalizes Procesi’s theorem.

In Section 2 we will give the definition of a wheeled PROPs and in Section 3 we will study their properties.

2. Definition of wheeled PROPs

Fix an algebraically closed field K of characteristic 0.
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2.1. Mized tensor algebra

The archetypal example of a wheeled PROP is the mixed tensor algebra. We introduce the mixed tensor
algebra, so as to illustrate the various features of wheeled PROPs in a very concrete fashion. Let V be an
n-dimensional vector space over K and V* be its dual space. The tensor algebra on V is T'(V') = 6920:0 V®a
where

Ve =V Ve -V
—_————

q

is the g-fold tensor product. For p,q > 0 we define VP := (V*)®? © V®4. In the notation VP, the upper
index p corresponds to the contravariant part, and the lower index ¢ corresponds to the covariant part of
the tensor product. We consider the mixed tensor algebra

V=T(V*eV)=2T(V)eT(V)= f V.
P,q€Z>o

This is a bigraded associative algebra with multiplication ® and unit 1 € V§ = K. There is another special
element, the identity id € V] = End(V). Let ¥,, denote the symmetric group on n letters. We have an action
of ¥, x ¥4 on VP by permuting the tensor factors. Other interesting operations on V are the contraction
maps &/ : VP — Vf;__ll given by

ag(f1®"'®fp®vl®"'®vq):fj(’Ui)(fl®"'fj71®fj+1"'®fp®U1®"'Uz'71®vi+1"'®vq)-

We can identify V¥ with Hom(V®?, V®9). Under this identification, &’ is a partial trace.

We introduce a pictorial representation of V', which will serve as a motivational tool for defining wheeled
PROPs. An element in VI can be thought of as a map from V®P to V®4, We will visualize this as a black
box with p inputs on top and ¢ outputs at the bottom. For example, we visualize A € V? with the following
picture:

The contraction 817 can be visualized as connecting the j** input and the i** output. We visualize 9?(A)
by the diagram

The tensor product corresponds to simply putting the diagrams next to each other. For example, if
A e Vi and B € VY, then we have
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= [A=B]

The space Vi = End(V) is a ring with unity. For example, if A, B € Vi, then the product is given by

AB = 0Y(A® B):
:

The identity id € V} will be denoted by a single directed edge without any labels:

If we connect the output of the identity to its input, then we get Tr(id) = n, the dimension of V:
/"\\
‘:‘ ) @ )

That the element id € Vi acts as the identity can be listed out as a set of conditions, and the following

ok

For 0 € ¥, we look at the map o : V" — V& given by v; @ - -+ @ Uy, = Ug-1(1) ® -+ @ Vy-1(y,). For
example, the permutation 3124 (in one line notation) is represented by the picture below.

picture gives an example.

We denote the diagram above by [o].
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R ® VP, where the tensor

,gEL ?
product is over the field K. We may view V = K ® V as a subspace of R (5 ]36 Irzloparticuiar, R® V) contains
the one element 1 € V§ and R® V] contains the identity tensor id € V}. The multiplication ® : V x V — V
extends to an R-bilinear multiplication R® V x R®V — R®V and a contraction 8;. (VP — Vf;:ll uniquely
extends to an R-module homomorphism R® V¥ — R®V§:11 . To every permutation o € ¥,, we can associate

a tensor [0] € VP C R®@ VD).

If R is a commutative K-algebra, then we can consider R® V = P

2.2. Pre-wheeled PROPs

We first define pre-wheeled PROPs. Wheeled PROPs are pre-wheeled PROPs that satisfy certain axioms.
Instead of giving a list of axioms, we will define free wheeled PROPs and then define wheeled PROPs as
quotients of free wheeled PROPs. Because it can be visualized, the notion of a free wheeled PROP is easy
to grasp.

Definition 2.1. A pre-wheeled PROP is a bigraded K-vector space R = RE together with

P,9€Z >0
(1) a special element 1z € RY;

(2) a special element |z € Ri called the identity;
(3) a bilinear map ® : RE! x RP? — Rgllj_é’j for all p1,p2, q1,q2 > O;_

(4) and for all i, j,p,q with 1 <i < p and 1 < j < ¢ a linear map 9} : R? — RE_}.

For a wheeled-PROP R there is an action of ¥, x ¥, on RE. Since the action of ¥, X 3, can be expressed

in terms of tensor products and contractions, we will not use this action in the definition of a pre-wheeled
PROP.

Definition 2.2. If R, S are pre-wheeled PROPs, then a homomorphism ¢ : R — S of pre-wheeled PROPs is
a linear map ¢ : R — S such that

(1) ¢(RE) € 8P for all p,q > 0, i.e., ¢ preserves the bigrading;
(2) o(1r) = 1s;

(3) o(Ir) =ls;

(4) 9(A® B) = ¢(A) ® ¢(B) for A € RF!, B € RE2;

(5) G(Bi(4)) = Di(6(A)) for A € RE.

If S is a pre-wheeled PROP and RE C 8P is a subspace for all p,g > 0, then R = ®p7420 RE is a
sub-pre-wheeled PROP when it contains 1, |® and it is closed under ® and 9; for all 4, j. If R is a sub-
pre-wheeled PROP of S then it is easy to see that it is a pre-wheeled PROP and that the inclusion R — §
is a homomorphism of pre-wheeled PROPs.

If S is a pre-wheeled PROP and ¢ C Up,qZO 87 is a subset, then we say that & generates S if the smallest
sub-pre-wheeled PROP of S containing ¢ is S itself. This is exactly the case when every element of S can
be obtained from ¢ U {1,]} by using operations ®, 8} (i,j > 1) and taking K-linear combinations. It is
clear that if & generates S and 11,15 : S — R are homomorphisms of pre-wheeled PROPs, then 1 = 19
if and only if the restrictions of 1, and ¥y to ¢ are equal.

Definition 2.3. Suppose that R is a pre-wheeled PROP. An ideal J of R is a subspace J = €
with JP C RY for all p, ¢ such that

Ji

P,q€ZL >0

(1) if Ae Rt and B € JP2 then A® B,B® A € JPitpe.

q1+q2
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(2) if A€ JP then 0i(A) € JF.
The following lemma is left to the reader.

Lemma 2.4.

(1) If : R — S is a homomorphism of pre-wheeled PROPs, then ker(¢) is an ideal;
(2) if J is an ideal of the pre-wheeled PROP R then the quotient R/J = @ RE/ TP has the structure
of a pre-wheeled PROP where
(a) 1ryg =1r +J5 € RY/ Ty
(b) lrjg=lr +Ji € R1/T};
() (A+TP) @ (B+Jk2) = A® B+ JP? when A € RP' and B € RF2;
)

D,9€Z >0

q1+q2 q27

(d) PU(A+TJP) = 0i(A) + TP~ when A € RE.
It is easy to see that V defined in Section 2.1 has the structure of a pre-wheeled PROP.
2.8. Free wheeled PROPs

To define wheeled PROPs, we will first define free wheeled PROPs. Arbitrary wheeled PROPs will then
be defined as pre-wheeled PROPs that are quotients of free wheeled PROPs. To construct a free wheeled
PROP, we start with a set 4 of generators, and a function type : ¢ — Z2,. We also fix a countable infinite
set X of variables. A generator A € ¥ with type(4) = (Z ) will be grapl_lically represented as a black box
labeled A with p inputs (next to each other) and ¢ outputs. (The type is called biarity in [14].)

Definition 2.5. An atom is an expression of one of the following forms:

(1) Aylysiyr where A is a generator of type (5), x1,%9,...,%, are distinct variables, and y1,92, ...,

.....

are distinct variables;
(2) |j where z and y are variables.

Variables that appear as an upper index will be referred to as input variables and variables that appear as

lower index are called output variables. An atom Ay, 7377 of the first kind is graphically represented as the

generator A where the inputs are labeled x1, 2, ..., x, clockwise and the outputs are labeled y1,y2,...,yq
counterclockwise.
X1 X2 | o o o | Xp
A

Yi|Y2|e o o |¥g

An atom | of the second kind will graphically be represented by an arrow where the tail is labeled by
x and the head is labeled by y:
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Example 2.6. Suppose that 4 = {A, B} and A and B are of type (?) and ((1)) respectively, and X =
{w,z,y,z,...}. Then examples of atoms are

Ty AZY x|z
Az ) Az ) Bxa Yy \lrz .
But A;T is not an atom because the variable x appears as an input twice.

Definition 2.7. A molecule is an unordered finite sequence M (or set) of atoms where every variable appears
at most once as an input variable of an atom and at most once as an output variable of an atom in M. An
input variable of the molecule M is a variable that appears as an input of an atom, but not as an output of
an atom in M. An output variable of M is a variable that appears as an output of an atom, but not as an
input of an atom in M. A bound variable is a variable that appears as an input variable of an atom, and as
an output variable of an atom in the molecule. A free variable is a variable that is an input or an output
variable. If 1, z9, ..., x, are the input variables of M ordered from small to large, and y1, y2, . . ., y, are the
output variables of M ordered from small to large then we denote the molecule by M;fjﬁﬁ'j,;ﬁ”.

Example 2.8. Let 4 = {A, B} and X’ as in Example 2.6. The expression Aj>* | B, is a molecule where
{z,y} are the bound variables, z is an input variable, w is an output variable and {z,w} are the free
variables. The expression | A7 A% 1t is a molecule with bound variables {w,y, z, s}, input variables
{t,z} and no output variables.

Graphically, we represent a molecule by first drawing all the atoms in the molecule. Whenever some vari-
able x appears as an output and input label, then we connect that output and input. It may be unavoidable

that some connections intersect.

Example 2.9. The diagram of the molecule |5 A%*A%™ |! from Example 2.8 is:

Definition 2.10. We define an equivalence relation ~ on molecules. The equivalence relation is generated by
the following rules: M is equivalent to IV if N is obtained from M by

(1) replacing 1717 by 17;
(2) replacing 44 Ay, 37yl by Ayt 5 ey ey, for A€ 9 of type (7) and all 4;
(3) replacing |2 Ay ysl P by Ayt st T for A € 4 of type (Z) and all 1.
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Moreover, the molecules M and N are equivalent when

(4) there exists a bijection ¢ : X — X such that ¢(z) = z for every free variable z of M and N is obtained
from M by replacing z by ¢(z) for every bound variable of M.

The equivalence class of M is denoted by [M]. If M and N are molecules that do not have common
input variables, or common output variables, then we can define the product [M][N] as follows. We can
choose molecules M’ and N’ such that M ~ M’, N ~ N’ such that the bound variables of M’ do not
appear in N’ and the bound variables of N’ do not appear in M’. Then we define [M][N] = [M'N’]. It
is easy to verify that this product is well-defined and commutative. If M®) M@ . M) are molecules
such that every variable appears at most once as an input variable, and every variable appears at most
once as an output variable. Then the product [MM][M®@)]...[M™)] is well-defined and independent of
the order in which we multiply the equivalence classes of molecules. Indeed, we can choose molecules
NM . N such that for all i # j no bound variable of N appears as a variable in NU). Then
we have [MM][M®P)]... [M")] = [NONE ... NO)],

Suppose that M is a molecule and [M] is its equivalence class. By rules (1)—(3) we can find an equivalent
molecule M’ such that for every atom of the form 4y with  and y distinct, x is an input variable and y is
an output variable of M’. Such a molecule M’ we will call reduced. To draw the diagram of [M] we draw
the diagram of M’ where we omit all the labels that are bound variables, because the equivalence class [M]
does not depend on the labels of the bound variables in M’.

Example 2.11. The diagram of the equivalence class [}5 A7*A%"™ |!] of the molecule from Example 2.8
is

Definition 2.12. An ordered molecule is a molecule M with a total ordering x; < 3 < --- < ), on the free
input variables and a total ordering y; < y2 < --- < y, on the free output variables. We will denote such
an ordered molecule by M;llv___,yq .

cHTp

We want to view an ordered molecule M;f,’_‘__,yq as a “function” whose inputs are labeled z1,z2,..., 7
and outputs are labeled y1,...,y,. So, changing the labels of the inputs and outputs should not change the
“function” and we capture this in the definition of a monomial below.

cHTp

Definition 2.13. A monomial is an equivalence class of ordered molecules. Two ordered molecules My,
and Ntsli"'.'_',’tip are equivalent if the molecule N is equivalent to the molecule M obtained from M by replacing
z; with s; and y; with ¢; for all i, j. We denote the equivalence class of My, y? by [M]y 7.

The diagram of a monomial is similar to the diagram of an equivalence class of a molecule except that we
also ensure that free input variables are ordered from left to right (clockwise) and the free output variables
are ordered from left to right (counterclockwise).
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Example 2.14. The diagram of the monomial [|] AF*AY™ B s

Remark 2.15. If A € 4 is a generator of type (Z ) then we can view A as a monomial by identifying it with

L1,y Tp &1y Tp
[Ayl 77777 yq}yl ----- Yq *

Definition 2.16. For a set ¢ of generators and a function type : 4 — Z2% we define the free wheeled PROP
generated by ¢ as the bigraded vector space Z(¥) = @D, ez, Z<g>f1’_where Z(9)? is the K-vector space
with a basis consisting of all monomials with p inputs and ¢ outputs. To give Z(¥) the structure of a
pre-wheeled PROP, we define:

1 =[] =[0] (equivalence class of the empty molecule);
(2) 1= [I7]; (where z,y are distinct variables);
(3) if [M]y,.y7 and [N]2+%  have disjoint variables, then we define

Yiy--sYq 700 177 Jwq,...,

[z

xr
Y1,y

5 ® [N}zhm,zr — [M}[N]xl""’zpvzlvuazr

WyeenyWs YLseesYgqs Wi yee sy Ws *

In terms of diagrams, we get the diagram of [M]y, 7y, ® [N]7 % by drawing the diagram of
[N]zi%  to the right of the diagram of [M]y1?

W y.eey, W 15--5Yq *

(4) we define

a; [M}zly'“va _ [M/]frl7~-~’wi—1,1i+17-~,$p

Y1,--,Yq Y15--Yj—1,Yj+15--,Yq "’

L1, Tp

where M’ is obtained from M by replacing y; by x;. So the diagram of 9}[M]y, " is obtained by

L1y, Tp

connecting the j-th output of [M]y, ", to the i-th input.

Definition 2.17. A wheeled PROP is a pre-wheeled PROP A such that there exists a surjective homomor-
phism of pre-wheeled PROPs Z(¥¢) — A for some set of generators 4. If R and S are wheeled PROPs then
a homomorphism % : R — § is just a homomorphism of pre-wheeled PROPs.

For a free wheeled PROP Z(¥) there is an action of %, x ¥, on Z(¥)? by permuting the inputs and
outputs. The action of an element in X, or ¥, can be constructed by taking the tensor product with
copies of | and doing certain contractions. For example, 3; 1+1(A® |R) is equivalent to applying the cyclic
permutation (i +1 4+ 2 --- p i) to the inputs. Such cycles generate ¥,. A similar thing can be done for
the outputs. In particular, ideals in the free wheeled PROP are stable under the action of ¥, x ¥, and
Yp X X4 also acts on the quotient. This means that for every wheeled PROP R we have an action of ¥, x ¥,
on RY. By expressing the action of 3, X 3, in terms of tensor product and contractions, we see that for
a homomorphism of wheeled PROPs ¢ : R — S the map ¢ : RE — SP is equivariant with respect to the
group ¥, x ;. Also, if § is a sub-wheeled PROP or an ideal of R, then S? is stable under the action of
Yp x 2q for all p, q.
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3. Properties of free wheeled PROPs
8.1. The universal property

Proposition 3.1 (Universal property of free wheeled PROPs). Suppose that 4 is a generator set, type :
Y — 2220 is a function, R is a wheeled PROP and ¢ : 4 — R is a function such that (A) € RY
for all A € G with type(A) = (5). Then v extends uniquely to a homomorphism of wheeled PROPs
v Z(9) > R.

Proof. The extension, if it exists, is unique because Z(¥) is generated by ¢¥. We only need to show the
existence of the extension. For this, we may assume without loss of generality that R = Z(J¢) is a free
wheeled-PROP.

For simplicity, let us first assume that ¢(A) is a monomial for every A € 4. If [M]y1 7 € Z(4 )b is
a monomial, then the diagram of ¢([M]y, . 7y?) is obtained from the diagram of [M]y7y* by replacing
every atom Afllff appearing in the diagram by the diagram of the monomial 1)(A).

.....

Suppose that for example, ¥ = {A} with A4 of type (3), # = {B} with B of type (;) and 1(A) = [|Z

BY]7:. In diagrams this means that
N/,

So we get Y([ATYA) V1Y) = [IF BY 1y BYlY = [BYB, 1y]Y and in diagrams:

y,v

Since the monomials form a basis of Z(¥), 1 extends to a K-linear map ¢ : Z(¥¢) — Z(). It is easy
to verify that v is a homomorphism of wheeled PROPs.
If 1(A) is not a monomial for every generator A € ¢ then we define ¢([M]y./y*) by viewing it as a
T1y.-93Tp

multi-linear expression in the atoms that appear in [M]y, ;. For example, suppose that G = {A} with A
of type (2), H = 0 and $(A) = 2021 0J% — [1242]2. So we have

(A) => 2| | -

Using multilinearity, we get
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P([AZLATITYL) = (24248 — LadD @ iy — W )Isy, =
= AT L ILTER, — LTINS — 2 LIS + (e, =
[\l/x\Ly\Lt]zﬁ?v - [\I/I\LU\U ]Z’Z”U - 2[\L£¢Z\Lt}z’1yt7v H/xiyit }27371)

Using the linearity of 6;- and the bi-linearity of ® it is easy to verify that extending ¥ to a linear map gives
a homomorphism of wheeled PROPs. O

3.2. The initial object Z

From the universal property it is clear that the free wheeled PROP Z = Z(()) is the initial object in the
category of wheeled PROPs (and also in the category of pre-wheeled PROPs). This means that for every
wheeled PROP P there exists a unique homorphism of wheeled PROPs ¢ : Z — P.

If there are no generators, the only atoms are of the form |;. So all the molecules, up to equivalence, are
of the form

J/wp 21 2 e ZT’

21 Zp
where x1,%2, ..., Zp, Y1, Y2, - - -, Yp, 21, 22, - - - , 2 are distinet variables. Now [|Z] corresponds to the loop di-
agram O. We set t = [[Z] € Z§, and for 0 € ¥, we define

[U] — [ 1 o .. Tp ]5131 3 L2544, Tp
Yo (1) YYo(2) Yo(p) Y1, Y25--Yp *

From the description of the molecules follows

Corollary 3.2. If p # q then ZL = 0, and ZJ is the free K[t]-module with basis [0], 0 € ¥,. In particular
Zy = K[t].

Remark 3.3. There is an analogy between the category of wheeled PROPs and the category of commutative
rings with identity. The initial object in the category of commutative rings is the ring of integers Z. For
any commutative ring R with identity there exists a unique ring homomorphism v : Z — R. The kernel is
an ideal of Z of the form (p) where p is a nonnegative integer. If R is an integral domain then p = 0 or p
is prime and p is the characteristic of R. From this it is clear that the understanding of the ideals of the
ring of integers is essential for studying the category of commutative rings with identity in general. Using
the analogy, it is clear that studying the ideals and prime ideals (which we will define later) in the wheeled
PROP Z is fundamental. Using the representation theory of symmetric groups, we classify all the ideals of
Z.

Theorem 3.4 (Theorem /.15 rephrased). There is a 1 — 1 correspondence between ideals in Z and tuples of
the form (f,S) where f € K|t] is a monic polynomial, and S is a finite subset of Z2 .

We will refer to the ideal corresponding to (f,S) by Z(f,.5).
3.8. Representations of wheeled PROPs and Lie algebras

Definition 3.5. A representation of a wheeled PROP R is a homomorphism of wheeled PROPs ¢ : R — V
where V is the mixed tensor algebra on some finite dimensional vector space V.

When ¥ : R — V is a representation then V is called an algebra over R. One can define various wheeled
PROPs (or just PROPs) that incorporate the axioms of certain types of algebras, for example associative
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algebras, Lie algebras, Jordan algebras and so forth. As an example, we will see next that one can use
wheeled PROPs to axiomatize semi-simple Lie algebras.

The structure of Lie algebras can be captured using PROPs or operads. As an illustration of wheeled
PROPs we will also show how the structure of finite dimensional semisimple Lie algebras can be captured.
Suppose V is a finite dimensional K-vector space, and [-,-] : V X V — V is a Lie bracket. We can identify
[-,-] with a tensor L € V* @ V* ® V. The well-known axioms of a Lie algebra are

(1) [a,0] = =[b,al;
(2) [a,[b,c]] + [, [c,a]] + [c, [a,b]] = 0.

The first axiom translates to L& 4+ L% = 0:

and the second axiom translates to L»L%° + LY4LS* + LS?LYY = 0 which is, using (1), equivalent to
drbe _ racrbd bred.
Lodphe = [ephd 4 [obred,

The Killing form « : (a,b) — Tr(ad(a)ad(d)) can be viewed as a tensor in V* ® V* and is equal to
g = LI,

The Lie algebra is semi-simple if and only if the Killing form is nondegenerate. This is the case when x
as a linear map from V to V* has an inverse C' : V* — V which we can view as a tensor in V ® V. The
tensor C' € S?(V) C V ® V can be thought of as the Casimir element. Saying that C is the inverse of &
translates to Ly °LY1C, . = k%°Cp . =]2. Let R = Z(L,C)/J be the wheeled PROP generated by L of
type @) and C of type (g) modulo the ideal J generated by L% + L2@, Lg7dLZ’c + LY4LS + Lg’dLZ’b and
Lg’cng’dCb,ef J¢. Then semi-simple Lie algebra structures on V' correspond to homomorphisms of wheeled
PROPs from R to V (mixed tensor algebra over V).

Using the Killing form « and its inverse C, we can identify V with V* and view the Lie bracket L € V?
in V§. Using the relations one can verify that, as a tensor in V3, L is alternating.
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4. The classification of ideals in Z
4.1. Representations of symmetric groups

We recall some useful results on the representation theory of symmetric groups. Standard references
for this subject are [7,11,18]. It is well known that the irreducible representations of X, are indexed by
partitions of n. For A - n, we denote the corresponding irreducible representation by V. In particular, V{,,
is the trivial representation, and V(;n) is the sign representation.

We will consider the group algebra KY.,, as a subspace of K[|, = Z7. The group algebra KX, is a
Yn X Yp-bimodule. The first copy of ¥, acts by composing permutations on the left, and the second copy
acts by composing on the right. The action on the right as stated is a right action, but can be converted
to a left action via any anti-automorphism such as the inverse map. From the Artin-Wedderburn Theorem,
we get:

Proposition 4.1. We have a decomposition of ideals and ¥, X ¥, representations:

s, =@ h=Pnai,

AFn AFn

where Jy =V ® \A/,\ s a simple, two-sided ideal, and ‘A/,\ denotes the irreducible representation of the second
copy of X,.

The representations Jy, A+ n of 3, x X, are irreducible and pairwise non-isomorphic.

For A - n, a standard Young tableaux T of shape A is a filling of the Young diagram corresponding to the
partition A with the numbers 1, 2,...,n, with increasing rows and columns. The picture below is a standard
Young tableaux of shape (4,3,3,1).

3]4]9]

7
10 (1)

[=p}

[y
‘HO—'[\D)—‘
oo

For a standard Young tableau T, we define an element in the group algebra K3, called the Young
symmetrizer. The row stabilizer group R(T) is defined as the subgroup of ¥,, that fixes the rows of T and
the column stabilizer group C(T) is the subgroup that fixes the columns of T'.

Definition 4.2. For a standard Young tableaux T', we define the Young symmetrizer yr by the following:

yr= Y sea(pluo] € KL,
oc€R(T),neC(T)

Young symmetrizers allow us to concretely understand the isomorphism in Proposition 4.1. The results
we use about them can be summarized in the following proposition.

Proposition 4.3. For A\ n, let T be a standard Young tableauzx of shape . Then we have
KX, - (yr) - KX, = Ja.

We have inclusion maps 3,1 < 3, < ¥, 4+1. For an irreducible representation V) of ¥,,, we have a rule
for understand the restriction to ¥,,_; and a rule for understanding the induced representation for ¥, 4.
In the language of symmetric functions, this is often called Pieri’s rule.
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Proposition 4.4. Let A - n, then we have

(1) Res;, Wa= @ Vi
¢=x-0

(2) Indy"'Va = K¥n41 @k, A2 @ V.
¢=xuld

The notation ¢ = A —0 (resp. ¢ = AUO) means that  runs over all partitions obtained from X\ by deleting
(resp. adding) a box.

We use matrix notation to give coordinates to the boxes in a partition. For example, in the standard
Young tableaux given above in (1), 7 is entered in the box with coordinates (2,3). We say (i,7) € A if A
contains the box with coordinates (i, 7), which happens precisely when A; > j. We say a box is on diagonal
d if j — i = d. Hence in the Young tableaux in (1), the box containing 7 is on diagonal 1.

4.2. Preliminary results on Z

In this section, we want to understand how the operations of contraction and tensor interact with the
action of ¥, x ¥, in the wheeled PROP Z. In order to do so, we will need to use the results on the
representation theory of the symmetric groups that we recalled in the previous section.

We have an isotypic decomposition

Zr = K[ty = P K[ @ i,
AFn

where Jy =V, ® ‘7,\.

Lemma 4.5. For a partition A - n we have in KX, 41 that

K1 (A @id) - KSupn = @ 70
v=Aul

Proof. This follows from the second part of Proposition 4.4. O

Proposition 4.6. The space 0/'(Jy) is the direct sum of all (t + j —4)J, where v is a partition obtained from
A by deleting a box at position (i,7).

In order to prove the proposition, it will be necessary to do some computations. Let us consider the
standard Young tableau of shape (2,1).

1]2]
3

T =

Consider the Young symmetrizer corresponding to the tableaux yr = (e — (13))(e + (12)), i.e.,
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| | | |
Observe that this is just (¢t — 1)y = (¢ — 1)(e+ (12)), where T” is the tableaux obtained by deleting the

box containing 3. This computation generalizes. In more complicated examples, there is some cancellation
as well. We give a complete argument.

Now, let us apply O):

Lemma 4.7. Let T be a standard Young tableaux of shape X\, with A = n. Let T' denote the standard Young
tableauz obtained by removing the box containing n. Then we have O (yr) = (t + j — i)y, where (i,7) is
the position of the box in the tableau T containing n.

Proof. Recall that

yr= Y sgn(u)uol.

o ER(T),ueC(T)

We need to compute 97 (yr). There are four types of terms. We will count the contributions of each of
these types independently, and then put them together. Before we do that, we compute 9!'[uo] according
to several cases.

Case 1: o(n) = n and u(n) = n.

There is a natural 1 — 1 correspondence between permutations in R(7”) and permutations in R(T') that
fix n. For o € R(T) fixing n, we will denote its image in R(7”) under this correspondence by ¢’. This can
be better expressed in terms of our notation as [¢'] ® id = [o]. In pictures, we have

We have a similar correspondence for permutations in C(T) fixing n and permutations in C(T”). Since
(uo)(n) = n, when we perform the contraction, we get an exceptional loop, and the rest of the permutation
is not disturbed, i.e., [uo] = [1'0’] ® id. So we have

ool = O ([W'o'| @ id) = t - [Wo'].
In pictures, we have

a

Further, the sign of i and p/ are the same. Thus, the contribution of these terms is ¢ - yr.
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Case 2: 0(l) = n and u(n) = n with I # n.

In order to have o(l) = n, we need [ to be in the same row as n. Now, for each such [, thereisa 1 —1
correspondence between permutations in R(7T') that fix n, and permutations in R(T) that send [ to n, given
by m <> w (I n).

So, we can write 0 = 7 (I n) with 7 € R(T) that fixes n. We have 9% [uc] = 07 [unw (I n)] = [p/=']. In

pictures, we have
I

LN

[

o [uo] = oplur (I )] = A (W'’ @ id|[(L n)]) = — [W'n).

Hence we get a contribution of yr for each | # n in the same row as n in T. If n is in position (i, j) of
the tableau T, then the contribution is (j — 1)yr.

Case 3: o(n) = n and u(n) = k, with k # n.
A similar argument shows that the contribution of these terms —(i — 1)yz- if (¢, 7) is the position of n in
the tableau T'. The negative sign comes because the terms p and (k n) u have opposite signs.

Case 4: o(n) = p and p(q) = n where p #n # q.

The contribution of these terms is 0. We will give a sign reversing involution of these terms. The number
p must be in the same row as n, and ¢ must be in the same column as n. Let r be the entry in the box that
is in the row of ¢ and column of p. The involution is given by po <> o, where ¢ = (p r) o, and g = p(q r).
We leave it to the reader to check that this is a sign reversing involution. Further, upon applying 07, the
two terms give the same permutation in ¥,,_; but with different signs. Thus the contribution of these terms
is 0.

Combining the cases above gives 07 (yr) = (t +j —i)(yr). O

Proof of Proposition 4.6. We have Res,,_;V\ =@,_,_g V. Hence

RGSZ_]_J)\: @ @ VV1®‘7V2'

V1:)\7D l/2:)\7|:|

Since 0)! is equivariant with respect to the action of ¥,,_; x¥,,_1, the image of J can only contain irreducible
representations of the form V,, ®X7,,2 where both v; and 15 are obtained by removing a box from A, each with
multiplicity at most 1. On the other hand, we know Zﬁ:ll only contains irreducible representations of the
form V, ® \A/,,. So it follows that each of the representations V, ® 17,, can appear in 97 (Jy) with multiplicity
at most 1.

Let yr be the Young symmetrizer corresponding to a standard Young tableau of shape A and suppose
that the box of T containing n is in position (¢,j). Then we have 9)'(yr) = (t + j — i)yr» where T’
is the tableau obtained by removing the box containing n as shown in the above lemma. Thus we have
(t+j—1i)J, CO7(Jy), where v is the partition obtained by removing the box containing n.

For any v that can be obtained from A by removing a box, we can take a standard Young tableau T" of
shape v, and consider a standard Young tableaux T of shape A obtained by putting n in the box that was
removed. The above argument then shows that (¢t 4+ j —i)J, C 9 (Jy).
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We have already seen that each J, =V, ® ‘A/,, can appear in 97(Jy) with multiplicity at most 1, so 97 (Jy)
is the sum of all spaces (t + j — i).J,, where v is obtained from A by removing a box at position (¢,7). O

4.8. Ideals of Z

The aim of this section is to classify all the ideals of Z. Let Z C Z be an ideal. Clearly, we have Z)" = 0
for m # n. For a polynomial f € K[t], we denote the ideal generated by f by (f).

Lemma 4.8. We have I = @ (gx) ® Jx, where gy is either a monic polynomial or 0.
AFn

Proof. The space Z7! is a X,, X ¥,,-stable subset of ZI' = K[t][%,,]. Further Z) is stable under multiplication

by Z§ = K|[t]. Since Z" = @ K|[t] ® Jy, we have I"" = @ Ly ® Jy, where Ly is an ideal of K[t]. If Ly # 0
An AFn
then there is a unique monic polynomial gy such that Ly = (gx). O

We let () denote the empty partition. By definition gy generates ZJ C K[t] = ZJ and gy = 0 or gy is a
monic polynomial.

Lemma 4.9. Let T be a non-zero ideal of Z, then gy # 0.

Proof. Since 7 is a non-zero ideal, we have 0 # a € Z¢ for some d. Write a = > vex, folo], with f, € K[t].
Without loss of generality, we can assume fiq = 1. (If not, we can pick p such that f, # 0 and consider
instead f%(/wfl -a) € I4)

Observe that 0193 - - - 04(a) = t?+ lower order terms, giving a non-zero element in ZJ. 0
Corollary 4.10. If T is a non-zero ideal, we have that gy € (gx). In particular, gx # 0 for all X.
Proof. We have gy # 0. Thus gp - Jx € Z, and hence gy € (gx). O

Definition 4.11. A collection of monic polynomials {g} indexed by partitions A is called compatible if for
any two partitions A and p such that A\ = p U one box, with the additional box on diagonal d, then either

qu =qx or qu = qx - (t + d).

Given an ideal Z we have Z' = € (gx) @ Jx. This gives us a collection of polynomials {g}.
Abn

Theorem 4.12. Given an ideal I, the collection of polynomials {gr} is compatible. Conversely, given a

compatible collection qx, we can define an ideal J by T = @ (qn) @ Jx.
AFn

Proof. By definition, a subset Z = @I is an ideal if and only if each Z)" is stable under the action of
Ym X Xy, and is closed under contractions and the tensor product. In fact, since Z is generated by the
identity, it suffices to consider tensoring by id. Hence, the theorem follows directly from Lemma 4.5 and
Proposition 4.6. O

Thus it suffices to classify all the compatible collections of monic polynomials. Given a finite collection of

boxes {(i1,71), (i2,j2) - - . (i, jx)} and a monic polynomial f, we define a compatible collection {g)} given
k

by g = f- [1 (t+dp)r, where d, = j, —ip, and €, = 0 if (4, 7,) € A, and 1 otherwise. Since the collection

p=1
of boxes is finite, it is contained in some large enough rectangular partition. Hence, we can pictorially show

the collection as a rectangular partition with some boxes shaded in. For example, if we have the collection
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{(1,1),(1,3), (4,2)}, this is contained in the rectangular partition (3,3,3,3), and the picture is given as
follows:

In fact, we will show that all collections of compatible polynomials are of this form. Let {gx} be a
compatible collection of monic polynomials. We say that A has an (¢, 7)-jump if (¢,7) is a removable box,
and gx # ga—(i,j)- The compatibility condition forces gx_; ;) = (t + d)gx where d = j —i.

Lemma 4.13. Suppose A1 and Ay are partitions such that (i,7) is a removable box in both of them. Then
either both have an (i, j)-jump or neither have an (i, j)-jump.

Proof. We can assume ), is the rectangular partition j° = (j,4,...,75). Observe that we have Ay C A;. To
—_———
% times
go from gy, to gx,—(,5), We can remove removable boxes from A; and track the jumps.
By removing boxes from A; we can reach Ao — (i, j) in two ways. So, we can get to gx,_(; ;) from gy, in
two ways as shown in the picture below.

Iy T Gxe

| |

Ixi—(i,5) — 7 Ira—(i,4)

The horizontal transformations come out of removing boxes from the skew partition A\; \. A2, and hence
none of the jumps affect the multiplicity of ¢ 4+ d, where d = j — i. This is because none of the boxes in the
skew partition are on diagonal d. Thus either both vertical arrows are jumps or neither are jumps. 0O

The above lemma shows that jumps are determined not by the partitions themselves, but rather the
position of the removable boxes. Since gy is a polynomial of a finite degree, we can only have a finite number
of jumps. Thus collections of compatible monic polynomials are indexed by (f,C) where f € K[t] is a monic
polynomial, and C is a finite subset of ZZ2,.

Definition 4.14. Given a monic polynomial f € K[t] and a finite subset C = {(i1,j1), ..., (ix,jk)} C ZZ,,
let gn=f- H];:1(t +d,) where d, = j, —ip, and €, = 0 if (ip,j,) € X and €, = 1 otherwise. We define an

ideal Z = @ 7P, where

PEZL>o

77 = Pl9r) ® .

Ap
Note in particular that gy = f - ngzl(t +dp).
We summarize the above discussion:

Theorem 4.15. Every nonzero ideal of Z is of the form Z(f,C) for some monic polynomial f € K[t], and C
is a finite subset of Z2 .

Note that the monic polynomial f could be 1.
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4.4. Prime ideals and mazimal ideals

We will now classify the prime ideals and maximal ideals of Z.

Definition 4.16. An ideal Z of a wheeled PROP A is a prime ideal if for a € A2 and b € Aj, we have
a®beZ = a€ZorbeZ. Theideal 7 is called maximal if Z # A and for every ideal J withZ C J C A
we have 7 =Z or J = A.

Lemma 4.17. A mazximal ideal of A is prime.

Proof. Suppose that M is a maximal ideal and a ® b € M where a € A and b € Aj. Assume that a ¢ M.
Then 1 lies in the ideal generated by @ and M and 1 ® b lies in the ideal generated by ¢ ® b and M ® b,
which is contained in M. This shows that b=1®be M. O

Remark 4.18. For a prime ideal P of a wheeled PROP A, we have that P is a prime ideal of the commutative
ring AS.

Let P be a prime ideal in the wheeled PROP Z, and let P’ = @ (g») ® Jx, where the gys are monic
AFn
polynomials or zero.

Proposition 4.19. The prime ideals of Z are 0, Z(t—a, D) for somea € K orZ(1,{(i,7)}) for somei,j € Z~y.

Proof. Suppose that P is a prime ideal of Z. By the remark above, P{ is a prime ideal of ZJ = K[t], so it is
equal to 0 or to (¢ — a) for some a € K. If P§ = 0, then we get P = 0. Suppose that P§ = (t — a). We have
P =1I(f,C) where f € K[t] is monic and C is finite, and ¢t —a = f]]; jyec(t +j — i). There are 2 cases:

(1) f=t—aand C =0, or
(2) f=1,C={(,j)} anda=i—j.

This shows that every other ideal is not prime. However, we still need to show that the ideals 0, Z(t —a, ()
for some a € K or Z(1,{(z,7)}) for some 4, j € Z~ are prime. It is clear that 0 is prime as well as Z(t —a, 0)
fora € K.

To show that Z(1,{(4,)}) for some i,j € Z~¢ is prime, we will show that Z/Z(1,{(4,4)}) embeds into
the mixed tensor algebra of a super vector space, which is clearly a domain. Let V = K‘~! @ K/~! be
a Z/2-graded vector space (i.e., a super vector space) with an (i — 1)-dimensional vector space in even
degree and (j — 1)-dimensional vector space in the odd degree. Then, consider the mixed tensor algebra
V =&y qez-,(V*)® @ VEP which is a wheeled PROP where tensor product is defined in the obvious way
(respecting _degrees), but contractions have to be defined a bit more carefully, i.e., the even and odd parts
are orthogonal, the contraction on the even part is as usual, but the contraction on the odd part is twisted
by a negative sign. In particular, trace of the identity is (i — 1) — (§ — 1) rather than (i — 1) + (j — 1). We
leave it to the reader to check that this is indeed a wheeled PROP.

We have a map from the initial object Z — V. Since the trace of the identity is ¢ — j, this map factors
through the quotient, i.e., it factors as a composition Z — Z/Z(t — (i — j),0) — V. For a Young diagram
T, let 37 be the image of y?' € Z in Z/Z(t — (i — j),0). Observe that Z/Z(t — (i — j), ) can be identified
with @&,>0K[3,] and using the result of Berele and Regev [1, Theorem 3.20], we get that the kernel of
Z/Z(t — (i — j),0) — V is precisely the sum of all the isotypic components (viewed as an X, X X,-
representation) corresponding to partitions that contain the i x j rectangle T' := (i’). So the kernel is
generated by all 55 where S is a Young diagram that contains 7. It follows that the kernel is generated by
yr. The kernel of Z — V is generated by ¢ — (i — j) and yr. So this kernel is precisely Z(1,{(i,7)}). O
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Remark 4.20. Observe that we have infinite chains of prime ideals. Yet, every ideal is finitely generated, i.e.,
we have Noetherianity.

Corollary 4.21. The mazimal ideals of Z are Z(t—a, () with a € K\Z and Z(1,{(n+1,1)}), Z(1,{(1,n+1)})
with n € Zzo.

Proof. Maximal ideals are exactly the prime ideals that are not properly contained in other prime ideals.
Now the corollary follows from the classification of prime ideals. O

5. Representable wheeled PROPs
5.1. An equivalence of categories

Suppose that G is an affine algebraic group (over K) and K|[G] is the coordinate ring of G and W is a
K-vector space. An action of G on W is called rational if there exists a K-linear map v: W — K[G] @ W
with the following property: if v(w) = Z;Zl f; ® w; for some r, functions f1,..., fr € K[G] and vectors
Wi, ..., w, € W, then g-w = Z;:l fi(g)w; for all g € G. A G-algebra is a commutative K-algebra R with
a rational action of G such that G acts by K-algebra automorphisms.

For this section, let V' denote an n-dimensional vector space, and let V = VI denote the mixed

P,9€Z >0
tensor algebra over V. We introduce two categories:

&/ (n): In the category & (n) the objects are commutative GL(V')-algebras and morphisms are GL(V)-
equivariant K-algebra homomorphisms.

# (n): A wheeled PROP is called n-representable if it is isomorphic to a sub-wheeled PROP of R @ V
where R is a commutative K-algebra. The objects of #'(n) are n-representable wheeled PROPs.
The morphisms in #'(n) are homomorphisms of wheeled PROPs.

We construct a covariant functor ® : o/ (n) — # (n) as follows. Suppose that R is a GL(V)-algebra. Note
that GL(V') acts on R as well as on the algebra V. We define

®(R) = (R V)"V =  (Re V)Y,

P.9€ZL >0

It is easy to see that (R ® V)S(V) is closed under ® and 8; So ®(R) = (R ® V)SH() is a sub-wheeled
PROP of R ® V, and hence an object of #(n).

Suppose that ¢ : R — S is a GL(V)-equivariant ring homomorphism. Then ) induces a GL(V)-
equivariant homomorphism of wheeled PROPs

PYRId: RV — SV,
Taking GL(V)-invariants on both sides gives us a homomorphism of wheeled PROPs
O(R) = (Re V)™ — o(8) = (S @ V)W)

which we will denote by ®(1). We leave it to the reader to check that @ is indeed a functor.
Before we define a functor in the other direction, we need the following lemma.

Lemma 5.1. For an object A in # (n), there exists a unique commutative K -algebra R and a homomorphism
p: A= RRV of wheeled PROPs with the following universal property: If S is a commutative K -algebra and
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A A— S®V is a homomorphism of wheeled PROPs, then there exists a unique K -algebra homomorphism
¥ : R— S such that (¢ ®id) o p = A. In diagrams:

p

A RV .
l p Yeid
SV

Proof. Suppose that p; : A — R; ® V,i € I are, up to isomorphism, all homomorphisms of wheeled PROPs
where R; is a commutative K-algebra whose cardinality is at most the cardinality of A (this to ensure that
T is still a set). Define

p:Hpi:A%(HRi)Q@V.

icl icl

Define R as the smallest subring of J],.; R; such that p(A) € R ® V. One can now easily show that
p: A— R®YV has the desired universal property. The uniqueness of R follows from the universal property,
as usual. O

We define a functor © : #(n) — &/(n) as follows. For an object A in #'(n), define ©(A) = R, where
p: A= R®YV is as in Lemma 5.1. We can define a rational GL(V)-action on R as follows. The action of
GL(V) on V corresponds to a map

v:V = K[GL(V)]®@ V.
If we tensor with R we get a map
idey: R®V — R K|IGL(V)| @ V.
The composition
(id®y)op: A= R KIGL(V)]®V

is a homomorphism of wheeled PROPs. The universal property of p : A — R ® V implies that there is a
unique homomorphism p: R — R ® K[GL(V)] such that (id ®y) o p = (1 ® id) o p:

A R®V

R&V > Re K[GL(V)| ®V
nRid

The reader may check, using universality, that u : R — R ® K[GL(V)] defines a rational right action of
GL(V) on R. In other words, if u(f) = >", f; ® h; then

fg= Zfihxg), g € GL(V)

defines a right action of GL(V') on R. Of course, we may view R as an algebra with a rational left GL(V)
action by defining
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This shows that R is a GL(V)-algebra. Left and right multiplication (on R or on V) by g € GL(n) shall be
denoted by Ly and R, respectively. The above reasoning shows that

(Ly-1 ®@id)op=(Ry®id)op= (id®Lgj)op: A= RV
and therefore
(Lg ® Lg) o p=np.

This shows that p(A) C (R ® V)S*(V) | where GL(V) acts on the left on R and V.

Suppose that ¢ : A — B is a homomorphism of n-representable wheeled PROPs. Let p4 : A - R® V
and pp : B — S ®V be the universal maps as in Lemma 5.1. Consider the composition pgo¢: A — S®V.
There exists a unique ring homomorphism ¢ : R — S such that () ® id) o pa = pp o ¢:

AL Re

¢l §w®id
'
B——S5®V
PB

Define ©(¢) = ¥. The reader may check that © defines a functor.

Theorem 5.2. ® and O are each other’s inverses, i.e., the categories </ (n) and # (n) are equivalent.
Proof. Suppose that A = EBP’ gez~, Ah 1s an n-representable wheeled PROP. So there exists an injective
homomorphism of wheeled PROPs A : A — S®V for some commutative K-algebra S. Let p: A — R®V be
as in Lemma 5.1. By the universal property there exists a K-algebra homomorphism p : R — S such that
(n®id) o p = A. Since A is injective, p is injective. We have seen that p(A) C (R ® V)S4(V). We claim that
equality holds. Let T be the subring generated by all (p(a),v) where a € A} for some p,q € Z>o, v € V}
and (-,-) is the bilinear pairing VI x VI — K which naturally extends to a pairing (R ® V}) x Vi — R.
Clearly

(pla1 @ az),v1 ® v2) = (p(az),v1)(p(az),v2)

so T is the K-vector space spanned by all (p(a),v), with a € A} and v € VI and p,q € Z>o. We have
p(A) €T ® V. From the universal property of p: A — R® V follows that T = R.

Suppose that u € (R ® VP)LYV) for some p,q € Z>o. Then there exist a; € APi, v; € VI and w; € VP
such that v = Y7 (p(a;),vi)w;. Let f; = v; ® w; € Hom(VEi, VP). Then we have

u = Z fi(ﬂ(%‘))

Consider the action of GL(V'). The elements u, and p(a;), i = 1,2,...,r are GL(V)-invariant, but fi,..., f-
may not be. By applying the Reynolds operator on both sides, we may assume that f1,..., f, are GL(V)-
invariant as well. Now f; is a GL(V)-invariant tensor in

Hom(VPi, VP) = VT @ VP o YPEdi,
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The first fundamental theorem in invariant theory for GL(V) tells us exactly what such a tensor looks like.
This means that f; as a linear map, is a composition of contractions and tensoring with the identity in
V*®@ V. But p(A) is closed under contractions and tensoring with the identity. This shows that f;(p(a;))
lies in the image of p. But then u lies in the image of p. So p defines an isomorphism between A and
(R@V)GLY) = $(0O(A)). We leave it to the reader to show that ® o © is naturally equivalent to identity
functor.

Suppose that R is a GL(V)-algebra. Let A = ®(R) = (R ® V)SXY) and let R = O(A) = O(®(R)).
Define p: A — R® V as in Lemma 5.1. Consider the inclusion \ : (R® V)GMV) » R® V. The universal
property implies that there exists a K-algebra homomorphism 1 : R — R such that (¥ ®id) o p = A. Now
P Rid : R®YV — R®V restricts to a map of wheeled PROPs

W (R V)Y — (R V)Y = 4

On the other hand, we have seen before that p : A — (R®V) induces an isomorphism p' : A — (R@V)CL(V)
We have (¢ ® id) o p = A and if we restrict the codomain to (R ® V)SH(Y) | then we get 1’ o p’ = id. Since
p’ is an isomorphism, so is 1)’

For an irreducible representation W of GL(V), let Ry be the W-isotypic components of R. As a rep-
resentation of GL(V), Ry is isomorphic to (Rw ® W*)S(V) @ W. We have an isotypic decomposition
R = @, Rw, where W runs over all irreducible representations of GL(V'). Similarly, we also have an iso-
typic decomp081t10n R= D RW Since ¥ is GL(V)-equivariant, it _respects the isotypic decomposmons
ie., ¢(RW) C Rw and 9 restricts to a GL(V)-equivariant map ¢y : Rw — Ry . If we identify Rw (respec-
tively Ry ) with (RQW*)SEV) QW (respectively (R@W*)CLV) @ W), then ¢y is equal to vy ®@idy where

w (R@W*)CLV) 5 (R W*)SLY) is a restriction of ¢ @idy+ : RO W* — R®W*. The dual space W*
is a subrepresentation of V¥ for some p and q. Now the isomorphism (1) : (E@Vé’)GL(V) — (R®V};)GL(V)
restricts to yw : (E @ W*)GLV) (E ®@ W*)GLV) S0 4y and Yy = yw ® idy are isomorphisms. Tt
follows that ¢ = Y, w is an isomorphism. So ©(®(R)) = R. Again, we leave it to the reader to verify
that the composition functor © o ® is naturally equivalent to the identity. O

We now discuss a useful result.

Proposition 5.3. Suppose R is a GL(V)-algebra and A = ®(R) = (R ® V)Y, Let T be an ideal of A.
Then there exists a GL(V)-stable ideal I of R such that T = (I @ V)GL(V),

Proof of Proposition 5.3. Let S = O(A/Z). Applying © to the morphism of wheeled PROPs 7 : A — A/T
gives an GL(V)-equivariant algebra homomorphism ©(x) : R — S. Let I be the kernel of O(x). From the
exact sequence 0 — I — R — S follows that

0= (I V)LV) 5 (ReV)CHUY) 5 (§ @ V)SHY)

is exact. The morphism on the right is just ®(©(7)) = 7. So (I ® V)“V) is the kernel of 7 : A — A/T
whichisZ. O

Proposition 5.3 shows there is a bijection between GL(V')-stable ideals of R and ideals of A = (R ®
V)GLV) If A is a wheeled PROP and Z C A is an ideal, then .A/Z has a natural structure of a wheeled
PROP because it can be identified with the image of some homomorphism ¢ : A — B of a wheeled PROP.

Remark 5.4. If A = (R® V)S*(V) is an n-representable wheeled PROP, and Z C A is an ideal, then A/Z is
a wheeled PROP. Proposition 5.3 implies that Z = (I ® V)“(V) for some GL(V)-stable ideal I. If we apply
® to R/I we get
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(R/1) @ V)W) = (R V)W) /(1 @ V)SLV) = A/T.

This shows that A/Z = ®(R/I) is an n-representable wheeled PROP as well. So #'(n) is closed under
homomorphic images.

6. Sub-wheeled PROPs of the mixed tensor algebra

For K = C and V a finite dimensional vector space with a positive definite hermitian form (-,-), the
mixed tensor algebra was studied by Schrijver in [19]. If v € V, then we define v* = (-,v) € V*. More
general, if f € VP then one can define a dual element f* € V{, and one has f** = f. Schrijver showed that
a subset A C V is of the form V& for some subgroup G of the unitary group if and only if A is a contraction
closed nondegenerate graded subalgebra of V, closed under .

We prove a generalization of this over an arbitrary field of characteristic 0. We refer the reader to [8,21]
for details on algebraic groups and [4,16] for invariant theory.

Definition 6.1. A wheeled PROP A is simple if it has exactly 2 ideals, namely the zero ideal and A itself.

Suppose M is an ideal of A. It is clear from the definitions that A4/M is simple if and only if M is a
maximal ideal. In particular, A is simple if and only if the zero ideal is maximal.

Theorem 6.2. There is a bijection between simple sub-wheeled PROPs of V and Zariski closed reductive
subgroups G C GL(V') which are defined over K.

Lemma 6.3.
S(K[GL(V)) =V
Proof. Suppose that the action of GL(V) on V is given by
v:V = K[GL(V)]®V.
Let A* : K[GL(V)] ® K[GL(V)] — K[GL(V)] be given by f ® h — fh. The composition
(A*®id) o (id®7) : K[GL(V)]®V — K[GL(V)] @ K[GL(V)|®V — K[GL(V)| @V
is a GL(V')-equivariant isomorphism
K[GL(V)]®V — K[GL(V)] ® V
of wheeled PROPs.

Here GL(V) acts on the left-hand K[GL(V)] ® V by acting on K[GL(V)] and on V as usual. But GL(V)
acts on the right-hand K[GL(V)] ® V by acting as usual on K[GL(V)] and acting trivially on V. Taking
GL(V)-invariants gives us an isomorphism

®(K[GL(V))) = (K[GL(V)] @ V)LtV =y, g

Corollary 6.4. There is a bijection between GL(V')-stable subalgebras of K|GL(V)] and sub-wheeled PROPs
of V.
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Proof. Tt is easy to see that a GL(V)-equivariant homomorphism ¢ : R — S of K-algebras is injective if
and only if ®(¢) is injective. So the corollary follows from Lemma 6.3. O

If A is a wheeled PROP then we have pairing
0
()AL x Al — Ay

so that (u,v) is obtained by contracting all the outputs of v with the inputs of v and vice versa. More
precisely,

() = 9+ 0L 0Ly - Ohs (u v)

q P

Proposition 6.5. A wheeled PROP A is simple if and only if L :== A is a field, and the L-bilinear pairing
(5 )AD X AT — L
is nondegenerate for all p,q.

Proof. Suppose that A is simple. If J is an ideal of A} = L, then JA C A is an ideal. So J =0 or J = L.
Therefore, L must be a field. Define 7 = ®p,qu>0 I¥ as follows. The space I¥ is the set of all u € A}
such that (u,-) : A7 — L is the zero map. The reader may check that this defines an ideal. Clearly Z # A
because 1 € L = A9 does not lie in Z, so Z = 0. This shows that the bilinear pairing is nondegenerate.

Conversely, suppose that A) = L is a field and that (-,-) : AP x A% — L is nondegenerate. Suppose
that 7 is a nonzero ideal of A. Let u € ZF' be nonzero for some p, g. Then there exists a v € Z such that
(u,v) =1 € IJ. So I = A. Hence A is simple. O

Proof of Theorem 6.2. Suppose that G C GL(V) is a closed reductive subgroup. The group GL(V) x G
acts on GL(V) by (g1,92) - h = g1hgy ', so this group also acts on K[GL(V)]. Since the GL(V) action and
the G-action on K[GL(V)] commutate, the group GL(V) also acts on R := K[GL(V)]¢. We have

A= ®(R) = (K[GL(V)]¢ @ V)SE(V) = &,

Let u € AP = (VP)%. Because G is linearly reductive, there exists a v € A2 = (V4)“ such that (u,v) = 1.
Also A9 = K. So A is simple by Proposition 6.5. Conversely, suppose that .4 C V is a simple sub-wheeled
PROP. Then R := O(A) is a subalgebra of K[GL(V)]. The only GL(V)-stable ideals of R := ©(A) are
0 and R itself. We claim that R is finitely generated. Indeed, let J be the set of all f € R such that the
localization Ry is finitely generated, together with 0. This is the finite generation ideal discussed in [5].
The ideal is nonzero, because R is a subalgebra of a finitely generated domain (see [5, Proposition 2.7]).
Since J is a nonzero ideal that is also clearly GL(V)-stable, we must have J = R,s01 € J and R = Ry is
finitely generated. So we may think of R as K[X], the coordinate ring of some affine variety X. Now we have
a rational GL(V)-action on X. Since K[X] has no nontrivial GL(V)-invariant ideals, X must be a single
GL(V) orbit. So X = GL(V)/G for some Zariski closed subgroup of GL(V). In order for GL(V)/G to be
affine, G must be reductive by Matsushima’s criterion (see [2,13,15]). Hence R = K[X] = K[GL(V)]¢. O

Corollary 6.6. Simple sub-wheeled PROPs of V are always finitely generated.

Example 6.7. (K) = VELV),
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7. A characterization of n-representable wheeled PROPs
7.1. A theorem of Procesi

An interesting problem in the theory of polynomial identities is to determine the necessary conditions to
be able to embed an algebra R into Mat,, (S), the ring of n X n matrices over a commutative ring S. While
this problem does not seem to have a good answer, Procesi proved a remarkable result by considering rings
with trace instead.

Definition 7.1. A K-algebra with trace is an algebra R with a K-linear map Tr : R — R satisfying

A typical example of a trace algebra is the matrix ring Mat, (S) where S is a commutative K-algebra.
The map Tr : Mat,, (S) — Mat,, (S) is given by Tr(A) = tr(A)I where tr(A) € K is the trace of the matrix
A € Mat,(S) and I is the n x n identity matrix. If A € Mat,,(S), then it has a characteristic polynomial

Xa(T) =T" + frA)T" 4 -+ [t (AT + fu(A).

The coefficients f1(A),..., fn(A) can be expressed in terms of traces. The Cayley-Hamilton identity states
that xa(A4) = 0. For example, if n = 2 then we have

xA(T) =T% — tr(A)T + %(tr(A)2 —tr(A?)) € KT
The Cayley-Hamilton identity for n = 2 states that
xA(A) = A% —tr(A)A + %(tr(A)2 —tr(A?))I = 0 € Maty »(S).

Theorem 7.2 ([17]). If R is a K-algebra with trace satisfying the n-th Cayley-Hamilton identity, then we
have an embedding R — Mat,,(S) for some commutative K -algebra S.

We prove a similar result for wheeled PROPs. Let V' be a vector space of dimension n, and denote by V,
the mixed tensor algebra of V. For any commutative algebra R, it is easy to check that the wheeled PROP

R®YV satisfies the relations Alt, 1 := > sgu(o)[o] and O —n. Note here that O denotes the exceptional
0EX 11

loop 01 (]). Since Z is the initial object, we have a unique homomorphism Z — P for any wheeled PROP
P and hence Alt,,+1 can be considered as an element of P. It turns out that these relations are sufficient to
guarantee an embedding.

Theorem 7.3. If P is a wheeled PROP satisfying the relations Alt,+1 and O —n, then we have an embedding
P — R®YV for some commutative algebra R.

7.2. Generic tensors

Let V' be an n-dimensional K-vector space with basis ey, es, ..., e,, and denote the dual basis in V* by

el e?,...,e". We will use the short-hand notation

AR P S T Q.- , P
gy =€ B QT Re; ®---Qej, € VY.
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We will study relations among generic tensors. For simplicity, we illustrate the proof by looking at a
special example. We assume that there are just 2 generic tensors, namely a tensor A of type (;), i.e., two
inputs and one output, and a tensor of type (g) We write

_ ©J 0]
A= g a;’ ey

0,4,k

and
B=7 bijei
i,

where {aj ;} and {b; ;} are indeterminates. So, we can view A as an element of R®V} and B as an element
of R ® VY, where R is the polynomial ring K[{a;’},{b; ;}]. Let W C R® V be the sub-wheeled PROP
generated by A and B.

Suppose we have a relation of type (é) Such a relation must be of the form Y, _, Ay Dy, where
D1, D, ... D, are decorated graphs of type (;) using only A, B, and exceptional edges (id) and excep-
tional loops. Since we are working in W C R ® V, an exceptional loop is equal to the integer n. Thus we
can assume that there are no exceptional loops in D1, ..., D,.

W inherits a bigrading from the polynomial ring K [{a}”}, {b; ;}], where the a-variables have degree (1,0)
and the b-variables have degree (0, 1). We only have to consider relations that are homogeneous with respect
to this bigrading as well. Let us assume that Dy, ..., Dy have bidegree (1, 1). Hence, in each of the decorated
graphs D;, A and B occur exactly once.

Let C'=3%, 4 ci’el’ be a generic tensor of type (5). Let S = K[{a7},{bi;},{ci’}]. Then A € RoV} C
S@V: BeS®V)and C € S® Vi We have a natural pairing (-,-) : S® Vi x S ® V3 — S. We have

i& (D;,C) = 0.

i=1

The element (D;, C)) is obtained by contracting the outputs of D; with the inputs of C and vice versa.
We assumed that D; has bidegree (1,1) which means that it is obtained from 1 copy of A, 1 copy of
B and some copies of exceptional edges by applying some contractions. So (D;,C) is obtained by taking
A®B®C®id® ---®id and contracting all inputs and outputs in some way. Contracting with the identity
tensor does not do anything, so (D;, C') can be obtained from A ® B ® C by contracting the 4 inputs with
the 4 outputs in some way. This means that we can write (D;, C) = (A ® B @ C, 0;), where o; € V{, where
0y is just a permutation. So, we have

T T
0= <A ®B®C, Z )\iai> = Z ay?by ped” <e§c’i’;’;, Z )\tUt> .
t=1

1=1 i,J,k,l,p,q,7,8

Since the monomials are linearly independent, we get

™
©,J,q,T _
<€k,z,p,s’ Z /\tat> =0
t=1

for all i, j,k,1,p,q,r,s. It follows that Y ,_, A\yoy = 0. Thus the relation Y, _; \;D; is obtained from con-
tracting > ;_, Moy with A ® B. In other words, the relation lies in the ideal of a relation that does not
involve A and B.
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The above argument works for any number of generic tensors, as long as the relation involves each generic
tensor at most once. Suppose we have a relation that contains A k times and B [ times. Using polarization
(see [16, 9.1] and [9, §4]), we get a relation in generic tensors Ay, ..., Ag, B1, ..., B; exactly once, where A;
are of the same type as A and B; are of the same type as B. This multilinear relation lies in the ideal of a
relation that does not involve any of the A;’s. Setting A; = A and B; = B shows that the original relation
is also in the ideal generated by a relation that does not involve A or B.

The multilinear version of the First Fundamental Theorem of Invariant Theory (see [9, §4.3] and [16,
§9.3, §9.5]) implies that the permutations in V' are generating invariants for the action of GL(V'), and the
Second Fundamental Theorem (see [16, §9.4]) implies that the relations among these are a consequence of
Alt,, 1. Hence it follows that every relation among generic tensors is a consequence of O —n and Alt, 1.

Proof of Theorem 7.3. Given a wheeled PROP A satisfying © —n and Alt, 1, we want to show that it is
n-representable, i.e., A € Obj(# (n)).

Write A in terms of generators and relations, i.e., A = Z(A; | i € I)/Z, where A; € APi. Since, the ideal
T contains O —n and Alt, 1, we see that A is a homomorphic image of B := Z(A; | i € I)/ (O —n, Alt,41).
Since the category # (n) is closed under homomorphic images, it suffices to show that B is in #'(n).

We want to get an injective map B — R®V. We take R = K|[{as, T‘”‘} i € I], and consider R®V. Then

T1 T .
we can map each A; — > as, s es” "W to a generic element in R ® V. This map is well defined because

8q;

both the relations O —n and Alt,, 1 hold in R ® V. This map is injective by the above discussion. O
We will sketch how Theorem 7.3 implies Procesi’s Theorem.

Proof. Suppose (R,Tr) is a trace algebra over a field K of characteristic 0 satisfying the n-th Cayley-
Hamilton identity. Let S be the subalgebra of R generated by all Tr(a),a € R. To every element a € R
we introduce a generator (a) of type (7). Let ¢4 be the set of all generators. In Z(%), let Z be the ideal
generated by

(1) O —n;

(2) (Aa+ ub) — Xa) — p(b)y with A\, u € K and a,b € R;
(3) (ab) — (a)( > with a,b € R;

(4) (Tr(a)) — 0{({a)) | with a € R.

We set R = Z(¥¢)/Z. Using these relations, one can show the following linear isomorphism

R~ R®s R®s - ®s R[X,].

n

Let J C R be the ideal generated by Alt, 1. Elements in J! are contractions of Alt, ; € Rt1 i1 With

elements a1 ® a2 ® --- ® ap, € Rj.. Such a contraction is exactly the n-th multi-linear Cayley-Hamilton

identity for a1, as,...,a, € R and is therefore equal to 0. This shows that J' = 0. Let S = R/J. Since

S satisfies the relations Alt,,1; and O —n, we can view S as a sub-wheeled PROP of T'® V where T is

some commutative K-algebra and V is a vector space of dimension n. In particular, R is a subalgebra of
=8l CT®V{ =T ®End(V). In other words, R is a subalgebra of Mat,,(T). O

7.83. Schrijver’s characterization of traces of tensor representations of diagrams

In [20], Schrijver introduces T-diagrams and characterizes which functions of T-diagrams are traces. We
will translate the main results in [20] in terms of wheeled PROPs and reprove them in this context.
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In this subsection we assume that K is algebraically closed of characteristic 0. Consider a set of generators
¢ and a function type : 4 — Z220‘ Let .Y be the set of all monomials of type (5)' Recall that .2} is
a K-basis of Z(4)0. If A € 4P and B € ./ then we can contract the outputs of A with the inputs of
B and the inputs of A with the outputs of B to get a diagram (A, B) € .#9. This extends to a bilinear
pairing Z(4)b x Z(4)4 — Z(¥)). A function f : .45 — K is called multiplicative if f(1) = 1 and
f(A-B) = f(A)f(B) for all monomials A, B € .#9. Here the product A - B is just the disjoint union of
diagrams. Note that such a function extends uniquely to an algebra homomorphism f : Z(9)) — K. If
A € 4} (or more generally A € Z(¥)!) then we say that f annihilates A if and only if f((A, B)) = 0 for
all B € A (or equivalently, for all B € Z(#)%). Suppose that V' is an n-dimensional K-vector space as
usual. A tensor representation of ¢ of dimension n is a map p : 4 — V such that p(A) € VP for all A € &
of type (5 ) If p is such a tensor representation, then it extends uniquely to a morphism of wheeled PROPs
p:Z(9) = Vand p) : Z(9)) — V§ = K restricts to a multiplicative map p : .#) — K. The following
result is Schrijver’s theorem in [20].

Theorem 7.4. Suppose that f : MY — K. Then there exists a tensor representation p : 9 — V of dimension
< d such that p = f if and only if f is multiplicative and annihilates Altgyq.

Let Z C Z(¥4) be the ideal generated by Altg1. We can reformulate this theorem using more of the
wheeled PROP terminology:

Theorem 7.5. Suppose that f : Z(4)8 — K is an algebra homomorphism. Then there exists a homomorphism
of wheeled PROPs p : Z(4) — V for some vector space V of dimension n < d with p§ = f if and only if
f(Z5) = 0.

Proof. Suppose that f = p§ where p : Z(94) — V is a homomorphism of wheeled PROPs and V is an n-
dimensional vector space. Clearly, f = pJ : Z(94)) — K is an algebra homomorphism. The relation Alt,, 1
lies in the kernel of p and therefore, Z0 is contained in the kernel of f = pj.

Conversely, suppose that f : Z(¥4)§ — K is an algebra homomorphism and f(Z3) = 0. Let ¢t =0. We
have 0 = f((Altge1,4d - 1)) = fEEt -1t —=2)---(t —d)) = f@O)f(t —1)--- f(t — d). It follows that
f(t—n) =0 for some n € {0,1,2,...,d}. Let J C Z(¥4)9 be the kernel of f and let J = JZ(¥) be the ideal
in Z(¥) generated by J. Since Alt,, 1 lies in the ideal generated by t — n and Altgi1, we get that Alt, 4
lies in 7. Note that ZJ C J9, because f(ZJ) = 0. Since the ideal Z + J contains Alt, 41 and ¢ — n, there
exists a finitely generated commutative K-algebra R and an injective homomorphism of wheeled PROPs

V:Z(9)/(IT+J)—>R®V
where V' is an n-dimensional vector space. We can choose an arbitrary maximal ideal m of R. Because R

is finitely generated, and K is algebraically closed, we have R/m = K by Hilbert’s Nullstellensatz. Now
consider the composition

W
p: Z(9) —= Z(9)/(IT+T)— RV —= R/mV =V
By construction pJ : Z(4)§ — V§ = K is nonzero and contains Z§ in its kernel. It follows that p§ = f. O
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