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Abstract—Wireless federated learning (FL) relies on efficient
uplink communications to aggregate model updates across dis-
tributed edge devices. Over-the-air computation (a.k.a. AirComp)
has emerged as a promising approach for addressing the scala-
bility challenge of FL over wireless links with limited communi-
cation resources. Unlike conventional methods, AirComp allows
multiple edge devices to transmit uplink signals simultaneously,
enabling the parameter server to directly decode the average
global model. However, existing AirComp solutions are intrin-
sically analog, while modern wireless systems predominantly
adopt digital modulations. Consequently, careful constellation
designs are necessary to accurately decode the sum model
updates without ambiguity. In this paper, we propose an end-
to-end communication system supporting AirComp with digital
modulation, aiming to overcome the challenges associated with
accurate decoding of the sum signal with constellation designs.
We leverage autoencoder network structures and explore the
joint optimization of transmitter and receiver components. Our
approach fills an important gap in the context of accurately
decoding the sum signal in digital modulation-based AirComp,
which can advance the deployment of FL in contemporary
wireless systems.

Index Terms—Federated Learning; Constellation Design; Au-
toencoder.

I. INTRODUCTION

In wireless federated learning (FL) [1]–[3], efficient com-

munication plays a crucial role in facilitating model aggre-

gation across a large number of distributed edge devices that

have limited communication resources. The model aggregation

process involves computing the (weighted) average of local

model updates and transmitting them from selected edge

devices to the parameter server (PS). To address the scalability

challenge of FL over wireless communications, one promising

approach is over-the-air computation, also known as AirComp

[4]–[6]. Unlike the conventional approach of decoding individ-

ual local models from each edge device and then aggregating

them, AirComp enables multiple edge devices to transmit

the uplink signals simultaneously, in a superimposed manner,

hence allowing the FL server to directly decode the average

global model.

By employing AirComp, edge devices can simultaneously

transmit model parameters, thereby significantly reducing the

uplink communication cost regardless of the number of partic-

ipating edge devices. However, it is important to note that the

prevalent mode of communication in modern wireless systems

The work is partially support by the US National Science Foundation under
award CNS-2002902, CPS-2313110, ECCS-2143559, ECCS-2033671, SII-
2132700, and the Commonwealth Cyber Initiative (CCI) of Virginia under
Award VV-1Q23-005.

is through digital modulation, whereas existing AirComp

systems are analog in nature. This poses challenges in deploy-

ing AirComp techniques in contemporary wireless systems

that predominantly employ digital modulations. Consequently,

careful consideration must be given to modulation design to

accurately decode the sum via the constellation design. It is

crucial to avoid a scenario where a specific point in the sum

constellation corresponds to multiple different sums of the

individual constellations. However, achieving this objective is

a non-trivial task, as existing constellation designs have not

considered decoding the sum.

Autoencoder (AE) [7] network structures exhibit similar-

ities to the mathematical models of communication, as their

encoder and decoder networks naturally resemble key compo-

nents of the transmitter and receiver pairs in a communication

system. Previous research has explored the concept of treat-

ing the communication system as an autoencoder to jointly

optimize the transceiver [8], while others have investigated

the use of autoencoders for constellation design [3], [9],

[10]. However, it is worth noting that none of these prior

studies specifically focuses on the challenge of accurately

decoding the sum. Given this limitation, we propose a novel

end-to-end communication system that leverages AirComp

for digital transmissions in the uplink wireless FL phase.

The autoencoder-based approach allows us to overcome the

existing challenges associated with the constellation design,

particularly in accurately decoding the sum signal from indi-

vidual constellations.

The remainder of this paper is organized as follows. The

system model that captures the fading effects in wireless

FL is described in Section II. The proposed end-to-end

communication system and its autoencoder design for high-

order modulations are presented in Section III. Experimental

results are given in Section IV, followed by the conclusions

in Section V.

II. SYSTEM MODEL

We start by introducing the fundamental optimization prob-

lem in ML and proceed to explain the standard pipeline for

distributed model training, with a particular emphasis on the

celebrated FEDAVG algorithm. Following this, we analyze

the uplink communication model and discuss the influence

of channel fading effects and receiver processing. It is cru-

cial to understand these aspects as they directly impact the

performance of wireless communication systems. Moreover,
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we highlight the limitations and challenges associated with

existing constellations, which motivates the need for our work.

A. The Distributed SGD Problem

In our research, we focus on studying the standard empirical

risk minimization (ERM) problem in machine learning (ML):

min
x∈Rd

F (x) = min
x∈Rd

1

|D|

∑

z∈D

l(x; z), (1)

where x ∈ R
d represents the ML model variable that we aim

to optimize. The loss function l(x; z) is evaluated at model

x and data sample z = (zin, zout), which describes the input-

output relationship between zin and its label zout, and F :
R

d → R denotes the differentiable loss function averaged

over the entire dataset D. It is assumed that there exists a

latent distribution ν that governs the generation of the global

dataset D, where each data sample z ∈ D is independently

and identically distributed (IID)1 from ν. We denote x
∗ ,

arg min
x∈Rd F (x), f∗ , F (x∗).

One category of distributed and decentralized ML, includ-

ing FL, aims to solve the ERM problem (1) by utilizing a set

of clients that perform local computations in parallel, leading

to improved wall-clock speed compared to the centralized

training paradigm. In our distributed ML system, we consider

a central parameter server (e.g., at the base station) and a set

of n clients (e.g., IoT devices). Mathematically, problem (1)

can be equivalently expressed as

min
x∈Rd

F (x) = min
x∈Rd

1

N

N−1
∑

i=0

Fi(x), (2)

where Fi(x) represents the local loss function at client i,
defined as the average loss over its respective local dataset

Di: Fi(x) = 1
|Di|

∑

z∈Di
l(x; z). We assume that the local

datasets are disjoint, and their union results in the global

dataset D = ∪i∈[n]Di. In this work, we primarily focus

on the full clients participation setting, where all N clients

participate in every round of distributed SGD. However, we

will report numerical results for partial client participation

in Section IV. For simplicity and ease of analysis, we also

assume that all clients have equal-sized local datasets, i.e.,

|Di| = |Dj |, ∀i, j ∈ [n].

B. The FEDAVG Pipeline

The distributed ML paradigm we consider follows the

foundational framework of FEDAVG [1], with a specific focus

on incorporating fading channels in the upload communication

phase. The system diagram depicting the overall architecture

is presented in Fig. 1. In particular, the FEDAVG pipeline

operates by iteratively executing the following steps during

the t-th learning round, where t belongs to the set [T ] ,

{1, 2, · · · , T}.

(1) Download the global model. The server broadcasts the

current global model xt to all clients. In the context of a

1In Section IV we will numerically evaluate non-IID datasets.

Fig. 1: Federated learning pipeline in the t-th global round.

wireless FL setting, the base station typically possesses more

transmit power and communication resources compared to the

clients, which are mostly battery-powered mobile devices with

limited capabilities. As a result, it is commonly assumed that

the download communication phase is error-free [4], [5], [11]–

[13]. Following this assumption, all clients receive an accurate

copy of xt, ensuring that they possess the exact knowledge

of the global model.

(2) Local model update at clients. Each client i updates

the received global model xt based on its local dataset Ci,
assumimg the use of SGD for model training.

Specifically, SGD at client i proceeds by updating the

weight iteratively (for E steps in each learning round) as

follows:

Initialization: xi
t,0 = xt,

Iteration: xi
t,τ = x

i
t,τ−1 − ηt∇fi(x

i
t,τ−1), ∀τ = 1, · · · , E,

Output: xi
t+1 = x

i
t,E ,

where we define

fi (x) , l (x; ξi) , f (x) , l (x; ξ) . (3)

Here ξi and ξ represent data points sampled independently and

uniformly at random (u.a.r.) from the local dataset of client

i and the global dataset, respectively. It is worth noting that

this formulation can be easily extended to mini-batch SGD by

allowing ξi and ξ to represent a batch of data points sampled

u.a.r. from Ci and C without replacement, respectively.

(3) Upload local models. After local model update, client

i needs to calculate the model differential parameter

si,t+1 , x
i
t+1 − xt (4)

as the input of each transmitter. And then the si,t+1 is mod-

ulated through fi to generate the transmitted signal s̃i,t+1 ∈
R

m. Then all the transmitter signals are sent synchronously

over the uplink wireless channel to the parameter server.

Finally, the receiver applies the transformation g to recover

the sum of the model differential parameters
∑n

i=1 si,t+1. The

fading channel model and the transmitter/receiver processing

are described later in Section II-C and we re-emphasize that

this paper focuses on digital model communications through

AirComp.

5566
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 01,2024 at 13:55:55 UTC from IEEE Xplore.  Restrictions apply. 



(4) Global aggregation. The server aggregates the received

local models summation
∑n

i=1 si,t+1 to generate a new global

ML model xt+1.

xt+1 = xt +
1

n

n
∑

i=1

si,t+1

for any t ∈ [T ]. For simplicity, we assume that each local

dataset has an equal size as the original design of FEDAVG

[1], which means choosing the equal weight for every client.

It is conceivable to extend the proposed method to unequal

weights by processing the dataset size info at the uploading

phase.

C. Communication over Fading Channels

We now elaborate on the upload communication phase in

the previous section, where each client i aims at sending vector

s̃i,t+1 to the server over wireless fading channels. The illus-

tration of power control will be discussed in Section III-B. We

consider that the transmission of s̃i,t+1 experiences a random

fading channel fluctuation hi,t for each of its d elements. This

assumption is valid when the underlying channel follows a

block fading model [14]. In this model, the channel remains

constant for a duration of at least d symbol periods, ensuring

that the coherence time is longer than d. After this duration,

the channel changes independently to another value following

its distribution, such as a Gaussian distribution.

Then all the signals are sent to the parameter server in

a superpositioned manner through AirComp, and we finally

have the received signal

ỹt+1 =

n
∑

i=1

hi,ts̃i,t+1 + zt (5)

where zt denotes an additive white Gaussian noise (AWGN)

vector with d independent Gaussian elements of mean zero

and variance N0.

We assume each individual client has perfect channel state

information at the transmitter (CSIT) and a coherent receiver

with perfect channel state information at the receiver (CSIR).

Hence, the client can eliminate the effects of channel fading by

scaling the transmitted signal s̃i,t+1/hi,t before experiencing

the fading channel. Subsequently, the receiver computes an

unbiased estimate of the summation of si,t+1 as

yt+1 =
n
∑

i=1

hi,t(s̃i,t+1/hi,t) + zt =
n
∑

i=1

s̃i,t+1 + zt (6)

The goal of this paper is to design an end-to-end commu-

nication system by an autoencoder that can restore the sum-

mation of model differential parameters, which is emphasized

with the red-dotted rectangle in Fig. 1.

D. Problems with Existing Constellations

In modern communication systems, the input signal is

digitized to enable efficient transmission. Information bits

are encoded and then modulated. Upon modulation, each

Fig. 2: An example of overlapped constellation points.

symbol is represented by a complex number (chosen out of

a finite number of candidates), denoting a specific point in

the constellation space. The real and imaginary parts of the

complex number are mapped to the horizontal and vertical

axes, respectively. When multiple clients are involved in

AirComp, each client will have their individual constella-

tion (e.g., Quadrature Phase Shift Keying (QPSK)), and the

receiver ideally gets the sum of the constellations from all

involved clients. Unlike analog signals where the sum can be

represented as a real number, special attention must be given

to the signal constellation design to ensure accurate decoding

of the sum. It is crucial to avoid situations where a particular

point in the (sum) constellation corresponds to different sums.

In Fig. 2, we highlight an example of a signal constel-

lation for a QPSK modulation. In this example, there are

16 candidates for decoding (4 bits per symbol), and 12 of

them are overlapped with the other 5 constellation points,

indicated by the green markers. While most of the overlapped

points retain a unique sum of the two signals, ambiguity arises

for the midpoint, which can correspond to either 2 or 4,

making it impossible to determine the exact sum. We note that

such ambiguity would become more severe with higher-order

modulation and more clients, as the possible combination

grows exponentially.

To address this challenge, one approach is to manually

design the constellation to avoid ambiguity. However, as the

number of clients and the order of modulations increase,

the computational complexity of handcrafted designs quickly

becomes impractical. Thus, we explore the potential of em-

ploying autoencoder techniques to automatically design the

required constellations. This will be elaborated in the next

section.

III. END-TO-END COMMUNICATION SYSTEM

The key idea of the autoencoder-based communication

systems is to unify the transmitters, channel, and receiver via

jointly training the autoencoder network. Unlike traditional

autoencoders proposed for communication systems, our au-

toencoder aims to reproduce the total sum of its input as the
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output. In its most basic configuration, the communication

system comprises n transmitters, a channel, and a receiver, as

illustrated in Fig. 3.

Let the size of the model differential si,t+1 be d, and we re-

shape the parameters {si,t+1}
n
i=1 to vectors {si,t+1 ∈ R

d}ni=1

for each transmitter. In order to transmit the d-dimensional

source message to the server in the FL setting, a series of

processing steps are employed. First, we quantize the source

vector into discrete values, and then apply source coding

and modulation independently in each client. Once the server

receives the summation of transmitted signals from all the

clients through the over-the-air computation, demodulation

is performed to recover the sum of the quantized message,

and dequantization is applied to retrieve the original signal.

The modulation and demodulation operations are respectively

implemented by the encoders and the decoder utilized in our

approach, as shown in Fig. 3.

A. Quantization and Encoding

In ML models such as deep neural networks (DNN), the

model weights are typically represented in a 32-bit floating

point format. However, in FL settings, communication be-

tween devices can become a bottleneck due to the large size of

the transmitted messages. To address this issue, quantization

techniques can be applied to reduce the bit-width required

for each weight and, as a result, decrease the message size

for communication. The appropriate quantization method is

important but not the focus of this paper. Instead, we adopt

the effective FL quantization method in [3]. Specifically, for a

full-precision weight si,t+1, a k-bits quantization is completed

via the following steps (to simplify the notation, we use x
i to

represent si,t+1):

(1) Scale Up. Each element of x
i is first amplified by a

scaling factor known as the quantization gain G. This yields

the amplified value x
i
a = x

i ∗G. Typically, G is set as power

of 2, simplifying the implementation through bit shifting.

(2) Stochastic Rounding. The amplified value x
i
a is then

rounded to its integer part using stochastic rounding. The

rounding function R(·) selects either the upper bound dxi
ae

or the lower bound bxi
ac with certain probabilities. More

formally, we have (w.p. is short for ‘with probability):

R(xi
a) =

{

bxi
ac, w.p. 1− (xi

a − bxi
ac)

dxi
ae, w.p. xi

a − bxi
ac

(7)

(3) Limit. The range of the rounded integer value x
i
r is

further restricted to k bits. Specifically, we have:

x
i
l =











−2k−1, if xi
r < −2k−1

x
i
r, if xi

r ∈ [−2k−1, 2k−1 − 1]

2k−1 − 1, if xi
r > 2k−1 − 1

(8)

For example, if k = 2 bits, the quantized x
i
l ∈ [−2,−1, 0, 1].

(4) Scale Down. The receiver obtains the output xoutput by

scaling down the input xinput : xoutput = xinput/G. Note

that this step is the dequantization process in the server.

To ensure that the quantized signal with k bits is compatible

with the autoencoder input during encoding, the quantized

signal x
i
l is adjusted to start from 0 by adding a constant

number 2k−1 to it. This adjustment results in x
i
l becomes to

x
i
q ∈ [0, 1, 2, 3] when k is 2 bits.

B. Autoencoder

Since the number of bits per message x
i
q in the transmitter

i is denoted as k, each transmitter aims to convey a single

message from a set of M = 2k feasible messages, xi
q ∈ M =

{0, 1, ...,M − 1}∀i, to the receiver through m distinct uses

of the communication channel. In this paper, we use one-

hot encoded vectors as input to the encoder, which is an M-

dimensional vector with a single element being one and the

other elements being zero.

A complex signal consists of two real signals - one for

the real part I and one for the imaginary part Q. To sim-

plify the analysis, we focus on the real-valued signals only.

Consequently, we map the complex domain of C
1

2
m to the m-

dimensional Euclidean space of Rm. Therefore, the transmitter

applies fi : M → R
m to the message xi

q to generate the

transmitted signal si = f(xi
q) ∈ R

m.

In typical communication systems, the hardware of the

transmitter applies power constraints to the transmitted signal

to maintain the system’s reliability and efficiency. Brianna et

al. discuss the impact of both hard and soft power constraints

on system performance [15]. In our work, we focus on the hard

constraint, whereby the transmitter is limited to a maximum

energy threshold of P for all signal constellation points, i.e.,

|sij | ≤ m ∀j. Hence, the normalized signal

s̃
i
j =

√

1

E
∥

∥s
i
j

∥

∥

2P s
i
j =

√

1

E
∥

∥s
i
j

∥

∥

2ms
i
j . (9)

The corresponding received SNR for the signal i is

SNRt =
m

N0
(10)

where N0 is the variance of Gaussian noise zt in (5).

The communication rate of this communication system is

R = k/m bits per real channel use, where k = log2M .

Traditionally, the notation (m, k) means that each transmitter

sends one out of M = 2k messages (i.e., k bits) through m

real channel uses to the receiver. The normalized modulated

signals presented with I
′

i and Q
′

i in Fig. 3 pass through the

individual fading channel and are added together. The channel

is described in Section II-C, where yt+1 ∈ R
m denotes the

received signal.

Upon reception of yt+1, the receiver applies the transfor-

mation g : Rm → S to produce the estimate of the sum of the

transmitted message
∑n

i=1 s̃i,t+1. Let S denote the set of all

feasible sums of messages xi
q from a set of n transmitters in

a communication system. Consider, for instance, a communi-

cation system with n = 8 transmitters that sends a k = 2 bits

message. In this scenario, the exact set of possible values for

the summation is given by S = {0, 1, ..., 8(M − 1)}, where

M = 2k = 4. The cardinality of S is 25, which represents the
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Fig. 3: End-to-end communication system realized with autoencoder.

total number of possible summations in this communication

system. Therefore, we set the last layer of g as a softmax

layer to ensure that the output activations form a probability

vector over M . Finally, the index with the highest probability

is chosen as one of the possibilities of the set S. A generic

architecture of the decoder is shown in Fig. 3.

C. Advanced Design for Higher-Order Modulations

In Section III-B, we present our label set S and define the

function representing the total possible sum. The number of

classes is determined by n(2k − 1) + 1, where n denotes the

number of clients. Consequently, as the number of bits in-

creases, the categories to be classified experience exponential

growth. This exponential increase in the number of classes

poses a significant challenge in accurately predicting a specific

class, particularly with higher-order modulations. To address

this challenge, we propose streamlining categorization, aiming

to enhance tolerance to errors by reducing the number of

classes. The subsequent paragraphs will provide a detailed

description of both methods. To facilitate our analysis, we set

n = 8 clients and k = 4 bits.

The motivation behind streamlining categorization is to

ensure the scalability of our autoencoders. By maintaining a

consistent number of classes, irrespective of the number of

bits per message, we can establish a standardized framework.

For instance, we can consider 25 classes equivalent to k = 2
bits. Recognizing the difficulty in accurately predicting all 121
possible 4-bit sums, we adopt a coarse-grained classification

approach. Specifically, we divide these 121 types into an aver-

age of 25 categories, with each category representing a range

of approximately five numbers centered around the median

value. While label errors exist, their impact on performance

is mitigated by quantization error, SGD noise, and channel

noise. Consequently, this method remains effective even in

adverse channel conditions characterized by a low SNR, a

finding supported by our experimental validation.

IV. EXPERIMENTAL RESULTS

A. Setup

We have carried out experiments to evaluate our method on

the popular dataset: CIFAR-10 [16] (60,000 images with 10

classes). We report experimental results for both IID datasets

and non-IID datasets with full client participation. In the

experiments, our autoencoder training is conducted at a fixed

SNR value of 7 dB (refer to Section III-B), utilizing the Adam

[17] optimization algorithm with a learning rate of 0.001. And

for the FL setting, we set m=8 clients.

We consider the following schemes in the experiments. (1)

Perfect Comm: the ideal case with perfect communication.

(2) AE opt SNR: our proposed method with different SNRs.

All of the reported results are obtained by averaging over five

independent runs

B. 2-bit Modulation

Fig. 4(a) shows our (2,2) autoencoder block error rate

(BLER), i.e., Top-1 classification error, versus the SNR.

And Fig. 4(b) shows the learned representations s̃ of all

messages from 8 clients for the parameter of (2, 2) as complex

constellation points, i.e., the x- and y-axes correspond to the

first and second transmitted symbols, respectively. Notably,

the constellation designs for different clients exhibit significant

similarity, thus facilitating the success of random transmitter

selection when a subset of clients participate in the FL training

round.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR Range

10−4

10−3

10−2

10−1

Bl
oc

k 
Er

ro
r R

at
e

22 21 0 1 2

22

21

0

1

2
1
2
3
4
5
6
7
8

(a) BLER vs. SNR (b) Constellation diagram

Fig. 4: Autoencoder results using parameters (2,2) with 8 clients.

Subsequently, we apply the (2,2) autoencoder to the FL

setting. As depicted in Fig. 5(a), the proposed AE opt

achieves close performance to Perfect Comm at SNR values

of 15 dB and even 0 dB, demonstrating the effectiveness of

our autoencoder. Even under extremely adverse conditions,

such as an SNR of -10 dB, the top-1 accuracy remains

relatively high, experiencing only a minor drop compared
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to Perfect Comm. Additionally, when considering Non-IID

local datasets in Fig. 5(b), our AE opt with an SNR of 15

dB maintains comparable performance to Perfect Comm. In

addition, we observe a decrease in accuracy as the number

of training rounds increases in the non-IID scenario. This

accuracy drop occurs because the range of model differentials

becomes smaller when the model is close to convergence.

Therefore, careful consideration must be given to the choice

of quantization gain. Interestingly, we find that using a larger

quantization gain in the later rounds improves performance,

resulting in better accuracy. This observation suggests that

adjusting the quantization gain during the training process can

help mitigate the accuracy degradation associated with non-

IID scenarios.

0 100 200 300 400 500
Communication Rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st
in
g 
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cu
ra
cy

Perfect_Comm
AE_opt 15 dB
AE_opt 0 dB
AE_opt -10 dB
AE_opt -20 dB

0 100 200 300 400 500
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Te
st
in
g 
Ac
cu
ra
cy

Perfect_Comm
AE_opt 15 dB
AE_opt 0 dB
AE_opt -10 dB

(a) IID (b) Non-IID

Fig. 5: 2-bit modulation of CIFAR-10 results with IID and Non-IID
local datasets and full clients (8 clients) participation.

C. Higher-order Modulations

We conduct further validation of our advanced autoencoder

design specifically tailored for higher-order modulations, such

as 4 bits. To begin, we employ our streamlining categorization

method to train a (4,2) autoencoder. It is observed in Fig. 6

that AE opt at an SNR of 15 dB demonstrates convergence

and achieves comparable performance for both IID and Non-

IID local datasets. These results provide empirical evidence to

support our previous hypothesis that the presence of labeling

errors can be mitigated by factors such as quantization error,

SGD noise, and channel noise, thus minimizing their impact

on FL performance. Remarkably, this method remains effec-

tive even under challenging channel conditions characterized

by a low SNR.
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Communication Rounds

0.3

0.4

0.5

0.6

0.7

0.8

Te
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AE_opt 15 dB
AE_opt -20 dB
AE_opt -25 dB
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Communication Rounds
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0.5

0.6
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in
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cu
ra
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Perfect_Comm
AE_opt 15 dB
AE_opt -20 dB
AE_opt -25 dB

(a) IID (b) Non-IID

Fig. 6: 4-bit modulation of CIFAR-10 results with IID and Non-IID
local datasets and full clients (8 clients) participation.

V. CONCLUSION

We have proposed a novel end-to-end communication sys-

tem that utilizes AirComp for digital transmission, with the

objective of accurately decoding the sum within the constella-

tion design. Through the incorporation of autoencoder network

structures and the joint optimization of transmitter and receiver

components, our approach effectively addresses the challenges

associated with deploying AirComp techniques in the context

of digital modulation-based wireless communications. The

implications of our research hold significant importance for

the field of wireless FL, as we establish a robust foundation

for future investigations and provide practical insights into

enhancing the efficiency and scalability of FL in wireless

environments. Our experimental results demonstrate that our

AE opt achieves near-perfect communication performance in

high SNR scenarios. Furthermore, the performance of AE opt

can be further improved by refining the autoencoder design

for higher-order modulations.
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