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Abstract—Wireless federated learning (FL) relies on efficient
uplink communications to aggregate model updates across dis-
tributed edge devices. Over-the-air computation (a.k.a. AirComp)
has emerged as a promising approach for addressing the scala-
bility challenge of FL over wireless links with limited communi-
cation resources. Unlike conventional methods, AirComp allows
multiple edge devices to transmit uplink signals simultaneously,
enabling the parameter server to directly decode the average
global model. However, existing AirComp solutions are intrin-
sically analog, while modern wireless systems predominantly
adopt digital modulations. Consequently, careful constellation
designs are necessary to accurately decode the sum model
updates without ambiguity. In this paper, we propose an end-
to-end communication system supporting AirComp with digital
modulation, aiming to overcome the challenges associated with
accurate decoding of the sum signal with constellation designs.
We leverage autoencoder network structures and explore the
joint optimization of transmitter and receiver components. Our
approach fills an important gap in the context of accurately
decoding the sum signal in digital modulation-based AirComp,
which can advance the deployment of FL in contemporary
wireless systems.

Index Terms—Federated Learning; Constellation Design; Au-
toencoder.

I. INTRODUCTION

In wireless federated learning (FL) [1]-[3], efficient com-
munication plays a crucial role in facilitating model aggre-
gation across a large number of distributed edge devices that
have limited communication resources. The model aggregation
process involves computing the (weighted) average of local
model updates and transmitting them from selected edge
devices to the parameter server (PS). To address the scalability
challenge of FL over wireless communications, one promising
approach is over-the-air computation, also known as AirComp
[4]-[6]. Unlike the conventional approach of decoding individ-
ual local models from each edge device and then aggregating
them, AirComp enables multiple edge devices to transmit
the uplink signals simultaneously, in a superimposed manner,
hence allowing the FL server to directly decode the average
global model.

By employing AirComp, edge devices can simultaneously
transmit model parameters, thereby significantly reducing the
uplink communication cost regardless of the number of partic-
ipating edge devices. However, it is important to note that the
prevalent mode of communication in modern wireless systems
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is through digital modulation, whereas existing AirComp
systems are analog in nature. This poses challenges in deploy-
ing AirComp techniques in contemporary wireless systems
that predominantly employ digital modulations. Consequently,
careful consideration must be given to modulation design to
accurately decode the sum via the constellation design. It is
crucial to avoid a scenario where a specific point in the sum
constellation corresponds to multiple different sums of the
individual constellations. However, achieving this objective is
a non-trivial task, as existing constellation designs have not
considered decoding the sum.

Autoencoder (AE) [7] network structures exhibit similar-
ities to the mathematical models of communication, as their
encoder and decoder networks naturally resemble key compo-
nents of the transmitter and receiver pairs in a communication
system. Previous research has explored the concept of treat-
ing the communication system as an autoencoder to jointly
optimize the transceiver [8], while others have investigated
the use of autoencoders for constellation design [3], [9],
[10]. However, it is worth noting that none of these prior
studies specifically focuses on the challenge of accurately
decoding the sum. Given this limitation, we propose a novel
end-to-end communication system that leverages AirComp
for digital transmissions in the uplink wireless FL phase.
The autoencoder-based approach allows us to overcome the
existing challenges associated with the constellation design,
particularly in accurately decoding the sum signal from indi-
vidual constellations.

The remainder of this paper is organized as follows. The
system model that captures the fading effects in wireless
FL is described in Section II. The proposed end-to-end
communication system and its autoencoder design for high-
order modulations are presented in Section III. Experimental
results are given in Section IV, followed by the conclusions
in Section V.

II. SYSTEM MODEL

We start by introducing the fundamental optimization prob-
lem in ML and proceed to explain the standard pipeline for
distributed model training, with a particular emphasis on the
celebrated FEDAVG algorithm. Following this, we analyze
the uplink communication model and discuss the influence
of channel fading effects and receiver processing. It is cru-
cial to understand these aspects as they directly impact the
performance of wireless communication systems. Moreover,
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we highlight the limitations and challenges associated with
existing constellations, which motivates the need for our work.

A. The Distributed SGD Problem

In our research, we focus on studying the standard empirical
risk minimization (ERM) problem in machine learning (ML):

irel]lRI}iF(x)—irel]lRI}ilD|lez (1)
where x € R? represents the ML model variable that we aim
to optimize. The loss function [(x;z) is evaluated at model
x and data sample z = (2iy, zou ), Which describes the input-
output relationship between z;, and its label z,,, and F' :
R? — R denotes the differentiable loss function averaged
over the entire dataset D. It is assumed that there exists a
latent distribution v that governs the generation of the global
dataset D, where each data sample z € D is independently
and identically distributed (IID)' from v. We denote x* £
arg min,cpa F(x), f* £ F(x*).

One category of distributed and decentralized ML, includ-
ing FL, aims to solve the ERM problem (1) by utilizing a set
of clients that perform local computations in parallel, leading
to improved wall-clock speed compared to the centralized
training paradigm. In our distributed ML system, we consider
a central parameter server (e.g., at the base station) and a set
of n clients (e.g., IoT devices). Mathematically, problem (1)
can be equivalently expressed as

min F(x) = min N Z Fi(x )

x€ER? xER?

where F;(x) represents the local loss function at client 4,
defined as the average loss over its respective local dataset
D;: Fi(x) = ﬁ > sep, l(x;2). We assume that the local
datasets are disjoint, and their union results in the global
dataset D = Ujc[nD;. In this work, we primarily focus
on the full clients participation setting, where all N clients
participate in every round of distributed SGD. However, we
will report numerical results for partial client participation
in Section IV. For simplicity and ease of analysis, we also
assume that all clients have equal-sized local datasets, i.e.,
|Dy| = |D;], Vi, j € [n].

B. The FEDAVG Pipeline

The distributed ML paradigm we consider follows the
foundational framework of FEDAVG [1], with a specific focus
on incorporating fading channels in the upload communication
phase. The system diagram depicting the overall architecture
is presented in Fig. 1. In particular, the FEDAVG pipeline
operates by iteratively executing the following steps during
the t-th learning round, where ¢ belongs to the set [T] =
{1,2,---,T}.

(1) Download the global model. The server broadcasts the
current global model x; to all clients. In the context of a

In Section IV we will numerically evaluate non-IID datasets.

Client 1

Server |

S o ”‘X
=
> Receiver 1

Fig. 1: Federated learning pipeline in the ¢-th global round.

wireless FL setting, the base station typically possesses more
transmit power and communication resources compared to the
clients, which are mostly battery-powered mobile devices with
limited capabilities. As a result, it is commonly assumed that
the download communication phase is error-free [4], [S], [11]-
[13]. Following this assumption, all clients receive an accurate
copy of x;, ensuring that they possess the exact knowledge
of the global model.

(2) Local model update at clients. FEach client ¢ updates
the received global model x; based on its local dataset C;,
assumimg the use of SGD for model training.

Specifically, SGD at client ¢ proceeds by updating the
weight iteratively (for E steps in each learning round) as
follows:

Initialization: x; o = X¢,

Tteration: x} . =X} .y —nV fi(x},_,),Vr=1,-- ,E,

Output: Xt+1 = xt o

where we define
i) 2l(x&),  fx)21xE). 3)

Here &; and £ represent data points sampled independently and
uniformly at random (u.a.r.) from the local dataset of client
i and the global dataset, respectively. It is worth noting that
this formulation can be easily extended to mini-batch SGD by
allowing &; and & to represent a batch of data points sampled
u.a.r. from C; and C without replacement, respectively.

(3) Upload local models. After local model update, client
1 needs to calculate the model differential parameter

N
Si41l = Xpyq — Xt 4

as the input of each transmitter. And then the s; ;11 is mod-
ulated through f; to generate the transmitted signal §; ;41 €
R™. Then all the transmitter signals are sent synchronously
over the uplink wireless channel to the parameter server.
Finally, the receiver applies the transformation g to recover
the sum of the model differential parameters Z?:l Si t+1. The
fading channel model and the transmitter/receiver processing
are described later in Section II-C and we re-emphasize that
this paper focuses on digital model communications through
AirComp.
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(4) Global aggregation. The server aggregates the received
local models summation ) ;- ; s; ;41 to generate a new global
ML model x4 ;.

1 n

X1 = Xt + o ; Sit+1
for any ¢ € [T]. For simplicity, we assume that each local
dataset has an equal size as the original design of FEDAVG
[1], which means choosing the equal weight for every client.
It is conceivable to extend the proposed method to unequal
weights by processing the dataset size info at the uploading
phase.

C. Communication over Fading Channels

We now elaborate on the upload communication phase in
the previous section, where each client ¢ aims at sending vector
Si,t+1 to the server over wireless fading channels. The illus-
tration of power control will be discussed in Section III-B. We
consider that the transmission of S; ;1 experiences a random
fading channel fluctuation h; ; for each of its d elements. This
assumption is valid when the underlying channel follows a
block fading model [14]. In this model, the channel remains
constant for a duration of at least d symbol periods, ensuring
that the coherence time is longer than d. After this duration,
the channel changes independently to another value following
its distribution, such as a Gaussian distribution.

Then all the signals are sent to the parameter server in
a superpositioned manner through AirComp, and we finally
have the received signal

n
Vit1 = Z hitSi 41 + 24 (5
i=1
where z; denotes an additive white Gaussian noise (AWGN)
vector with d independent Gaussian elements of mean zero
and variance Ng.

We assume each individual client has perfect channel state
information at the transmitter (CSIT) and a coherent receiver
with perfect channel state information at the receiver (CSIR).
Hence, the client can eliminate the effects of channel fading by
scaling the transmitted signal §; ;41 /h; ; before experiencing
the fading channel. Subsequently, the receiver computes an
unbiased estimate of the summation of s; ;11 as

n n
Yir1 = Z hit(8i41/hie) +2¢ = Z Sit+1 +2¢  (6)
i=1 i=1
The goal of this paper is to design an end-to-end commu-
nication system by an autoencoder that can restore the sum-
mation of model differential parameters, which is emphasized
with the red-dotted rectangle in Fig. 1.

D. Problems with Existing Constellations

In modern communication systems, the input signal is
digitized to enable efficient transmission. Information bits
are encoded and then modulated. Upon modulation, each
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Fig. 2: An example of overlapped constellation points.

symbol is represented by a complex number (chosen out of
a finite number of candidates), denoting a specific point in
the constellation space. The real and imaginary parts of the
complex number are mapped to the horizontal and vertical
axes, respectively. When multiple clients are involved in
AirComp, each client will have their individual constella-
tion (e.g., Quadrature Phase Shift Keying (QPSK)), and the
receiver ideally gets the sum of the constellations from all
involved clients. Unlike analog signals where the sum can be
represented as a real number, special attention must be given
to the signal constellation design to ensure accurate decoding
of the sum. It is crucial to avoid situations where a particular
point in the (sum) constellation corresponds to different sums.

In Fig. 2, we highlight an example of a signal constel-
lation for a QPSK modulation. In this example, there are
16 candidates for decoding (4 bits per symbol), and 12 of
them are overlapped with the other 5 constellation points,
indicated by the green markers. While most of the overlapped
points retain a unique sum of the two signals, ambiguity arises
for the midpoint, which can correspond to either 2 or 4,
making it impossible to determine the exact sum. We note that
such ambiguity would become more severe with higher-order
modulation and more clients, as the possible combination
grows exponentially.

To address this challenge, one approach is to manually
design the constellation to avoid ambiguity. However, as the
number of clients and the order of modulations increase,
the computational complexity of handcrafted designs quickly
becomes impractical. Thus, we explore the potential of em-
ploying autoencoder techniques to automatically design the
required constellations. This will be elaborated in the next
section.

III. END-TO-END COMMUNICATION SYSTEM

The key idea of the autoencoder-based communication
systems is to unify the transmitters, channel, and receiver via
jointly training the autoencoder network. Unlike traditional
autoencoders proposed for communication systems, our au-
toencoder aims to reproduce the total sum of its input as the
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output. In its most basic configuration, the communication
system comprises n transmitters, a channel, and a receiver, as
illustrated in Fig. 3.

Let the size of the model differential s; ;1 be d, and we re-
shape the parameters {s; ;+1}; to vectors {s; ;+1 € R4},
for each transmitter. In order to transmit the d-dimensional
source message to the server in the FL setting, a series of
processing steps are employed. First, we quantize the source
vector into discrete values, and then apply source coding
and modulation independently in each client. Once the server
receives the summation of transmitted signals from all the
clients through the over-the-air computation, demodulation
is performed to recover the sum of the quantized message,
and dequantization is applied to retrieve the original signal.
The modulation and demodulation operations are respectively
implemented by the encoders and the decoder utilized in our
approach, as shown in Fig. 3.

A. Quantization and Encoding

In ML models such as deep neural networks (DNN), the
model weights are typically represented in a 32-bit floating
point format. However, in FL settings, communication be-
tween devices can become a bottleneck due to the large size of
the transmitted messages. To address this issue, quantization
techniques can be applied to reduce the bit-width required
for each weight and, as a result, decrease the message size
for communication. The appropriate quantization method is
important but not the focus of this paper. Instead, we adopt
the effective FL. quantization method in [3]. Specifically, for a
full-precision weight s; ;1 1, a k-bits quantization is completed
via the following steps (to simplify the notation, we use x* to
represent S; ;41):

(1) Scale Up. Each element of x* is first amplified by a
scaling factor known as the quantization gain . This yields
the amplified value x!, = x’ * G. Typically, G is set as power
of 2, simplifying the implementation through bit shifting.

(2) Stochastic Rounding. The amplified value xfl is then
rounded to its integer part using stochastic rounding. The
rounding function R(-) selects either the upper bound [x! ]
or the lower bound |x!| with certain probabilities. More
formally, we have (w.p. is short for ‘with probability):

Xi _ LszJa
fios) {fxm,

(3) Limit. The range of the rounded integer value X% is
further restricted to k bits. Specifically, we have:

wp. 1 — (x, — [x;])

w.p. Xt — | x|

(N

if xi < —2k—1
x) = { xt, if xi e [-2F-1 2k-1 1] (8)

k=1 1, ifxi > 2kt 1

k—1
-2 ,

For example, if k = 2 bits, the quantized x} € [-2,—1,0,1].
(4) Scale Down. The receiver obtains the output Xoyiput by
scaling down the input Xnput : Xoutput = Xinput/G. Note
that this step is the dequantization process in the server.

To ensure that the quantized signal with k bits is compatible
with the autoencoder input during encoding, the quantized
signal x! is adjusted to start from O by adding a constant
number 2~ to it. This adjustment results in x} becomes to
x, €[0,1,2,3] when k is 2 bits.

B. Autoencoder

Since the number of bits per message xfl in the transmitter
i is denoted as k, each transmitter aims to convey a single
message from a set of M = 2F feasible messages, xfl eM =
{0,1,..., M — 1}V, to the receiver through m distinct uses
of the communication channel. In this paper, we use one-
hot encoded vectors as input to the encoder, which is an M-
dimensional vector with a single element being one and the
other elements being zero.

A complex signal consists of two real signals - one for
the real part I and one for the imaginary part (). To sim-
plify the analysis, we focus on the real-valued signals only.
Consequently, we map the complex domain of Cz™ to the m-
dimensional Euclidean space of R™. Therefore, the transmitter
applies f; : M — R™ to the message a:fl to generate the
transmitted signal s* = f(x;) € R™.

In typical communication systems, the hardware of the
transmitter applies power constraints to the transmitted signal
to maintain the system’s reliability and efficiency. Brianna et
al. discuss the impact of both hard and soft power constraints
on system performance [15]. In our work, we focus on the hard
constraint, whereby the transmitter is limited to a maximum
energy threshold of P for all signal constellation points, i.e.,
|s§\ < m Vj. Hence, the normalized signal

- 1 . 1 ;
st = |———5Psi= [———msl. )
TVERSP T VESP

The corresponding received SNR for the signal ¢ is
m
SNR; = N

where Ny is the variance of Gaussian noise z; in (5).

The communication rate of this communication system is
R = k/m bits per real channel use, where k = loga M.
Traditionally, the notation (m, k) means that each transmitter
sends one out of M = 2* messages (i.e., k bits) through m
real channel uses to the receiver. The normalized modulated
signals presented with I; and Q; in Fig. 3 pass through the
individual fading channel and are added together. The channel
is described in Section II-C, where y;11 € R™ denotes the
received signal.

Upon reception of y,,1, the receiver applies the transfor-
mation g : R™ — S to produce the estimate of the sum of the
transmitted message Z?:l Si.++1. Let S denote the set of all
feasible sums of messages xfl from a set of n transmitters in
a communication system. Consider, for instance, a communi-
cation system with n = 8 transmitters that sends a k = 2 bits
message. In this scenario, the exact set of possible values for
the summation is given by S = {0,1,...,8(M — 1)}, where
M = 2% = 4. The cardinality of S is 25, which represents the

(10)

5568

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 01,2024 at 13:55:55 UTC from IEEE Xplore. Restrictions apply.



Uplink (AirComp)

Fading

s

7=\
\ 7
Sne+1 %

n Encoders

One Possibility of
Sum Range

0.02 »C)\
—aB2 D\
8> ]
— 08—/

0.84—()"

oy

Softmax

J

U
1 Decoder

Fig. 3: End-to-end communication system realized with autoencoder.

total number of possible summations in this communication
system. Therefore, we set the last layer of g as a softmax
layer to ensure that the output activations form a probability
vector over M. Finally, the index with the highest probability
is chosen as one of the possibilities of the set S. A generic
architecture of the decoder is shown in Fig. 3.

C. Advanced Design for Higher-Order Modulations

In Section III-B, we present our label set S and define the
function representing the total possible sum. The number of
classes is determined by n(2* — 1) + 1, where n denotes the
number of clients. Consequently, as the number of bits in-
creases, the categories to be classified experience exponential
growth. This exponential increase in the number of classes
poses a significant challenge in accurately predicting a specific
class, particularly with higher-order modulations. To address
this challenge, we propose streamlining categorization, aiming
to enhance tolerance to errors by reducing the number of
classes. The subsequent paragraphs will provide a detailed
description of both methods. To facilitate our analysis, we set
n = 8 clients and k = 4 bits.

The motivation behind streamlining categorization is to
ensure the scalability of our autoencoders. By maintaining a
consistent number of classes, irrespective of the number of
bits per message, we can establish a standardized framework.
For instance, we can consider 25 classes equivalent to k = 2
bits. Recognizing the difficulty in accurately predicting all 121
possible 4-bit sums, we adopt a coarse-grained classification
approach. Specifically, we divide these 121 types into an aver-
age of 25 categories, with each category representing a range
of approximately five numbers centered around the median
value. While label errors exist, their impact on performance
is mitigated by quantization error, SGD noise, and channel
noise. Consequently, this method remains effective even in
adverse channel conditions characterized by a low SNR, a
finding supported by our experimental validation.

IV. EXPERIMENTAL RESULTS

A. Setup

We have carried out experiments to evaluate our method on
the popular dataset: CIFAR-10 [16] (60,000 images with 10

classes). We report experimental results for both IID datasets
and non-IID datasets with full client participation. In the
experiments, our autoencoder training is conducted at a fixed
SNR value of 7 dB (refer to Section III-B), utilizing the Adam
[17] optimization algorithm with a learning rate of 0.001. And
for the FL setting, we set m=8 clients.

We consider the following schemes in the experiments. (1)
Perfect_Comm: the ideal case with perfect communication.
(2) AE_opt SNR: our proposed method with different SNRs.
All of the reported results are obtained by averaging over five
independent runs

B. 2-bit Modulation

Fig. 4(a) shows our (2,2) autoencoder block error rate
(BLER), i.e., Top-1 classification error, versus the SNR.
And Fig. 4(b) shows the learned representations s of all
messages from 8 clients for the parameter of (2, 2) as complex
constellation points, i.e., the x- and y-axes correspond to the
first and second transmitted symbols, respectively. Notably,
the constellation designs for different clients exhibit significant
similarity, thus facilitating the success of random transmitter
selection when a subset of clients participate in the FL training
round.

ooq,
®000q,, oee 2
o,
%,

esee
DN u s wN e
°

Block Error Rate
0
.
o
.

75 100 125 150 175 200 -2 -1 0 1 2
SNR Range

(a) BLER vs. SNR

Fig. 4: Autoencoder results using parameters (2,2) with 8 clients.

(b) Constellation diagram

Subsequently, we apply the (2,2) autoencoder to the FL
setting. As depicted in Fig. 5(a), the proposed AE_opt
achieves close performance to Perfect_ Comm at SNR values
of 15 dB and even O dB, demonstrating the effectiveness of
our autoencoder. Even under extremely adverse conditions,
such as an SNR of -10 dB, the top-1 accuracy remains
relatively high, experiencing only a minor drop compared
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to Perfect_Comm. Additionally, when considering Non-IID
local datasets in Fig. 5(b), our AE_opt with an SNR of 15
dB maintains comparable performance to Perfect_ Comm. In
addition, we observe a decrease in accuracy as the number
of training rounds increases in the non-IID scenario. This
accuracy drop occurs because the range of model differentials
becomes smaller when the model is close to convergence.
Therefore, careful consideration must be given to the choice
of quantization gain. Interestingly, we find that using a larger
quantization gain in the later rounds improves performance,
resulting in better accuracy. This observation suggests that
adjusting the quantization gain during the training process can
help mitigate the accuracy degradation associated with non-
IID scenarios.

Testing Accuracy
2

Testing Accuracy
s o o

— Perfect_Comm
AE_opt 15 dB
03 —— AE_opt0dB
—— AE_opt-10dB.
02 —— AE_opt-20d8.

— Perfect_Comm
AE_opt 15 dB

—— AE_opt0dB

—— AE_opt-10d8

0 100 200 300 400 500 [ 100 200 300 400 500
Communication Rounds Communication Rounds

(a) IID (b) Non-1ID

Fig. 5: 2-bit modulation of CIFAR-10 results with IID and Non-IID
local datasets and full clients (8 clients) participation.

C. Higher-order Modulations

We conduct further validation of our advanced autoencoder
design specifically tailored for higher-order modulations, such
as 4 bits. To begin, we employ our streamlining categorization
method to train a (4,2) autoencoder. It is observed in Fig. 6
that AE_opt at an SNR of 15 dB demonstrates convergence
and achieves comparable performance for both IID and Non-
IID local datasets. These results provide empirical evidence to
support our previous hypothesis that the presence of labeling
errors can be mitigated by factors such as quantization error,
SGD noise, and channel noise, thus minimizing their impact
on FL performance. Remarkably, this method remains effec-
tive even under challenging channel conditions characterized
by a low SNR.

08 06
07
05

— Perfect_Comm

AE_opt 15 dB
—— AE_opt-20dB.
—— AE_opt-25d8.

s o
4

Testing Accuracy
Testing Accuracy

— Perfect_Comm

AE_opt 15 dB
—— AE_opt-20dB
— AE_opt-25d8

°

0 100 200 300 400 500 [ 100 200 300 400 500
Communication Rounds Communication Rounds

(a) IID (b) Non-1ID

Fig. 6: 4-bit modulation of CIFAR-10 results with IID and Non-IID
local datasets and full clients (8 clients) participation.

V. CONCLUSION

We have proposed a novel end-to-end communication sys-
tem that utilizes AirComp for digital transmission, with the
objective of accurately decoding the sum within the constella-
tion design. Through the incorporation of autoencoder network

structures and the joint optimization of transmitter and receiver
components, our approach effectively addresses the challenges
associated with deploying AirComp techniques in the context
of digital modulation-based wireless communications. The
implications of our research hold significant importance for
the field of wireless FL, as we establish a robust foundation
for future investigations and provide practical insights into
enhancing the efficiency and scalability of FL in wireless
environments. Our experimental results demonstrate that our
AE_opt achieves near-perfect communication performance in
high SNR scenarios. Furthermore, the performance of AE_opt
can be further improved by refining the autoencoder design
for higher-order modulations.
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