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1. Introduction

In Hilbert’s 1900 address at the International Congress of Mathematicians, he claimed 

that the Riemann zeta function is not the solution of any algebraic ordinary differential 

equation on its region of analyticity [5]. In [9], Van Gorder addresses the question of 

whether the Riemann zeta function satisfies a non-algebraic differential equation. As 

Van Gorder notes in the introduction of [9], it could be the case that ζ(z) satisfies a 

nonlinear differential equation or that it satisfies a linear differential equation of infinite 

order.1 In [9], Van Gorder constructs a differential equation of infinite order that the 

Riemann zeta function satisfies [7]. However, as he notes in the paper, this represen-

tation is clearly formal and Van Gorder does not attempt to claim a region or type of 

convergence.2

In what follows we will examine the region of convergence for the differential equation 

in question. We will also extend the formal identity appearing in Van Gorder’s work to 

see that the Hurwitz zeta function satisfies a similar differential equation.

In Section 2.1 we will begin with a brief overview of the differential operator introduced 

by Van Gorder. In Sections 2.2 and 2.3 we will extend Van Gorder’s main results to 

show that the Hurwitz zeta function formally satisfies a similar infinite order differential 

equation to the one in [9]. These results subsume those of Van Gorder. In Section 2.4 we 

will address the issue of where such equations converge. We will show that, in fact, the 

differential equation under investigation in [9] diverges everywhere.

We will see through the course of Section 2 that the formal arguments given by Van 

Gorder rely on a non-global characterization of his operator T that only holds away 

from poles of the function on which it is being applied. If we define a new operator G

in terms of this characterization globally, we can guarantee convergence. However, this 

new operator G is not a differential operator and furthermore does not converge to Van 

Gorder’s operator T . We will investigate this new operator G in Section 3.

In Section 3.2 we will extend Van Gorder’s argument to yield an operator equation 

involving G applied to Dirichlet L-functions. We will see that the inverse T −1 that Van 

Gorder presents in [9] actually yields G−1. In Section 4 we make precise Van Gorder’s 

claim that this inverse operator has a connection to the Bernoulli numbers, and in 

Section 4.1 we will use this connection to give identities for the Hurwitz zeta function 

and Dirichlet L-function and discuss the convergence of G−1.

In Section 5, we examine the truncated version of the operator T . Though T does not 

converge when applied to ζ, it is possible that some truncation of T applied to ζ will 

provide a good approximation of Van Gorder’s differential equation.

1 In fact, in [4], Gauthier and Tarkhanov show that ζ(s) does satisfy an inhomogeneous linear differential 
equation. However, this equation is not algebraic.

2 Though he does allude to some important things to be considered in Section 2 of [9].
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2. Van Gorder’s operator applied to the Hurwitz zeta function

2.1. Van Gorder’s operator

The differential operator defined by Van Gorder in [9] is given by:

T =
∞
∑

n=0

Ln (1)

where

Ln := pn(s) exp(nD)

pn(s) :=

{

1 if n = 0
1

(n+1)!

∏n−1
j=0 (s + j) if n > 0

exp(nD) := id +

∞
∑

k=1

nk

k!
Dk

s

for Dk
s := ∂k

∂sk . For an overview of infinite order differential equations see Charmichael’s 

[3] and for more recent applications involving infinite order differential equations with 

initial conditions see [2].

Van Gorder notes that exp(nD) acts as a shift operator for meromorphic functions 

in the sense that exp(nD)u(s) = u(s + n) sufficiently far away from poles. However, 

he does not attempt to answer the question of precisely what is “sufficiently far away 

from poles” but instead references Ritt’s [6]. As we will see in Section 2.4.1, the operator 

that Ritt considers, exp(D), (though of infinite order) is simpler than Van Gorder’s 

T =
∑∞

n=0 pn(s) exp(nD). Thus more work is necessary to address the convergence of T

than is done by Ritt [6].

In [9], Van Gorder proves that

T [ζ(s) − 1] =
1

s − 1
(2)

formally. The crux of the proof relies upon the characterization of exp(nD) as the “shift 

operator”. In the following two sections, we prove that the Hurwitz zeta function satisfies 

a similar equation

T

[

ζ(s, a) −
1

as

]

=
1

(s − 1)as−1
. (3)

Our argument is akin to that of Van Gorder’s.

It is important to note that in the proof of Corollary 4 we are assuming that 

exp(nD)u(s) = u(s + n) when claiming
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Ln

[

ζ(s, a) −
1

as

]

= pn(s)

(

ζ(s + n, a) −
1

as+n

)

(4)

This assumption is also made at a similar place in [9]. However since this is only true 

“sufficiently far away from the poles” of u, this leads to the natural question of where

(2) and (3) hold. We will begin to address this question by examining the convergence 

of the differential operator T in Section 2.4.

2.2. A useful identity for the Hurwitz zeta function

In order to show that ζ formally solves the differential equation (2), Van Gorder uses 

the following identity

ζ(s) =
s

s − 1
−

∞
∑

n=1

∏n−1
j=0 (s + j)

(n + 1)!
(ζ(s + n) − 1) (5)

which can be found in [1] and [8]. Following the argument of Titchmarsh [8], we need to 

generalize the identity to the Hurwitz zeta function.

Lemma 1. Let ζ(s, a) be the Hurwitz zeta function. Then, for Re(s) > 2 and 0 < a ≤ 1, 

we have that

ζ(s, a) −
1

(s − 1)as−1
=

1

as
−

∞
∑

n=1

∏n−1
j=0 (s + j)

(n + 1)!

(

ζ(s + n, a) −
1

as+n

)

(6)

Proof. Let s ∈ C satisfy Re(s) > 2. We can then write the Hurwitz zeta as a series and 

it suffices to show that the series

∞
∑

k=1

∞
∑

n=1

∏n−1
j=0 (s + j)

(n + 1)!

(

1

(k + a)s+n

)

(7)

converges absolutely pointwise to 1
(s−1)as−1 + 1

as − ζ(s, a), since this will mean that we 

can interchange the order of summation by Fubini’s Theorem. To see why we get such 

result, observe that from geometric series we have that for an integer k ≥ 0,

(

k + a

k + a − 1

)s−1

=

(

1

1 − 1
k+a

)s−1

=
∞
∑

n=0

∏n−1
j=0 (s − 1 + j)

n!

1

(k + a)n

=

∞
∑

n=0

∏n−2
j=−1(s + j)

n!

1

(k + a)n
(8)
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where the last series is absolutely convergent since by the triangle inequality and geo-

metric series, we have

∞
∑

n=0

∣

∣

∣

∣

∣

∏n−2
j=−1(s + j)

n!

1

(k + a)n

∣

∣

∣

∣

∣

≤
∞
∑

n=0

∏n−2
j=−1(|s| + j)

n!

1

(k + a)n
=

(

k + a

k + a − 1

)|s|−1

By absolute convergence, 1
(k+a)s−1(s−1)

∑∞
n=2

∏n−2
j=−1(s+j)

n!
1

(k+a)n is precisely the kth term 

of the left summation of (7). But this is the same as the expression 1
(k+a)s−1(s−1) ×

[

(

k+a
k+a−1

)s−1

− 1 − s−1
k+a

]

and we have that

1

(s − 1)as−1
+

1

as
− ζ(s, a) =

1

(s − 1)as−1
−

∞
∑

k=1

1

(k + a)s

=
1

s − 1

∞
∑

k=0

1

(k + a)s−1
−

∞
∑

k=1

1

(k + a)s
−

1

s − 1

∞
∑

k=1

1

(k + a)s−1

Since these three series converge absolutely, we can re-index the leftmost series and get 

that this is equal to an absolutely convergent series given by

∞
∑

k=1

(

1

(s − 1)(k − 1 + a)s−1
−

1

(s − 1)(k + a)s−1
−

1

(k + a)s

)

=
∞
∑

k=1

1

s − 1
·

1

(k + a)s−1

[

(

k + a

k + a − 1

)s−1

− 1 −
s − 1

k + a

]

Which is an absolutely convergent series and gives the desired result. �

In a more elegant way, we can express this identity in terms of the Γ function using 

the fact that Γ(s+n)
Γ(s) =

∏n−1
j=0 (s + j) for s ∈ C, n ∈ N. Equation (1) then becomes:

ζ(s, a) −
1

(s − 1)as−1
=

1

as
−

∞
∑

n=1

Γ(s + n)

(n + 1)!Γ(s)

(

ζ(s + n, a) −
1

as+n

)

(9)

We now show that this identity holds for all s ∈ C.

Lemma 2. The right-hand side of equation (6) in Lemma 1 converges absolutely for all 

s ∈ C.

Proof. We first need to treat a delicate point. That is, equation (6) is well-defined when 

s + n = 1 for some integer n ≥ 0. Namely, for such n, it makes sense to have the nth

term of the sum be 
∏n−1

j=0 (s+j)

(n+1)!

(

ζ(s + n, a) − 1
as+n

)

. Since (s + n − 1)ζ(s + n, a) cancels 
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the pole of the Hurwitz ζ at s + n and s + n − 1 appears as the last term in 
∏n−1

j=0 (s + j), 

the series is well-defined.

To show convergence, let s ∈ C and let N > 0 be an integer so that Re(s + N) > 1. 

It suffices to show that

∞
∑

n=N

∏n−1
j=0 (s + j)

(n + 1)!

(

ζ(s + n, a) −
1

as+n

)

converges absolutely. First, we bound 
∣

∣ζ(s + n, a) − 1
as+n

∣

∣. Since, n ≥ N , we have that 

Re(s + n) ≥ Re(s + N) > 1. By the triangle inequality and by the integral inequality for 

non-negative series, we can write

∣

∣

∣

∣

ζ(s + n, a) −
1

as+n

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=1

1

(k + a)s+n

∣

∣

∣

∣

∣

≤
∞
∑

k=1

∣

∣

∣

∣

1

(k + a)s+n

∣

∣

∣

∣

=
∞
∑

k=1

1

(k + a)σ+n

≤
1

(1 + a)σ+n
+

∞
∫

1

1

(x + a)σ+n
dx

=
1

(1 + a)σ+n
+

1

σ + n − 1
·

1

(1 + a)σ+n

=
σ + n

σ + n − 1
·

1

(1 + a)σ+n
≤

σ + n

σ + n − 1
·

1

2σ+n

In addition, observe that 
∣

∣

∣

∏n−1
j=0 (s + j)

∣

∣

∣
≤
∏n−1

j=0 (|s| + j). We then have that

∞
∑

n=N

∣

∣

∣

∣

∣

∏n−1
j=0 (s + j)

(n + 1)!

(

ζ(s + n, a) −
1

as+n

)

∣

∣

∣

∣

∣

≤
∞
∑

n=N

∏n−1
j=0 (|s| + j)

(n + 1)!
·

σ + n

σ + n − 1
·

1

2σ+n

Now since 
∑∞

n=N

∏n−1
j=0 (|s|+j)

(n+1)! · 1
2|s|+n converges and

lim
n→∞

2|s|+n(σ + n)

2σ+n(σ + n − 1)
= 2|s|−σ

by the Limit Comparison test, 
∑∞

n=N

∏n−1
j=0 (|s|+j)

(n+1)! · σ+n
σ+n−1 · 1

2σ+n must also converge. Thus, 
∑∞

n=N

∏n−1
j=0 (s+j)

(n+1)!

(

ζ(s + n, a) − 1
as+n

)

converges absolutely. �
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Since our series converges absolutely for all s ∈ C, we must have that our identity in 

Lemma 1 actually holds for all s ∈ C \ {1}. Thus, we have the following corollary.

Corollary 3. For all s ∈ C \ {1}, we have the following identity

ζ(s, a) =
1

(s − 1)as−1
+

1

as
−

∞
∑

n=1

∏n−1
j=0 (s + j)

(n + 1)!

(

ζ(s + n, a) −
1

as+n

)

�

Following Van Gorder’s use of equation (5) in [9], we will use equation (6) to show 

that (3) holds formally.

2.3. The Hurwitz zeta function formally satisfies a differential equation

Now we will show that the Hurwitz zeta function formally satisfies the differential 

equation (3). This result is a generalization of Theorem 3.1 from [9].

Corollary 4. Let T be as defined above. Then ζ(s, a) formally satisfies the differential 

equation

T

[

ζ(s, a) −
1

as

]

=
1

(s − 1)as−1

for s ∈ C satisfying s + n �= 1 for all n ∈ Z≥0.

Proof. Using equation (4)

Ln

[

ζ(s, a) −
1

as

]

= pn(s)

(

ζ(s + n, a) −
1

as+n

)

we have

T

[

ζ(s, a) −
1

as

]

=
∞
∑

n=0

Ln

[

ζ(s, a) −
1

as

]

=

∞
∑

n=0

pn(s)

(

ζ(s + n, a) −
1

as+n

)

= ζ(s, a) −
1

as
+

∞
∑

n=1

∏n−1
j=0 (s + j)

(n + 1)!

(

ζ(s + n, a) −
1

as+n

)

=
1

(s − 1)as−1
�
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2.4. Convergence

In this section we will show that T applied to the Hurwitz zeta function does not 

converge. However, for certain analytic functions f , we see in Section 2.4.2 that Tf does 

converge.

2.4.1. Convergence of T when applied to the Hurwitz zeta-function

As Van Gorder notes on page 781 of [9], “we must exercise some caution when working 

with infinite order differential equations if we are concerned with convergence of the 

operators near poles of the functions being operated upon.” As a basis for this concern 

the author alludes to [6] where Ritt establishes formally that (exp(D) − z)Γ(z) = 0. 

Ritt notes that Γ does not satisfy this differential equation on all of C but away from 

the infinitely many poles of Γ. Of course, in the case of the Riemann zeta function and 

Hurwitz zeta function, we only have one pole to be concerned about. As Van Gorder 

states, the operator exp(D) is only valid “outside of a neighborhood of the pole at z = 1.” 

Our goal is to investigate which neighborhood and examine its effect on the convergence 

of the operator T as it is applied to zeta functions. In what follows we will consider T

applied to the Hurwitz zeta function since (when a = 1) it also covers the case of the 

Riemann zeta function.

Recall that in the proof of Corollary 4, our use of equation (4) relies upon the char-

acterization of exp as the shift operator exp(nD)[ζ(s, a)] = ζ(s + n, a) for s ∈ C and 

0 < a ≤ 1 away from the poles of ζ. This characterization comes from the Taylor series 

expansion for ζ; thus, we must consider the radius of convergence of the Taylor series 

when considering when this characterization holds.

The critical observation is that this operator is, formally, the Taylor series about a 

point s ∈ C evaluated at z ∈ C. Namely, the formal Taylor series is

ζ(z, a) −
1

az
=

∞
∑

k=0

Dk
s

(

ζ(s, a) − 1
as

)

k!
(z − s)k (10)

which, at the point s + n for n ∈ Z≥0, will formally satisfy

ζ(s + n, a) −
1

as+n
=

∞
∑

k=0

Dk
s

(

ζ(s, a) − 1
as

)

k!
nk = exp(nD)[ζ(s, a)] (11)

Since ζ(z, a) has a pole at z = 1, these series converge pointwise for |z − s| < |s − 1| and 

|(s + n) − s| = |n| < |s − 1|.

We claim that this operator applied to the function ζ(s, a) − 1
as does not converge 

pointwise anywhere. More explicitly for any s ∈ C, the sequence of partial sums of the 

series T
[

ζ(s, a) − 1
as

]

is not a well-defined sequence of complex numbers. This comes 

from the fact that, to have a well-defined a complex-valued series, we need, first, a 

sequence of complex numbers (zn)∞
n=0 so we can define the sequence of partial sums 
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SN =
∑N

n=0 zn which is, again, a sequence of complex numbers. Then, if the sequence 

of partial sums converges to a complex number S, we write 
∑∞

n=0 zn = S. What we will 

show now is that, for any s ∈ C, the definition of the operator T evaluated at ζ(s, a) − 1
as

fails this first step by failing to make a sequence of complex numbers.

Proposition 5. For any s ∈ C, we can find some N ≥ 0 so that the series

exp(ND)

[

ζ(s, a) −
1

as

]

=
∞
∑

k=0

Dk
s

(

ζ(s, a) − 1
as

)

k!
Nk

diverges.

Proof. Let s ∈ C. If s = 1, then, the term at k = 0 of series (10) evaluated at z = 1 is 

undefined, so the series is not well-defined. In this case, N = 0 satisfies our claim.

To complete our proof, let s �= 1. By Taylor’s Theorem, there is a radius of convergence 

r ≥ 0 so that the series (10) converges absolutely when evaluated at z ∈ C satisfying 

|z − s| < r. In addition, it must diverge when evaluated at z ∈ C satisfying |z − s| > r. 

Now, since ζ(z, a) has a pole at z = 1, we have that series (10) cannot converge when 

evaluated z = 1. Thus, we must have that |s − 1| ≥ r.

Let N > 0 satisfy |s + N − s| = N > |s − 1| > r. Then, we have that the series (35) 

evaluated at z = s + N

ζ(s + N, a) −
1

as
=

∞
∑

k=0

Dk
s

(

ζ(s, a) − 1
as

)

k!
Nk = exp(ND)

[

ζ(s, a) −
1

as

]

must be divergent. So we have found the desired N ≥ 0. �

Lemma 6. For s ∈ Z≥0 and n > 0, pn(s) �= 0. Specifically, pn(s) ≥ 1
(s−1)!(n+1) for 

s ∈ Z>0 and n > 0.

Proof. For s = 0, notice that for n > 1, pn(0) = (n−1)!
(n+1)! = 1

n(n+1) �= 0. Now, let s ∈ Z>0. 

Observe that, for all n > 0, we have pn(s) = (s+n−1)!
(s−1)!(n+1)! ≥ (1+n−1)!

(s−1)!(n+1)! = 1
(s−1)!(n+1) �=

0. �

Lemma 7. For s ∈ Z<0 and n ≥ 1 − s, pn(s) = 0.

Proof. Let s ∈ Z<0. For n > 1, pn(s) = 1
(n+1)!

∏n−1
j=0 s + j. Note that 1 − s ∈ Z≥0 and 

so for N := 1 − s,

N−1
∏

j=0

s + j = (s + N − 1)(s + N − 2) . . . (s + 2)(s + 1) · s

= (s + 1 − s − 1)(s + 1 − s − 2) . . . (s + 2)(s + 1) · s = 0
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Thus for each n ≥ N , pn(s) = 0. �

Theorem 8. T
[

ζ(s, a) − 1
as

]

=
∑∞

n=0 pn(s) exp(nD) 
[

ζ(s, a) − 1
as

]

diverges for all com-

plex numbers s ∈ C.

Proof. From Proposition 5, since for all s ∈ C and all n ≥ 0, we can find N ≥ 0 so that 

pN (s) exp(ND)[ζ(s, a) − 1
as ] is divergent whenever pn(s) �= 0. Since pn can be defined in 

terms of the Γ-function as in equation (9), pn(s) can only be equal to zero if s ∈ Z<0.

Assume that s ∈ Z<0. By Lemma 7, for n ≥ 1 − s, pn(s) = 0. By Proposition 5, there 

is some N ≥ 0 so that exp(ND) 
[

ζ(s, a) − 1
as

]

diverges. If N < 1 − s, then pN (s) �= 0

and pN (s) exp(ND) 
[

ζ(s, a) − 1
as

]

diverges as above.

If s ∈ Z<0 and N ≥ 1 − s, then pN (s) = 0. However, 0 · exp(ND) 
[

ζ(s, a) − 1
as

]

is also 

not a complex number since exp(ND) 
[

ζ(s, a) − 1
as

]

diverges.

Recall that T =
∑∞

n=0 pn(s) exp(nD). Then, for any s ∈ C, we can find some N ≥ 0

so that the Nth partial sum of T [ζ(s, a) − 1
as ],

N
∑

n=0

pn(s) exp(nD)

[

ζ(s, a) −
1

as

]

is not a complex number. Thus, we cannot define the series T [ζ(s, a) − 1
as ] at any such 

points s. We conclude the series does not converge in C. �

2.4.2. Convergence of T in a general setting

We now wish to discuss the convergence of T in a more general setting. To do so, 

we first look at T applied to the constant function with the goal of understanding the 

behavior of the series 
∑∞

n=0 pn(s) for s ∈ C.

Lemma 9. For s ∈ Z>0, the series 
∑∞

n=0 pn(s) diverges, and for s ∈ Z≤0, the series 
∑∞

n=0 pn(s) converges.

Proof. Let s ∈ Z>0. From Lemma 6, for all n > 0, we have pn(s) ≥ 1
(s−1)!(n+1) . Then, 

by series comparison, we have that, since 
∑∞

n=1
1
n

diverges, then 
∑∞

n=1
1

(s−1)!(n+1) also 

diverges. By comparison with 
∑∞

n=1
1

(s−1)!(n+1) , the series 
∑∞

n=1 pn(s) diverges.

For s = 0, notice that for n > 1, pn(0) = (n−1)!
(n+1)! = 1

n(n+1) and so 
∑∞

n=0 pn(0)

converges. By the proof of Lemma 7, for s ∈ Z<0 and N = 1 −s, we have 
∏N−1

j=0 s +j = 0. 

Thus for each n ≥ N , pn(s) = 0 and so the series 
∑∞

n=0 pn(s) converges for s ∈ Z<0. �

It is more difficult to determine what happens outside of Z.

Corollary 10. For s ∈ R with s > 1, the series 
∑∞

n=0 pn(s) diverges.
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Proof. Let s ∈ R satisfy s ≥ 1. First, observe that, for all integers j ≥ 0, we also have 

that s + j ≥ 1 + j. This means that pn(s) ≥ pn(1) and since, by Lemma 9, 
∑∞

n=1 pn(1)

diverges we have that, by series comparison, 
∑∞

n=1 pn(s) also diverges. �

Corollary 11. For s ∈ C with Re(s) > 1, the series 
∑∞

n=0 pn(s) does not converge abso-

lutely.

Proof. Let s ∈ C satisfy Re(s) ≥ 1. For all integers j ≥ 0, note that |s + j| ≥ 1 + j. 

This means that |pn(s)| ≥ |pn(1)| and since, by Lemma 9, 
∑∞

n=1 |pn(1)| diverges we have 

that, by series comparison, 
∑∞

n=1 |pn(s)| also diverges. �

We can guarantee convergence when restricting to L1(R≥0). First, we need to gener-

alize pn(s). Writing it as p(n, s) := pn(s) and observing that, for all integers n ≥ 0, we 

have that p(n, s) = Γ(s+n)
Γ(n+1)Γ(s) , we can make sense of p(n, s) when n is any real num-

ber. We first define the set U = {s ∈ C : s �= n for all n ∈ Z<0}. We, then, consider 

p : R≥0 × U → C given by p(x, s) = Γ(s+x)
Γ(x+1)Γ(s) , which makes sense for all x ∈ R≥0 and 

all s ∈ U .

Proposition 12. If f : C → C is analytic with radius of convergence equal to +∞ and 

if we have that, for all s ∈ U , the function p(·, s)f(· + s) is in L1(R≥0), then T [f ](s)

converges absolutely for all s ∈ U .

Proof. Let s ∈ U . By assumption, 
∫∞

0
|p(x, s)f(x + s)|dx < ∞. Then, by the integral 

test for series, 
∑∞

n=0 |pn(s)f(s + n)| must converge, as desired. �

This means that, in such cases, we can define a function g : U → C given by g(s) =

T [f ](s). Our next result seeks to give a sufficient condition for uniform convergence.

Proposition 13. If f : C → C is analytic on all of C with radius of convergence equal to 

+∞ and if there are constants a, b ∈ R ∪ {−∞} and c ∈ R ∪ {+∞} with b < c so that, 

when we consider the set U := {z ∈ C : Re (z) ∈ (a, ∞) and Im(z) ∈ (b, c)}, we have that 
∑∞

n=0 ||pn(s)f(s + n)||C∞(U) converges, then T [f ] converges uniformly to a continuous 

function g : U → C.

Proof. Let s ∈ C. Since f is analytic with radius of convergence equal to +∞, for all 

integers n > 0, we have that 
∑∞

k=0
f ′(s)

k! nk converges to f(s + n) by Taylor’s theorem. 

Then, we have that for each s ∈ U ,

|pn(s) exp(nD)[f(s)]| = |pn(s)f(n + s)| ≤ ||pn(s)f(n + s)||C∞(U)

and
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|T [f ](s)| =

∣

∣

∣

∣

∣

∞
∑

n=0

pn(s) exp(nD)[f ](s)

∣

∣

∣

∣

∣

≤
∞
∑

n=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn(s)

(

lim sup
K→∞

K
∑

k=0

f ′(s)

k!
nk

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C∞(U)

=
∞
∑

n=0

||pn(s)f(s + n)||C∞(U) < ∞

By the Weierstrass M-test, we have that 
∑∞

n=0(pn(·) exp(nD)[f(·)])
∣

∣

U
converges uni-

formly to a continuous function g : U → C. �

We can have an analogous result when U = {z ∈ C : Re(z) ∈ [a, ∞) and Im(z) ∈ [c, b]}

as well as when Im(z) is in a half-open interval.

3. Generalizing Van Gorder’s operator

The main reason the operator T is not well-defined when applied to ζ is because ζ

is not analytic and so the radius of convergence of its Taylor series expansion is not 

+∞. Specifically, the problem is that for all s ∈ C, we can find some N > 0 for which 

exp(nD)[ζ(s, a)] will not be convergent. However, when treating the operator exp(nD)

as the shift operator, formally, we are able to show that (2) and (3) hold. With that in 

mind, we define an operator G, which agrees with T on analytic functions with radius 

of convergence equal to +∞ but which can be applied to a wider range of functions.

Let M be the collection of meromorphic functions on C and f ∈ M. Define G : M →

M by

G[f ](s) =

∞
∑

n=0

pn(s)f(s + n) (12)

For this operator to be well-defined, we do not require that f be differentiable, a 

significant gain from the definition of T . Note that G agrees with T on analytic functions. 

Thus G satisfies a version of Proposition 12 and Proposition 13. The assumption that f

be analytic may be weakened in such versions.

When G is applied to ζ(s, a), we recover the identity (6) in Lemma 1 and we conclude 

that G[ζ(·, a)] converges pointwise to a continuous function defined on C \ {1}.

3.1. Using G to get an identity for the ζ-function

Recalling our discussion of T , observe that when we evaluate exp(nD)
[

ζ(−m, a) −
1

a−m

]

for m > 0 and n ≥ 0 integers, we have convergence of the Taylor series whenever 

n ≤ m because | − m + n − (−m)| = n < | − m − 1| = m + 1 and because m + 1 is the 

radius of convergence of such series as we discussed in Section 2.4.1. In addition, from 

the proof of Lemma 7, pn(−m) = 0 for n > m. In addition, by the fact that the pole of 

ζ(s, a) at s = 1 has residue 1, we have that

lim
s→−m

(s + m)ζ(s + m + 1, a) = 1
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and, thus,

lim
s→−m

pm+1(s)ζ(s + m + 1) =
pm(−m)

m + 2

This gives us the following equality for m > 0 an integer, by (2), by our discussion 

above and by continuity.

−
am+1

m + 1
=

m
∑

n=0

pn(−m)

(

ζ(−m + n, a) −
1

a−m+n

)

+
pm(−m)

m + 2

=
pm(−m)

m + 2
+

m
∑

n=0

pn(−m)

[

ζ(−m, a) −
1

a−m
+

∞
∑

k=1

nk

k!
Dk

s

[

ζ(−m, a) −
1

a−m

]

]

=
pm(−m)

m + 2
+

m
∑

n=0

pn(−m)

[

ζ(−m, a) −
1

a−m

+
∞
∑

k=1

nk

k!

[

ζ(k)(−m, a) − (log(a))kam
]

]

=
pm(−m)

m + 2
+

[

ζ(−m, a) −
1

a−m

] m
∑

n=0

pn(−m)

+
∞
∑

k=1

1

k!

[

ζ(k)(−m, a) − (log(a))kam
]

m
∑

n=0

nkpn(−m)

The interchange between the finite sum and the series is justified by the absolute 

convergence of Taylor series within its radius of convergence. When we look at the zeta 

function, we get an interesting identity using the trivial zeros of the zeta function and 

the definition of pn(−m).

Theorem 14. For m > 0 an integer, we have that

−
1

2m + 1
=

1

2m + 1
−

2m
∑

n=0

1

(n + 1)!

n−1
∏

j=0

(−2m + j)

+

∞
∑

k=1

1

k!
ζ(k)(−2m)

2m
∑

n=1

nk

(n + 1)!

n−1
∏

j=0

(−2m + j)

and that, for m ≥ 0,

−
1

2m + 2
= −

1

2m + 2
−

2m+1
∑

n=0

1

(n + 1)!

n−1
∏

j=0

(−2m + j)

+
∞
∑

k=0

1

k!
ζ(k)(−2m − 1)

2m+1
∑

n=1

nk

(n + 1)!

n−1
∏

j=0

(−2m − 1 + j) �
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3.2. Applying G to Dirichlet L-functions

Corollary 3 can be reframed in terms of the operator G so that the equation corre-

sponding to (3) does not only hold formally. Furthermore, Van Gorder’s original result 

may also be extended to provide an operator equation involving Dirichlet L-functions.

Proposition 15. Let G be the operator defined above. Then, for a Dirichlet character χ

mod k, and for s ∈ C \ {1}, we have that,

G

[

ksL(s, χ) −

k
∑

r=1

χ(r)
ks

rs

]

=
ks−1

s − 1

k
∑

r=1

χ(r)

rs−1
(13)

Proof. Let χ be a Dirichlet character. From the definition of G,

G

[

ksL(s, χ) −
k
∑

r=1

χ(r)
ks

rs

]

=
∞
∑

n=0

pn(s)

(

ksL(s + n, χ) −
k
∑

r=1

χ(r)
ks+n

rs+n

)

(14)

But we know that, for χ a character mod k,

L(s, χ) = k−s

k
∑

r=1

χ(r)ζ(s, r/k) (15)

Thus, (14) becomes,

∞
∑

n=0

pn(s)

(

ksk−s

k
∑

r=1

χ(r)ζ(s + n, r/k) −

k
∑

r=1

χ(r)
ks+n

rs+n

)

=
∞
∑

n=0

pn(s)

[

k
∑

r=1

(

χ(r)ζ(s + n, r/k) − χ(r)
ks+n

rs+n

)

]

=

∞
∑

n=0

k
∑

r=1

[

χ(r)pn(s)

(

ζ(s + n, r/k) −
ks+n

rs+n

)]

Now, since 
∑∞

n=0 pn(s) 
(

ζ(s + n, r/k) − ks+n

rs+n

)

converges absolutely by Lemma 2, we can 

change the order of summation to get,

k
∑

r=1

χ(r)
∞
∑

n=0

[

pn(s)

(

ζ(s + n, r/k) −
ks+n

rs+n

)]

(16)

But, by Corollary 2, we have that the last summation equals ks−1

(s−1)rs−1 for r = 1, .., k

and (16) becomes
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k
∑

r=1

χ(r)
ks−1

(s − 1)rs−1
=

ks−1

s − 1

k
∑

r=1

χ(r)

rs−1

as desired. �

This gives us an identity of Dirichlet L-functions. Namely, for χ a character mod k, 

we have

L(s, χ) −
k
∑

r=1

χ(r)

rs
=

1

k(s − 1)

k
∑

r=1

χ(r)

rs−1

−
1

ks

∞
∑

n=1

∏n−1
j=0 (s + j)

(n + 1)!

(

ks+nL(s + n, χ) −
k
∑

r=1

χ(r)
ks+n

rs+n

)

3.3. Relating G−1 to the Hurwitz ζ and to Dirichlet L-functions

In [9], Van Gorder defines an inverse operator to T . We see in his proof of Theorem 

4.1 that Van Gorder’s definition of T −1 was the inverse operator for T he did not use the 

definition of exp(nD) but rather the characterization that it is a shift operator. Thus, 

we may use this construction to define an inverse operator to G, which we denote G−1. 

Let f be a complex valued function. Then G−1 is given by

G−1[f ](s) =
∞
∑

n=1

qn(s)f(s + n) (17)

Where q0(s) = 1 and qn(s) = − 
∑n−1

k=0 qk(s)pn−k(s + k). The formal proof that this 

operator is the inverse of G is given by Van Gorder in the proof of Theorem 4.1 in [9]. 

However, this argument does not give reference to where this inverse converges. We will 

address this question in Section 4.1, but first we will make clear the relationship between 

G and the Bernoulli numbers which Van Gorder alluded to in [9].

4. Relationship to Bernoulli numbers

In his paper, Van Gorder alludes to a relationship between the qn(s) and Bernoulli 

numbers. We now provide a proof of such relationship.

Proposition 16. For all integers n ≥ 0 and all s ∈ C, we have the identity

qn(s) =
Bn

n!

n−1
∏

j=0

(s + j)

Where Bn denotes the nth Bernoulli number.
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Proof. We proceed with strong induction on n.

For n = 0, q0(s) = 1 = B0

0! . Suppose that we proved our claim for all 0 ≤ k ≤ n − 1

for some n − 1 ≥ 0. We prove it for n. By the strong induction hypothesis and by the 

definition of pn(s), we have that, for all s ∈ C

qn(s) = −

n−1
∑

k=0

qk(s)pn−k(s + k)

= −
n−1
∑

k=0

⎡

⎣

⎛

⎝

Bk

k!

k−1
∏

j=0

(s + j)

⎞

⎠

⎛

⎝

1

(n + 1 − k)!

n−k−1
∏

j=0

(s + k + j)

⎞

⎠

⎤

⎦

= −
n−1
∑

k=0

⎡

⎣

⎛

⎝

Bk

k!(n + 1 − k)!

k−1
∏

j=0

(s + j)

⎞

⎠

n−1
∏

j=k

(s + j)

⎤

⎦

= −

n−1
∑

k=0

⎡

⎣

Bk

k!(n + 1 − k)!

n−1
∏

j=0

(s + j)

⎤

⎦

=

⎛

⎝

n−1
∏

j=0

(s + j)

⎞

⎠

(

−

n−1
∑

k=0

Bk

k!(n + 1 − k)!

)

=

⎛

⎝

n−1
∏

j=0

(s + j)

⎞

⎠

(

−

n−1
∑

k=0

(

n + 1

k

)

Bk

(n + 1)!

)

Since the Bernoulli numbers have the recursive formula B0 = 1 and (n + 1)Bn =

− 
∑n−1

k=0

(

n+1
k

)

Bk for n > 0, we conclude that

qn(s) =
1

(n + 1)!

⎛

⎝

n−1
∏

j=0

(s + j)

⎞

⎠

(

−
n−1
∑

k=0

(

n + 1

k

)

Bk

)

=
(n + 1)

(n + 1)!
Bn

n−1
∏

j=0

(s + j)

=
Bn

n!

n−1
∏

j=0

(s + j)

This completes our induction. �

Proposition 16 gives a surprising connection between G and Bernoulli numbers. We 

now proceed to use G−1 to recover series representations of ζ(·, a) and L(·, χ).
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4.1. Using G−1 to represent the Hurwitz ζ-function and Dirichlet L-functions

Using the fact that G−1 is an inverse operator to G, we have

ζ(s, a) −
1

as
= G−1

[

1

(s − 1)as−1

]

=

∞
∑

n=0

qn(s)

(s + n − 1)as+n−1

=
∞
∑

n=0

(

Bn

n!
·

∏n−1
j=0 (s + j)

(s + n − 1)as+n−1

)

(18)

and

ksL(s, χ) −

k
∑

r=1

χ(r)
ks

rs
= G−1

[

ks−1

s − 1

k
∑

r=1

χ(r)

rs−1

]

=
∞
∑

n=0

Bn

∏n−1
j=0 (s + j)

n!

(

ks+n−1

s + n − 1

k
∑

r=1

χ(r)

rs+n−1

)

(19)

We now treat the convergence of these identities more rigorously. Notice that, for the 

Hurwitz zeta function, the coefficients in the sum are the same as the coefficients in the 

Euler-Maclaurin summation formula (which gives a convergent series for all s ∈ C \{1}). 

Thus we can conclude that (18) converges for all s ∈ C \ {1}.

For Dirichlet L-functions, however, there is no clear way to apply the Euler-Maclaurin 

summation formula. One can, however, derive a series representation of Dirichlet L-

functions from the Euler-Maclaurin summation formula for the Hurwitz zeta using the 

identity in (15), to get for χ a character mod k,

L(s, χ) = k−s

k
∑

r=1

χ(r)

[

ks

rs
+

∞
∑

n=0

(

Bn

n!
·

ks+n−1
∏n−1

j=0 (s + j)

rs+n−1(s + n − 1)

)]

(20)

(which is a rearrangement of (19)). The question is whether such rearrangement gives 
us a convergent series of equal value.

Proposition 17. The series in (19) and (20) both converge to the same value for all 

s ∈ C \ {1}. And they both provide an analytic continuation of L(s, χ) to C \ {1}.

Proof. Let χ be a character mod k and fix an integer N ≥ 0. Using the Euler-Maclaurin 

expression for the Hurwitz zeta, we get that for s ∈ C \ {1} with Re(s) > 1, L(s, χ) is 

equal to

TN (s) := k−s

k
∑

r=1

χ(r)
[ks

rs
+

N
∑

n=0

(

Bn

n!
·

ks+n−1
∏n−1

j=0 (s + j)

rs+n−1(s + n − 1)

)

(21)

−
(−1)N

N !

∞
∫

0

∏N−1
j=0 (s + j)

(t + a)s+N
ψN (t)dt

]

(22)
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This is the same as

k
∑

r=1

χ(r)

rs
+ k−s

[

N
∑

n=0

k
∑

r=1

χ(r)

(

Bn

n!
·

ks+n−1
∏n−1

j=0 (s + j)

rs+n−1(s + n − 1)

)

−
(−1)N

N !

∞
∫

0

∏N−1
j=0 (s + j)

(t + a)s+N
ψN (t)dt

⎤

⎦ (23)

For all s ∈ C with Re(s) + N > 1, the integral is convergent. Thus, for s ∈ C with 

Re(s) + N > 1, the right hand side of the above identity is convergent (the only problem 

being the term at n = 0 in the sum, where we have division by 0). It can also be shown 

that it is holomorphic in such region. This provides an analytic continuation of L(s, χ)

to {s ∈ C : Re(s) > s − N ; s �= 1}. Furthermore, for all m ≤ N , we have that the 

identity with N replaced by m agrees with the identity above for all s ∈ C \ {1} with 

Re(s) > 1 − m.

Observe that both (21) and (23) agree for all integers N ≥ 0 and that, letting N → ∞, 

it is known that (−1)N

N !

∫∞

0

∏N−1
j=0 (s+j)

(t+a)s+N ψN (t)dt → 0.

We now show that the series given by 
∑∞

n=0

∑k
r=1 χ(r) 

(

Bn

n! ·
ks+n−1

∏n−1
j=0 (s+j)

rs+n−1(s+n−1)

)

con-

verges pointwise for all s ∈ C \ {1}. To see this, let s ∈ C \ {1} and let ε > 0. Choose 

an integer N ≥ 0 so that Re(s) > 1 − N and 

∣

∣

∣

∣

(−1)N

N !

∫∞

0

∏N−1
j=0 (s+j)

(t+a)s+N ψN (t)dt

∣

∣

∣

∣

< ε/2 for 

all m ≥ N . We then have that by analytic continuation, Tm(s) = TN (s) for all m ≥ N . 

Finally, using the triangle inequality, we have that for all q ≥ p ≥ N ,

∣

∣

∣

∣

∣

q
∑

n=0

k
∑

r=1

χ(r)

(

Bn

n!
·

ks+n−1
∏n−1

j=0 (s + j)

rs+n−1(s + n − 1)

)

−

p
∑

n=0

k
∑

r=1

χ(r)

(

Bn

n!
·

ks+n−1
∏n−1

j=0 (s + j)

rs+n−1(s + n − 1)

)∣

∣

∣

∣

∣

≤ |Tq(s) − Tp(s)| + 2(ε/2) = ε

Since ε was arbitrary, this proves that the sequence of partial sums is actually a Cauchy 

sequence and, since C is complete, this series must converge. Now, our point s ∈ C \ {1}

was also arbitrary and, thus, we have proved the desired claim. �

5. Approximations

In Theorem 8, we establish that T
[

ζ(s, a) − 1
as

]

=
∑∞

n=0 pn(s) exp(nD) 
[

ζ(s, a) − 1
as

]

diverges for s ∈ C so clearly it is not the case that T
[

ζ(s, a) − 1
as

]

converges pointwise 

to 1
(s−1)as−1 for s ∈ C. However, it may be the case that truncating T may provide a 

good approximation even at values where the series does not converge. Of course, when 

considering the operator T =
∑∞

n=0 pn(s)[id +
∑∞

k=1
nk

k! Dk
s ], there are two sums that we 

may consider truncating: the sum over n and the sum over k. In what follows we will 

truncate in n.
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Consider

TN (s, a) :=

N
∑

n=0

pn(s) exp(nD)

[

ζ(s, a) −
1

as

]

Note that though T does not converge when applied to the zeta function, TN may 

converge when applied to ζ(s, a). Recall that from Proposition 5, for each s there is 

some N ′ so that exp(N ′ · D) 
[

ζ(s, a) − 1
as

]

diverges. However, from the Taylor series 

expansion,

ζ(s + n, a) −
1

as+n
=

∞
∑

k=0

Dk
s

(

ζ(s, a) − 1
as

)

k!
nk

converges pointwise for |(s + n) − s| = |n| < |s − 1| since ζ(z, a) has a pole at z = 1. 

Thus we have

TN (s, a) :=
N
∑

n=0

pn(s) exp(nD)

[

ζ(s, a) −
1

as

]

=
N
∑

n=0

pn(s)

[

ζ(s + n, a) −
1

as+n

]

=: GN (s, a)

for N < |s − 1|. In other words, in the region of convergence (away from s = 1), the 

truncation of T in n is equal to the truncation of the shift operator G.

In what follows we will use complex plots to examine whether TN(s, a) is good ap-

proximation to 1
(s−1)as−1 for s in the region of convergence for TN . Figs. 1 and 2 are 

obtained using “complex_plot” in Sage. This function takes a complex function of one 

variable, f(z) and plots output of the function over the specified x_range and y_range. 

The magnitude of the output is indicated by the brightness (with zero being black and 

infinity being white) while the argument is represented by the hue. The hue of red is 

positive real, and increasing through orange, yellow, as the argument increases and the 

hue of green is positive imaginary. Note that, for simplicity, both figures only plot the 

specific case of the Riemann zeta function (when a = 1).

Fig. 1 (a) is the complex plot of 1
s−1 the right side of Van Gorder’s equation (2). 

Subfigures (b), (c), (d) and (e) of approximations GN (s, 1) of the left side of Van Gorder’s 

equation (2) for N = 1, 10, 50 and 100. Note that the domain of the plots in subfigures 

(d) and (e) has been expanded.

We see in Fig. 1 that the first term of the expansion GN(s, 1) is a good approximation 

of 1
s−1 near the singularity s = 1. (Note: This is not surprising since as N → ∞, we have 

shown GN (s, 1) → G[ζ(s) − 1] = 1
s−1 .) We also see from Fig. 1 that as N grows, the 

region on which GN (s, 1) is a good approximation of 1
s−1 also expands.
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Fig. 1. Complex plots of 1
s−1

and GN (s, 1) for N = 1, 10, 50, and 100. Note that the domains for (a), (b) and 
(c) are (−20, 20) on both the real and imaginary axes and for (d) and (e) is (−40, 40). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

As we observed at the beginning of this section, TN = GN away from s = 1 so TN (s, a)

may be a good approximation to 1
(s−1)as−1 for s far enough from 1 (i.e. outside the circle 

|s − 1| = N). One might wonder whether the expanding region on which GN(s, 1) is a 

good approximation of 1
s−1 will break into the region of convergence of TN (s, 1).

Fig. 2 contains complex plots of GN (s, 1) − 1
s−1 for N = 10, 50 and 100 along with 

the circle |s − 1| = N for N = 10, 50 and 100. The inclusion of this circle in plot is to be 

able to identify where GN (s, 1) = TN (s, 1) (outside |s − 1| = N).

Examining Fig. 2, we see that this “region of good approximation” is not expanding 

as quickly as the region of convergence for TN (the radius of |s − 1| = N). Thus, as N

grows, TN (s, 1) actually seems to be a less reasonable approximation for 1
s−1 .

Many natural questions remain about both the accuracy of the approximation TN

in this region and the accuracy of the approximation GN in the disk and the rate of 

convergence of G.
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Fig. 2. Complex plots of GN (s, 1) − 1
s−1

for N = 10, 50, and 100 as well as the circle |s − 1| = N for 
N = 10, 50, and 100 (in white) which shows the region for which for TN converges and equal GN .

6. Conclusion

Using the operator G as opposed to T allows us to provide more than formal justifica-

tion for the differential equation (2) as well as the corresponding generalizations to the 

Hurwitz zeta function and Dirichlet L-function. However, it is important to note that 

G is not a differential operator and so, in fact, this does not provide support for their 

being a non-algebraic differential equation which zeta satisfies.
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and (19) converge. This error does not affect the main claims of our paper; however, we 

would like to fix our mistaken identities.

In [2], Van Gorder defines

T =
∞

∑

n=0

pn(s) exp(nD)

where pn(s) =

{

1 if n = 0
1

(n+1)!

∏n−1
j=0 (s + j) if n > 0

and exp(nD) = id +

∞
∑

k=1

nk

k!
Dk

s for Dk
s :=

∂k

∂sk . Van Gorder uses that fact that exp acts as a shift operator to show that the Riemann 

zeta function formally satisfies an operator equation “involving T .” In [1], we show that 

this differential equation involving T (as it is defined) does not converge.

In [1] we use the operator defined by the shift operator, call it G, to give a convergent 

operator equation involving the Riemann zeta function. In Section 3 of [1], we define this 

shift operator as follows. Let M be the collection of meromorphic functions on C and 

f ∈ M. Define G : M → M by

G[f ](s) =
∞

∑

n=0

pn(s)f(s + n) (1)

For f a complex valued function, we then define G−1 by

G−1[f ](s) =
∞

∑

n=1

qn(s)f(s + n) (2)

where q0(s) = 1 and qn(s) = − 
∑n−1

k=0 qk(s)pn−k(s + k). The formal proof that this 

operator is the inverse of G is given by Theorem 4.1 in Van Gorder [2]. In Proposition 

16 of [1], we show that for all integers n ≥ 0 and all s ∈ C,

qn(s) =
Bn

n!

n−1
∏

j=0

(s + j)

where Bn denotes the nth Bernoulli number. Up to this point we believe our paper has 

no errors.

The problem arises when we wrongfully attempted to justify the convergence of the 

application of G−1 to 1
(s−1)as−1 using the Euler-Maclaurin expansion. Namely, in [1] we 

noticed that this characterization of qn(s) in terms of Bernoulli numbers formally gives

ζ(s, a) −
1

as
= G−1

[

1

(s − 1)as−1

]

=
∞

∑

n=0

qn(s)

(s + n − 1)as+n−1
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=

∞
∑

n=0

(

Bn

n!
·

∏n−1
j=0 (s + j)

(s + n − 1)as+n−1

)

(3)

and hence

ksL(s, χ) −
k

∑

r=1

χ(r)
ks

rs
= G−1

[

ks−1

s − 1

k
∑

r=1

χ(r)

rs−1

]

=
∞

∑

n=0

Bn

∏n−1
j=0 (s + j)

n!

(

ks+n−1

s + n − 1

k
∑

r=1

χ(r)

rs+n−1

)

(4)

where ζ(s, a) is the Hurwitz eta function and L(s, χ) is a Dirichlet L-function with χ a 

Dirichlet character modulo k. The second expression (4) was formally derived from (3)

and the fact that L(s, χ) = k−s
∑k

r=1 χ(r)ζ(s, r/k) for χ a Dirichlet character modulo 

k. (Note these are equations (18) and (19) respectively in [1].) Since the last series in (3)

gives the series portion of the Euler-Maclaurin expansion, we wrongfully assumed that 

that finite series would converge as an infinite sum and it does not. Our argument that 
∑∞

n=0
qn(s)

(s+n−1)as+n−1 and (4) converged depended on 
∑∞

n=0
Bn

n! ·
∏n−1

j=0 (s+j)

(s+n−1)as+n−1 converging 

which we will now show it does not for s ∈ C \ Z≤0.

1. Divergence of (3) and (4)

The following is a proof that (18) and (19) in [1] diverge pointwise outside of the 

negative integers. We also provide an identity for the convergent series at the negative 

integers.

Proposition 1. The sums

∞
∑

n=0

Bn

n!
·

∏n−1
j=0 (s + j)

(s + n − 1)as+n−1
and

∞
∑

n=0

Bn

∏n−1
j=0 (s + j)

n!

(

ks+n−1

s + n − 1

k
∑

r=1

χ(r)

rs+n−1

)

diverge for all s ∈ C \ Z≤0 and converge when s = −M ∈ Z≤0 giving

G−1[f ](−M) =
M

∑

n=1

(−1)nBn

M !

n!(M − n)!
f(−M + n).

Proof. From Euler’s formula and the fact that limk→∞ ζ(k) = 1, 

∣

∣

∣

∣

B2k

(2k)!

∣

∣

∣

∣

∼
2

(2π)2k
. 

Note that the 2n + 1 Bernoulli numbers are 0. When cn is the 2nth coefficient of the 

corresponding series, 
∣

∣

∣

cn+1

cn

∣

∣

∣
→ ∞ as n → ∞ and the Ratio Test shows that each series 

diverges when s ∈ C \ Z≤0.
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To see that these sums converge for s ∈ Z≤0 and achieve the G−1 identity, let s = −M

for some M ∈ Z≥0, and notice that for all n > M , qn(s) = qn(−M) =
Bn

n!

n−1
∏

j=0

(−M +j) =

0. �

Proposition 17 of [1] also gives a proof of the meromorphic continuation of L(s, χ)

for χ a Dirichlet character. The proof we give does not follow as given since it relied 

on the convergence of (3) and (4). Clearly, it is still possible to prove the meromorphic 

continuation on L(s, χ); however, the proof of Proposition 17 is no longer valid. One can 

still give a proof of the meromorphic continuations of L(s, χ) using the Euler-Maclaurin 

formula and this proof can be found in the version of the paper posted on the arXiv 

(1910 .01192v3).
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