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B I O M I M E T I C S

Stereoscopic artificial compound eyes for 
spatiotemporal perception in three- dimensional space

Byungjoon Bae1†, Doeon Lee1†, Minseong Park1†, Yujia Mu1, Yongmin Baek1, Inbo Sim1,  

Cong Shen1, Kyusang Lee1,2
*

Arthropods’ eyes are e�ective biological vision systems for object tracking and wide �eld of view because of their 
structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static 
object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in 
three- dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and 
a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision 
system of the praying mantis using stereoscopically coupled arti�cial compound eyes, we demonstrated spatio-
temporal object sensing and tracking in 3D space with a wide �eld of view. Furthermore, to achieve a fast re-
sponse with minimal latency, data storage/transportation, and power consumption, we processed the visual 
information at the edge of the system using a synaptic device and a federated split learning algorithm. The de-
signed and fabricated stereoscopic arti�cial compound eye provides energy- e�cient and accurate spatiotempo-
ral object sensing and optical �ow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only 
approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conven-
tional complementary metal- oxide semiconductor–based imaging systems. Our biomimetic imager shows the 
potential of integrating nature’s unique design using hardware and software codesigned technology toward ca-
pabilities of edge computing and sensing.

INTRODUCTION

Arthropod eyes are sophisticated and exquisite convex visual organs 
prevalent among insects (1, 2). �ese eyes are composed of numerous 
ommatidia, with each ommatidium containing a photoreceptor cell 
capable of detecting light from a speci�c segment of the visual �eld. 
Consequently, arthropod eyes exhibit distinctive attributes, including 
a wide �eld of view (FoV), high motion sensitivity, and in�nite depth 
of �eld, rendering them highly e�ective for optical �ow sensing 
(Fig. 1A) (3–7). However, in determining the distance to an object, 
most insects and crustaceans rely on the relative movement of either 
the object or themselves. �is is because they use monocular vision to 
perceive the three- dimensional (3D) world, which limits depth per-
ception for stationary objects (Fig. 1B). Notably, the visual system of 
praying mantises provides considerable overlap between the visual 
�elds of their le� and right eyes, unlike in many insects, where there is 
a distinct bifurcation (Fig. 1C) (8–11). �is overlapping FoV enables 
binocular disparity, facilitating depth perception through stereopsis, 
even in the absence of motion parallax. Inspired by the praying man-
tis stereopsis, we have demonstrated optical �ow sensing in 3D space 
with stereoscopic arti�cial compound eyes.

Obtaining 3D information through the imager in traditional sig-
nal processing techniques, such as the time- of- �ight and triangula-
tion (12) methods, typically necessitates complex peripheral circuitry, 
extensive memory storage, and considerable communication band-
width between memory and computing units. In conventional sys-
tems, optical �ow information is o�en derived from consecutive 
images (13, 14) via dedicated algorithms such as Lucas- Kanade (15, 
16) and Horn- Schunck (17) methods. Although these algorithms can 

generate a vector �eld that represents motion, they demand substan-
tial computational resources, large memory units, extended process-
ing times, and considerable energy consumption. In contrast, machine 
learning (ML) hardware and algorithms o�er a more e�cient alter-
native for processing complicated spatiotemporal data in 3D space, 
bypassing the limitation inherent to geometry- based calculation 
methods. However, deploying sophisticated and large- scale ML algo-
rithms, such as deep neural networks (DNNs), still requires high com-
puting power (18–20). �us, big data processing with DNN o�en relies 
on cloud computing to achieve the desired classi�cation and regression 
outcomes, which poses challenges for on- site data processing (21, 22).

To alleviate the issues, we have adopted both in- sensor and near- 
sensor data processing approaches, using arti�cial synapses integrated 
into each pixel and a back- end arti�cial neural network (ANN) im-
plemented on a local processer, respectively. Drawing inspiration 
from the vision systems of insects, which rely on nonspiking graded 
neurons (23), arti�cial synapses are integrated at the pixel level for 
rapid motion perception, mirroring the functionality of graded neu-
rons. �is integration of arti�cial synapses with a photodetector array 
enables direct encoding of spatiotemporal information at the sensor 
level through optical programing and one- shot readout processes 
(24–26), substantially reducing power consumption by decreasing 
memory usage and frequency of communication between memory 
and computing units. �e processed output from the sensor was im-
mediately available for use by computing units, facilitating swi� mo-
tion detection and spatiotemporal object tracking while minimizing 
data transfer and energy consumption. However, the limited access to 
powerful computing hardware limits the implementation of DNN for 
edge computing. To overcome these challenges, we used compact split 
learning (SL) and federated learning (FL) (27) to achieve high accu-
racy and low latency with minimal data storage on limited computing 
resources at local system (28–30). Federated split learning (FSL) 
combines the bene�ts of FL, which enables parallel processing across 
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distributed clients, with SL, which partitions the model between cli-
ents and a central server during training. �is approach not only of-
fers a shorter training time compared with SL alone but also alleviates 
the storage and processing demands on resource- constrained devices 
compared with FL. SL divides DNN layers into segments, each man-
aged and stored by di�erent agents, whereas FL enables multiple 
agents to cooperatively train intricate ML models locally without 
transmitting individual data to the central processor. �e integration 

of SL and FL principles in FSL facilitates e�cient computing in terms 
of communication, storage, and computation. In our demonstration, 
the agents in FL are represented by the le� and right arti�cial eyes, and 
FSL has been e�ectively used for object tracking, leveraging its ability 
to extract complex features from multiple sensors.

In this study, we implemented the previously discussed FSL as a 
near- sensor computing algorithm for the accurate decision and in situ 
response. Our FSL design involves processing encoded outputs from 

Fig. 1. Illustration of stereoscopic arti�cial compound eye system. (A) Schematic illustration of 3D object and motion perception using compound eyes via motion 

parallax. The compound eye is sensitive to motion, but it is challenging for insects to estimate the distance to the static object. The �gure illustrates that the object in the 

“a” position was detected by more ommatidia than the identical object in the position “b.” (B and C) Comparison between vision systems of �y and mantis. (B) There is 

minimal visual �eld overlap between two eyes in the vision of the �y. (C) Mantis uses stereopsis that utilizes two eyes to collect visual information of a single object. 

(D) Schematic illustration of stereoscopic arti�cial compound eyes. A pair of hemispherical- shaped 16- by- 16 FPAs are arranged in parallel. (E) Photograph of fabricated 

and stereoscopic 16- by- 16 arti�cial compound eyes. (F) Stereoscopic FoV of paired compound eyes depending on their arrangement. The visual system with two eyes 

placed at an angle of 180° exhibits the maximum stereoscopic FoV close to 180°. (G) Process �ow of the object tracking in 3D space using stereoscopic compound eyes 

and ANNs. Crossbar array of pixel encodes the optical stimulus via in- sensor processing, and then the generated data from the image sensor are fed into the FSNN loaded 

in the local processor to calculate the velocity of object, direction of movement, and position in 3D space.
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both the le� and right arti�cial eyes through two separate convolu-
tional neural networks (CNNs) that share weight values. �is setup is 
followed by a single fully connected layer (FCL) that merges the out-
puts. �e result from this neural network con�guration indicates 
the position of the detected object in 3D coordinates and its velocity, 
providing comprehensive tracking information in real time. �e e�-
cacy of our system for object tracking in 3D space was empirically 
evaluated by calculating mean square error (31). Our experimental 
results con�rmed that the codesigned so�ware and hardware system 
achieved precise in situ object movement tracking. Notably, the sys-
tem maintained an error margin of less than 0.3 cm and demonstrated 
a rapid temporal processing rate of 1.8 ms. �is level of performance 
was attained although we used a compact, low- performance micro-
processor for computing.

RESULTS

Overall system
Using the codesigned hardware and so�ware platform previously 
outlined, we demonstrated the capabilities of stereoscopic arti�cial 
compound eyes for object detection and optical �ow sensing in 3D 
space. Initially, we used epitaxial li�o� technology to fabricate thin- 
�lm indium gallium arsenide (InGaAs) photodiodes on a �exible 
substrate. �ese photodiodes were then paired with hafnium oxide 
(HfO2)–resistive random- access memory (ReRAM) units to create a 
one photodiode–one resistor (1P- 1R)–based focal plane array (FPA) 
on a �exible Kapton substrate. �is con�guration allows the optical 
signals received by the photodiodes to be modulated, e�ectively em-
ulating pigment cells and receptors found in the arthropod visual 
system (32). Subsequently, each pixel was combined with a poly-
methyl methacrylate–based microlens array to improve focusing 
capabilities, mimicking the structure and function of an ommatidi-
um. �en, we shaped the fabricated FPAs into a hemispherical form 
with a 20- mm radius, exploiting the mechanical �exibility of the 
membrane- based system to modulate both the shape and radius of 
the structure. To facilitate stereoscopy, a pair of arti�cial compound eyes 
were positioned 2 cm apart on a planar surface, achieving a 160° FoV 
(Fig. 1D and �g. S1). �e arti�cial compound eyes were then mounted 
on 3D printed structures (Fig. 1E) and aligned to maximize the ste-
reo FoV area, which was the overlapped FoV area between the two 
eyes (Fig. 1F). Last, the compound eyes were installed onto a cus-
tomized printed circuit board for the inference readout process and 
electrical control (�g. S2), integrating the entire system into a cohe-
sive unit capable of advanced optical sensing and object detection 
in 3D space.

Figure 1G illustrates the process �ow for object sensing and signal 
processing using our hardware and so�ware codesigned stereoscopic 
compound eyes. Conventional imaging and processing systems ne-
cessitate a range of components, including a backplane circuit, read-
out circuit, analog- to- digital converter, memory, and computing 
units, to capture data at the sensor level and to process signals at the 
processor level. In contrast, our approach integrates ReRAMs direct-
ly with the sensor and a compact microprocessor connected to the 
sensor for edge computing capabilities. �e ReRAMs, programmable 
through photogenerated currents from the photodetectors, enable 
in- sensor processing that generates 1D encoded data from consecu-
tive images through the one- shot inference process, bypassing the 
need for a sequential readout process. By processing signals directly 
at the pixel level using ReRAMs, we reduced the dimension/size of 

the generated data; the need for data transportation between sensors, 
memory, and computing units; and the reliance on so�ware- based 
calculations and complex peripheral circuitry (described in the fol-
lowing section in detail). With the described scheme, the processed 
data at each pixel were fed into the local neural network to detect 
objects in the 3D �eld using the compact and dedicated ML system 
(Sony Spresense board).

Fabrication and characterization of stereoscopic 
compound eyes
To demonstrate the optical �ow sensing in 3D space, we designed 
and fabricated arti�cial compound eyes that consist of 16- by- 16 In-
GaAs photodiode and HfO2 ReRAM (1P- 1R) pixels on a �exible 
Kapton substrate (Fig. 2A). Here, a square pixel array was used in-
stead of a symmetrical structure to simplify row- by- row and column- 
by- column current summation process. Figure 2B depicts magni�ed 
view of the compound eye, consisting of thin- �lm InGaAs- based 1P- 
1R and the serpentine- shaped interconnections between the 1P- 1R 
FPAs, featuring robustness to external strain and mechanical defor-
mation (33–35). �e detailed fabrication process of the 1P- 1R array 
is described in the “Fabrication of 1P- 1R array on �exible platform” 
section in Materials and Methods and �gs. S3 to S5. A�er the fabrica-
tion of the 1P- 1R array, a microlens array was integrated (see the “In-
tegration of microlens array on FPA” section in the Supplementary 
Materials and �g. S6) onto the photodiode array, and FPA was de-
formed into a hemispherical shape (Fig. 2C and �g. S7). Figure 2D 
shows the schematic description of the microlens and 1P- 1R array. 
�e microlens was integrated on an individual photodiode as a cor-
neal lens in compound eye structure (36), which samples a limited 
visual �eld only within its acceptance angle. �is con�guration emu-
lates the ommatidium in arthropod eyes, which enhances their sen-
sitivity for the motion detection (37, 38). We designed the microlens 
on the basis of the optical simulation conducted using COMSOL 
so�ware (see the “Microlens simulation” section in Supplementary 
Materials and �g. S8). �e detailed fabrication procedure of micro-
lens array is described in the “Fabrication of microlens” section in 
Materials and Methods. With the fabricated photodiode integrated 
with the microlens, we characterized the FoV by measuring the pho-
togenerated current under a −3- V bias applied to the photodiode, 
across various light incident angles ranging from −35° to 35°. �e 
fabricated pixel integrated with microlens exhibited 8.5° of light ac-
ceptance angle (Fig. 2E).

A�er the fabrication of compound eyes, we �rst examined the 
characteristics of individual photodiode and ReRAM. To con�rm the 
dynamic range of photodiode, we measured the current- voltage (I-  V) 
characteristics of the fabricated InGaAs photodiode under the illumi-
nation of light at a wavelength of λ = 530 nm with varying light inten-
sities from dark to 1.74 W/m2 (Fig.  2F). Figure  2G shows the I-  V 
characteristics of the ReRAM, featuring the nonvolatile resistive 
switching behavior a�er the initial forming process. Statistical dis-
tribution of set and reset current measured using 100 fabricated 
ReRAMs is shown in �g. S9. �e transition between the high- resistance 
state (HRS) and the low- resistance state (LRS) is associated with the 
dri� of oxygen vacancies in the HfO2 medium (39), driven by external 
electric �elds. For the initial forming process, voltage sweeping was 
carried out from 0 to 8 V, with a 1- mA current compliance. �e for-
mation of a conductive �lament became evident upon observing 
abrupt conductance change (indicated by the gray line). �e ReRAM 
was subsequently reset to HRS using a sweeping voltage ranging from 
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Fig. 2. Device characterizations. (A) Illustration of hemispherically formed FPA integrated with microlens array. (B) The image displays serpentine metal pattern connec-

tion between the pixels and integrated microlens. (C) Photograph of the fabricated pixels integrated with microlens. (D) Illustration of the fabricated microlens and 1P- 1R 

ReRAM array structure. InGaAs photodiode and HfO2- based ReRAM were integrated to implement 1P- 1R structure. To focus the light within the limited acceptance angle, 

the microlens with 150- μm radius and 100- μm pilar height was fabricated and integrated on the top of the photodiode. (E) FoV of each pixel integrated with microlens. 

The experimental data indicate an FoV of 8.5°. Inset: Schematic illustration describes the light acceptance range of the pixel. (F) I-  V characteristics of InGaAs photodiode 

under various light illumination intensities from dark to 1.74 W/m2. (G) I-  V characteristics of ReRAM. The gray line shows the initial forming process. The dark blue line in-

dicates the resetting process, whereas the light blue line indicates the setting process. (H) Endurance characterization of ReRAM during the application of 2000 cycles of 

set and reset pulses (1.2 and −2 V for 0.5 ms, respectively). (I) Optical programming of 1P- 1R pixel. I-  V characteristic of 1P- 1R. Brown line indicates the optical programming 

(set ReRAM by the photocurrent under 1.6 W/m2 of incident light) process, and yellow line shows the resetting process. Inset shows the direction of sweeping voltage 

during the programming process. (J) Endurance characterization of 1P- 1R during the application of 1000 cycles of 1.5- V set and −2.5- V reset pulses with 0.05- ms pulse 

width under 1.6 W/m2 of incident light. Conductance maps (K) before and (L) after a forming process of the fabricated 1P- 1R array. (M) Readout signal from 1P- 1R FPA 

after optical programing of each pixel using light illumination of bee shape.
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0 to −4 V (depicted by dark blue lines), followed by the setting process 
using a sweeping voltage from 0 to 2.5 V (light blue lines). To evaluate 
the endurance of the ReRAM, we applied consecutive set (1.2 V/500 μs) 
and reset voltage (−2 V/500 μs) pulses in turn, toggling the state of 
ReRAM a total of 2000 times. Subsequently, we applied readout volt-
age pulses (0.2 V/500 μs) and acquired a series of set and reset cur-
rents (Fig.  2H). Statistical analysis of set and reset conductance 
showed small standard deviations (SDs) of σ  =  9.273  ×  10−6  and 
3.583 × 10−6 S, respectively, which con�rmed the superior endurance 
performance of the fabricated ReRAM on Kapton substrate.

On the basis of characteristics of individual devices, we designed 
and characterized the 1P- 1R pixel to be used for in- sensor computing. 
Figure 2I shows the I-  V characteristics of the 1P- 1R pixel under illumi-
nation (1.6 W/m2). �e notable conductance shi� of the ReRAM was 
observed a�er the application of sweep voltage from 0 to 1 V (brown 
lines) to the pixel under the light illumination with intensity of 1.6 W/
m2. �e ReRAM was reset to HRS by sweeping the input voltage from 
0 to −3 V (yellow lines) to the pixel. �ese results con�rm that the 
photogenerated current can be used to program the 1P- 1R pixel. �en, 
the endurance of 1P- 1R pixel was examined by applying the alternat-
ing set (1.2 V/500 μs) and reset (−2.5 V/500 μs) pulses for a total of 
1000 cycles under the light illumination at an intensity of 1.6 W/m2 
(Fig. 2J). �is result veri�es the durability of 1P- 1R to multiple pulse- 
based operations that enable continuous detection of the object. Fur-
thermore, we evaluated the programmability of the entire 16- by- 16 
1P- 1R array. Figure 2K shows the conductance of the 256 ReRAMs 
within the array before the forming process. A�er the forming process, 
all pixels demonstrated a successful transition from the HRS to the 
LRS, as represented in Fig. 2L. A�er the resetting process, we were able 
to selectively program the ReRAMs to a desired pattern (here, the 
shape of a bee) when the array was exposed to the patterned light illu-
mination with an intensity of 0.6 W/m2, as described in Fig. 2M. �e 
signal variation analysis result of the fabricated hemispherical 1P- 1R 
array along the end- to- end lines is illustrated in �g. S10.

In- sensor computing system
A�er the characterization of individual pixels and arrays, we exam-
ined the functionality of fabricated 16- by- 16 1P- 1R to directly encode 
optical stimuli from a wide FoV at the sensor for the reduction of data 
dimension and size. Figure 3A describes the schematic illustration of 
the projected area on the hemispherical surface when the target object 
moves in 3D space during the time τ. In this schematic illustration, 
the object moves away from the sensor; thus, the projected area on the 
hemispherical surface became smaller. To achieve energy- e�cient 
optical �ow sensing, we �rst encoded the sequential data detected 
from moving objects using in- sensor memory- based processing. �e 
initial position (at time t1) of the object was stored in ReRAMs via 
optical programming using the photogenerated current from a seri-
ally connected photodiode when it was exposed to light. If there was 
no optical signal to photodiode at the time t1, the ReRAM maintained 
its HRS. Once the ReRAM was programmed by optical signal, ReRAM 
functioned as a load series resistance (RL) to the integrated photo-
diode at each pixel. �us, under the forward bias, the current output 
from 1P- 1R was in�uenced by total resistance (RL + Rphotodiode) of the 
pixel, whereas the e�ect of photogenerated current was dominant 
under the reverse bias (see the “In- sensor computing principles” sec-
tion in the Supplementary Materials). �erefore, the resistance stored 
in ReRAM and photogenerated current from the pixel can be 
individually read by measuring the output current of the pixel in 

forward and reverse bias regimes, respectively (�g. S11). Readout of 
the output current of the pixel in both reverse and forward bias re-
gimes allowed 1P- 1R to obtain consecutive scene data at the same 
time (at time t2,). A�er the readout process, all the ReRAMs in the 
pixel were reset to HRS to encode the next consecutive images. Fig-
ure 3B shows the representative I-  V characteristic of 1P- 1R that em-
phasizes the e�ect of programmed ReRAM to the pixel with and 
without light illumination in both photoconduction and photodetec-
tion modes.

Figure 3C shows the designed and applied pulse scheme for the 
sequential set/read/reset process. Each pulse cycle consisted of a set 
(memorization) pulse for ReRAM at time t1, two readout pulses (pho-
toconduction and photodetection modes) at time t2, and a reset pulse 
(erasing) right a�er the readout. Set and reset of each pixel were 
achieved through the application of 1.0-  and −2.5- V voltage pulses 
with a duration of 100 μs. Readout was performed 1 ms a�er the set 
process by applying −0.4-  and 0.8- V voltage pulses with a duration of 
50 μs. We applied −0.2 V to the pixel to prevent the substantial cur-
rent from �owing to ReRAM when there was no input pulse applied. 
�is readout scheme was advantageous for in- sensor computing by 
simplifying the in and out (I/O) operation of obtained image data to 
external memory (see the “I/O operation in memories” section in the 
Supplementary Materials).

Figure  3D describes experimental readout results of the 1P- 1R 
pixel with respect to all possible consecutive optical detection sce-
narios: An object remained within the detection range of the pixel 
(Fig. 3D- 1); an object entered the detection range at time t2 (Fig. 3D- 
2); an object exited the detection range at time t2 (Fig. 3D- 3); and the 
object was not detected to the pixel (Fig. 3D- 4). We �rst applied volt-
age pulse (−1.0 V) under the light illumination of 1.3 W/m2 to the 
pixel to store the light information at t1. �en, sequential readout 
pulses for both photoconduction and photodetection modes (0.8 
and −0.4 V, respectively) were applied to each pixel at time t2. When 
the object was placed on the original position at t1 and moved out to 
the position at t2, a distinguishable combination of readout currents 
via the application of both forward and reverse bias pulses was 
achieved for the corresponding combination of output signals. �e 
experimentally measured current outputs from individual pixels us-
ing the designed pulse scheme under four di�erent scenarios are 
shown in �g. S11.

To demonstrate the in- sensor computing process, we showed out-
put from the inference of 16- by- 16 arti�cial compound eyes. Fig-
ure 3E illustrates the geometry of setup for the characterization of the 
array. �e le� and right eyes were placed 2 cm apart from each other 
on the �at surface, and the target was placed 5.5 cm above the center 
of the two eyes at time t1. �en, we moved the target 10 mm to the 
right from the initial position at time t2. �e overall experimental pro-
cess is described in movie S1. To perform the in- sensor computing, 
instead of procuring pixel- by- pixel image data by applying sequential 
pulses to the array that the conventional image readout process uses, 
we encoded the image data using the single inference read pulse that 
can reduce the dimension of output from 2D to 1D (Fig.  3F). To 
achieve one- shot inference of the crossbar pixel array of the com-
pound eyes without losing notable optical information, we applied a 
readout pulse scheme, −0.4-  and 0.8- V pulses as described in the 
above section, to the array both row by row and column by column. 
�us, we acquired two pairs of 1D encoded datasets from column- 
wise and row- wise summation, respectively. Using this readout pro-
cess, we were able to encode the optical �ow cues from 16- by- 16 
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Fig. 3. FPA characterization for in- 

sensor computing. (A) Illustration of acti-

vated region on hemispherical compound 

eye surface during the movement of the 

target object positions in 3D space. (B) I-  V 

curves of single pixel for four cases: the 

HRS of ReRAM under illumination, HRS 

under dark conditions, LRS under illumi-

nation, and LRS under dark conditions. 

Dashed and solid lines indicate the I-  V 

curve without and with light, respectively. 

Red and blue lines refer to the result when 

the ReRAM in the 1P- 1R structure was in 

the LRS and HRS, respectively. The readout 

was performed in both forward and re-

verse bias regimes (0.8 and −0.4 V, respec-

tively) (C) Applied pulse scheme to each 

pixel for programing/read/reset. Program-

ing and resetting occur through the appli-

cation of 1.5-  and  −2.5- V voltage pulse 

with a duration of 100 μs. Readout is per-

formed 1 ms after the setting pulse by ap-

plying 0.8-  and −0.4- V voltage pulses with 

a duration of 50 μs. We applied negative 

voltage (−0.2 V) bias during the resting 

time to prevent the notable current �ow-

ing to ReRAM. (D) Schematic illustration 

of motion detected on the hemispherical 

surface and its readout results depending 

on four cases. (i) The object was detected 

at time t1 and still in the range of detection 

despite the movement at time t2, (ii) the 

object was detected at time t1 but moved 

out of detection range at time t2, (iii) the 

object was not detected at time t1 but 

moved into the detection range at time t2, 

and (iv) the object was out of detection 

range at both time t1 and t2. Each case 

was distinguishable according to the 

measurement result. (E) Illustration of ex-

perimental geometry for object tracking. 

(F) Readout scheme of the array to obtain 

image data from the sensor by using con-

ventional CMOS- based readout system 

(left) and our inference readout system 

(right). Instead of procuring image data 

pixel by pixel by applying sequential puls-

es, we retrieved the encoded result from 

the image sensor by applying one- shot 

inference pulses. (G) Readout map of indi-

vidual pixels when measured in the pho-

toconductance regime (0.8 V, 50 μs) (left) 

and photodetection regime (−0.4 V, 50 μs) 

(right) at time t2. Accumulation of row- 

wise and column- wise output current is 

also shown in the bottom and left side of 

�gures from the inference operation. (H) Encoded data (16- by- 4- by- 2) were obtained for various object movements. The �gure illustrates the examples of the encoded result from 

both right and left compound eyes in conjunction with the object moving direction.
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hemispherical FPA into four channels of a 16- by- 1 1D dataset. �is 
process diminished latency and power consumption for the in  situ 
operation of both the front-  and back- end systems by alleviating data 
storage and transmission demands because of the reduced data di-
mensions from 2D to 1D. Figure 3G describes the readout result of 
individual pixels in a 2D map to con�rm the programmability of the 
array and the 1D encoded readout result from FPA by applying for-
ward and reverse bias pulses in all rows and columns. Figure 3I illus-
trates the examples of the encoded images, showing the distinctive 
result in conjunction with the moving direction of the object. �e 
encoded data were fed into the ANN and loaded in the connected lo-
cal ML system for the following near- sensor computing.

Back- end near- sensor computing system
Figure 4A describes the edge computing process including in- sensor 
and near- sensor processing steps for object perception and recogni-
tion. For near- sensor computing, an FSL- based neural network 
(FSNN) was used for object tracking in 3D space with the local mi-
croprocessor (Fig.  4B). �e encoded data by each compound eye 
were processed independently by two separate CNNs that share the 
weight updates. A 3- by- 3 kernel was applied to each CNN layer with 
identical padding. �en, we applied recti�ed linear unit (ReLU) 
function to activate the layers, followed by a 2- to- 1 average pooling 
layer to compress the features. �e outputs from each CNN were 
concatenated into an FCL to combine all the learned features for the 
regression. Eventually, the network generates a 6- by- 1 output vector, 
comprising two distinct 3- by- 1 components. �e �rst 3- by- 1 vector 
represents the moving velocity of the object in 3D space, whereas the 
second 3- by- 1 vector corresponds to the position of the object before 
the movement. To achieve accurate results, the neural network re-
quires a substantial amount of data for the training process. �ere-
fore, we generated 100,000 training and 20,000 test datasets using a 
ray- tracing 3D simulation (details in the “Generating training and 
test dataset” section in Materials and Methods and �g. S12). In the 
simulation, we designed the identical stereoscopic compound eye 
used in the experiment, including geometry/arrangement of the sen-
sors and the light acceptance angle through the microlens at each 
pixel. With the simulated dataset, we trained FSNN using the root 
mean square error (RMSE) as the loss function to gauge the discrep-
ancy between the truth and the tracked values (Fig. 4C). �is process 
yielded training and validation losses of 0.015 and 0.022 during the 
training process, respectively.

�e trained FSNN model was converted to hex data and was up-
loaded to a local processor using Arduino integrated development 
environment. �e local portable processor used in this study oper-
ates at 5 V with a clock frequency of 156 MHz, equipped with a 
1.5- megabyte on- chip static random- access memory. Reduced data 
size and dimensionality through in- sensor computing enable pro-
cessing of the information using this compact system, negating the 
necessity for high- powered computing hardware. To con�rm the ef-
fectiveness of the system for the 3D perception, we used the stereo-
scopic compound eye system to track objects, detecting both the 
velocity and the position of an object in the 3D space by simulation 
based on experimental data (Fig. 4, D and E). Figure 4D shows the 
tracking outcome, illustrating that the truth value of optical �ow 
sensing (yellow line) closely aligns with the tracked value (blue line; 
movie S2). Figure 4E presents the recognition results of the object 
position in 3D space, where the tracked x, y, and z coordinates close-
ly match the truth values (�g. S13). Object tracking conducted under 

di�erent circumstances (object shapes and light conditions) also 
shows nearly identical performance (described in �gs.  S14 and 
S15). �ese in  situ object tracking computations were achieved 
within 1.8 ms per frame without transporting the data to the exter-
nal computation units and memories (“Prediction on edge system” 
section in Materials and Methods). As shown in Fig. 4 (F and G), 
notably low RMSE (lower than 0.3 cm) was achieved for both 
depth and 2D position detection using the designed stereoscopic 
compound eyes.

Figure 4 (I and J) illustrates the notably simpli�ed object tracking 
process in 3D space using stereoscopic compound eyes compared with 
conventional complementary metal- oxide semiconductor (CMOS) 
image sensor and computing units. �e CMOS image sensor (CIS)–
based approach requires the process through the image signal proces-
sor to read out the signal as a 2D image, through an ampli�er and 
analog- to- digital converter (ADC). Furthermore, optical �ow compu-
tation and 3D image perception using acquired image data mandate 
frequent data transportation between memory (e.g., static random ac-
cess memory, SRAM, and dynamic random access memory, DRAM)
and computing units (e.g., arithmetic logic units, ALU, and multiply- 
accumulate operation unit, MAC). In contrast, our edge computing 
system does not require frequent memory access to store each scene 
data or to compute the object tracking in 3D space because the optical 
�ow cues from the scene were processed within the sensor (details in 
the “Comparison of conventional object tracking with compound eye 
sensor system” section in the Supplementary Materials). On the basis 
of the described process �ow, we estimated and compared the power 
consumption of both systems (Fig. 4H). �e calculation showed that 
our compound eye system requires ~75 times less energy than a con-
ventional system for data acquisition and processing to generate the 
optical �ow cues. Furthermore, postsignal processing for optical �ow 
sensing by using FSNN consumed approximately 7000 times less en-
ergy than using conventional signal processing hardware and algo-
rithm. �e estimation details are shown in the “Power consumption 
calculations during the preneural network processing” section in the 
Supplementary Materials. Moreover, the latency for the signal process-
ing was notably reduced (~100 and ~300 times for pre-  and postpro-
cessing, respectively) when we used the compound eye system with 
edge computing (details in the “Power consumption calculations dur-
ing the neural network processing” section in the Supplementary Ma-
terials). �is result con�rms the unique feature of our system to 
harness computing at sensor with minimal energy consumption and 
latency and without using costly and bulky hardware and/or cloud 
computing, which make it suitable as an in situ object tracking and 
navigation system.

DISCUSSION

Here, we demonstrated stereoscopic arti�cial compound eyes inte-
grated with an edge computing system that can track object move-
ment in 3D space. Instead of using a disparity calculation that requires 
frequent communication between processor and memory, our sensor 
captures sequential changes in the observed scene using the integrat-
ed ReRAM. Furthermore, without using a conventional pixel- by- pixel 
readout process, a one- shot inference–based readout scheme was 
used with the 1P- 1R crossbar array to encode the data at the sensor. 
�e encoded data were subsequently relayed to a neural network im-
plemented by a compact computing unit adjacent to the sensor, which 
tracks the position of object in 3D space and its moving direction 
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and velocity. �e depth detection accuracy of the system was further 
enhanced by incorporating stereoscopic sensors. �is hardware and 
so�ware codesigned edge computing system simpli�es the complex 
front-  and back- end system to overcome the challenges in in situ per-
ception and cognition toward o�ering a versatile computing- in- 
sensor platform.

MATERIALS AND METHODS

Fabrication of 1P- 1R array on �exible platform
�e inverted InGaAs p- i- n photodiode active device with an AlAs sac-
ri�cial layer was grown on InP substrate using molecular beam epitaxy 
(�g. S3A) (33). Ti/Au (10/150 nm) was deposited on top of both the 
InGaAs wafer and the Kapton substrate using an e- beam evaporator 

Fig. 4. FSNN- based tracking via near- sensor 

computing. (A) Illustration of the perception 

and cognition process used in this work. Con-

secutive scenes encoded by stereoscopic 

compound eye were processed through a lo-

cal processor using an FSNN. The local proces-

sor provides the result of the object position 

and optical �ow. (B) Illustration of the FSNN 

used in the system. Encoded data from each 

compound eye were processed individually 

by two distinct CNN networks, which share 

weight updates with each other. The obtained 

features from each CNN network were then 

merged and fed into an FCL. Six outputs of the 

FCL indicate the tracked value of the object 

coordinates and moving direction in Euclidean 

coordinates. (C) Training and validation result 

for the object position and optical �ow de-

tection using neural network with 100,000 

datasets. (D) 3D plot of detected object mov-

ing directions and its truth values. The tracked 

result and truth movement of the object were 

well aligned without signi�cant error. (E) De-

tected object position in 3D space and its truth 

value. 2D contour map of the average RMSE 

between detected position and truth position 

for (F) the depth ranging of object and (G) x-  y 

position of the object. (H) Power consumption 

comparison between our edge computing–

based and conventional CIS–based systems. 

The calculated consumed energy required for 

signal preprocessing using conventional sys-

tem and compound eye system was 65.0 mJ 

and 895 μJ, respectively. For the postprocess-

ing, the energy consumption using conven-

tional system was 8.63 J per inference, whereas 

the compound eye system only consumed 

1.209 mJ. The result con�rmed the e�ective-

ness of compound eyes for energy- e�cient 

signal processing at the sensor. Signal pro-

cessing �ow diagram is shown for the 3D 

perception using (I) the conventional CIS 

and (J) the demonstrated arti�cial compound 

eye system.
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and cold- welded under 2- kN pressure and 205°C conditions for 5 min 
(40, 41). �en, the bonded substrate was immersed into a mixture so-
lution of HCl:H3PO4 = 4:1 for 2 hours to etch out the InP wafer. �e 
etched p- InGaAs/Uid- InGaAs �lms were then etched using induc-
tively coupled plasma–reactive ion etching (ICP- RIE) to form a mesa 
for 6 min under the conditions of BCl3 of 20 standard cubic centimeter 
per minute (sccm), 600- W ICP power, 150- W forward power, 7 mtorr, 
and 20°C stage temperature, followed by a wet- etching process. �e 
n- InP mesa for the bottom metal electrodes was patterned by 30 s of 
wet etching using a solution of HCl:H2PO4  =  3:1. �en, a 150- nm 
Al2O3 dielectric insulator layer was formed via plasma- enhanced 
atomic layer deposition (PEALD). �e via holes were etched using 
ICP- RIE under the conditions of BCl3 of 20 sccm, 50- W ICP power, 
200- W forward power, 5 mtorr, and 20°C stage temperature for 6 min. 
�e Ti/Pt/Au (5/10/50 nm) top and bottom electrodes of the photodi-
odes were deposited simultaneously using e- beam evaporation and 
were patterned by photolithography. �en, PEALD was used to de-
posit an additional dielectric insulator of 150- nm Al2O3, and through 
holes were patterned on the bottom electrodes of the photodiodes. 
Subsequently, the bottom electrodes of the ReRAMs were connected to 
the bottom electrodes of the photodiodes by depositing Ti/Pt (5/25 nm). 
�en, 5.5- nm HfO2 was deposited to form the active medium of ReRAM 
using PEALD, followed by Ta/Pt (50/25 nm) metal deposition through 
dc magnetron sputtering of Ta (25- W radio frequency, RF power of 
5 mtorr, Ar of 20 sccm, and room temperature for 18 min) and e- beam 
evaporation of Pt. Last, the �exible Kapton substrate was etched out 
with a serpentine pattern (42) to be deformed into the hemispherical 
shape, using ICP- RIE under the conditions of O2 of 10 sccm, SF6 of 5 sccm, 
600- W ICP power, 150- W forward power, 7 mtorr, and 20°C stage tem-
perature. �e speci�c processes to fabricate the arti�cial compound 
eye are described in �g. S3B.

Fabrication of microlens
To fabricate microlenses, we created a mold with a 16- by- 16 pattern of 
microlens (each with a 150- μm radius) on a silicon substrate. To elimi-
nate the native oxide layer on the prepared silicon substrate, we sub-
jected it to plasma treatment using 950 W of ICP power and 15 W of 
bias power for 20  s. �e treatment used a gas mixture comprising 
C4F8:SF6:CF4 in a ratio of 60:24:27, with a total �ow rate of 110 sccm, 
whereas the gas pressure was maintained at 20 mtorr. �en, the silicon 
substrate was isotropically dry- etched (43, 44) under the conditions of 
SF6 of 25 sccm, O2 of 2 sccm, 1800- W ICP power, 30 mtorr, and 20°C 
stage temperature for 10 min to form hemispherical holes. �e holes 
were deepened using the Bosch process (45) consisting of two alternat-
ing steps. �e �rst process was to deposit a passivation �lm on the hole, 
under the conditions of SF6 of 5 sccm, C4F8 of 50 sccm, 650- W ICP 
power, 5- W RF power, 7- W dc power, 40 mtorr, and 20°C stage tem-
perature. �e next process was to etch out the hole by applying high dc 
power, under the conditions of SF6 of 60 sccm, C4F8 of 25 sccm, 650- W 
ICP power, 20- W RF power, 170- W  dc power, 30 mtorr, and 20°C 
stage temperature. We repeated these two processes 100 times to an-
isotropically deepen the hole. A�er the Bosch process, we cleaned the 
silicon mold with oxygen plasma treatment and removed the photore-
sist layer and residues formed on the substrate. �en, the silicon mold 
was coated with a hydrophobic layer using ICP- RIE under the condi-
tions of O2 of 10 sccm, C4F8 of 50 sccm, 600- W ICP power, 5- W RF 
power, 10 mtorr, and 20°C stage temperature for 1 min (46). A�er the 
mold preparation, the polymethyl methacrylate was prepared with a 
mixture of toluene:polymethyl methacrylate  =  8:1 (weight %) and 

spin- coated on the fabricated silicon mold with 200 rounds per minute. 
�e silicon mold was le� in the vacuum oven for 10 min to remove 
bubbles and annealed under 80°C for 20 min. A�er the annealing 
process, the microlens array was demolded from the silicon mold.

Generating training and test dataset
To generate the training and test dataset, we used UNITY so�ware to 
emulate the experimental conditions. �e virtual space was cra�ed on 
the basis of a Euclidean coordinate system, converting real- world 
measurements such that 1 mm equated to 1 U in the virtual space 
(�g. S11A). Within this virtual space, we positioned two compound 
eye sensors, each composed of a 256- pixel array in a 16- by- 16 con-
�guration. Each pixel of the compound eye was represented by an 
individual camera providing an 8.5° FoV within a 40- by- 40 square 
dimension. To replicate the hemispherical structure of the actual 
compound eye sensor, the cameras were repositioned within a 20- by- 
20 dimension (equivalent to 20 mm by 20 mm in real space; �g. S11B). 
�e centers of two sensors were positioned at the coordinates (−15, 0, 0) 
and (15, 0, 0), respectively.

To emulate the object tracking situation, we used a moving sphere 
with a 6- U radius as the detection target in a virtual environment. 
�is object was coded to move randomly within set boundaries: x co-
ordinates between −40 and 40, y coordinates between −40 and 40, 
and zcoordinates between 25 and 120. Each camera reported on the 
presence of the moving object. If the moving sphere was within a 
camera’s FoV, the camera transmitted a “1” signal; otherwise, it sent 
“0.” In two consecutive time periods (before and a�er the movement 
of the object), all 512 cameras in the �eld transmitted signals to the 
system twice. To simulate the readout procedure, a signal dimension 
of 512 by 2 was dispatched to the system. In addition, the object’s posi-
tion in Euclidean coordinates, both before and a�er its movement 
(comprising x, y, and z coordinates, 3- by- 2 matrix), was also relayed 
to the system. As a result, a dataset with a length of 120,000 compris-
ing 1030 data points was acquired. �e dataset examples are depicted 
in �g. S11 (C and D).

Prediction on edge system
Most microprocessors, especially those used in embedded systems, are 
limited in memory and computational power. Consequently, this ne-
cessitates the use of compact neural network models. Initially, we de-
signed and tested a streamlined yet highly functional neural network 
intended for use in portable microcontroller units. �e architecture for 
near- sensor object tracking consists of three 1D CNN layers, followed 
by an FCL. Each CNN layer uses a 3- by- 1 kernel with same padding, 
activated by the ReLU function, and includes a 3- to- 1 average pooling 
layer to condense features. �e le� and right feature maps from each 
layer are then input into the subsequent CNN layer for regression and 
further compression. �ese inputs are processed to compute feature 
maps and subsequently concatenated across the channel dimension to 
form a cost volume. �e merged features are input into an FCL net-
work with three hidden layers (128- 32- 16- 6), which track object 
movement. �e �rst two layers of this multilayer perceptron use ReLU 
activation, whereas the �nal layer uses a sigmoid function to scale the 
output between 0 and 1. RMSE loss is used to calculate the regression 
loss between the initial and �nal positions of the moving object. We 
evaluated our model using datasets comprising 80,000 training, 20,000 
validation, and 20,000 testing samples. Data labels were normalized to 
a 0- to- 1 range using a minimum- maximum scaler during preprocess-
ing. �e model was trained over 5000 epochs with a batch size of 128, 
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using stochastic gradient descent with a momentum optimizer in the 
Keras framework. Model veri�cation was conducted using the mean 
absolute error as the evaluation metric.

For deployment on microcontrollers, the model underwent mod-
i�cations to ensure compatibility with microprocessor constraints. 
�ese adjustments included techniques such as compression, conver-
sion, quantization, and pruning (47). Compression reduced the model’s 
size to �t the microprocessor’s limited memory, and the quantization 
and pruning simpli�ed the model by converting the 32- bit �oating- 
point model to an 8- bit signed integer format. �e model was then 
compiled into a header (.h) �le for interpretation by the micropro-
cessor and subsequently uploaded. �e uploaded model size was 
16.54 kilobytes.

Supplementary Materials
This PDF �le includes:

Supplementary Methods

Figs. S1 to S15

References (48–54)
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