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BIOMIMETICS
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Arthropods’ eyes are effective biological vision systems for object tracking and wide field of view because of their
structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static
object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in
three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and
a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision
system of the praying mantis using stereoscopically coupled artificial compound eyes, we demonstrated spatio-
temporal object sensing and tracking in 3D space with a wide field of view. Furthermore, to achieve a fast re-
sponse with minimal latency, data storage/transportation, and power consumption, we processed the visual
information at the edge of the system using a synaptic device and a federated split learning algorithm. The de-
signed and fabricated stereoscopic artificial compound eye provides energy-efficient and accurate spatiotempo-
ral object sensing and optical flow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only
approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conven-
tional complementary metal-oxide semiconductor-based imaging systems. Our biomimetic imager shows the
potential of integrating nature’s unique design using hardware and software codesigned technology toward ca-

pabilities of edge computing and sensing.

INTRODUCTION

Arthropod eyes are sophisticated and exquisite convex visual organs
prevalent among insects (I, 2). These eyes are composed of numerous
ommatidia, with each ommatidium containing a photoreceptor cell
capable of detecting light from a specific segment of the visual field.
Consequently, arthropod eyes exhibit distinctive attributes, including
a wide field of view (FoV), high motion sensitivity, and infinite depth
of field, rendering them highly effective for optical flow sensing
(Fig. 1A) (3-7). However, in determining the distance to an object,
most insects and crustaceans rely on the relative movement of either
the object or themselves. This is because they use monocular vision to
perceive the three-dimensional (3D) world, which limits depth per-
ception for stationary objects (Fig. 1B). Notably, the visual system of
praying mantises provides considerable overlap between the visual
fields of their left and right eyes, unlike in many insects, where there is
a distinct bifurcation (Fig. 1C) (8-11). This overlapping FoV enables
binocular disparity, facilitating depth perception through stereopsis,
even in the absence of motion parallax. Inspired by the praying man-
tis stereopsis, we have demonstrated optical flow sensing in 3D space
with stereoscopic artificial compound eyes.

Obtaining 3D information through the imager in traditional sig-
nal processing techniques, such as the time-of-flight and triangula-
tion (12) methods, typically necessitates complex peripheral circuitry,
extensive memory storage, and considerable communication band-
width between memory and computing units. In conventional sys-
tems, optical flow information is often derived from consecutive
images (13, 14) via dedicated algorithms such as Lucas-Kanade (15,
16) and Horn-Schunck (17) methods. Although these algorithms can
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generate a vector field that represents motion, they demand substan-
tial computational resources, large memory units, extended process-
ing times, and considerable energy consumption. In contrast, machine
learning (ML) hardware and algorithms offer a more efficient alter-
native for processing complicated spatiotemporal data in 3D space,
bypassing the limitation inherent to geometry-based calculation
methods. However, deploying sophisticated and large-scale ML algo-
rithms, such as deep neural networks (DNNs), still requires high com-
puting power (18-20). Thus, big data processing with DNN often relies
on cloud computing to achieve the desired classification and regression
outcomes, which poses challenges for on-site data processing (21, 22).
To alleviate the issues, we have adopted both in-sensor and near-
sensor data processing approaches, using artificial synapses integrated
into each pixel and a back-end artificial neural network (ANN) im-
plemented on a local processer, respectively. Drawing inspiration
from the vision systems of insects, which rely on nonspiking graded
neurons (23), artificial synapses are integrated at the pixel level for
rapid motion perception, mirroring the functionality of graded neu-
rons. This integration of artificial synapses with a photodetector array
enables direct encoding of spatiotemporal information at the sensor
level through optical programing and one-shot readout processes
(24-26), substantially reducing power consumption by decreasing
memory usage and frequency of communication between memory
and computing units. The processed output from the sensor was im-
mediately available for use by computing units, facilitating swift mo-
tion detection and spatiotemporal object tracking while minimizing
data transfer and energy consumption. However, the limited access to
powerful computing hardware limits the implementation of DNN for
edge computing. To overcome these challenges, we used compact split
learning (SL) and federated learning (FL) (27) to achieve high accu-
racy and low latency with minimal data storage on limited computing
resources at local system (28-30). Federated split learning (FSL)
combines the benefits of FL, which enables parallel processing across
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Fig. 1. lllustration of stereoscopic artificial compound eye system. (A) Schematic illustration of 3D object and motion perception using compound eyes via motion
parallax. The compound eye is sensitive to motion, but it is challenging for insects to estimate the distance to the static object. The figure illustrates that the object in the
“a" position was detected by more ommatidia than the identical object in the position “b.” (B and C) Comparison between vision systems of fly and mantis. (B) There is
minimal visual field overlap between two eyes in the vision of the fly. (C) Mantis uses stereopsis that utilizes two eyes to collect visual information of a single object.
(D) Schematic illustration of stereoscopic artificial compound eyes. A pair of hemispherical-shaped 16-by-16 FPAs are arranged in parallel. (E) Photograph of fabricated
and stereoscopic 16-by-16 artificial compound eyes. (F) Stereoscopic FoV of paired compound eyes depending on their arrangement. The visual system with two eyes
placed at an angle of 180° exhibits the maximum stereoscopic FoV close to 180°. (G) Process flow of the object tracking in 3D space using stereoscopic compound eyes
and ANNSs. Crossbar array of pixel encodes the optical stimulus via in-sensor processing, and then the generated data from the image sensor are fed into the FSNN loaded
in the local processor to calculate the velocity of object, direction of movement, and position in 3D space.

distributed clients, with SL, which partitions the model between cli-
ents and a central server during training. This approach not only of-
fers a shorter training time compared with SL alone but also alleviates
the storage and processing demands on resource-constrained devices
compared with FL. SL divides DNN layers into segments, each man-
aged and stored by different agents, whereas FL enables multiple
agents to cooperatively train intricate ML models locally without
transmitting individual data to the central processor. The integration
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of SL and FL principles in FSL facilitates efficient computing in terms
of communication, storage, and computation. In our demonstration,
the agents in FL are represented by the left and right artificial eyes, and
FSL has been effectively used for object tracking, leveraging its ability
to extract complex features from multiple sensors.

In this study, we implemented the previously discussed FSL as a
near-sensor computing algorithm for the accurate decision and in situ
response. Our FSL design involves processing encoded outputs from
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both the left and right artificial eyes through two separate convolu-
tional neural networks (CNNs) that share weight values. This setup is
followed by a single fully connected layer (FCL) that merges the out-
puts. The result from this neural network configuration indicates
the position of the detected object in 3D coordinates and its velocity,
providing comprehensive tracking information in real time. The effi-
cacy of our system for object tracking in 3D space was empirically
evaluated by calculating mean square error (31). Our experimental
results confirmed that the codesigned software and hardware system
achieved precise in situ object movement tracking. Notably, the sys-
tem maintained an error margin of less than 0.3 cm and demonstrated
a rapid temporal processing rate of 1.8 ms. This level of performance
was attained although we used a compact, low-performance micro-
processor for computing.

RESULTS

Overall system

Using the codesigned hardware and software platform previously
outlined, we demonstrated the capabilities of stereoscopic artificial
compound eyes for object detection and optical flow sensing in 3D
space. Initially, we used epitaxial liftoff technology to fabricate thin-
film indium gallium arsenide (InGaAs) photodiodes on a flexible
substrate. These photodiodes were then paired with hafnium oxide
(HfO,)-resistive random-access memory (ReRAM) units to create a
one photodiode-one resistor (1P-1R)-based focal plane array (FPA)
on a flexible Kapton substrate. This configuration allows the optical
signals received by the photodiodes to be modulated, effectively em-
ulating pigment cells and receptors found in the arthropod visual
system (32). Subsequently, each pixel was combined with a poly-
methyl methacrylate-based microlens array to improve focusing
capabilities, mimicking the structure and function of an ommatidi-
um. Then, we shaped the fabricated FPAs into a hemispherical form
with a 20-mm radius, exploiting the mechanical flexibility of the
membrane-based system to modulate both the shape and radius of
the structure. To facilitate stereoscopy, a pair of artificial compound eyes
were positioned 2 cm apart on a planar surface, achieving a 160° FoV
(Fig. 1D and fig. S1). The artificial compound eyes were then mounted
on 3D printed structures (Fig. 1E) and aligned to maximize the ste-
reo FoV area, which was the overlapped FoV area between the two
eyes (Fig. 1F). Last, the compound eyes were installed onto a cus-
tomized printed circuit board for the inference readout process and
electrical control (fig. S2), integrating the entire system into a cohe-
sive unit capable of advanced optical sensing and object detection
in 3D space.

Figure 1G illustrates the process flow for object sensing and signal
processing using our hardware and software codesigned stereoscopic
compound eyes. Conventional imaging and processing systems ne-
cessitate a range of components, including a backplane circuit, read-
out circuit, analog-to-digital converter, memory, and computing
units, to capture data at the sensor level and to process signals at the
processor level. In contrast, our approach integrates ReRAMs direct-
ly with the sensor and a compact microprocessor connected to the
sensor for edge computing capabilities. The ReRAMs, programmable
through photogenerated currents from the photodetectors, enable
in-sensor processing that generates 1D encoded data from consecu-
tive images through the one-shot inference process, bypassing the
need for a sequential readout process. By processing signals directly
at the pixel level using ReRAMs, we reduced the dimension/size of
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the generated data; the need for data transportation between sensors,
memory, and computing units; and the reliance on software-based
calculations and complex peripheral circuitry (described in the fol-
lowing section in detail). With the described scheme, the processed
data at each pixel were fed into the local neural network to detect
objects in the 3D field using the compact and dedicated ML system
(Sony Spresense board).

Fabrication and characterization of stereoscopic

compound eyes

To demonstrate the optical flow sensing in 3D space, we designed
and fabricated artificial compound eyes that consist of 16-by-16 In-
GaAs photodiode and HfO, ReRAM (1P-1R) pixels on a flexible
Kapton substrate (Fig. 2A). Here, a square pixel array was used in-
stead of a symmetrical structure to simplify row-by-row and column-
by-column current summation process. Figure 2B depicts magnified
view of the compound eye, consisting of thin-film InGaAs-based 1P-
IR and the serpentine-shaped interconnections between the 1P-1R
FPAs, featuring robustness to external strain and mechanical defor-
mation (33-35). The detailed fabrication process of the 1P-1R array
is described in the “Fabrication of 1P-1R array on flexible platform”
section in Materials and Methods and figs. S3 to S5. After the fabrica-
tion of the 1P-1R array, a microlens array was integrated (see the “In-
tegration of microlens array on FPA” section in the Supplementary
Materials and fig. S6) onto the photodiode array, and FPA was de-
formed into a hemispherical shape (Fig. 2C and fig. S7). Figure 2D
shows the schematic description of the microlens and 1P-1R array.
The microlens was integrated on an individual photodiode as a cor-
neal lens in compound eye structure (36), which samples a limited
visual field only within its acceptance angle. This configuration emu-
lates the ommatidium in arthropod eyes, which enhances their sen-
sitivity for the motion detection (37, 38). We designed the microlens
on the basis of the optical simulation conducted using COMSOL
software (see the “Microlens simulation” section in Supplementary
Materials and fig. S8). The detailed fabrication procedure of micro-
lens array is described in the “Fabrication of microlens” section in
Materials and Methods. With the fabricated photodiode integrated
with the microlens, we characterized the FoV by measuring the pho-
togenerated current under a —3-V bias applied to the photodiode,
across various light incident angles ranging from —35° to 35°. The
fabricated pixel integrated with microlens exhibited 8.5° of light ac-
ceptance angle (Fig. 2E).

After the fabrication of compound eyes, we first examined the
characteristics of individual photodiode and ReRAM. To confirm the
dynamic range of photodiode, we measured the current-voltage (I-V)
characteristics of the fabricated InGaAs photodiode under the illumi-
nation of light at a wavelength of A = 530 nm with varying light inten-
sities from dark to 1.74 W/m?® (Fig. 2F). Figure 2G shows the I-V
characteristics of the ReRAM, featuring the nonvolatile resistive
switching behavior after the initial forming process. Statistical dis-
tribution of set and reset current measured using 100 fabricated
ReRAMsis shown in fig. S9. The transition between the high-resistance
state (HRS) and the low-resistance state (LRS) is associated with the
drift of oxygen vacancies in the HfO, medium (39), driven by external
electric fields. For the initial forming process, voltage sweeping was
carried out from 0 to 8 V, with a I-mA current compliance. The for-
mation of a conductive filament became evident upon observing
abrupt conductance change (indicated by the gray line). The ReRAM
was subsequently reset to HRS using a sweeping voltage ranging from
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Fig. 2. Device characterizations. (A) lllustration of hemispherically formed FPA integrated with microlens array. (B) The image displays serpentine metal pattern connec-
tion between the pixels and integrated microlens. (C) Photograph of the fabricated pixels integrated with microlens. (D) lllustration of the fabricated microlens and 1P-1R
ReRAM array structure. InGaAs photodiode and HfO,-based ReRAM were integrated to implement 1P-1R structure. To focus the light within the limited acceptance angle,
the microlens with 150-pm radius and 100-pm pilar height was fabricated and integrated on the top of the photodiode. (E) FoV of each pixel integrated with microlens.
The experimental data indicate an FoV of 8.5°. Inset: Schematic illustration describes the light acceptance range of the pixel. (F) I-V characteristics of InGaAs photodiode
under various light illumination intensities from dark to 1.74 W/m?. (G) I-V characteristics of ReRAM. The gray line shows the initial forming process. The dark blue line in-
dicates the resetting process, whereas the light blue line indicates the setting process. (H) Endurance characterization of ReRAM during the application of 2000 cycles of
setand reset pulses (1.2 and —2V for 0.5 ms, respectively). (I) Optical programming of 1P-1R pixel. I-V characteristic of 1P-1R. Brown line indicates the optical programming
(set ReRAM by the photocurrent under 1.6 W/m? of incident light) process, and yellow line shows the resetting process. Inset shows the direction of sweeping voltage
during the programming process. (J) Endurance characterization of 1P-1R during the application of 1000 cycles of 1.5-V set and —2.5-V reset pulses with 0.05-ms pulse
width under 1.6 W/m? of incident light. Conductance maps (K) before and (L) after a forming process of the fabricated 1P-1R array. (M) Readout signal from 1P-1R FPA
after optical programing of each pixel using light illumination of bee shape.
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0to —4V (depicted by dark blue lines), followed by the setting process
using a sweeping voltage from 0 to 2.5 V (light blue lines). To evaluate
the endurance of the ReRAM, we applied consecutive set (1.2 V/500 ps)
and reset voltage (—2 V/500 ps) pulses in turn, toggling the state of
ReRAM a total of 2000 times. Subsequently, we applied readout volt-
age pulses (0.2 V/500 ps) and acquired a series of set and reset cur-
rents (Fig. 2H). Statistical analysis of set and reset conductance
showed small standard deviations (SDs) of 6 = 9.273 x 10~° and
3.583 x 107° S, respectively, which confirmed the superior endurance
performance of the fabricated ReRAM on Kapton substrate.

On the basis of characteristics of individual devices, we designed
and characterized the 1P-1R pixel to be used for in-sensor computing.
Figure 21 shows the I-V characteristics of the 1P-1R pixel under illumi-
nation (1.6 W/m?). The notable conductance shift of the ReRAM was
observed after the application of sweep voltage from 0 to 1 V (brown
lines) to the pixel under the light illumination with intensity of 1.6 W/
m® The ReRAM was reset to HRS by sweeping the input voltage from
0 to —3 V (yellow lines) to the pixel. These results confirm that the
photogenerated current can be used to program the 1P-1R pixel. Then,
the endurance of 1P-1R pixel was examined by applying the alternat-
ing set (1.2 V/500 ps) and reset (—2.5 V/500 ps) pulses for a total of
1000 cycles under the light illumination at an intensity of 1.6 W/m”
(Fig. 2]). This result verifies the durability of 1P-1R to multiple pulse-
based operations that enable continuous detection of the object. Fur-
thermore, we evaluated the programmability of the entire 16-by-16
1P-1R array. Figure 2K shows the conductance of the 256 ReRAMs
within the array before the forming process. After the forming process,
all pixels demonstrated a successful transition from the HRS to the
LRS, as represented in Fig. 2L. After the resetting process, we were able
to selectively program the ReRAMs to a desired pattern (here, the
shape of a bee) when the array was exposed to the patterned light illu-
mination with an intensity of 0.6 W/m?, as described in Fig. 2M. The
signal variation analysis result of the fabricated hemispherical 1P-1R
array along the end-to-end lines is illustrated in fig. S10.

In-sensor computing system

After the characterization of individual pixels and arrays, we exam-
ined the functionality of fabricated 16-by-16 1P-1R to directly encode
optical stimuli from a wide FoV at the sensor for the reduction of data
dimension and size. Figure 3A describes the schematic illustration of
the projected area on the hemispherical surface when the target object
moves in 3D space during the time 7. In this schematic illustration,
the object moves away from the sensor; thus, the projected area on the
hemispherical surface became smaller. To achieve energy-efficient
optical flow sensing, we first encoded the sequential data detected
from moving objects using in-sensor memory-based processing. The
initial position (at time #;) of the object was stored in ReRAMs via
optical programming using the photogenerated current from a seri-
ally connected photodiode when it was exposed to light. If there was
no optical signal to photodiode at the time ¢;, the ReRAM maintained
its HRS. Once the ReRAM was programmed by optical signal, ReRAM
functioned as a load series resistance (Ry) to the integrated photo-
diode at each pixel. Thus, under the forward bias, the current output
from 1P-1R was influenced by total resistance (RL + Rphotodiode) Of the
pixel, whereas the effect of photogenerated current was dominant
under the reverse bias (see the “In-sensor computing principles” sec-
tion in the Supplementary Materials). Therefore, the resistance stored
in ReRAM and photogenerated current from the pixel can be
individually read by measuring the output current of the pixel in
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forward and reverse bias regimes, respectively (fig. S11). Readout of
the output current of the pixel in both reverse and forward bias re-
gimes allowed 1P-1R to obtain consecutive scene data at the same
time (at time f,). After the readout process, all the ReRAMs in the
pixel were reset to HRS to encode the next consecutive images. Fig-
ure 3B shows the representative I-V characteristic of 1P-1R that em-
phasizes the effect of programmed ReRAM to the pixel with and
without light illumination in both photoconduction and photodetec-
tion modes.

Figure 3C shows the designed and applied pulse scheme for the
sequential set/read/reset process. Each pulse cycle consisted of a set
(memorization) pulse for ReRAM at time f;, two readout pulses (pho-
toconduction and photodetection modes) at time f,, and a reset pulse
(erasing) right after the readout. Set and reset of each pixel were
achieved through the application of 1.0- and —2.5-V voltage pulses
with a duration of 100 ps. Readout was performed 1 ms after the set
process by applying —0.4- and 0.8-V voltage pulses with a duration of
50 ps. We applied —0.2 V to the pixel to prevent the substantial cur-
rent from flowing to ReRAM when there was no input pulse applied.
This readout scheme was advantageous for in-sensor computing by
simplifying the in and out (I/O) operation of obtained image data to
external memory (see the “I/O operation in memories” section in the
Supplementary Materials).

Figure 3D describes experimental readout results of the 1P-1R
pixel with respect to all possible consecutive optical detection sce-
narios: An object remained within the detection range of the pixel
(Fig. 3D-1); an object entered the detection range at time t, (Fig. 3D-
2); an object exited the detection range at time t, (Fig. 3D-3); and the
object was not detected to the pixel (Fig. 3D-4). We first applied volt-
age pulse (—1.0 V) under the light illumination of 1.3 W/m? to the
pixel to store the light information at t;. Then, sequential readout
pulses for both photoconduction and photodetection modes (0.8
and —0.4 V, respectively) were applied to each pixel at time t,. When
the object was placed on the original position at #; and moved out to
the position at t,, a distinguishable combination of readout currents
via the application of both forward and reverse bias pulses was
achieved for the corresponding combination of output signals. The
experimentally measured current outputs from individual pixels us-
ing the designed pulse scheme under four different scenarios are
shown in fig. S11.

To demonstrate the in-sensor computing process, we showed out-
put from the inference of 16-by-16 artificial compound eyes. Fig-
ure 3E illustrates the geometry of setup for the characterization of the
array. The left and right eyes were placed 2 cm apart from each other
on the flat surface, and the target was placed 5.5 cm above the center
of the two eyes at time #;. Then, we moved the target 10 mm to the
right from the initial position at time t,. The overall experimental pro-
cess is described in movie S1. To perform the in-sensor computing,
instead of procuring pixel-by-pixel image data by applying sequential
pulses to the array that the conventional image readout process uses,
we encoded the image data using the single inference read pulse that
can reduce the dimension of output from 2D to 1D (Fig. 3F). To
achieve one-shot inference of the crossbar pixel array of the com-
pound eyes without losing notable optical information, we applied a
readout pulse scheme, —0.4- and 0.8-V pulses as described in the
above section, to the array both row by row and column by column.
Thus, we acquired two pairs of 1D encoded datasets from column-
wise and row-wise summation, respectively. Using this readout pro-
cess, we were able to encode the optical flow cues from 16-by-16
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Fig. 3. FPA characterization for in-
sensor computing. (A) lllustration of acti-
vated region on hemispherical compound
eye surface during the movement of the
target object positions in 3D space. (B) I-V
curves of single pixel for four cases: the
HRS of ReRAM under illumination, HRS
under dark conditions, LRS under illumi-
nation, and LRS under dark conditions.
Dashed and solid lines indicate the -V
curve without and with light, respectively.
Red and blue lines refer to the result when
the ReRAM in the 1P-1R structure was in
the LRS and HRS, respectively. The readout
was performed in both forward and re-
verse bias regimes (0.8 and —0.4V, respec-
tively) (C) Applied pulse scheme to each
pixel for programing/read/reset. Program-
ing and resetting occur through the appli-
cation of 1.5- and —2.5-V voltage pulse
with a duration of 100 ps. Readout is per-
formed 1 ms after the setting pulse by ap-
plying 0.8-and —0.4-V voltage pulses with
a duration of 50 ps. We applied negative
voltage (—0.2 V) bias during the resting
time to prevent the notable current flow-
ing to ReRAM. (D) Schematic illustration
of motion detected on the hemispherical
surface and its readout results depending
on four cases. (i) The object was detected
attime t; and still in the range of detection
despite the movement at time t,, (i) the
object was detected at time t; but moved
out of detection range at time t,, (iii) the
object was not detected at time t; but
moved into the detection range at time t,,
and (iv) the object was out of detection
range at both time t; and t,. Each case
was distinguishable according to the
measurement result. (E) lllustration of ex-
perimental geometry for object tracking.
(F) Readout scheme of the array to obtain
image data from the sensor by using con-
ventional CMOS-based readout system
(left) and our inference readout system
(right). Instead of procuring image data
pixel by pixel by applying sequential puls-
es, we retrieved the encoded result from
the image sensor by applying one-shot
inference pulses. (G) Readout map of indi-
vidual pixels when measured in the pho-
toconductance regime (0.8 V, 50 ps) (left)
and photodetection regime (—0.4V, 50 ps)
(right) at time t,. Accumulation of row-
wise and column-wise output current is
also shown in the bottom and left side of
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hemispherical FPA into four channels of a 16-by-1 1D dataset. This
process diminished latency and power consumption for the in situ
operation of both the front- and back-end systems by alleviating data
storage and transmission demands because of the reduced data di-
mensions from 2D to 1D. Figure 3G describes the readout result of
individual pixels in a 2D map to confirm the programmability of the
array and the 1D encoded readout result from FPA by applying for-
ward and reverse bias pulses in all rows and columns. Figure 31 illus-
trates the examples of the encoded images, showing the distinctive
result in conjunction with the moving direction of the object. The
encoded data were fed into the ANN and loaded in the connected lo-
cal ML system for the following near-sensor computing.

Back-end near-sensor computing system

Figure 4A describes the edge computing process including in-sensor
and near-sensor processing steps for object perception and recogni-
tion. For near-sensor computing, an FSL-based neural network
(FSNN) was used for object tracking in 3D space with the local mi-
croprocessor (Fig. 4B). The encoded data by each compound eye
were processed independently by two separate CNNs that share the
weight updates. A 3-by-3 kernel was applied to each CNN layer with
identical padding. Then, we applied rectified linear unit (ReLU)
function to activate the layers, followed by a 2-to-1 average pooling
layer to compress the features. The outputs from each CNN were
concatenated into an FCL to combine all the learned features for the
regression. Eventually, the network generates a 6-by-1 output vector,
comprising two distinct 3-by-1 components. The first 3-by-1 vector
represents the moving velocity of the object in 3D space, whereas the
second 3-by-1 vector corresponds to the position of the object before
the movement. To achieve accurate results, the neural network re-
quires a substantial amount of data for the training process. There-
fore, we generated 100,000 training and 20,000 test datasets using a
ray-tracing 3D simulation (details in the “Generating training and
test dataset” section in Materials and Methods and fig. S12). In the
simulation, we designed the identical stereoscopic compound eye
used in the experiment, including geometry/arrangement of the sen-
sors and the light acceptance angle through the microlens at each
pixel. With the simulated dataset, we trained FSNN using the root
mean square error (RMSE) as the loss function to gauge the discrep-
ancy between the truth and the tracked values (Fig. 4C). This process
yielded training and validation losses of 0.015 and 0.022 during the
training process, respectively.

The trained FSNN model was converted to hex data and was up-
loaded to a local processor using Arduino integrated development
environment. The local portable processor used in this study oper-
ates at 5 V with a clock frequency of 156 MHz, equipped with a
1.5-megabyte on-chip static random-access memory. Reduced data
size and dimensionality through in-sensor computing enable pro-
cessing of the information using this compact system, negating the
necessity for high-powered computing hardware. To confirm the ef-
fectiveness of the system for the 3D perception, we used the stereo-
scopic compound eye system to track objects, detecting both the
velocity and the position of an object in the 3D space by simulation
based on experimental data (Fig. 4, D and E). Figure 4D shows the
tracking outcome, illustrating that the truth value of optical flow
sensing (yellow line) closely aligns with the tracked value (blue line;
movie S2). Figure 4E presents the recognition results of the object
position in 3D space, where the tracked x, y, and z coordinates close-
ly match the truth values (fig. S13). Object tracking conducted under
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different circumstances (object shapes and light conditions) also
shows nearly identical performance (described in figs. S14 and
S15). These in situ object tracking computations were achieved
within 1.8 ms per frame without transporting the data to the exter-
nal computation units and memories (“Prediction on edge system”
section in Materials and Methods). As shown in Fig. 4 (F and G),
notably low RMSE (lower than 0.3 cm) was achieved for both
depth and 2D position detection using the designed stereoscopic
compound eyes.

Figure 4 (I and J) illustrates the notably simplified object tracking
process in 3D space using stereoscopic compound eyes compared with
conventional complementary metal-oxide semiconductor (CMOS)
image sensor and computing units. The CMOS image sensor (CIS)-
based approach requires the process through the image signal proces-
sor to read out the signal as a 2D image, through an amplifier and
analog-to-digital converter (ADC). Furthermore, optical flow compu-
tation and 3D image perception using acquired image data mandate
frequent data transportation between memory (e.g., static random ac-
cess memory, SRAM, and dynamic random access memory, DRAM)
and computing units (e.g., arithmetic logic units, ALU, and multiply-
accumulate operation unit, MAC). In contrast, our edge computing
system does not require frequent memory access to store each scene
data or to compute the object tracking in 3D space because the optical
flow cues from the scene were processed within the sensor (details in
the “Comparison of conventional object tracking with compound eye
sensor system” section in the Supplementary Materials). On the basis
of the described process flow, we estimated and compared the power
consumption of both systems (Fig. 4H). The calculation showed that
our compound eye system requires ~75 times less energy than a con-
ventional system for data acquisition and processing to generate the
optical flow cues. Furthermore, postsignal processing for optical flow
sensing by using FSNN consumed approximately 7000 times less en-
ergy than using conventional signal processing hardware and algo-
rithm. The estimation details are shown in the “Power consumption
calculations during the preneural network processing” section in the
Supplementary Materials. Moreover, the latency for the signal process-
ing was notably reduced (~100 and ~300 times for pre- and postpro-
cessing, respectively) when we used the compound eye system with
edge computing (details in the “Power consumption calculations dur-
ing the neural network processing” section in the Supplementary Ma-
terials). This result confirms the unique feature of our system to
harness computing at sensor with minimal energy consumption and
latency and without using costly and bulky hardware and/or cloud
computing, which make it suitable as an in situ object tracking and
navigation system.

DISCUSSION

Here, we demonstrated stereoscopic artificial compound eyes inte-
grated with an edge computing system that can track object move-
ment in 3D space. Instead of using a disparity calculation that requires
frequent communication between processor and memory, our sensor
captures sequential changes in the observed scene using the integrat-
ed ReRAM. Furthermore, without using a conventional pixel-by-pixel
readout process, a one-shot inference-based readout scheme was
used with the 1P-1R crossbar array to encode the data at the sensor.
The encoded data were subsequently relayed to a neural network im-
plemented by a compact computing unit adjacent to the sensor, which
tracks the position of object in 3D space and its moving direction
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Fig.4.FSNN-based tracking vianear-sensor
computing. (A) lllustration of the perception
and cognition process used in this work. Con-
secutive scenes encoded by stereoscopic
compound eye were processed through a lo-
cal processor using an FSNN. The local proces-
sor provides the result of the object position
and optical flow. (B) lllustration of the FSNN
used in the system. Encoded data from each
compound eye were processed individually
by two distinct CNN networks, which share
weight updates with each other. The obtained
features from each CNN network were then
merged and fed into an FCL. Six outputs of the
FCL indicate the tracked value of the object
coordinates and moving direction in Euclidean
coordinates. (C) Training and validation result
for the object position and optical flow de-
tection using neural network with 100,000
datasets. (D) 3D plot of detected object mov-
ing directions and its truth values. The tracked
result and truth movement of the object were
well aligned without significant error. (E) De-
tected object position in 3D space and its truth
value. 2D contour map of the average RMSE
between detected position and truth position
for (F) the depth ranging of object and (G) x-y
position of the object. (H) Power consumption
comparison between our edge computing-
based and conventional CIS-based systems.
The calculated consumed energy required for
signal preprocessing using conventional sys-
tem and compound eye system was 65.0 mJ
and 895 pJ, respectively. For the postprocess-
ing, the energy consumption using conven-
tional system was 8.63 J per inference, whereas
the compound eye system only consumed
1.209 mJ. The result confirmed the effective-
ness of compound eyes for energy-efficient
signal processing at the sensor. Signal pro-
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enhanced by incorporating stereoscopic sensors. This hardware and
software codesigned edge computing system simplifies the complex
front- and back-end system to overcome the challenges in in situ per-
ception and cognition toward offering a versatile computing-in-

sensor platform.
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Fabrication of 1P-1R array on flexible platform

The inverted InGaAs p-i-n photodiode active device with an AlAs sac-
rificial layer was grown on InP substrate using molecular beam epitaxy
(fig. S3A) (33). Ti/Au (10/150 nm) was deposited on top of both the

InGaAs wafer and the Kapton substrate using an e-beam evaporator
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and cold-welded under 2-kN pressure and 205°C conditions for 5 min
(40, 41). Then, the bonded substrate was immersed into a mixture so-
lution of HCL:H3PO,4 = 4:1 for 2 hours to etch out the InP wafer. The
etched p-InGaAs/Uid-InGaAs films were then etched using induc-
tively coupled plasma-reactive ion etching (ICP-RIE) to form a mesa
for 6 min under the conditions of BCl; of 20 standard cubic centimeter
per minute (sccm), 600-W ICP power, 150-W forward power, 7 mtorr,
and 20°C stage temperature, followed by a wet-etching process. The
n-InP mesa for the bottom metal electrodes was patterned by 30 s of
wet etching using a solution of HCI:H,PO4 = 3:1. Then, a 150-nm
AL O;5 dielectric insulator layer was formed via plasma-enhanced
atomic layer deposition (PEALD). The via holes were etched using
ICP-RIE under the conditions of BCl; of 20 sccm, 50-W ICP power,
200-W forward power, 5 mtorr, and 20°C stage temperature for 6 min.
The Ti/Pt/Au (5/10/50 nm) top and bottom electrodes of the photodi-
odes were deposited simultaneously using e-beam evaporation and
were patterned by photolithography. Then, PEALD was used to de-
posit an additional dielectric insulator of 150-nm Al,O3, and through
holes were patterned on the bottom electrodes of the photodiodes.
Subsequently, the bottom electrodes of the ReRAMs were connected to
the bottom electrodes of the photodiodes by depositing Ti/Pt (5/25 nm).
Then, 5.5-nm HfO, was deposited to form the active medium of ReRAM
using PEALD, followed by Ta/Pt (50/25 nm) metal deposition through
dc magnetron sputtering of Ta (25-W radio frequency, RF power of
5 mtorr, Ar of 20 sccm, and room temperature for 18 min) and e-beam
evaporation of Pt. Last, the flexible Kapton substrate was etched out
with a serpentine pattern (42) to be deformed into the hemispherical
shape, using ICP-RIE under the conditions of O, of 10 sccm, SF of 5 scem,
600-W ICP power, 150-W forward power, 7 mtorr, and 20°C stage tem-
perature. The specific processes to fabricate the artificial compound
eye are described in fig. S3B.

Fabrication of microlens

To fabricate microlenses, we created a mold with a 16-by-16 pattern of
microlens (each with a 150-pm radius) on a silicon substrate. To elimi-
nate the native oxide layer on the prepared silicon substrate, we sub-
jected it to plasma treatment using 950 W of ICP power and 15 W of
bias power for 20 s. The treatment used a gas mixture comprising
C4Fg:SFs:CF4 in a ratio of 60:24:27, with a total flow rate of 110 sccm,
whereas the gas pressure was maintained at 20 mtorr. Then, the silicon
substrate was isotropically dry-etched (43, 44) under the conditions of
SFg of 25 sccm, O; of 2 sccm, 1800-W ICP power, 30 mtorr, and 20°C
stage temperature for 10 min to form hemispherical holes. The holes
were deepened using the Bosch process (45) consisting of two alternat-
ing steps. The first process was to deposit a passivation film on the hole,
under the conditions of SFg of 5 sccm, C4Fg of 50 sccm, 650-W ICP
power, 5-W RF power, 7-W dc power, 40 mtorr, and 20°C stage tem-
perature. The next process was to etch out the hole by applying high dc
power, under the conditions of SFs of 60 sccm, C4Fg of 25 sccm, 650-W
ICP power, 20-W RF power, 170-W dc power, 30 mtorr, and 20°C
stage temperature. We repeated these two processes 100 times to an-
isotropically deepen the hole. After the Bosch process, we cleaned the
silicon mold with oxygen plasma treatment and removed the photore-
sist layer and residues formed on the substrate. Then, the silicon mold
was coated with a hydrophobic layer using ICP-RIE under the condi-
tions of O, of 10 sccm, C4Fg of 50 sccm, 600-W ICP power, 5-W RF
power, 10 mtorr, and 20°C stage temperature for 1 min (46). After the
mold preparation, the polymethyl methacrylate was prepared with a
mixture of toluene:polymethyl methacrylate = 8:1 (weight %) and
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spin-coated on the fabricated silicon mold with 200 rounds per minute.
The silicon mold was left in the vacuum oven for 10 min to remove
bubbles and annealed under 80°C for 20 min. After the annealing
process, the microlens array was demolded from the silicon mold.

Generating training and test dataset

To generate the training and test dataset, we used UNITY software to
emulate the experimental conditions. The virtual space was crafted on
the basis of a Euclidean coordinate system, converting real-world
measurements such that 1 mm equated to 1 U in the virtual space
(fig. S11A). Within this virtual space, we positioned two compound
eye sensors, each composed of a 256-pixel array in a 16-by-16 con-
figuration. Each pixel of the compound eye was represented by an
individual camera providing an 8.5° FoV within a 40-by-40 square
dimension. To replicate the hemispherical structure of the actual
compound eye sensor, the cameras were repositioned within a 20-by-
20 dimension (equivalent to 20 mm by 20 mm in real space; fig. S11B).
The centers of two sensors were positioned at the coordinates (—15, 0, 0)
and (15, 0, 0), respectively.

To emulate the object tracking situation, we used a moving sphere
with a 6-U radius as the detection target in a virtual environment.
This object was coded to move randomly within set boundaries: x co-
ordinates between —40 and 40, y coordinates between —40 and 40,
and zcoordinates between 25 and 120. Each camera reported on the
presence of the moving object. If the moving sphere was within a
cameras FoV, the camera transmitted a “1” signal; otherwise, it sent
“07 In two consecutive time periods (before and after the movement
of the object), all 512 cameras in the field transmitted signals to the
system twice. To simulate the readout procedure, a signal dimension
of 512 by 2 was dispatched to the system. In addition, the object’s posi-
tion in Euclidean coordinates, both before and after its movement
(comprising x, y, and z coordinates, 3-by-2 matrix), was also relayed
to the system. As a result, a dataset with a length of 120,000 compris-
ing 1030 data points was acquired. The dataset examples are depicted
in fig. S11 (C and D).

Prediction on edge system

Most microprocessors, especially those used in embedded systems, are
limited in memory and computational power. Consequently, this ne-
cessitates the use of compact neural network models. Initially, we de-
signed and tested a streamlined yet highly functional neural network
intended for use in portable microcontroller units. The architecture for
near-sensor object tracking consists of three 1D CNN layers, followed
by an FCL. Each CNN layer uses a 3-by-1 kernel with same padding,
activated by the ReLU function, and includes a 3-to-1 average pooling
layer to condense features. The left and right feature maps from each
layer are then input into the subsequent CNN layer for regression and
further compression. These inputs are processed to compute feature
maps and subsequently concatenated across the channel dimension to
form a cost volume. The merged features are input into an FCL net-
work with three hidden layers (128-32-16-6), which track object
movement. The first two layers of this multilayer perceptron use ReLU
activation, whereas the final layer uses a sigmoid function to scale the
output between 0 and 1. RMSE loss is used to calculate the regression
loss between the initial and final positions of the moving object. We
evaluated our model using datasets comprising 80,000 training, 20,000
validation, and 20,000 testing samples. Data labels were normalized to
a 0-to-1 range using a minimum-maximum scaler during preprocess-
ing. The model was trained over 5000 epochs with a batch size of 128,
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using stochastic gradient descent with a momentum optimizer in the
Keras framework. Model verification was conducted using the mean
absolute error as the evaluation metric.

For deployment on microcontrollers, the model underwent mod-
ifications to ensure compatibility with microprocessor constraints.
These adjustments included techniques such as compression, conver-
sion, quantization, and pruning (47). Compression reduced the model’s
size to fit the microprocessor’s limited memory, and the quantization
and pruning simplified the model by converting the 32-bit floating-
point model to an 8-bit signed integer format. The model was then
compiled into a header (.h) file for interpretation by the micropro-
cessor and subsequently uploaded. The uploaded model size was
16.54 kilobytes.
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