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Images from cameras are a common source of navigation information for a variety of vehicles. Such navigation
often requires the matching of observed objects (e.g., landmarks, beacons, stars) in an image to a catalog (or map)
of known objects. In many cases, this matching problem is made easier through the use of invariants. However,
if the objects are modeled as three-dimensional points in general position, it has long been known that there
are no invariants for a camera that is also in general position. This work discusses how invariants are introduced
when the camera’s motion is constrained to a line, and proves that this is the only camera path along which
invariants are possible. Algorithms are presented for computing both the invariants and the location for a camera
undergoing rectilinear motion. The applicability of these ideas is discussed within the context of trains, aircraft, and

spacecraft.

I. Introduction

DENTIFYING objects in a digital image is a common task for

vision-based perception systems. In many cases, invariant theory
[1-5] provides a powerful framework for accomplishing this task.
The idea is to find and catalog properties of an object (or group of
objects) that remain unchanged when the object is viewed by a
camera from different viewpoints. Of particular interest here are view
invariants, which describe those invariants that may be constructed
exclusively from information contained within an image. Thus,
regardless of how the object is oriented relative to the camera when
the image is taken, one may always compute the same numerical
values for the view invariants. If these view invariants are unique for
each object, they provide an easy means of image-based object
identification. Such an interpretation and use of invariants is well-
established [6-9], and has seen widespread use in both terrestrial and
space applications. For example, invariants have been used in space-
craft navigation to identify star patterns [10,11] or planetary land-
marks (e.g., craters [12]) in digital images taken by space cameras.
They can also be used to recognize patterns of retroreflectors seen in
Flash LIDAR images [13], such as during the rendezvous with a
cooperative spacecraft [14].

Despite the utility of invariants for object recognition and its great
success in solving some problems (e.g., star pattern recognition),
invariants do not exist for all types of objects or all classes of motion.
Perhaps the most well-known example of a scenario lacking invari-
ants is a cloud of arbitrary three-dimensional (3-D) points as imaged
from a camera of arbitrary position. Indeed, this lack of nontrivial,
general-case view invariants may be proven in a number of different
ways [11,12,15,16]. The prevalence of scenarios with cameras
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viewing objects that can be modeled as 3-D points makes this result
disheartening.

Fortunately, invariants may be introduced by placing constraints
on either the 3-D point configuration or the observer’s motion. For
example, if an uncalibrated camera in general position observes a
d-tuple of points constrained to lie on a plane, then there are known to
be 2d — 8 invariants [17]. Alternatively, if the d-tuple of points are in
general position but the camera has a fixed location (but unknown
orientation), there are 2d — 3 invariants for a calibrated camera and
2d — 8 invariants for an uncalibrated camera [10]. To complement
these known results, this work explores the existence of invariants for
a d-tuple of 3-D points in general position as seen by an observer
constrained to move along a known path. Such a scenario is important
since design or selection of the 3-D points is often outside of the
user’s control.

This work presents three key results. The first key result is that
there exist no view invariants for a moving camera observing 3-D
points unless all the camera positions are colinear. Thus, rectilinear
motion is the only camera motion that permits view invariants for
observations of 3-D points in general position. The second key result
is that there are d independent view invariants for a d-tuple of 3-D
points seen by a calibrated camera of known attitude that is con-
strained to move along a known line. These invariants may be
computed from a catalog of 3-D point locations or from the apparent
location of points in an image. The third key result is that the new
invariants discussed here have a wide variety of practical applica-
tions. Indeed, although this work was first motivated by the problem
of star identification in interstellar space [11], the results shown here
have several other potential aerospace and transportation applica-
tions. Some example applications are discussed.

II. Background

The proper development of invariants for a particular object rec-
ognition problem contains at least two primary steps. The first step
is the enumeration of the number of fundamental invariants. This
ensures that the problem is solvable (i.e., that invariants actually
exist) and lets the analyst know how many independent invariants
must be found. The second step is to find ways of computing the
desired invariants from the observations. Of the two steps, it is the
first step that requires the most careful review of invariant theory. This
background section provides such a review. For more details on this
topic see Ref. [9].

Check for
updates
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A. Fundamental Invariants, Rational Invariants, and Indexing

An invariant is a function on an algebraic variety whose output
does not change when some group acts on the variety. These ideas
have their root in early work by Hilbert [18,19] and have been studied
extensively since then [3,5]. To explore these concepts more fully,
suppose that V is an irreducible algebraic variety. Then, let C(V)
denote the set of all rational functions on }V over the complex numbers
C. This set has the algebraic structure of a field. Further, denote
C(V)? as the set of all functions on the variety V that are invariant
under the action of group G. It follows that C(V)Y is a subfield
of C(V).

If f1,f2, ..., fn €COV)Y, then fy, fo,...,f, are called funda-
mental invariants if every other invariant rational function can
be expressed uniquely as an algebraic function in f1, f5,..., f,.
This also means that there should not be any algebraic relations
between fi,f5,...,f,. In the language of field theory,
fi1,fa2, ..., f, are fundamental invariants exactly when they form
a transcendence basis of the field C())Y over C. Suppose that
fi1.f2, ..., f, are fundamental invariants. The set of all functions
that are rational expressions form a field C(f, f, ..., f,) and
C(V)Y is an algebraic field extension of C(f}, ..., f,). This means
that every invariant g € C(V)Y satisfies an equation of the form
gd-l—ad_](fl, ...,fn)gd_'—l— +a0(f], ...,fn), where ao,
ay, ...,a,_; are rational functions. In particular, if the function
values of f1, f,, ..., f, are fixed, then there are at most finitely
many possible values of g. It is possible though that the field
C(fy, ..., f,) is a proper subfield of C(V). That is, there may be
invariants that are not a rational expression in f1, ..., f,, even
though they are an algebraic function in f1, ..., f,.

If there are n fundamental invariants, that means there are n
algebraically independent functions on the algebraic variety V' that
are invariant under the action of group G [1-3]. While the analyst is
free to choose which functions are the fundamental invariants and
which are secondary functions, only n are algebraically independent.
If one chooses to compute m > n invariants, they will find that at least
m —n of these invariants contain redundant information. If one
chooses to compute p < n invariants, they are leaving out n — p
pieces of potentially useful information. The n fundamental invari-
ants may be used to populate an n-dimensional index space for the
purposes of object recognition [7].

B. Finding the Number of Fundamental Invariants

In some cases there may be no fundamental invariants or no finite
set of fundamental invariants, or the number of fundamental invari-
ants may be much larger than the dimension of the space [20]. Thus, it
is anontrivial result to find that there is a small (i.e., practical) number
of fundamental invariants that can be used in an object recognition
problem.

One can view C())? as a field extension over C. The transcend-
ence degree of a field extension can be thought of as an approxima-
tion of its size [21], mirroring the idea of dimension in linear algebra.
Consider a field L having a subfield K. The transcendence degree of
L over K, denoted as trdeg(L/K), is the largest cardinality of any
subset of L that is algebraically independent over K.

Proceed by first reviewing a few facts about the transcendence
degree. If a field extension is purely algebraic, meaning that it has no
transcendental elements, it has a transcendence degree of zero. If K is

afieldand x,, ..., x, are n indeterminates, then K(x, ..., x,) is the
field of rational functions in n variables x;, ..., x, over K. The
transcendence degree of the field extension K (x, ..., x,)/K is
trdeg(K(xy, ...,x,)/K)=n (1)
If Vis an algebraic variety, then
trdeg(C(V)/C) = dim(V) 2)

Further, if L is a field extension over K and M is a field extension over
L, then

trdeg(M/K) = trdeg(M /L) + trdeg(L/K) 3)

The maximum number of fundamental invariants is related to the
idea of the transcendence degree of a field extension. Specifically,
trdeg(C())9/C) is the maximum number of rational invariants that
are algebraically independent. If L is an extension field of K and the
functions f1, ..., f, € L are algebraically independent over K, then
trdeg(L/K) is the maximum possible value of n.

III. Existence of View Invariants

The first task for invariant-based object recognition is to establish
the existence of invariants. This depends on the specifics of the
scenario under consideration. Therefore, this analysis begins by a
description of the problem geometry and is followed by an enumer-
ation of the number of fundamental invariants. The number of
fundamental invariants is found to be finite and nonzero for a cali-
brated camera undergoing rectilinear motion.

A. Problem Geometry: Rectilinear Motion of a Calibrated Camera

Consider the case of an observer constrained to motion along a
line. To describe this observer’s position (and without loss of general-
ity), define an inertial reference frame whose z axis coincides with the
observer’s line of motion. It follows that the observer’s position may
be written as r = [0, 0, 7]”.

Now, suppose that this observer is equipped with a calibrated
camera capable of producing bearing measurements to a d-tuple of
points in general position. Let the position of the ith point be denoted
as p; = [x;,y:, z;]" € R3. Thus, bearing measurement describes the
line #; € P? that connects the observer’s location at some instant in
time (r) with the observed point (p;). A point along this line may be
computed as

X
Cixp—r= Vi 4
Zi—r

The proportional relationship is a compact way of capturing the
pinhole camera geometry. This approach prevents unnecessary nor-
malizations and often simplifies the mathematics (see Ref. [22] for
details). This problem geometry is illustrated in Fig. 1.

If the observer’s camera is calibrated and has a known attitude, then
there is a one-to-one mapping between the direction #; and the
apparent location of that point in a digital image. To make this
relationship explicit, first recognize that the vector ¢; is of arbitrary
scale and is expressed in the inertial frame. Thus, the image plane
coordinate [x;, y;] where the direction to p; pierces the camera frame’s
z = 1 plane is given by

X
yi | =x; < T?; (©)
1

where T € SO(3) is an attitude transformation matrix that rotates
a vector expressed in the inertial frame into the camera frame.

Fig. 1 An observer moving along the z-axis takes bearing measure-
ments to the 3-D point p;, which is one of multiple arbitrary points
Pis+++sPis+ -+ sPq in 3-D space.
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The matrix T is presumed known in this problem. Next, recall that the
homogeneous image plane coordinate xX; may be related to the pixel
coordinate [u;, v;] in a digital image by

u;
|:vij|:ﬁi:K_i (6)
1

The 3 X 3 matrix K is the camera calibration matrix and describes an
affine transformation of the form

di a u,
K=|0 d v, ™
0 0 1

where d, is the ratio of focal length to pixel pitch in the x-direction
(d, is the same thing in the y-direction), a describes the detector
skewness, and [u,,v,] is pixel coordinate of the principal point
[22,23]. Therefore, substituting Eq. (6) into Eq. (5), the pixel coor-
dinates of the point [;, v; in an image may be related to #; by the
homography H « KT,

Ui
[Uij|=lzi0(Hf,'0(KTfi (8)
1

The matrix K is known if the camera is calibrated, and its inverse
may be computed analytically (see [22]). It follows that the inverse
homography H~' = TTK~! is known and may also be computed
analytically. Thus, given the apparent pixel location [u;, v;], one may
compute the inertial direction #; directly as

Ui
fi (¢ H_lﬁi = TTK_l |: U,’} (9)
1

where the scaling of #; is unimportant. Common conventions are to
make £; a unit vector or to set the z-component to unity, but this
choice is unimportant here. The solutions and results that follow will
work for any choice of normalization.

B. Finding the Number of Fundamental Invariants

Let L be the field generated by the 3-D location of each point and
the 3-D position of the observer:

L=C@x, 1,215 -+ Xa>Yar 205 7) (10)

Any functions that are invariant to changes in observer position must
be a subset of L. Let K; and K, be subfields of L that contain C, the
complex numbers.

The invariants of interest are those that can be generated from
observations in an image (i.e., the view invariants). Thus, define the
subfield K as the field generated by only the point observations in an
image

Ky =C(uy, vy, ..., uy,04) an

Next, define the subfield K as the field generated by the 3-D position
components of each point:

Ky =Cx1,y1,215 -5 Xa» Ya» 2a) (12)

The intersection field K = K; N K, is the field generated by the
catalog position of each point and the measurement of each point but
not the observer position. Any fundamental invariants that may be
used to identify the d-tuple of points (functions whose output is
invariant to changes in observer position) must lie in K. To proceed,
one must know the number of functions that generate K. Application
of Eq. (1) shows that

trdeg(K/C) = trdeg(C(f1,....f,)) =n (13)

where f1, ..., f, are the fundamental invariant functions and » is the
number of fundamental invariants for this problem. Ultimately, n can
be determined by finding trdeg(K/C). Recall from Eq. (3) that
transcendence degrees of field extensions add, such that

trdeg(L/C) = trdeg(L/K) + trdeg(K/C) (14)
Thus, the number of fundamental invariants may be computed as
n = trdeg(K/C) = trdeg(L/C) — trdeg(L/K) (15)

To find the number of fundamental invariants, n, one must com-
pute both trdeg(L/C) and trdeg(L/K). The former is easy and the
latter requires a little more development. Specifically, it is straight-
forward to show that trdeg(L/C) = 3d + 1 from the definition of L
and Eq. (1). Attention is now turned to the further development
of trdeg(L/K).

1. Analysis of trdeg(L/K)

The field L is an extension field of K, and K is a subfield of L. A
derivation on K is a function D:L — L that satisfies Leibniz’s rule
D(ab) = aD(b) 4+ bD(a). The subfield K lies in the kernel of L if
and only if D(K) = 0. In this case, D is called a K-derivation. The
space of all K-derivations, denoted as Derg (L), is an L-vector space
with dimension given by

dim(Derg (L)) = trdeg(L/K) (16)

as follows from Theorem 23.12 in Ref. [24].
Thus, define the derivative function

d d d
b= () ol ren(i) o

fori = 1,...,d.Recall that K is generated by u; and v;. The field K
lies in the kernel of D; for all i. Recall that K, is generated by x;, y;, z;
and not by r. As such, K, lies in the kernel of the derivation d/dr.
Because K lies in the intersection of K| and K, it lies in the kernels of
D],.. .,Dd andd/dr.

The Lie bracket of two K-derivations is another K-derivation.
Therefore, it can be said that K does not just lie in the kernel of
Dy,...,D, and d/dr, but in the kernel of all K-derivations in the
Lie Algebra generated by these. The Lie algebra generated by
Dy, D,,...,D4,d/dr contains [D;,d/dr] = d/dz; and D; — (z; —
ryd/dz; = x;d/dx; + y;d/dy; for all i. So this Lie Algebra contains
the (2d + 1) derivations

d d d d n d d
(a) (@) ()= ) ) ()
d
”"(Tyd) (1%

that are linearly independent over L. Thus, it can be said that
dim(Derg (L)) > 2d + 1. Moreover, combining with Eq. (16), one
finds that

trdeg(L/K) = dim(Derg (L)) > 2d + 1 (19)

2. Number of Fundamental Invariants

It is now possible to compute the number of fundamental invari-
ants. To accomplish this, first recall that trdeg(L/C) = 3d + 1.
Substitute this result, along with the results of Eq. (19), into
Eq. (15) to find

n = trdeg(K/C) = trdeg(L/C) — trdeg(L/K)
<@d+1)-Q2d+1)=d (20)
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Hence, one finds the number of fundamental invariants to be
n < d. Consequently, for the problem of bearing measurements to
a d-tuple of 3-D points in general position as seen by an observer
constrained to a line, there are at most d fundamental invariant
functions that may be useful for point identification.

C. Nonexistence of Invariants for Nonlinear Paths

Section III considered the case of a calibrated camera of known
attitude moving along a line. An interesting question is whether it is
also possible to find invariants when the observer is moving along
some other type of path (e.g., along a conic orbit). It was found that
such invariants do not exist. This will now be shown.

Consider three possible positions of the camera: ¢, ¢/, and ¢”. A
3-D point p; corresponds to pixel locations [u;,v;], [u}, v}], and
[}, v/] in the images from the cameras at positions ¢, ¢’, and ¢”,
respectively. An invariant is a function that can be computed from
each of the camera images independently. Thus, an invariant is a
function g(x, y(, 21, ..., Xg, Ya, Z¢) such that there are functions f,
f’, and f” such that

(X115 215 s X5 Yar Za) = f(Up, 1y e o ey Ug, Vg)
= fl(uy, vy, ... ul,v))
= fruf v, ul v

It is now possible to show that there exists a nontrivial invariant if
and only if ¢, ¢, and ¢” are colinear. Since these three camera
positions are arbitrary, the constraint that they are colinear means
that the entire trajectory must be constrained to a line. Let
L =C(xy,y1,215 ---»Xg, Ya» 2¢) and consider the subfields

K =C(uy,vy,...,ug,vy), K' =C(up, v, ..., uj,,v)),and

" 1" " 1" 14
K" = C(u{,v{,...,uj;,v})

There exists a nontrivial rational invariant if and only if K N K’ N
K” ?é C Letq = [a7 ﬁ’ }/]T’ q/ = [a/7 ﬂ/’ }//]T’ and q” = [a//7 /}//’ }/”]T'
Thus, the derivations

d d d
D= -a(5o) + 0i-p(50) + @-n (i) @

1

fori =1,2,...,d are derivations on L over the field K. Similarly,
one may define the derivations D; € Derg/ (L) and D}’ € Derg~(L).

Suppose that g, g’, and ¢” are not colinear. If r == [x;, y;, z;]T is a
point that is not in the plane through ¢, ¢q’, ¢q”, then the vectors
r—q=I[x;—ay,—p.zi—7y]T.,r —¢q',and r — q"” are linearly inde-
pendent. It follows that D;, D}, D} are linearly independent over L. In
particular d/dx;, d/dy;, d/dz; lie in the L-linear span of D;, D}, D}'.
The field K N K’ n K" lies in the kernel of all the derivations
d/dx;,d/dy;, d/dz;on L with1 < i < d and therefore must be equal
to C. Hence, there are no invariants in this case.

Conversely, if q, ¢, q" are colinear, then it is possible to view ¢, ¢’,
and ¢q" as different locations within a linear motion of the observer,
and it has already been shown that there are nontrivial invariants in
this case (see Sec. III).

IV. Using Invariants for Point Identification

The existence of view invariants makes efficient object recognition
possible. The idea is to first precompute the invariants of known
objects and store these results in an index. Then, when supplied with
an image, the invariants of observed objects may be computed in real-
time. These observation invariants can be used to perform a range
query on the index, returning all possible index entries (correspond-
ing to catalog objects) having invariants within a specified tolerance
of the query point. This concept is well-established in classical
computer vision [17], and such an abstraction was subsequently
explored for a variety of object recognition problems in space explo-
ration [10,12].

Adopting this approach, a scheme for point identification requires
a means for 1) computing invariants from the point catalog, 2) com-
puting invariants from bearing measurements, and 3) performing the
range query. Each of these topics is now discussed in more detail.

A. Computing Invariants from 3-D Point Catalog

By construction, the observer’s motion is constrained to lie along
the z-axis. Thus, defining the z-axis with the unit vector k =
[0,0, 1]7, the observer’s position may be written as r = rk. If the
ith observed point does not lie along the z-axis, then the vector p; and
r span a plane in R3. This plane has a normal vector n; (see Fig. 2),
which may be computed as

n,xrxp;, xkxp,; (22)

Recognizing that the normal vector n; is perpendicular to the z-axis
by construction, it is observed that the plane orientation has only one
degree of freedom. This single degree of freedom may be described
in many ways, with one of the simplest being the angle between
the x-axis and n; (called the clocking angle). This angle may be
computed as

n’j
L 23
PYE (23)

il

tan(6;) =

where i =[1,0,0]”, j =[0,1,0]", and the scaling of n; doesn’t
matter. Hence, substituting from Eq. (22) and making use of the triple
product, one finds that

(rxp)tj _ (K x p)Tj pli X;

rxp)i Gxp)Ti - pli -y Y

tan(6;) = -2 =
’ pli i

Recall here the assumption that each point p; is in general position.
For any point p; lying along the line of vehicle motion (i.e., p; x
r < k), then x; = y; = 0 and the clocking angle 6; is undefined.
Thus, while one cannot form the invariant from Eq. (24) for a point
along (or nearly along) the direction of observer motion, the constant
bearing of x; = y; = Ois itself an invariant for this degenerate case.
Thus, assuming a point p; in general position, Eq. (24) may be solved
for 6; using a four-quadrant inverse tangent function, such as atan2.
The angle 6; does not depend on the observer location along the line
r = rk, but is only a function of the location of point p;. Hence, the
angle 0, is a view invariant under the assumed motion. The result of
Eq. (24) may be used to precompute the invariant corresponding to
each catalog point using only the catalog data.

observer

Fig.2 All possible unit vectors from the observer to point i lie in a plane
that is invariant to observer motion along the z-axis.
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B. Computing Invariants from Bearing Observations

The result of Eq. (24) describes how to compute the unique
invariant for each 3-D point using only the location of that point.
For efficient recognition to be possible, it is necessary to compute the
invariant from Eq. (24) using only the corresponding bearing obser-
vation. Thus, returning to Eq. (22), note that the normal may be
rewritten in terms of the measured bearing vector £;:

n,ckXp, =kx(p;,—r)xkx¥€; (25)

which makes use of the relationship from Eq. (4). Substituting this
result into Eq. (24),

nlj £l
RiJ_ it 26
nli Ty 26)

tan(6;) =

where i = [1,0,0]", j =[0,1,0]”, and the scaling of #; doesn’t
matter. The bearing measurements #; could come from any sensor
observing the direction from the vehicle to the 3-D point p;. However,
assuming that the sensor is a camera, one can write ¢; directly in
terms of the observed image coordinates & = [u;, v;, 1] and the
known homography H « KT using Eq. (9). Making this substitution,
¢li ul HTi

2T

tan(6;) = 27

This allows for computation of the invariant 8, using atan2 (or
similar) with only the bearing measurement. The bearing measure-
ment may be written either in terms of the direction #; (which is
expressed in the inertial frame and has arbitrary scale) or explicitly in
terms of camera pixel coordinates u;.

C. Recognition Using Invariants

It is known from Eq. (20) that there are n < d fundamental
invariants for bearing measurements to a d-tuple of points by an
observer whose location is constrained to a line. Observing, there-
fore, that Eqs. (24) and (27) describe d independent invariants, it
follows that there are exactly n = d fundamental invariants. More-
over, since Eq. (24) is only a function of the ith point p; [and,
likewise, Eq. (27) is only a function of the ith bearing measurement
?;], there is one invariant associated with each point and this invariant
is independent of all other points.

Given a d-tuple of points, each point has a 1-D invariant that may
be used to recognize this point. If the invariant associated with a
single bearing measurement is computed using Eq. (27), then this
numerical value may be used to query an index of all the invariants
belonging to catalog points as computed using Eq. (24). The objec-
tive is to return all catalog points having an invariant within a
specified tolerance of the query point—which is equivalent to
returning all catalog points having an invariant between a minimum
and maximum value. This is a classical range query problem [25,26].
Further, since this is a 1-D range query, there are a number of data
structures that are especially efficient for 1-D range queries, such as
the k-vector [27-29].

The scalar invariants {6;}¢_, are constrained to real numbers
between zero and 2z. If a very large number of 3-D points are in
the catalog, there may not be much angular separation between the
1-D invariants that form the index entries. Thus, if the measurement
error used to define the bounds of the range query is not small
compared to the index spacing, it is possible that multiple catalog
entries will be returned (as illustrated in Fig. 3). In this case, addi-
tional information would be required to eliminate ambiguity in the
point match. It is usually best to design the system to avoid this
situation whenever possible.

V. Observer Position Estimation

The d bearing measurements {#;}<_; to the d-tuple of 3-D points
{p;}__, may be used to estimate the observer’s location via triangu-
lation. Methods in triangulation are well established [30] and have

m/2 invariant
index space
0
T
21
3m/2
| | L1 |
I I | | ]
0 /2 b3 3m/2 21

catalog invariants

Fig.3 Itis possible for a range query to return multiple matches if the
uncertainty in the measured invariant is larger than the spacing between
catalog invariants.

been widely explored within the context of space exploration [31,32].
The most common, simple, and scalable triangulation method is the
so-called direct linear transform (DLT)—and this is the method used
here. The DLT solution takes on an especially elegant form in this
problem since the observer motion is constrained to a line.

To arrive at the solution, begin with Eq. (4) and eliminate depend-
ence on the unknown scale by taking the cross-product of both sides
with the measurement ¢;. Hence,

[£:xI¢; = [€:X](p; — 1) (28)
Since r = rk and k = [0, 0, 1]7, one finds that
Cixp =€ xk)r (29)
Observe that the z-component is zero by construction. Thus, one
can remove the 0 = 0 scalar equation by left-multiplying both sides
of the equation by S

where S is given by
S = [szz 02><|] (B

If information from multiple measurements is available, they can
be stacked into a set of linear equations to solve for r in the least
squares sense:

S, x p1) S(¢, xk)
: - : r (32)

S(@ax pa) Sy x k)
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Since r is a scalar, it is possible to write the least squares solution
directly:

_ (€ xk)"B(; X p)) _ L (@ xk) (€ xp)

4 (€ xk)"B(&; xk) (xR xk)

(33)

where B = diag(1, 1,0). Using quadruple product identities, this
simplifies to

L (& pEle) - (e )l p))
L (eren - ke

(34)

r =

and then to

d LT kT —keT)p;
r= i=1%i i i i (35)
zt‘]:l t’aiTBfi

It is possible to solve for r using only a single measurement of an
identified point, but observing additional points generally reduces the
uncertainty of the result.

VI. Applications

There are a variety of applications of the view invariants introduced
in this work, such as localization of trains, aircraft on runways, and
interstellar spacecraft. These applications are now briefly considered
as a means of illustrating the utility of the ideas presented here. The
authors note that this list of applications is not exhaustive and that
nearly straight-line trajectories naturally occur in many other situa-
tions—such as the final portion of many spacecraft rendezvous
trajectories performing a docking (e.g., this technique could also be
used to recognize visual features during the final phases of docking
with something like the International Space Station).

A. Train on a Straight Track

Improvements in locomotive position estimation allow for more
efficient use of rail and shorter transit times. Rail segments are known
as cantons. When a train passes over a balise, sensors inform rail
traffic management that a train has entered that canton [33]. Trains are
also equipped with on-board sensors, such as Doppler radar and
wheel sensors, capable of measuring the train’s velocity. Classical
train localization within a particular canton is accomplished using
these velocity measurements and odometry. However, train wheels
may slip, adding error to an odometry-based train position estimate.
More modern techniques for train localization include Global Nav-
igation Satellite Systems (GNSS) [33-35], eddy current sensors [33],
inertial measurement units (IMU) [33,35], and vision-based motion
estimation [36]. Of these measurement types, only GNSS measure-
ments are capable of providing the absolute global position of a train.
However, GNSS systems are subject to occasional coverage prob-
lems, such as when trains travel underground and can no longer detect
satellites [33].

The observer position estimation approach outlined in this paper
could be used to estimate the distance that a train has traveled along a
straight track. This would require that beacon points—visible or
infrared (IR) lights, reflectors, or even extant landscape features—
be placed or located at known 3-D positions along the track and a
catalog of their positions be assembled. For example, beacon points
can be placed at varying heights along telephone poles (as illustrated
in Fig. 4), along the entrances of tunnels or overpasses, or wherever it
proves convenient in practice. It is imperative that operators take
care to ensure that no two beacons have the same apparent line-of-
sight (LOS) plane (i.e., clocking angle). An instrument attached to the
train could then collect LOS measurements to one or more beacon
points. These beacon points can be uniquely identified and then the
train’s position can be estimated. Only so many points can be placed
along a certain length of straight track before two points will appear to
have nearly the same LOS plane. This maximum number is depen-
dent on measurement noise (itself influenced by the smoothness of

point {

image taken by camera on train

point i

horizon

Fig. 4 A train traveling along a straight track can identify natural or
artificial beacon points using the methods discussed in this paper.

the train’s motion over the track). Artificially installed beacon points
will likely only be visible by a fast-moving train for a relatively short
time. As such, a train will have to travel a significant distance between
beacon point measurements. During periods in which no points are
visible, a train can rely on the other position estimation methods
mentioned previously.

B. Airplane on a Runway

Commercial aviation could be made safer by improvements to
automation during takeoff and landing. This requires that an aircraft
be capable of determining its position along a runway, and thus the
length of runway remaining. Active research in aircraft navigation
includes autonomous navigation for unmanned aerial vehicles
(UAVs) or drones, and aircraft tracking on the ground and in the
airspace near airports for situational awareness and air traffic control
(ATC). The bulk of aircraft ground tracking research is focused on
collision avoidance and efficient routing of aircraft to and from
runways. Aircraft can be identified and tracked using digital cameras
placed around an airport [37-39]. The position and velocity of air-
craft can be determined [38], and this information can be fed into a
data fusion algorithm such as an extended Kalman filter (EKF) or a
multiple hypothesis testing (MHT) algorithm [37,39] to provide
ground-side situational awareness at an airport. There are runway
detection algorithms to allow aircraft to autonomously identify and
track runways in flight from digital images for the purpose of assisted
landing [40]. Recent work toward aircraft control during takeoff
involves runway centerline tracking [41]. However, autonomous
aircraft position estimation on a runway during takeoff and landing
remains an open problem.

During takeoff and landing, an aircraft travels along the centerline
of a runway with minimal deviation under normal circumstances. An
aircraft could use the methods outlined in this paper to estimate its
position along a runway. It must be able to take LOS measurements of
points placed on or alongside the runway. Most airports are already
equipped with lights and navigation beacons for the purpose of
assisting pilots. The runway lights flanking either side of a runway
could not be used for this purpose, as these are all coplanar with one
another and could not be uniquely identified. This method could be
employed at major airports that typically service large commercial
jets or at smaller airports with no ATC and no other aircraft ground
tracking capabilities. Additional lights or beacons can be installed
such that they could be detected by an aircraft sensor (see Fig. 5), and
the exact positions of these beacons can be made publicly available
along with other existing airport information.
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k-th 10e S k horizon

Fig. 5 An aircraft accelerating or decelerating along a runway can
identify artificial beacon points on or near the runway using the methods
discussed in this paper.

C. Interstellar Spacecraft

Spacecraft navigation is one of the most challenging aspects of
interstellar travel due to the immense distances involved [42-44]. A
variety of observables have been suggested for interstellar naviga-
tion, such as measuring the Doppler shift of stellar spectra [42,44,45],
measuring stellar aberration [46], and triangulation with star bearing
measurements [42,45]. It is the triangulation-based technique that is
of relevance here.

Within the solar system, it is assumed that stars are very far away.
Hence, star observations provide little more than observations of refer-
ence directions on the celestial sphere, which is usually used for attitude
determination (e.g., with star trackers [10,47,48]) or as means of sensor
alignment for measurement of foreground objects (e.g., optical navi-
gation [22,49]). Conversely, when an interstellar spacecraft departs the
solar system and moves large distances within the Milky Way galaxy,
the stars must instead be viewed as 3-D points [11]. This would require
construction of a specially designed 3-D star catalog [50] (Fig. 6).

A spacecraft traveling out of the solar system or between stars
would be on a very nearly rectilinear trajectory. Thus, observations of
stars on an interstellar voyage are exactly the problem of bearing
measurements to 3-D points for an observer following rectilinear
motion. Ample stars are present in interstellar space, but not all are
useful for the technique outlined here. No matter where the spacecraft
is located, most stars in the Milky Way galaxy will be too distant for
meaningful triangulation Thus, only the closest stars would be useful
for spacecraft position estimation (though very distant stars remain
quite useful for attitude determination).

If an interstellar spacecraft’s trajectory is known, it may be possible
to build an invariant index of nearby stars using the method presented
here. Given the very large number of stars, special consideration must
be given to the possibility of nonunique matches when performing
star identification. This challenge may be mitigated by restricting the
catalog (and the sensor) to stars brighter than a specified magnitude,
which substantially reduces the probability of multiple stars being
nearly coplanar. Alternatively, if the number of match hypotheses is
small, it may be possible to solve for the spacecraft position for each
hypothesis [e.g., using Eq. (35)] and look for solutions that agree with
one another.

D. Lost-in-Space Object Identification

The last decade has witnessed a growing interest in autonomous
spacecraft navigation using optical sightings of distant space objects,

star i target star

¥ ke

star k

Fig. 6 A spacecraft on a rectilinear interstellar trajectory can identify
nearby stars using the methods discussed in this paper.

including both natural celestial bodies (e.g., asteroids, planets,
moons) [51-55] and artificial objects (e.g., satellites, human-made
surface beacons) [53,56]. The “lost-in-space” problem describes the
task of estimating the location of a spacecraft without any a priori
information. Given the prior work in navigation with bearings to
distant space objects, one may reasonably conjecture that opportun-
istic sightings of these space objects could be used for lost-in-space
navigation (e.g., via triangulation) if they could be matched to a
catalog.

Since the objects are assumed distant, they are unresolved and the
only available measurement is a bearing direction. In many cases, the
locations of the observed objects (either natural or artificial) are quite
varied at the scale of interest and one can model this as sightings of
3-D points in general position.

The trajectories for most space missions of interest are not recti-
linear. Thus, since the observed 3-D points are assumed to be in
general position, it follows that no view invariants exist. The lack of
view invariants, in turn, suggests that object identification is not
separable from state estimation. This means that it is impossible to
match a d-tuple of bearings to a catalog distant 3-D objects without
already knowing (or simultaneously solving for) the spacecraft
location. The conventional solution would be to randomly guess
observation-to-catalog correspondences, compute the camera loca-
tion, and then validate using residuals and/or additional observations.
The combinatorics of this quickly becomes intractable if either the
number of observations or number of catalog objects is large. Hence
bearings to natural or artificial space objects are unlikely to be a good
means of solving the lost-in-space problem. Instead, if the lost-in-
space problem must be solved, the analyst may wish to consider other
navigation observables to efficiently accomplish this task.

VII. Conclusions

It is well-known that general-case invariants do not exist for a
camera viewing an arbitrary set of 3-D points. Invariants may be
created by introducing constraints on the general problem, such as
constraining all the points to lie on a plane. The novel contribution of
this work is the consideration of invariants that arise due to con-
straints on the camera location. It is shown that the only path that
permits invariants is a linear path. Moreover, it is shown that there are
d fundamental invariants for a d-tuple of arbitrary points in R* when
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measured by an observer constrained to rectilinear motion. Each
point in the d-tuple has one corresponding invariant, though this
can be expressed or computed in a number of ways.

Because there is one invariant property for each point, identifica-
tion of each point may be achieved with a range query on a 1-D index
space. The likelihood of finding a unique match depends on the
number of points in the catalog and the sensor noise. Once a point
(or set of points) has been identified, it is straightforward to form a
linear system to solve for the unknown observer location.

Four applications were explored: train navigation along a straight
track, estimation of runway length remaining for an aircraft during
takeoff or landing, interstellar spacecraft navigation, and lost-in-
space object identification. In each of the first three situations, the
techniques outlined this paper could enable autonomous position
estimation. In the fourth case, the results of this work highlight the
shortcomings of bearing measurements to distance space objects for
solving the lost-in-space problem.
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