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Abstract

Recent works have discovered a relatively tight correlation between Ωm and the properties of individual simulated
galaxies. Because of this, it has been shown that constraints on Ωm can be placed using the properties of individual
galaxies while accounting for uncertainties in astrophysical processes such as feedback from supernovae and active
galactic nuclei. In this work, we quantify whether using the properties of multiple galaxies simultaneously can
tighten those constraints. For this, we train neural networks to perform likelihood-free inference on the value of
two cosmological parameters (Ωm and σ8) and four astrophysical parameters using the properties of several
galaxies from thousands of hydrodynamic simulations of the CAMELS project. We find that using properties of
more than one galaxy increases the precision of the Ωm inference. Furthermore, using multiple galaxies enables the
inference of other parameters that were poorly constrained with one single galaxy. We show that the same subset of
galaxy properties are responsible for the constraints on Ωm from one and multiple galaxies. Finally, we quantify the
robustness of the model and find that without identifying the model range of validity, the model does not perform
well when tested on galaxies from other galaxy formation models.

Unified Astronomy Thesaurus concepts: Cosmological parameters (339); Galaxy properties (615); Galaxy
processes (614); Computational methods (1965); Astronomy data analysis (1858)

1. Introduction

Some of the most fundamental questions we can ask in
cosmology are: What are the components that make up the
Universe? How much does each component contribute? We
now know that the Universe should be made up of at least three
main components: (1) baryons, representing all the substances
and materials we know, (2) dark matter, some fundamental
particle that interacts with baryons mostly (perhaps uniquely)
through gravity, and (3) dark energy, a mysterious substance
(perhaps a property of the vacuum) responsible for the recent
acceleration of the Universe. From cosmological data, we
believe these three components represent roughly 5%, 25%,
and 70% of the current energy content of the Universe,
respectively.

Parameters such as Ωb and Ωm represent the fraction of the
Universe’s energy content in terms of baryons and baryons plus
dark matter, respectively. Determining them is important to
learn about the nature and properties of dark matter and also to
learn about the growth rate of the Universe (Huterer 2023).
There are many different methods to infer these parameters,
from studying the properties of the cosmic microwave back-
ground anisotropies to the spatial distribution of galaxies.
Recently, Villaescusa-Navarro et al. (2022) claimed that a tight
relation between Ωm and the properties of individual galaxies is
present in galaxies from state-of-the-art hydrodynamic simula-
tions. The relationship is present even when varying the value

of astrophysical parameters controlling the efficiency of
supernovae and active galactic nuclei (AGNs) feedback.
Echeverri et al. (2023) reached the same conclusion when
using galaxies generated with a different hydrodynamic and
subgrid physics model.
Villaescusa-Navarro et al. (2022) discussed that such a

relation might be due to the existence of a low-dimensional
manifold where galaxy properties reside. In this view, changing
Ωm modifies the location of the galaxies in that manifold
differently than changing the efficiency of astrophysical
processes. For instance, increasing the value of Ωm while
keeping Ωb fixed will increase the overall dark matter content
of the Universe. That excess will enhance the dark matter
content of galaxies, affecting their density, star formation rate,
metallicity, etc. On the other hand, feedback can also affect
some of these properties, but it is unlikely that it will
significantly affect the dark matter content of most galaxies.
Villaescusa-Navarro et al. (2022) argued that knowing the

location of one point in the manifold is enough to characterize
it, and therefore, with one single galaxy, it is possible to infer
the value of Ωm. We note that Villaescusa-Navarro et al. (2022)
and Echeverri et al. (2023) showed that Ωm can be inferred with
a ∼10% precision based on the properties of a single galaxy,
perhaps indicating that the manifold should have some intrinsic
width associated with it. However, by using multiple galaxies,
it should also be possible to infer the value of cosmological and
astrophysical parameters by characterizing the impact on
galaxy statistics like the stellar mass function. Recently, Busillo
et al. (2023) have shown that galaxy scaling relations are
sensitive to both cosmology and astrophysics and derived
constraints on those from real data (see also Jo et al. 2023 for
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the impact on the star formation rate history and the stellar
mass function). In this work, we thus ask ourselves how well
we can infer cosmological parameters if we only have a few
galaxies. Due to computational constraints, we limit our
analysis to fewer than 10 galaxies. The training time in the
case of two galaxies is approximately 40 hr when using a single
NVIDIA A100 GPU. This increases as we increase the number
of galaxies. We note that using properties from galaxies
directly (instead of summary statistics) enables our models to
search through all potential summary statistics and cross-
correlations. Put simply, using details from individual galaxies
rather than just summary numbers allows our models to explore
all possible ways these details relate to each other.

In this paper, we show that using more than one galaxy
increases the precision of the models trained to infer Ωm, but at
the same time, allows the models to infer other parameters that
were unconstrained when using a single galaxy. To carry out
our analysis, we made use of thousands of state-of-the-art
hydrodynamic simulations from the Cosmology and Astro-
physics with Machine Learning Simulations (CAMELS)
project8 (Villaescusa-Navarro et al. 2021a, 2022; Ni et al.
2023). To check that our results do not hold just for galaxies
generated by a particular code, we perform our analysis using
simulations run with three codes that employ different subgrid
physics models: (1) AREPO+IllustrisTNG, (2) GIZMO
+SIMBA, and (3) MP-Gadget+Astrid.
This paper is organized as follows. We present the data we

use and the machine-learning algorithms we employ in
Section 2. In Section 3, we present the main results of our
analysis. Finally, we summarize the takeaways and conclude in
Section 4.

2. Methods

In this section, we first describe the data we use for this
work. We then explain the machine-learning algorithms we
employ to analyze the data and outline the metrics we utilize to
quantify the accuracy and precision of our models.

2.1. Data

In this paper, we train neural networks to infer the value of
cosmological and astrophysical parameters using the internal
properties of simulated galaxies. These galaxies come from
state-of-the-art hydrodynamic simulations of the CAMELS
project (Villaescusa-Navarro et al. 2021a).

All simulations follow the nonlinear evolution of 2563 dark
matter plus 2563 initial fluid elements from z= 127 down to
z= 0 in a cubic periodic volume of ( )-h25 Mpc1 3. All
simulations share the value of these cosmological parameters:
Ωb= 0.049, h= 0.6711, ns= 0.9624, w=−1, ΩK= 0, and
∑mν= 0 eV.

The simulations have been run with three different codes
and, therefore, can be classified into three different suites:

1. IllustrisTNG. The simulations in this suite have been run
with the AREPO code (Springel 2010; Weinberger et al.
2019) and they employ the IllustrisTNG subgrid physics
model (Pillepich et al. 2018; Nelson et al. 2019).

2. SIMBA. The simulations in this suite have been run with
the GIZMO code (Hopkins 2015), and they employ the
SIMBA subgrid physics model (Davé et al. 2019).

3. Astrid. The simulations in this suite have been run with
the MP-Gadget code (Feng et al. 2018), and they employ
a slightly modified version of the Astrid subgrid physics
model (Bird et al. 2022; Ni et al. 2022).

Each suite contains 1000 simulations (from the Latin
hypercube set of CAMELS). Each of those simulations has a
different value of Ωm, σ8, and four astrophysical parameters
that control the efficiency of supernova and AGN feedback:
ASN1, ASN2, AAGN1, and AAGN2. We refer the reader to
Villaescusa-Navarro et al. (2021a) and Ni et al. (2023) for
further details on the specifics of the astrophysical parameters.
We emphasize that the astrophysical parameters have different
meanings in each suite due to the different subgrid implemen-
tations, and they represent variations relative to the corresp-
onding fiducial models of IllustrisTNG, SIMBA, and Astrid.
Table 1 briefly describes the astrophysical and cosmological
parameters involved in this study.
The value of these six parameters are arranged in a Latin

hypercube with boundaries defined by

( )W 0.1 0.5 1m

( )s 0.6 1.0 28

( ) A A0.25 , 4.0 3SN1 AGN1

( ) A A0.5 , 2.0 . 4SN2 AGN2

We note that in the case of Astrid, the AAGN2 parameter ranges
from 0.25 to 4. We also emphasize that all simulations have
different values of the initial random seed. In this work, we
focus our attention on the z= 0 snapshots of these simulations.

2.2. Galaxy Properties

Halos and subhalos are identified in the simulations using the
SUBFIND algorithm (Springel et al. 2001; Dolag et al. 2009).
In this work, we define a galaxy as a subhalo with a stellar mass
larger than zero. We follow Echeverri et al. (2023) and only
consider galaxies with stellar masses above 5× 108 h−1Me to
avoid working with small, likely spurious objects. SUBFIND
computes many properties for each galaxy, but in this work, we
focus our attention on the following 14:

1. Mg: the subhalo gas mass content, including the
circumgalactic medium’s contribution.

2. MBH: the black hole (BH) mass of the galaxy.
3. M*: the stellar mass of the galaxy.
4. Mt: the total mass of the subhalo hosting the galaxy.
5. Vmax: the maximum circular velocity of the subhalo

hosting the galaxy: ( ( )= <V GM R Rmaxmax ).
6. σv: the velocity dispersion of all particles in the galaxy’s

subhalo.
7. Zg: the mass-weighted gas metallicity of the galaxy.
8. Z*: the mass-weighted stellar metallicity of the galaxy.
9. SFR: the galaxy star formation rate (SFR).

10. J: the galaxy’s subhalo spin vector modulus.
11. V: the modulus of the galaxy’s subhalo peculiar velocity.
12. R*: the radius containing half the galaxy’s stellar mass.
13. Rt: the radius containing half of the total mass of the

galaxy’s subhalo.
14. Rmax: the radius at which ( )< =GM R R Vmax max max.

For IllustrisTNG simulations, we also consider the following
three properties:

1. U: the galaxy absolute magnitude yin the U band.8 https://www.camel-simulations.org/
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Table 1
Brief Description of the Cosmological and Astrophysical Parameters, and Their Ranges of Variation

Suite Ωm σ8 ASN1 ASN2 AAGN1 AAGN2

IllustrisTNG Fraction of energy density in
matter (dark matter +

baryons)

Variance of the linear field
on 8 h−1Mpc at z = 0

Galactic winds: Energy per
unit SFR

Galactic winds:
wind speed

Kinetic mode BH feedback: energy
per unit BH accretion rate

Kinetic mode BH feedback: ejection
speed/burstiness

SIMBA Fraction of energy density in
matter (dark matter +

baryons)

Variance of the linear field
on 8 h−1Mpc at z = 0

Galactic winds: Mass loading Galactic winds:
wind speed

Quasi-stellar object and jet-mode
BH feedback: momentum flux

Jet-mode BH Black Hole feedback: jet
speed

Astrid Fraction of energy density in
matter (dark matter +

baryons)

Variance of the linear field
on 8 h−1Mpc at z = 0

Galactic winds: Energy per
unit Star Formation Rate (SFR)

Galactic winds:
wind speed

Kinetic mode Black Hole feedback:
energy per unit BH accretion rate

Thermal mode Black Hole feedback:
energy per unit BH accretion rate

ä[0.1, 0.5] ä[0.6, 1.0] ä[0.25, 4.0] ä[0.5, 2.0] ä[0.25, 4.0] IllustrisTNG and SIMBA ä[0.5, 2.0],
Astrid ä [0.25, 4.0]
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2. K: the galaxy absolute magnitude in the K band.
3. g: the galaxy absolute magnitude in the g band.

We note that the above three magnitudes are not present in
simulations of the SIMBA and Astrid suites because SUBFIND
needs some particular properties not stored in those simulations
to estimate the magnitudes. We refer the reader to Villaescusa-
Navarro et al. (2022) for further details about these properties.

2.3. Input Data

The input to our models is a 1D vector containing the
properties of n galaxies, where n ä [1, 10]. For instance, if we
use galaxies from the Astrid suite and set n= 5, the input
vector will contain 5× 14= 70 values. We remind the reader
that for IllustrisTNG galaxies, we take 17 properties for each
galaxy, while for SIMBA and Astrid, only 14 are available.
Once the simulation suite and the value of n are chosen, we
construct 1500 1D arrays with the properties of n unique
galaxies (i.e., we enforce that the same galaxy cannot appear
twice in the same set. It can, however, appear again in a
different set). The 1500 1D arrays are constructed from the
same simulation. The reason why we take 1500 arrays is that
we have performed several convergence tests, and we find that
increasing the number of 1D arrays during training does not
yield noticeable improvements in our results.

2.4. Machine-learning Techniques

In this work, we train neural networks to perform likelihood-
free inference on the value of two cosmological (Ωm and σ8)
and four astrophysical (ASN1, ASN2, AAGN1, AAGN2) parameters.

Our models take as input a 1D vector containing the
properties of n galaxies and return 2Nparams numbers, where
Nparams is the number of parameters considered (e.g.,
Nparams= 1 if only inferring one parameter). For each
parameter i, our models output its marginal posterior mean
(μi) and standard deviation (σi). This is achieved by minimizing
the following loss function:

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨⎩

⎫
⎬⎭

( )

[( ) ] ( )

å

å

q m

q m s

= -

+ - -

Î

Î

 log

log . 5

j
i j i j

j
i j i j i j

batch
, ,

2

batch
, ,

2
,
2 2

This loss function guarantees that μ,i and σi represent the
parameter’s posterior mean and standard deviation i (Jeffrey &
Wandelt 2020; Villaescusa-Navarro et al. 2021b).

Our models use several blocks, each containing a fully
connected layer, a LeakyReLU nonlinear activation function,
and a dropout layer. After the last block, a fully connected layer
predicts the network’s output. We write our model in PyTorch.9

The number of blocks, the number of neurons in the fully
connected layers, the learning rate, the weight decay, and the
dropout rate are considered hyperparameters.

The value of the hyperparameters is tuned using Optuna10

(Akiba et al. 2019), which searches the hyperparameter space
for the optimal values of the hyperparameters, which minimizes
the value of the validation loss. We use at least 100 trials and

the optimization is done by searching the hyperparameter
values that minimize the validation loss. We emphasize that we
run Optuna for each different configuration; for instance, when
changing the simulation suite or the number of galaxies, we
retrain using Optuna to find the best hyperparameters for
that case.
To train the models, we first split the simulations into

training (850), validation (100), and testing (50) sets. We then
construct the input 1D arrays by combining the properties of
galaxies from the same simulation. We note that it is important
to (1) avoid mixing galaxies from different simulations when
combining galaxy properties into the input arrays since
different simulations sample different parameter values and
(2) avoid having galaxies from the same simulation in different
sets (e.g., training and testing) since there could be leakage of
information if galaxies from the same simulation are somehow
correlated.

2.5. Performance Metrics

In this work, we use four metrics to quantify the accuracy
and precision of our models. To use these metrics, we need to
consider that for a given input 1D vector i, θi represents the
value of the considered parameter, while μi and σi represent the
posterior mean and standard deviation predicted by the network
for that parameter. The four statistics we consider are:

1. Root mean squared error:

( ) ( )å q m= -
=

RMSE
N

1
, 6

i

N

i i
1

2

where the sum runs over all 1D arrays in the considered
test set. Smaller values of the RMSE indicate the model is
more accurate.

2. Mean relative error, ò:

( )å s
m

=
=


N

1
, 7i

i

N
i

i1

the mean relative error tells us about the model’s
precision, with lower values representing, in general,
more precise models. The mean relative error does not
know anything about the true values. Thus, one can have
a very precise but not accurate model.

3. Coefficient of determination, R2 :

( )
( )
( )

( )q m
q m
q q

= -
å -

å -
=

=

R , 1 , 8i i
i
n

i i

i
n

i

2 1
2

1
2

where, q q= å =i
N

i1 . The R2 quantifies the model’s
accuracy, with values close to 1 being accurate, and
values close to 0 being poor.

4. Reduced chi-squared, χ2:

( )
( )åc

q m
s

=
-

=N

1
. 9

i

N
i i

i

2

1

2

2

We made use of these statistics to quantify the precision
of the model error bars (posterior standard deviation).
Values close to 1 indicate the size of the errors is
appropriate, while values below/above 1 indicate the
errors are over/underpredicted.

9 https://pytorch.org/
10 http://optuna.org/
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3. Results

We now present the results of our analysis. We first show the
results when training the models using the properties of two
galaxies, and then we show the results when considering
multiple galaxies. We note that Villaescusa-Navarro et al.
(2022) and Echeverri et al. (2023) showed that Ωm can be
inferred with a ∼10% precision based on the properties of a
single galaxy, and the models could not constrain the values of
other cosmological and astrophysical parameters within a
meaningful margin of error.

3.1. Two Galaxies

We train models using 1D arrays that contain the properties
of two galaxies. We then test those models on 1D arrays that
contain the properties of two galaxies from the test set. We
show the results in Figures 1 (IllustrisTNG and SIMBA), and 2
(Astrid). We find that all models can constrain the value of Ωm

accurately with {RMSE, ò, R2} equal to {0.022, 0.077, 0.966}
(IllustrisTNG), {0.023, 0.090, 0.956} (SIMBA), and {0.028,
0.094, 0.919} (Astrid). We note that these numbers are better
than the ones obtained for a single galaxy; for instance, these
metrics are {0.0365, 0.11, 0.842} when considering one single
galaxy from Astrid (Echeverri et al. 2023).

On the other hand, σ8 remains mostly unconstrained with
two galaxies, irrespective of the simulation suite employed, in
the same way as our findings for one galaxy (Villaescusa-
Navarro et al. 2022; Echeverri et al. 2023). We reach similar
conclusions for the AGN parameters of IllustrisTNG and
SIMBA simulations. For Astrid, AAGN1 remains unconstrained,
while AAGN2 can be inferred with a ∼16% precision; a
significant improvement from the ∼24% obtained using one
single galaxy (Echeverri et al. 2023). Finally, all models can
infer the supernova feedback parameters with different
precisions. We note that in the case of the supernova
parameters, we have discarded a very small fraction of galaxies
(0.41% for IllustrisTNG and 0.071% for SIMBA) since they
have unreasonably small widths of the posterior, and therefore
their χ2 was really large and affected significantly the reported
mean values.

These results show that better constraints on the value of the
parameters can be achieved by using two galaxies instead
of one.

3.2. Multiple Galaxies

Similar to the case of two galaxies, we also carried out the
analysis for up to 10 galaxies considered simultaneously. We
trained neural networks to perform likelihood-free inferences to
estimate the values of the cosmological (Ωm and σ8) and
astrophysical (ASN1, ASN2, AAGN1, and AAGN2) parameters using
data from N galaxies (N goes from 1 to 10) from the
IllustrisTNG, SIMBA, and the Astrid suites. Once trained, the
model is tested using the galaxies from the test set for each
case. Figure 3 shows how the prediction RMSE and R2 of the
cosmological and astrophysical parameters change as we
increase the number of galaxies considered simultaneously.
In this case, the quantity reported is the mean value of all
galaxies in the test set. In Figure 7 in the Appendix, we show
the results of training and testing using 10 galaxies (this figure
is the equivalent to Figures 1 and 2).

We find that, as we consider more galaxies simultaneously,
the predicted values of the cosmological parameters Ωm and σ8

become increasingly more accurate. In the case of the
astrophysical parameters (ASN1, ASN2, AAGN1, and AAGN2),
their predicted values can either improve or remain the same.
The trend in the astrophysical parameters is not the same for all
the suites because of the difference in the physical meaning of
these parameters in each suite. For instance, the prediction of
AAGN2 significantly improves when increasing from one galaxy
to more than seven for the Astrid model, but remains poorly
constrained regardless of the number of galaxies in the
IllustrisTNG and SIMBA models. As we discuss below this
may be related to the fact that with several galaxies, one can
create a proxy for astrophysical quantities that are sensitive to
feedback.

3.3. Only Ωm

It is evident from the results discussed up to now that the
model does an excellent job of predicting the value of Ωm. So,
we proceed to train the neural network to predict the posterior
mean and standard deviation for only Ωm instead of all six
cosmological and astrophysical parameters. We do this so that
the models can focus entirely on minimizing the loss for this
parameter, avoiding situations where degeneracies with other
parameters can yield suboptimal results for the parameter of
interest.
In this case, these models do a slightly better job at inferring

the value of Ωm compared to results obtained when trained to
predict all six cosmological and astrophysical parameters.
From Figure 4 we see that the neural network becomes

increasingly more precise at inferring the value of Ωm as we
increase the number of galaxies considered simultaneously. For
SIMBA and IllustrisTNG suites, the RMSE improves by about
55%, and in Astrid’s case, it improves by 37% as we go from 1
galaxy to 10 galaxies. The right panel of Figure 4 shows the
results when considering the R2 statistics instead.

3.4. Most Important Features

Villaescusa-Navarro et al. (2022) carried out a feature
importance study that showed that standard feature ranking
methods (like computing saliency maps, using SHAP values, or
using the inbuilt “feature importance” from scikit-learn) did not
yield the important features that the model used to make
inferences. This is due to strong internal correlations between
galaxy properties, which makes it very difficult for the model to
pinpoint the top properties. For that reason, Villaescusa-
Navarro et al. (2022) trained a series of gradient-boosted trees
models where one feature was discarded at a time. That way,
the features could be ranked according to importance, and the
results were sensitive. Echeverri et al. (2023) used the same
procedure to rank the properties of the Astrid galaxies.
Villaescusa-Navarro et al. (2022) and Echeverri et al. (2023)
found that the five most important properties, according to their
order of importance, for each of the suites are:

1. IllustrisTNG: {Vmax, M*, Z*, R*, K}
2. SIMBA: {Vmax, M*, Rmax, Z*, R*}
3. Astrid: {Mt, Z*, Vmax, Mg, M*}

With this information on hand, we now ask ourselves
whether the constraints we obtain for Ωm are mostly due to
those variables or whether when considering multiple galaxies
there may be information coming from other features.
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Figure 1. We train neural networks to infer the value of the cosmological (Ωm and σ8) and astrophysical (ASN1, ASN2, AAGN1, and AAGN2) parameters from the internal
properties of two random galaxies (without using galaxy positions). Next, from each simulation of the test set, we randomly select two galaxies and test the model on
them. We show the results as points with error bars representing the posterior mean and the standard deviation (without making assumptions about the shape of the
posterior). As can be seen, the models can precisely infer the value of Ωm for both IllustrisTNG and SIMBA galaxies and, in some cases, the supernova feedback
parameters. The value of σ8 and the AGN parameters is poorly predicted in all cases.
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To answer this question, we train models that only use the
above galaxy properties but consider multiple galaxies. We
show the results in Figure 5 for the case of 10 galaxies. As we
can see, when predicting only Ωm, the model performs only
∼6% worse than in the case of SIMBA, and ∼21% worse than
in cases of Astrid and IllustrisTNG, when compared to training
with all properties. This is even after removing 12 galaxy
properties in the case of IllustrisTNG (9 in the case of SIMBA
and Astrid). We thus conclude that most of the information is
contained in the most important variables for individual
galaxies. We emphasize that this does not mean that the model
uses information from individual galaxies and somehow stacks
the results. Even using this subset of variables, one can
construct noisy estimates of properties, like the stellar mass
function, expected to be affected by cosmology (Jo et al. 2023).
Therefore, the source of information may arise from both
individual galaxies and collective properties.

3.5. Robustness

One of the most important aspects to consider when working
with numerical simulations is the robustness of the results. In
other words, how well the model behaves when training on
galaxies from one galaxy formation model and testing it on
galaxies from another galaxy formation model. This aspect has
been investigated before in Villaescusa-Navarro et al. (2022),
where it was found that even with a single galaxy, inference of
Ωm from galaxy properties was not robust. This claim was later
revisited by Echeverri et al. (2023), who found that the lack of
robustness was at least partially due to the presence of a small
fraction of outliers. Echeverri et al. (2023) also found that
removing these outliers during testing will make the model
robust across simulations. In our case, as we train the models

using more than one galaxy, the chances of including the
outliers increase, thus making the model more precise but less
robust.
In order to verify the robustness of our model, we have

considered the case where we train models that use 10 random
galaxies produced with a given code and test them using 10
galaxies from another galaxy formation model. We show the
results in Figure 6. As can be seen, the results are not robust
and training models on galaxies from one simulation suite does
not yield accurate results when testing on galaxies from another
suite. To some extent, this is expected since constraints with
multiple galaxies are tighter than with a single one and we have
not removed, a priori, outliers from the cross-distributions. It is
interesting to note that the worst case happens when training on
Astrid and testing on IllustrisTNG. While we do not have a
clear explanation for this, it may be related to the model
focusing on aspects that are different among these two
simulations. We leave it to future work to explore strategies
designed to increase the robustness of the results following the
findings of Echeverri et al. (2023). For instance, trying to
identify outliers and remove them from the test set to improve
the reliability of the predictions or perhaps using a generative
model to be able to compute the likelihood of the galaxies
directly.

4. Summary and Discussion

Previous works by Villaescusa-Navarro et al. (2022) and
Echeverri et al. (2023) have pointed out the existence of a tight
relation between the properties of individual simulated galaxies
and Ωm. The authors interpreted these results as a consequence
of the existence of a manifold containing galaxy properties.
Under that interpretation, properties of the manifold may

Figure 2. Same as Figure 1 but for Astrid galaxies.
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change in distinct manners when varying different parameters,
allowing the inference of Ωm from the properties of a single
galaxy.

In this work, we have studied whether using the properties of
several galaxies can help better constrain the value of the
cosmological and astrophysical parameters. To investigate this,

Figure 3. We train neural networks to infer the posterior mean and posterior standard deviation of all six parameters as a function of the number of galaxies. The top
panels show the results for the RMSE, while the bottom panel displays the results for the R2 statistics. In all cases, we show the average results, i.e., for a given
simulation; we take 1500 different combinations and report the mean values. In general, the more galaxies we consider, the tighter the constraints on the parameters.
However, there are some cases where constraints saturate, and adding more galaxies does not yield tighter constraints.
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we have trained neural networks to perform likelihood-free
inferences on the values of the cosmological (Ωm and σ8) and
astrophysical (ASN1, ASN2, AAGN1, and AAGN2) parameters by
using the internal properties of multiple galaxies. We have
made use of the properties of galaxies at redshift z= 0 from the
IllustrisTNG, SIMBA, and the Astrid simulation suites from
the CAMELS project (Villaescusa-Navarro et al. 2021a; Ni
et al. 2023). We emphasize that our model only uses
information from the galaxy properties, not their positions; in
other words, the constraints do not incorporate any information
from clustering.

We find that the precision of the predictions improves as we
increase the number of galaxies. In the case of IllustrisTNG,
SIMBA, and Astrid, the RMSE of Ωm improves by factors of
2.5, 2.5, and 1.6, respectively. In the case of Astrid, we observe
a plateau on the constraints when going beyond ∼5 galaxies.
For IllustrisTNG and SIMBA, the trend indicates that better
constraints can be achieved using more than 10 galaxies. When
considering the R2 statistics, we find that the results tend to
saturate when using more than ∼5 galaxies. We have trained
models to infer the value of Ωm alone, i.e., without predicting
the value of the other parameters. In this case, we find slightly

more precise results than when training the models to predict
all parameters. The results, shown in Figure 4, do not change
our conclusions.
For σ8, we find a steady improvement in the precision of the

predictions (both RMSE and R2) as we increase the number of
galaxies. We emphasize that our models cannot determine the
value of σ8 with a single galaxy. The origin of these constraints
may arise not from the properties of individual galaxies but
from statistics that can be constructed when using multiple
galaxies. For instance, the stellar mass function may be
sensitive to the value of σ8, and a noisy version of it can be
constructed when considering multiple galaxies. We thus
speculate that the origin of this information may not be related
to the manifold hosting the galaxy properties. We note that
Busillo et al. (2023) have obtained cosmological and
astrophysical constraints from the properties of a relatively
small number of local, star-forming, galaxies.
For the supernova feedback parameters, we also find a

consistent improvement in the constraints as we increase the
number of galaxies for all suites with the exception of ASN2 for
Astrid where constraints seem to saturate for more than ∼5
galaxies. We believe the explanation may be related to the

Figure 4. We train the models to infer the value of Ωm alone. The left and right panels show the mean values of the RMSE and R2 as a function of the number of
considered galaxies. We find our models perform slightly better when trained to infer Ωm alone instead of inferring all six properties simultaneously. As can be seen,
results improve when considering more galaxies, but in the case of Astrid, constraints tend to saturate when using more than ∼5 galaxies.

Figure 5. We train models to infer the value of Ωm using the properties of 10 galaxies. However, instead of using all galaxy properties, we made use of the five most
important properties found when using a single galaxy. The panels show the average results for SIMBA (left), IllustrisTNG (middle), and Astrid (right). We found that
constraints using just five galaxy properties are similar to the ones obtained using all galaxy properties. This may indicate that the models still extract information from
the manifold containing galaxy properties and that information from noisy global quantities (e.g., stellar mass function) is subdominant.
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previous argument, i.e., with multiple galaxies, one can
construct noisy estimates of global statistical properties that
may be sensitive to these parameters, like the stellar mass
function or the stellar metallicity relation. However, differently
to σ8, even with a single galaxy we find some constraining
power on the value of these parameters, so it can just be that
results are just exploiting that to determine the shape of the
manifold better. Both factors likely came into play in this setup.

Finally, we find no constraining power for the AGN
parameters for AAGN1 for the galaxies in IllustrisTNG and
Astrid and a modest improvement of ∼20% for SIMBA. On
the other hand, for AAGN2, the constraints for IllustrisTNG and
SIMBA do not improve up to 10 galaxies, while for Astrid
there is a significant ∼2.5× improvement in the RMSE value.
We note that AGN feedback is expected to have a larger effect
on massive galaxies, so the fact that we choose galaxies

randomly (making it more likely to choose small galaxies) can
be the reason behind this behavior.
Our results indicate that the models may still be exploiting

the information contained on the most important variables used
when inferring Ωm with a single galaxy. In this case, the
improvement may be due to a better determination of the
galaxy manifold (stacking results for individual galaxies) but
also to the impact of cosmology and astrophysics on quantities
such as the stellar mass function, where noisy versions of it can
be constructed from a set of galaxies. It is however interesting
to see that galaxy properties not important for constraints on
individual galaxies do not seem to have an impact also when
using catalogs.
As expected, our models become more precise but less

accurate as we increase the number of galaxies. The reason is
that the models are not robust even when considering a single

Figure 6. Robustness test. We have trained models to infer the value of Ωm using the properties of 10 galaxies from SIMBA (top row), IllustrisTNG (middle row), and
Astrid (bottom row). We then test the models on properties from 10 galaxies from SIMBA (left column), IllustrisTNG (middle column), and Astrid (right column). As
can be seen, the models are not robust, and they fail when tested on galaxies from models different from the ones used for training.
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galaxy (Villaescusa-Navarro et al. 2022). However, we note
that Echeverri et al. (2023) found that the models fail, on
average, due to the presence of outliers. We thus leave it to
future work to tackle the robustness of the models for one and
multiple galaxies.

Finally, it is important to compare the results of this work
versus those in Hahn et al. (2023), which are based on the core
idea of utilizing the impact of cosmology of galaxy properties.
That work provides the first constraints on Ωm and σ8 obtained
from the photometry alone of thousands of NASA-Sloan
Atlas11 (NSA) galaxies. The NSA is a catalog of images and
parameters of local galaxies, from surveys in the ultraviolet,
optical, and near-infrared bands. The NSA provides photo-
metry of z< 0.05 galaxies observed by the Sloan Digital Sky
Survey. In that work, it is found that adding more galaxies
improves the constraints, while here, we find that constraints
tend to saturate when considering multiple galaxies. However,
in Hahn et al. (2023), the information is not extracted from
noiseless galaxy properties but from noisy and dust-attenuated
photometry. In that case, even at the level of a single galaxy
constraints are poorer than the ones reported here. This is
because some information is lost when using photometry
instead of galaxy properties. Thus, it is not surprising that
stacking thousands of galaxies yields better constraints when
using photometry than the ones obtained when using a few
galaxies but knowing their properties without errors.

We conclude that better constraints on the value of the
cosmological and astrophysical parameters can be obtained by
using the properties of multiple galaxies instead of one. In this
case, a combination of better knowing the underlying manifold
hosting the data and the possibility of constructing noisy

estimates of global quantities is behind the performance of our
results. It would be interesting to investigate whether some
particular combinations of galaxies yield tighter constraints
and, therefore, maximize the information content. That
selection should also account for the robustness of the model.
We leave all this for future work.
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Appendix
Ten Galaxies

Figure 7 shows the results we obtained when training
networks using the properties of 10 galaxies. As can be seen,
these results are systematically better than the ones we obtained
using two galaxies (see Figures 1 and 2).

11 http://www.nsatlas.org/
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Figure 7. Same as Figures 1 and 2 but using 10 galaxies instead of 2.
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