
https://doi.org/10.1145/3597503.3639147
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639147&domain=pdf&date_stamp=2024-04-12


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xinyu Liu, Joy Arulraj, Alessandro Orso

study we performed on a set of production UDFs, we found that
only 50 percent of the UDFs had correct annotations ( §5).
O�� A�������. Given the limitations of existing techniques and
the potential performance bene�ts of leveraging UDF properties,
we present an automated technique for generating UDF annota-
tions based on program analysis that relies on two key insights.
First, UDF property annotations can help DBMSs process UDFs that
translation-based techniques cannot handle due to their inherent
limitations ( §2.2). Second, the problem of verifying UDF properties
can be formulated as a data�ow analysis problem. As we design the
analysis in a way that overapproximates UDF behaviors, our tech-
nique conservatively catches all instances of property violations.
That is, if our technique may miss an annotation, that may result in
a missed query optimization, but will never generate an incorrect
one, thus avoiding spurious optimization and ultimately incorrect
results.

We combine these insights in a technique named LAMBDA,
which takes as input a UDF and veri�es whether the UDF satis�es
a set of relevant properties. Conceptually, LAMBDA is similar to
traditional compilation techniques that compute program prop-
erties to generate more optimized programs [24, 27]. Currently,
LAMBDA supports four UDF properties that are commonly used
across DBMSs [5–7] (see §3). To automatically and soundly deter-
mine these properties, LAMBDA performs data�ow analysis using
an abstract interpretation framework [1] that ensures an overap-
proximation of program behaviors over the property of interest.

We evaluated LAMBDA on a UDF benchmark that is derived
from production query workloads and real-world UDFs. Our re-
sults are promising, as LAMBDA was able to: (1) improve query
performance with a time reduction ranging from 10% to 99%, and
(2) infer these properties from 30 production UDFs conservatively
and e�ciently, with zero false negatives (see Figure 6) and an av-
erage analysis time of 34.9 milliseconds for each UDF. LAMBDA
also caught �ve instances wherein developers incorrectly anno-
tated the UDFs, all of which have been reported and acknowledged.
We compared LAMBDA against F����, a technique based on trans-
forming UDFs into equivalent SQL subqueries. Our results show
that LAMBDA was able to improve query performance in cases
that F���� could not handle. We defer the integration of LAMBDA
into a data-processing platform to future work. This paper makes
the following contributions:
• An technique for automatically inferring UDF properties based
on data-�ow analysis that can considerably improve the perfor-
mance of DBMSs in processing UDF-invoking queries.

• A publicly available implementation of the technique [9].
• A publicly available UDF benchmark [9].
• An evaluation of our technique that shows that (1) LAMBDA
can infer the UDF properties it supports soundly and e�ciently,
(2) the inferred properties can lead to considerable performance
improvements, and (3) LAMBDA can process queries that alter-
native approaches cannot handle.

2 BACKGROUND
This section presents relevant background information, a motivat-
ing example, a case study about UDF annotations, and an overview
of data �ow analysis.

Listing 1: An example Java UDF that challenges existing approaches.
1 public Integer processDate(String strBeginDate, Integer n) {
2 Date dtBegin = new Date();
3 try {dtBegin = (new

SimpleDateFormat("yyyyMMdd")).parse(strBeginDate);
4 } catch (ParseException e1) {e1.printStackTrace();}
5 Calendar cld = Calendar.getInstance();
6 cld.setTime(dtBegin);
7 int startMonth = cld.get(Calendar.MONTH);
8 try {cld.setTime(dtBegin);
9 cld.set(Calendar.MONTH, startMonth + n);
10 Date dtNew = cld.getTime();
11 } catch (NumberFormatException e) {e.printStackTrace();}
12 String query = "SELECT d_date FROM store_sales, date_dim

WHERE ss_sold_date_sk = d_date_sk ORDER BY d_date";
13 ResultSet rs = query.executeQuery();
14 Date queryresult = new Date();
15 queryresult = rs.getDate("d_date");
16 return dtNew.compareTo(queryresult); }

2.1 Java UDFs
Imperative languages o�er several bene�ts over the declarative
SQL, such as better maintainability, readability, and supporting
expression of complex business logic. For this reason, many DBMSs
(e.g., PostgreSQL, MySQL, and Apache Hive) allow users to write
UDFs in traditional imperative languages, such as Java. We notice
that there are tens of millions of Java UDFs in use today in a pro-
prietary cloud database system, with millions of daily invocations.
These UDFs cover a wide variety of functionalities, such as process-
ing a many di�erent data types (e.g., dates, strings, and url) and
implementing complex business logic. Another empirical observa-
tion is that each UDF is written within an individual Java class and
developed as a member function. When a Java UDF is invoked, the
class instance that contains this UDF is �rst initialized, and then
the UDF is evaluated iteratively for each qualifying tuple.

2.1.1 Optimization and Execution of Java UDFs. Since DBMSs cur-
rently treat Java UDFs as black boxes, queries that contain UDFs are
under-optimized and thus processed ine�ciently (as demonstrated
in Figure 1). This is because many query optimization techniques
can only be applied on UDF-invoking queries if the referenced UDFs
are guaranteed to satisfy certain properties [5–7]. While DBMSs
currently allow developers to provide property annotations, manu-
ally analyzing UDFs is time-consuming and error-prone. As a result,
an automated analysis approach such as LAMBDA is a valuable
technique that can improve the existing practices of UDF process-
ing. Another notable fact is that Java UDFs are evaluated within a
Java runtime instead of a query execution engine. This means that
executing UDFs incurs an unavoidable and expensive performance
cost due to repeated context switching between the Java runtime
and the query execution engine [14]. LAMBDA helps DBMSs re-
duce such costs by enabling optimizations that save unnecessary
UDF invocations.

2.2 Motivating Example
We present a Java UDF to demonstrate the challenges associated

with existing approaches and the potential bene�ts of leveraging
UDF properties. Listing 1 shows a UDF derived from production
UDFs. This UDF �rst modi�es a given date by incrementing its
month, and then compares the date with the result of a query. The



A Framework for Inferring Properties
of User-Defined Functions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

SELECT processDate('19000101',5)
WHERE processDate('19000101',5) IS NOT NULL;

(a) Original query Q1, execution time = 5 s

SELECT processDate('19000101',5);

(b) Optimized query Q2, execution time = 2.4 s

Figure 1: An example optimization enabled by a UDF property.

UDF can be broken into �ve main steps. 1 It parses the input string
into a date object dtBegin (line 2 – 4). 2 It initializes a calendar ob-
ject cld using dtBegin and updates it by incrementing its month (line
5 – 9). 3 It initializes a new date object dtNew using cld (line 10).
4 It sends a query to the connected database and stores the result
in queryResult (line 12 – 15). 5 It returns the comparison result
between dtNew and queryResult (line 16). Notably, for the �rst step,
the UDF leverages the exception construct to handle cases in which
the string parsing fails.
W�� ���� ���� �� ����������� ��� �������� ���������.
Translation-based approaches cannot transform this UDF into a SQL
query because SQL does not support exceptions. Moreover, this UDF
also makes it di�cult for UDF users to provide correct annotations.
Case in point, it corresponds to a con�rmed UDF annotation bug
that our technique discovered: the UDF was incorrectly annotated
as pure (see §3 for a rigorous de�nition), a property that guarantees
that this UDF always generates the same output given the same
inputs. However, this UDF is in fact impure because it can generate
di�erent outputs for the same inputs. In particular, when a parse
exception occurs, the UDF will calculate its output based on the
system time (line 2), which can lead to di�erent outputs for the
same inputs. Incorrect property annotations are harmful because
they can often lead to incorrect query results.
H�� UDF ���������� ����������� �����������. Fig-
ure 1 shows how DBMSs can leverage UDF properties to speed up
UDF processing. Consider Q1 (Figure 1a), which asks the DBMS
to return the result of the example UDF only if the result is not
NULL. By manually analyzing this UDF, we can conclude that it
never returns NULL (see how LAMBDA automatically analyzes it
in §4). By knowing this UDF property, DBMSs can remove the �lter
predicate within Q1 while preserving the query semantics. Q2 is the
result of applying this optimization, which eliminates unnecessary
calls to the UDF within the �lter predicate. Consequently, Q2 runs
2⇥ faster than Q1 on the same database in PostgreSQL (v14.3).

2.3 Case Study
We present a case study based on a production system to demon-
strate the potential usefulness of our approach in practice. We con-
ducted the case study about UDF annotations on a general-purpose,
fully managed, multi-tenancy data processing platform for large-
scale data warehousing [10]. For the platform’s daily production
workload, hundreds of worker nodes are invoked to query massive
datasets (size is up to hundreds of TB). We examined a random
sample of 20 Java UDFs that cover a wide variety of functionalities,
such as dates, strings, and URL processing, mathematic computa-
tion, and implementing complex business logic. We focus on the
P����� property for this case study and defer its formal de�nition
to §3. We have 2 evaluation goals: 1 whether developers provide
correct property annotations for production UDFs and 2 whether
UDF properties improve the system performance. We focus on the

?
¬%*'⇢

>
%*'⇢

Figure 2: Data�ow facts for P�����.
P����� property for this case study and defer its formal de�nition
to §3.
P������� ����������� �� ����������UDF�. We �rst manu-
ally analyzed the sampled UDFs to determine whether they satis�ed
the four properties considered and used the result of the analy-
sis as the ground truth. Then, we compared existing annotations
(provided by UDF users) on these UDFs against the ground truth.
Interestingly, we found that UDF annotations are often incorrect.
Among 20 sampled UDFs, 10 had incorrect annotations: 5 stated
that a property was satis�ed when it was not, and 5 stated that a
property was not satis�ed when it was. This result demonstrates
manually analyzing UDFs is error-prone and an automated and
sound approach is necessary and highly desirable.
P���������� ����������� �� ���������� UDF �������
����. We next examined the platform’s performance improvement
after leveraging the UDF property. We �rst collected 615 produc-
tion queries that invoke the sampled UDFs that satisfy the P�����
property. Then, we ran these queries two separate times, with and
without providing the P����� annotations to the platform, and
compared the total of their query execution time, machine instance
time and cpu cost. The result shows that leveraging P����� anno-
tation improves the system performance from all measurements,
with 2.2%, 4.8%, and 4.9% improvements, respectively. More e�-
cient query execution plans and computation results reuse are two
main contributing factors behind these improvements. Given the
expensive cost of performing large-scale data processing tasks, this
improvement can lead to signi�cant reductions in computational
resources consumption and monetary spending. Moreover, the plat-
form administrators con�rm that the results are generalizable to
other properties, which suggests that providing additional proper-
ties’ annotations to the system can further increase the magnitude
of the performance improvement.

2.4 Data�ow Analysis
Data�ow analysis (DFA) is a static analysis technique that reasons
about program properties. DFA has many applications, such as
compiler optimization and software vulnerability detection. DFA
operates on a program’s control-�ow graph (CFG), with the goal of
computing information that is guaranteed to hold at each program
point (i.e., each node of the CFG) on all executions.

To achieve this, DFA builds upon three fundamental elements:
data�ow facts, �ow functions, and join operator.
D������� F����. They represent program information on which
the analysis focuses and can be formally de�ned using a lattice.
The goal, in de�ning data�ow facts, is to abstract away concrete
program information while keeping necessary information for the
analysis.

Figure 2 is an example lattice that de�nes the data�ow facts for
modeling P����� information that each program variable holds.
The explanation for this lattice is as follows: for a variable at a given
program point, when the program inputs are the same, whether this
variable always has the same value (maps to the %*'⇢ from the



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xinyu Liu, Joy Arulraj, Alessandro Orso

lattice) or not (maps to the ¬%*'⇢ from the lattice). For instance,
if a variable holds a constant value at a program point, it maps to
a %*'⇢ data�ow fact because constant values are always pure. In
addition, ? and > are two standard data�ow facts to complete the
lattice: ? models the program point that has not been analyzed; >
models cases wherein more precise data�ow facts are unavailable.
For instance, when di�erent execution paths make it possible for a
variable to hold di�erent data�ow facts (either %*'⇢ or ¬%*'⇢)
at the same program point, we assign > to this variable.
F��� F��������. Theymodel the e�ect of instruction on data�ow
facts. Considering the data�ow analysis for P�����, for instance,
the �ow function for an assignment statement is to propagate the
data�ow fact from the right to the left.
J���O�������. It de�nes how to compute data�ow facts at a join
point (a node with more than one predecessor). It usually performs
a union operation over the facts from each predecessor.
I�������� D������� A������� F��������. Data�ow anal-
ysis problems usually are solved using the standard iterative algo-
rithm [20]. The algorithm uses �ow functions and the join operator
to propagate data�ow facts over the CFG of the program and per-
forms iteration until the data�ow facts associated with each CFG
node converges to a �xed point [20].

3 PROBLEM FORMULATION
Now we formalize the problem of analyzing UDF properties. In
particular, we present formal de�nitions of four UDF properties:
P�����, N�������, R������ N��� O� N���, and P������� S���.
We de�ne four UDF properties that are widely adopted in existing
DBMSs. If UDFs satisfy any of these properties, DBMSs can apply
an additional set of optimization techniques on queries that invoke
these UDFs, which leads to a much quicker query response time. By
default, DBMSs assume UDFs do not satisfy any of these properties.
Property 1. P�����: A UDF satis�es P����� if it guarantees to
return the same result given the same arguments and does not have
side-e�ects (e.g., modifying the database state).
R������� �������������. This UDF property enables both
single-query and multi-query optimization techniques, by allowing
DBMSs to reuse UDF results. For single query optimizations, a pure
UDF allows the DBMS to save redundant calls with the same argu-
ment. In particular, DBMSs can either optimize multiple calls of the
function to a single call or maintain a cache to store previous UDF
evaluation results; both techniques help reduce the UDF evaluation
time and thus improve the query performance. In addition, a pure
UDF allows the DBMS to use multi-query optimization techniques,
such as common subexpression elimination [2] and materialized
views [3], which often lead to more e�cient query execution plans.
Property 2. N�������: A UDF satis�es N������� if it guarantees
to return a non-NULL value.
R������� �������������. This property facilitates both UDF
optimization and execution. If a UDF is N�������, DBMSs can
remove operations that compare the UDF result with NULL.
Property 3. R������ N��� O� N���: A UDF satis�es
R������ N��� O� N��� if the function always returns null
whenever any of its arguments is null.
R������� �������������. This property facilitates UDF evalua-
tion, as DBMSs do not execute such functions when they have null

arguments and automatically assume their result is NULL. By reduc-
ing unnecessary UDF calls, this optimization reduces the number
of context switches between the JVM and the SQL query execution
engine, which indirectly reduces the overall cost of UDF execution.
Property 4. P������� S���: A UDF satis�es P������� S��� if the
function can be evaluated in the parallel mode.
R������� �������������. This property allows DBMSs to
launch more than one worker to execute the calling query con-
currently. Di�erent DBMS implementations have di�erent require-
ments for a UDF to be P������� S���. Taking PostgreSQL as an
example, a P������� S��� UDF cannot perform certain operations
that cannot be synchronized across parallel workers, such as modi-
fying database table contents.

4 KEY CONCEPTUAL INSIGHTS
We now discuss our key insights for analyzing UDF properties de-
�ned in §3. We show that the veri�cation of UDF properties can
be represented as a general data�ow problem that detects possible
violations of UDF property speci�cations (a UDF satis�es a UDF
property if its behaviors do not violate the property speci�cation).
The data�ow problem is parameterized by three main components:
data�ow facts, �ow functions, and join operators. For ease of presen-
tation, we �rst present commonalities and then di�erences among
data�ow problems for distinct UDF properties.

4.1 Commonalities
DFAs for UDF properties share the same iterative data�ow analysis
framework [21]. Algorithm 1 shows its algorithm. The framework
takes as input a UDF, its CFG, and a property P, and computes as
output whether the UDF satis�es P. To achieve this, the framework
associates each CFG node with an analysis state, f , that tracks
relevant information for the property P. In particular, f maintains
a mapping between each CFG node and data�ow facts l that are
relevant to P. The framework performs data�ow analysis in four
main steps. 1 For all CFG nodes, the framework initializes their
input and output analysis state to ? (i.e., an analysis state that
has not yet been processed), and adds each node to a worklist
(line 3). 2 The framework performs the following iteratively, until
the worklist is empty (implicitly indicates that the analysis state
for each node has reached a �xed point): (1) the framework takes
a node o� from the worklist, and computes its incoming analysis
state by calling the �������J��� procedure on its predecessors;
(2) the framework computes the new outcoming analysis state
for this node by invoking the �������B����F��� procedure that
takes as input the node and its incoming analysis state; (3) if the
newly computed outcoming analysis state is di�erent from the
previous one, the framework performs 2 things: updating this node’s
outcoming analysis state and adding its successors to the worklist;
otherwise, it does nothing. 3 After the worklist becomes empty, the
framework invokes �������R�����B�����. Within this procedure,
the framework calls the �������J��� procedure on the CFG’s return
blocks to conservatively compute the return state of the UDF. Then,
it invokes the �����F����S����A������P������� procedure to
determine whether the return state satis�es the UDF property P.



A Framework for Inferring Properties
of User-Defined Functions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Algorithm 1: Iterative Data�ow Analysis Algorithm.
Input :a UDF and its CFG; a property P
Output :whether the UDF satis�es P

1 worklist = [ ] ;
2 input_state[n] = output_state[n] = {};
3 for Node n 2 CFG do
4 input_state[n] = output_state[n] = ? ;
5 worklist.���(n) ;
6 while worklist! = ; do
7 Node n = worklist.���() ;
8 for Node k 2 �����(n) do
9 input_state[n] =

P������J���(input_state[n], output_state[k]) ;
10 new_output_state = �������B����F���(n, input_state[n])
11 if new_output_state != output_state[n] then
12 output_state[n] = new_output_state ;
13 for Node j 2 �����(n) do
14 worklist.���(j) ;

15 return �������R�����B�����(output_state)
16 Procedure �������B����F���(Node n, input_state[n])
17 output_state = input_state[n] ;
18 for Instruction i 2 ���I�����������(n) do
19 output_state = ����F�������(i, output_state) ;

20 return output_state ;

21 Procedure �������R�����B�����(output_state)
22 �nal_state = ? ;
23 for Node n 2 ���R�����B�����(CFG) do
24 �nal_state = �������J���(�nal_state, output_state[n]) ;

25 return �����F����S����A������P�������(�nal_state, P) ;

?
¬8=?DC_=D;;

>
8=?DC_=D;;

(a) inputNull lattice

?
¬8=?DC_FA8CC4=

>
8=?DC_FA8CC4=

(b) inputWritten lattice
Figure 3: Data�ow facts for the Returns Null on Null property.

4.2 Di�erences
DFAs for UDF properties di�er in their answers to four key design
questions for the framework: 1. What program information to
track (§4.2.1)? 2. What operations impact the tracked program
information (§4.2.2)? 3. How to combine incoming program in-
formation for nodes that have more than 1 predecessor (§4.2.3)?
4. How to check whether the UDF satis�es the property using the
computed analysis states (§4.2.4)?

4.2.1 Dataflow Fact and Analysis State. In order to e�ciently an-
alyze di�erent UDF properties, DFAs need to design di�erent ab-
stractions of program information. These abstractions can be de-
scribed using domains of data�ow facts and formally represented
as data�ow lattices. With a given domain of data�ow facts, a DFA
maintains an analysis state, f , to track information that each pro-
gram component (e.g., either a program variable or a CFG node)
holds. Table 1 summarizes the domains of data�ow facts and analy-
sis states for analyzing di�erent UDF properties.

1 public Integer processDate(String strBegDate, Integer n) {
2 if (strBegDate == null || n == null) {
3 return null;...}

Figure 4: An example code that processes NULL input.
P����� �������� requires a domain of data�ow facts that specify
whether a program variable holds a pure value (i.e., always evalu-
ates to the same value given the same program inputs) at a given
program point. This domain can be formally represented using a
2-element lattice shown in Figure 2. The analysis state maintains
a mapping between each program variable and a value from the
P����� lattice: at a given program point, a variable that maps to a
%*'⇢ value means it holds pure value, and a ¬%*'⇢ value means
the variable holds impure value.
N������� �������� requires a domain of data�ow facts that
specify whether a program variable holds a value that is not NULL,
which can be formally represented using a 2-element (i.e., #*!!
and ¬#*!!) lattice that has the same form as the P����� lattice.
The associated analysis state maintains the mapping between each
program variable and a value from the N������� lattice: at a given
program point, a variable that maps to a #*!! and a ¬#*!! value,
means it is always NULL and not NULL, respectively.
R���������������� �������� requires a domain of data�ow
facts that specify a set of input parameters that guarantee to be
NULL at each program point; we design the analysis domain by
leveraging a key insight that an input parameter guarantees to be
NULL if it succeeds a true branch that checks its equality against
the value NULL and has never been overwritten. This insight is
inspired by our empirical observations of how UDFs handle NULL
inputs. Figure 4 demonstrates the programming pattern for han-
dling NULL inputs. UDFs start with checking input parameters’
equality against the NULL value (line 2). If these checks succeed,
it guarantees that, within their successors, these input parameters
are always NULL until they are assigned to a di�erent value. As
shown in our example code, the CFG node that contains line 3 is
a successor to 2 distinct checks for inputs BCA⌫46⇡0C4 and =, and
takes the true branch for both checks. Consequently, at the start
of this CFG node, both BCA⌫46⇡0C4 and = must be NULL. Then,
because it returns the NULL value as the output, we know that this
UDF satis�es the R������ N��� O� N��� property.

Based on these observations and insights, we design two do-
mains of data�ow facts for analyzing this property, which can be
formally represented using the inputNull and inputWritten lattice,
respectively. The associated analysis state tracks two kinds of in-
formation: 1 a set of input parameters that may have been written
(using the inputWritten lattice); 2 a set of parameters that must
be NULL since they succeed successful equality checks against the
NULl value (using the inputNull lattice). For instance, consider the
parameter = in our example, at the start of the CFG node that con-
tains line 3, it has ¬8=?DC_FA8CC4= and 8=?DC_=D;; as its data�ow
facts. This is because the CFG node succeeds a successful equality
check between = and NULL, and the variable is not rewritten.
P������� ���� �������� requires a domain of data�ow facts
that specify whether a given CFG node contains operations that
violate the parallel safe policy, which can be formally represented
using a 2-element (i.e., B05 4 and ¬B05 4) lattice that has the same
form as the P����� lattice. The associated analysis state maintains
the mapping between each CFG node and a fact value from this



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xinyu Liu, Joy Arulraj, Alessandro Orso

Table 1: Data�ow fact domains and analysis states for UDF properties.
Property P Within a given CFG node =, a data�ow fact ; describes whether Analysis state f=
P����� a variable E8 holds a pure value { hvi, l_purei, ...}
N������� a variable E8 holds a value that is not NULL { hvi, l_nonnulli, ...}
R������ N��� O� N��� an input variable E8 is never rewritten and succeeds a successful equality check against the NULL value { hvi, l_null, l_wri�eni, ...}
P������� S��� the node is free of operations that violate the parallel safe policy {;_B05 4 }

Table 2: Example statements that may violate UDF properties.
Property P Statements that may violate the property
P����� Date dtBegin = new Date();
N������� return null;
R������ N��� O� N��� return Integer.valueOf(1);
P������� S��� String query = "INSERT ...";

lattice: B05 4 and ¬B05 4 means the node contains 0 and at least one
operation that violates the parallel safe policy, respectively.

4.2.2 Flow Functions. At a high level, DFA focuses on analyzing
program statements that may directly or indirectly violate the prop-
erty de�nition. Table 2 demonstrates example statements that may
violate each UDF property. Technically, for each property, DFA
leverages a distinct set of �ow functions that model the impact of
program statements on associated analysis states. These �ow func-
tions are determined by the property policy, which enumerates the
e�ect of operations (by the operator and its operands) and method
invocations (by the method name and its parameters) on data�ow
facts that are associated with each UDF property. Due to the limited
space, we only present the property policy and a set of example �ow
functions for verifying the P����� property.
P������� P����� ��� P�����. It contains a set of rules that
can be expressed as a triple hN , C, Ei. N speci�es the name of the
operator or the full name of the method. C speci�es the calling
context, such as whether the operator/method involves an impure
operand/argument. E speci�es the e�ect of the operator/method
on the existing data�ow facts: RAISE and KILL means it generates
a ¬%*'⇢ and a %*'⇢ data�ow fact, respectively. The following is
a list of example rules for the P����� property:
Listing 2: an example list of ������ rules.

1 (Multiplication, sizeOf(impure operands) > 0, RAISE)
2 (Date.setTime(), sizeOf(impure arguments) == 0, KILL)

F��� F�������� ��� P����� P�������. Flow functions are
designed based on property rules. Consider the Mutiplication rule
shown above as an example. Assume the analysis state before and
after executing a multiplication statement is f14 5 >A4 and f05 C4A ,
respectively. The �ow function for the Mutiplication rule has 3
main steps: First, it assigns f145 >A4 to f05 C4A . Second, it queries
f14 5 >A4 in order to check whether any operand maps to ¬%*'⇢
or > (de�ned by the calling context C of the rule). Third, if this is
indeed the case, it updates f05 C4A by mapping the left-hand variable
of the statement to ¬%*'⇢ (de�ned by the calling e�ect E of the
rule); otherwise, it preserves f05 C4A .

4.2.3 Join Operator. Because a CFG node may have multiple pre-
decessors, in order to compute its analysis state, we need the join
operator that de�nes how to merge multiple incoming analysis
states. For all properties that we consider, the join operator merges
the incoming states by performing a union-like operation over each
component’s incoming data�ow values. Consider a state f=>F that
has two incoming states, wherein the same relevant component
4;4<4=C holds two di�erent data�ow values, ;0 and ;1 . We compute

the starting data�ow value for 4;4<4=C at f=>F by performing a
union operation over incoming data�ow values for 4;4<4=C , which
results in {la, lb}. That is, at the beginning of f=>F , 4;4<4=C may
hold either ;0 or ;1 . For the R������ N��� O� N��� property, the
join operator includes an additional procedure. For a given CFG
node, we iterate through its predecessors: if a predecessor ends with
a successful equality check of an input variable against the NULL
value, and the input variable has never been modi�ed, we update
the analysis state by assigning 8=?DC_=D;; to the input variable.

4.2.4 Analysis States and the UDF Property. Once a �xed point
has been reached for all analysis states, the DFA performs a 2-step
procedure to determine whether the UDF satis�es the property, by
�rst computing the �nal analysis state and then checking whether
the state satis�es the property.
C������ F���� A������� S����. For all properties except the
R������ N��� O� N��� property, we compute the �nal analysis
state by using the join operator over the analysis states for CFG
nodes that have a return statement. To compute the �nal analysis
state for the R������ N��� O� N��� property, we apply the join
operator over CFG nodes that return the NULL value. If none of
the nodes returns the NULL, we conclude that the UDF does not
satisfy the R������ N��� O� N��� property.
C���� F���� A������� S���� ������� ��� P�������. For
the P����� and the N������� properties, the �nal analysis state
includes a mapping between variables and data�ow values that
indicate whether variables are pure and not null, respectively. If
variables used as the return value are pure and not null, the DFA
concludes that the UDF satis�es the P����� and the N�������
property, respectively. Otherwise, the DFA concludes that the UDF
satis�es none of these properties. For the P������� S��� property,
the �nal analysis state indicates whether the UDF contains any op-
eration that violates the P������� S��� policy. If that is the case, the
UDF satis�es the property. Otherwise, the DFA concludes that the
UDF does not satisfy the property. For the R������ N��� O� N���
property, the �nal analysis state contains a set of input variables
that pass equality checks against the NULL value, which indirectly
suggests that for each of these variables, once it evaluates to NULL,
the UDF returns NULL. If all input parameters satisfy this criterion,
we conclude the UDF satis�es the property. Otherwise, the DFA
concludes that the UDF does not satisfy the property.

5 EVALUATION
To evaluate the usefulness of LAMBDA, we investigated the follow-
ing questions:
RQ1. How e�ective and e�cient is LAMBDA? (§5.3)
RQ2. HowdoUDF properties improve theDBMS performance? (§5.4)
RQ3. How does LAMBDA compare against other techniques for

improving UDF performance? (§5.5)



A Framework for Inferring Properties
of User-Defined Functions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 5: High-level overview of LAMBDA.
5.1 Implementation
We implement LAMBDA on top of Sparta [1], an extensible abstract
interpretation framework for developing e�cient DFA. The frame-
work provides abstractions for us to implement data�ow facts, �ow
functions, join operators for each UDF property, and engines for
performing DFA (i.e., �xpoint iterator).
A�����������. Figure 5 shows the architecture of LAMBDA.
It takes as input the UDFs that are in the form of Java class �les.
LAMBDA �rst constructs control �ow graphs of the UDFs and then
performs data�ow analysis on top of them. At the completion of the
analysis, LAMBDA analyzes the �nal analysis state and translates
it into a boolean value that indicates whether the UDF satis�es
the property. The output of LAMBDA is stored in a CSV �le that
indicates whether input UDFs satisfy the property.
D������� ���������. LAMBDA performs interprocedural analy-
sis by analyzing callees and storing the result as function summaries.
However, for external libraries, given their large size and complex
dependencies, we decided to use manual annotations. LAMBDA
provides an interface for this purpose. Users can provide a CSV �le
that de�nes certain shortcut rules for a given UDF property. The
CSV �le contains 2 columns: the �rst and the second column speci-
�es the name of the library call and whether it satis�es the property,
respectively. During the data�ow analysis, if LAMBDA encounters
a library call that does not have a shortcut rule, LAMBDA assumes it
generates a > data�ow fact. Taking P����� analysis as an example,
a > data�ow fact implies that the return value of the library call
may be impure. We annotated 192 external library calls because
they are used by UDFs that we studied. We annotated them by
understanding their documentation and usage examples.
E������������. LAMBDA can be extended to infer additional
UDF properties. Supporting a new UDF property only requires 3
items: 1 a lattice that represents the abstraction of the program
information; Notably, other UDF properties may require a lattice
that has a di�erent shape than the ones presented in this paper. For
instance, the lattice that estimates the cardinality of the UDF output
will share the same shape as the lattice that is used in range analysis.
2 �ow functions and join operators that de�ne how to propagate
the program information; 3 shortcuts that model external libraries.
Because LAMBDA currently hardcodes the �rst and the second
items as Java classes, DBMSs developers may �nd it challenging to
create them in order to support a new UDF property. In future work,
we will investigate ways to measure the development di�culties of
extending LAMBDA and design a more user-friendly interface for
DBMS developers to support additional UDF properties.

5.2 Evaluation Setup
Our evaluation focused on a UDF benchmark that represents a
realistic UDFs workload. The benchmark consists of 3 main compo-
nents: the database, UDFs, and queries that invoke these UDFs. We
have made the public version of the UDF benchmark available [9].
We ran all experiments on a server with two Intel(R) Xeon(R) E5649
CPUs (24 processors) and 236 GB RAM. Next, we present more
details on how we construct the UDF benchmark.
D�������. The benchmark uses a TPC-DS database [22] that is de-
rived from the SQL-ProcBench [16]. The database contains 32 tables
that take 3.8 GB in total. It is designed to model production work-
loads and is widely used for DBMS performance evaluation [23].
UDF�. We focus on scalar UDFs for our evaluations, which come
from three sources. First, we reused the 20 UDFs from the case
study (§2.3). These UDFs are not publicly available and are used
for RQ1 evaluation. Second, in order to create publicly available
UDFs that represent production UDFs, we manually created 5 UDFs
that imitate the functionalities and programming patterns of UDFs
from the �rst source. These 5 UDFs are for RQ2 and RQ3 eval-
uations 1. Third, we randomly selected 10 out of 25 UDFs from
SQL-ProcBench [16], an open benchmark for procedural workloads
in DBMSs. Because UDFs from SQL-ProcBench are written in T-
SQL, we manually translated these UDFs in Java. Compared with
Java UDFs, UDFs derived from SQL-ProcBench UDFs have simpler
functionalities and programming patterns: they are used to pro-
cess tuples from database instances, by issuing queries to DBMSs
and processing query results. On the contrary, Java UDFs in our
benchmark have more varieties in terms of functionalities and com-
plexities. In total, our UDF benchmark has 35 Java UDFs, among
which 30 are used for RQ1, 15 are used for RQ2 and RQ3, and 20
are used for our case study on the proprietary platform.
������. For RQ2 and RQ3 evaluation, we constructed realistic
UDF-invoking queries by adding appropriate UDF calls to a set of
base queries that are realistic. We achieved this in three steps. 1
We collected 15 base queries by randomly sampling queries from
the TPC-DS benchmark. Queries from the benchmark are repre-
sentative of production queries [23]. 2 In order to know how to
properly add UDF calls to base queries, we distilled common UDF
invocation patterns from SQL-ProcBench:

Q: SELECT projection FROM Table-1 ..... Table-k
WHERE predicate

projection = Column-1 ..... UDF-call
predicate = Term-1 AND Term-2 AND ..... UDF-term
UDF-term = UDF-call Compare Constant | UDF-call In Constantset
Constant = Varchar | Integer | Decimal | Date | Null
Constantset = {Varchar} | {Integer} | {Decimal} | {Date}

There, we �nd UDFs are called in two places: predicate and pro-
jection. For invocations within the predicate, the UDF results are
compared against either a constant variable or a set of constant
variables for �ltering purposes. For invocations within the projec-
tion, the UDF results are used as a column in the result table. 3
We added appropriate UDF calls to base queries by referencing the
UDF invocation patterns just learned. We assumed a UDF is ap-
propriate to call only if the columns that the UDF should be called
upon are available in the base query, by taking the UDF semantics
into consideration. To limit the query complexity, we used only 1
1We did not use them for RQ1 in order to avoid evaluation bias



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xinyu Liu, Joy Arulraj, Alessandro Orso

(+)

(�)

(+) (�)
Ground Truth

Analysis Result
TP FP

FN TN

Figure 6: Taxonomy of analysis results (+means property violations).
UDF for each UDF-invoking query. In order to guarantee the UDF-
related predicates are realistic, we compared the UDF result against
meaningful values that are randomly sampled either from the data-
base or the UDF’s source code. In this manner, we constructed 62
UDF-invoking queries that cover 15 UDFs.

5.3 RQ1 — E�cacy and E�ciency
We studied whether LAMBDA can correctly analyze the four UDF
properties de�ned in §3. In other words, we examined whether
LAMBDA can detect all violations of UDF property speci�cations.
We focused on 30 UDFs from the benchmark. The evaluation has 3
steps. First, we gathered the ground truths. To do this, we performed
a manual analysis on each UDF and checked whether it violates any
property speci�cation. Second, we evaluated LAMBDA on these
UDFs and compared the analysis results with the ground truth. We
classi�ed the result according to the taxonomy presented in Figure 6
into four categories: true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). We reported the number of
TP, TN, and FP in Table 3. Notably, we did not report the number
of FN in the table, because LAMBDA is designed to generate 0 FN
(by conservatively reporting possible property violations).

The �rst observation is that LAMBDA accurately ana-
lyzed 3 UDF properties: N�������, R������ N��� O� N���, and
P������� S���. LAMBDA reported 0 false positives and nega-
tives for these properties. One possible explanation is that the
analysis of these properties does not demand comprehensive
and complicated modeling of UDF behaviors. For instance, the
R������ N��� O� N��� property only requires analyzing code
that handles NULL inputs.

The second observation is that, while LAMBDA correctly ana-
lyzed most UDFs for the P����� property, it generated four false
positives that missed UDFs that should be pure. This is because
LAMBDA conservatively reports cases wherein usages of shared
variables could possibly violate the property speci�cation. Shared
variables usage is a common programming practice we observed in
production UDFs. As mentioned in §2.1, UDFs have access to class
variables and may modify them whenever they are executed. As a
result, if a UDF does not properly sanitize these member variables
before using them, it can violate the speci�cation of P�����. Based
on this observation, LAMBDA always checks whether a given UDF
sanitizes shared member variables, by checking for the presence
of certain library calls. However, as the evaluation results demon-
strated, this check causes false positives for some special cases: (1)
when shared member variables are constants (e.g., never rewritten
by the UDF) (2) when shared member variables only need sanitiza-
tion under certain path conditions. It is feasible to make LAMBDA
support both cases, by implementing a constant analysis with re-
spect to the member variables and a symbolic analysis of the path
constraints, respectively.

Table 3: E�cacy of LAMBDA.
Property TP TN FP
P����� 11 15 4
N������� 22 8 0
R������ N��� O� N��� 13 17 0
P������� S��� 17 13 0

We also examinedwhether LAMBDA can catch developers’ anno-
tation mistakes for production UDFs. In particular, as demonstrated
in §2.3, 5 UDFs are incorrectly labeled by users as pure. LAMBDA
was able to determine them all as impure. We summarize 2 behav-
iors that make these UDFs impure: (1) UDFs leverage exception and
try blocks for input preprocessing, wherein system information is
introduced to replace invalid values; (2) UDFs read from variables
that are mutable across UDF invocations. We reported all annota-
tion bugs to developers. In addition to acknowledging all reported
cases, they also provided insights about improving LAMBDA. The
response we received is along the lines of: "These are really helpful
and interesting �ndings. Given that users may not know well about
the speci�cation of the UDF property, another valuable informa-
tion that the tool can provide is about why the UDF violates this
property." As part of our future work, we plan to investigate ways
to add this suggested feature and incorporate LAMBDA into their
proprietary data-processing platform.

We also tracked how much time LAMBDA took to run, by divid-
ing the total analysis time by the number of UDFs being analyzed.
On average, it took 34.9 milliseconds for LAMBDA to analyze 1
UDF. Because the LAMBDA runtime is negligible compared to that
of processing UDF-invoking queries, DBMSs users can integrate
LAMBDA with the existing data processing pipeline without sig-
ni�cant performance regressions. When a UDF has been modi�ed,
LAMBDA users can comfortably run it again to make sure the
change does not break existing UDF property annotations.

LAMBDA was able to infer four UDF properties e�ciently and
without reporting false negatives. The properties considered
posed di�erent challenges for the analysis. Given these results,
LAMBDA seems suitable for integration into existing DBMSs.

5.4 RQ2 — Performance Improvement
We studied the impact of leveraging UDF properties on query per-
formance. We focused our evaluation on PostgreSQL (v14.3). We
focused on 4 UDF properties that are de�ned in §3. We break our
evaluation into 2 parts. First, for each UDF-invoking query from our
benchmark (referred to as the regular query), we tried to create its
optimized versions by leveraging the UDF properties that the UDF
satis�es (§5.4.1). Second, for each regular and optimized query pair
(created by leveraging a given UDF property), we ran both queries
on the benchmark database and compared their query execution
time. If the optimized query runs faster than the regular query, it
demonstrates that leveraging the UDF property improves query
performance. We present the evaluation result in §5.4.2.

5.4.1 �ery Pair Construction. For queries that invoke pure UDFs,
we created their optimized versions that simulate the e�ect of
reusing the UDF results. In particular, the optimized query calls an
memoized UDF that stores the UDF results and returns the cached
result when the same inputs occur again. For queries that invoke
N�������UDFs and have comparisons between NULL and the UDF



A Framework for Inferring Properties
of User-Defined Functions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Query runtime performance statistics.

Property t_reg(s) t_opt (s) # of queries
avg std avg std speedup ¬speedup

P����� 25.7 38.6 11.4 14.2 23 39
N������� 29.0 47.1 27.9 46.9 4 7
R������ N��� O� N��� 25.3 37.6 25.0 38.2 11 38
P������� S��� 31.4 41.3 30.2 42.2 17 33 (7)

result, we created optimized queries by removing the comparisons.
For queries that invoke R������ N��� O� N��� UDFs, we created
optimized queries that invoke the same UDFs but have annotations
that allow PostgreSQL to leverage the R������ N��� O� N���
property. For queries that invoke P������� S��� UDFs, we created
optimized queries that invoke the same UDFs but have annota-
tions that allow PostgreSQL to process UDFs with parallelism. In
this manner, we created 62, 11, 49, and 50 regular and optimized
query pairs for P�����, N�������, R������ N��� O� N���, and
P������� S���, respectively.

5.4.2 �ery performance result. For each regular and optimized
query pair, we ran each query 5 times and computed the average of
their query response time)A46 and)>?C respectively2. For each UDF
property and its associated query pairs, we reported the average
and standard deviation of their query response time in Table 4. For
each query pair, we also computed the percentage of the query
execution time reduction after leveraging the UDF property using
the formula

� �
)A46 �)>?C

�
/)A46

�
⇥ 100%. The possible value for the

percentage of reduction falls into the range (�1, 100%). Figure 7
presents the percentage of time reduction results for all UDF prop-
erties. In order to account for the e�ect of environmental noises on
time measurement, we only reported performance regression and
improvement if the percentage of reduction is lower than -10% and
higher than 10%, perspectively. We reported the number of queries
with and without performance improvements in Table 4, whereas
the number in parentheses indicates the number of regressions.

The �rst observation is that leveraging UDF properties improved
query performance in some cases. In particular, P����� improved
query performance in 23 out of 62 cases (time reduction rang-
ing from 10% to 99%), N������� improved query performance
in 4 out of 11 cases (time reduction ranging from 12% to 40%),
R������ N��� O� N��� improved query performance in 11 out of
49 cases (time reduction ranging from 10% to 58%), and P������� S���
improved query performance in 17 out of 50 cases (time reduction
ranging from 10% to 74%).

The second observation is that leveraging UDF properties does
not always improve query performance. In particular, P�����,N�������,
R������ N��� O� N���, P������� S��� did not improve query
performance in 39 out of 62, 7 out of 11, 38 out of 49, and 26
out of 50 cases, respectively. After examining the query execu-
tion plans, we identi�ed three possible reasons for this. First, the
signi�cance of speedup depends on the number of UDF calls saved.
For R������ N��� O� N���, because it only eliminates UDF in-
vocations that have NULL inputs, the magnitude of speedup de-
pends on the number of NULL values within tuples that UDFs
are called upon. In our benchmark database, because each table
column contains only a small amount (i.e., <10%) of NULL value,
the number of UDF invocations that can be optimized away by
R������ N��� O� N��� are limited. Second, the signi�cance of
2We made sure the query cache is not used

Figure 7: Percentage of reduction of query response time by leverag-
ing UDF properties (higher is better).
speedup also depends on the query complexity. For complex queries
that contain computationally expensive relational operators (e.g., ,
joins, aggregation, and subqueries), leveraging P����� andN�������
do not lead to speed-up, even when they save UDF calls. This ob-
servation aligns well with �ndings from the previous paper [16].
However, that paper also points out that complex queries inevitably
begin to su�er from the performance bottleneck of UDFs when
the size of datasets increases to a certain extent, which highlights
the performance bene�ts of leveraging P����� and N������� on
large datasets. Third, it is ultimately the DBMS’s decision whether
to choose an alternative execution plan that leverages the UDF
properties. For P������� S��� and some of its associated queries,
PostgreSQL decides to keep the original execution plans, which
results in no performance di�erence among query pairs.

Thirdly, we found that leveraging P������� S��� introduces per-
formance regressions in 7 out of 50 cases (time increase ranging
from 10% to 1001%). These regressions are caused by the query op-
timizer’s incorrect decision to execute the query with parallelism,
which turns out to be slower than the default (sequential) execu-
tion mode. These regressions highlight the limitation of the query
optimizer in computing the optimal plan to process UDFs. One root
cause is that the query optimizer does not know the execution cost
of UDFs [25]. To address this limitation, in future work, we will
investigate ways to estimate UDF execution cost.

5.4.3 Analysis Overhead vs�ery Performance Improvement. Based
on the statistics from Table 4, we calculated that the average reduc-
tion of query response time after leveraging UDF properties is 5.7
seconds. Given that the average analysis time for LAMBDA is 34.9
milliseconds, we expect that the bene�ts of running LAMBDA are
more likely to outweigh its analysis overhead. In addition, because
LAMBDA only needs to run after updates of UDFs or property spec-
i�cations, it is not necessary to run LAMBDA before each query
invocation. We expect LAMBDA to be used as an o�ine analysis
tool (which is also con�rmed by developers). As a result, the anal-
ysis cost of LAMBDA can be amortized over a period of time that
depends on the frequency of UDF updates.

UDF properties di�er in how and to what extent they improve
query performance. Leveraging P������� S��� can trigger perfor-
mance regressions, which highlights opportunities for improving
future versions of DBMSs. The query performance improvement
after leveraging UDF properties is greater than the analysis over-
head of LAMBDA, which supports the applicability of LAMBDA.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xinyu Liu, Joy Arulraj, Alessandro Orso

5.5 RQ3 — Comparative Analysis
Recent research e�orts, such as F���� [25], improve UDF perfor-
mance by transforming UDFs that are implemented in PL/SQL
languages into scalar subqueries. To answer RQ3, we evaluated
F���� on the UDF benchmark and qualitatively compared its UDF
optimization results against LAMBDA. We used the same UDFs and
queries as RQ2. Notably, we did not directly compare the runtime
performance between F����- and LAMBDA-optimized queries, be-
cause F���� is only available on SQLS����� (v15.0.2) and not on
PostgreSQL. Our evaluation focused on 2 aspects: (1) how many
UDFs F���� can inline, and (2) how many UDF-calling queries
F���� can optimize.
I�������� UDF�. Among 15 UDFs from our benchmark, 7 UDFs
can be inlined by F���� and they are all derived from the SQL-ProcBench.
8 UDFs cannot be inlined by F����, because they violate conditions
that UDFs must satisfy in order to guarantee that rewriting them
in SQL preserves the original semantics [8]. An example of such a
condition is that the UDF can not have more than 1 return state-
ment. This experiment demonstrates that F���� cannot apply to all
UDFs: because UDFs are designed to extend the expressiveness of
the SQL query, it is very likely that they contain logic and imper-
ative constructs that can not be translated back into SQL. On the
other hand, we found LAMBDA helps optimize more UDFs than
F����: LAMBDA determined that each of the 15 UDF satis�es at
least 1 property that can improve query performance. One possible
explanation behind the di�erent coverage of UDFs is that LAMBDA
is more language-agnostic than F����: it does not prevent UDFs
from using any programming constructs.
O����������� ��UDF���������������. Next, we inspected
whether F���� can optimize queries that invoke UDFs that are
inlinable. For our benchmark, there are 26 queries that invoke
the 7 UDFs that F���� can inline. In order to determine whether
F���� helps SQLS����� optimize these queries, we ran each of
these queries on our benchmark database two times, with and
without enabling F����, and compared the query execution plans
and execution times. Surprisingly, F���� only optimized 1 out of
26 queries. For the other 25 queries, enabling F���� did not lead
to a di�erent execution plan. On the other hand, LAMBDA helped
PostgreSQL compute better execution plans for 13 out of 26 queries.
There are 2 possible explanations behind the fact that F���� cannot
optimize queries that invoke UDFs, even though the UDFs can be
transformed. First, in order to make sure the translation process
does not break the original semantics of the query, F���� limits
clauses wherein UDFs are invoked [8]. For instance, F���� cannot
take e�ect when a query invokes it in ORDER BY or GROUP BY
clauses. Second, and somehow inevitably, transforming UDFs into
SQL subquery makes the query more complicated, which makes
it more challenging for the DBMS to compute a more e�cient
query execution plan. To mitigate the problem, F���� restricts
the size of the query to perform the UDF transformation. In turn,
F���� does not take e�ect when the size of the query exceeds a
certain threshold, which limits the space of UDF-invoking queries
that F���� optimizes. We believe these �ndings demonstrate that
LAMBDA is a valuable complementary technique to F����.

LAMBDA optimized more UDF-invoking queries than F����.
Two reasons for this better performance are that LAMBDA does
not restrict (1) the usage of imperative language constructs and
(2) the structure and size of UDF-invoking queries.

6 RELATEDWORK
UDF T����������. Multiple existing research e�orts focus on
transforming complete UDFs into equivalent SQL subqueries [15,
17–19, 25, 28]. While these techniques improve UDF performance
by eliminating UDFs, they are limited to a subset of imperative
language constructs and can lead to performance regression for
complex UDFs and queries. In contrast, LAMBDA is not limited by
imperative language constructs and can be extended to support
additional imperative languages. Because our experiment demon-
strates that parallel execution of UDFs can lead to performance
regressions, we plan to investigate additional UDF properties that
can help DBMSs with parallelism.
UDFC����������. Another line of research focuses on compiling
queries that invoke UDFs into a unifying IR to enable optimizations
across language boundaries [11, 14, 26]. However, because these
approaches treat UDFs as black boxes, they are limited to a subset of
optimizations. LAMBDA can enhance these systems by providing
UDF properties that enable more optimization opportunities.

7 CONCLUSION
We presented LAMBDA, a new approach for improving DBMS per-
formance in the presence of UDFs. The key idea behind LAMBDA is
to infer properties of UDFs and provide these properties as annota-
tions to the DBMSs. Speci�cally, we focused on four commonly used
UDF properties: P�����, N�������, R������ N��� O� N���, and
P������� S���. To assess our approach, we implemented LAMBDA
and evaluated it on a benchmark derived from production query
workloads and real-world UDFs, with promising results. LAMBDA
was able to infer the targeted four UDF properties from 30 pro-
duction UDFs, and the extracted properties allowed the DBMS to
improve query performance considerably, with time reductions
ranging from 10% to 99%. Furthermore, LAMBDA generated 0 false
negatives, and the average analysis time was 34.9 milliseconds for
each UDF. We also compared LAMBDA to F����, a state-of-the-art
framework for improving UDF performance based on transform-
ing UDFs into semantically equivalent SQL. LAMBDA was able to
optimize UDFs and queries in cases in which F���� was unable
to handle the UDFs. We believe that these results provide initial,
yet strong evidence that LAMBDA can be a useful technique for
improving UDF performance. In future work, we plan to incorpo-
rate LAMBDA into an existing DBMS and improve our technique
based on our �ndings. Our current results, for instance, highlight
that leveraging P������� S��� property may lead to performance
regressions. We will also investigate ways to infer other properties
that help DBMSs process UDFs with parallelism.

ACKNOWLEDGMENTS
This work was partially supported by NSF (grants CCF-0725202,
IIS-1908984, IIS-2238431), DOE (contract DE-FOA-0002460), Alibaba
Innovative Research (AIR) Program, and gifts from Adobe, Cisco,
Facebook, Google, IBM Research, Intel, and Microsoft Research.



A Framework for Inferring Properties
of User-Defined Functions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] 2019. Sparta. https://engineering.fb.com/2019/02/20/open-source/sparta/.
[2] 2022. Common subexpression elimination explained. https://learn.micros

of t.com/en-us/sql/analytics-platform-system/common-sub-expression-
elimination?view=aps-pdw-2016-au7.

[3] 2022. CREATE MATERIALIZED VIEW AS SELECT (Transact-SQL). https:
//learn.microsoft.com/en-us/sql/t-sql/statements/create-materialized-view-as-
select-transact-sql?view=azure-sqldw-latest.

[4] 2023. Froid vs Freud: Scalar T-SQL UDF Inlining. https://www.nikoport.com/201
9/07/16/froid-vs-freud-scalar-t-sql-udf-inlining/.

[5] 2023. IBM Db2 UDF. https://www.ibm.com/docs/en/db2-for-zos/11?topic=state
ments-create-function-inlined-sql-scalar.

[6] 2023. MySQL UDF. https://dev.mysql.com/doc/refman/8.0/en/function-
optimization.html.

[7] 2023. PostgreSQL UDF. https://www.postgresql.org/docs/current/sql-
createfunction.html.

[8] 2023. Scalar UDF Inlining. https://learn.microsoft.com/en-us/sql/relational-
databases/user-de�ned-functions/scalar-udf- inlining?view=azuresqldb-
current&viewFallbackFrom=sql-server-2017.

[9] 2023. Supplementary material. https://github.com/sub-helper/lambda_artifact
[10] Anonymity. 2023. The platform name is anonymous for the review.
[11] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,

Ugur Cetintemel, and Stan Zdonik. 2015. An architecture for compiling udf-
centric work�ows. In VLDB. 1466–1477.

[12] Christian Duta, Denis Hirn, and Torsten Grust. 2019. Compiling PL/SQL Away.
arXiv:1909.03291 [cs.DB]

[13] Sofoklis Floratos, Ahmad Ghazal, Jason Sun, Jianjun Chen, and Xiaodong Zhang.
2021. DBSpinner: Making a Case for Iterative Processing in Databases. In ICDE.
2399–2410.

[14] PhilippMarian Grulich, Ste�en Zeuch, and VolkerMarkl. 2021. Babel�sh: E�cient
execution of polyglot queries. In VLDB. 196–210.

[15] Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020. Aggify:
Lifting the Curse of Cursor Loops using Custom Aggregates. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data. 559–573.
[16] Surabhi Gupta and Karthik Ramachandra. 2021. Procedural Extensions of SQL:

Understanding their usage in the wild. In VLDB. 1378–1391.
[17] Stefan Hagedorn, Ste�en Kläbe, and Kai-Uwe Sattler. 2021. Putting pandas in a

box. In CIDR.
[18] Denis Hirn and Torsten Grust. 2021. One with recursive is worth many GOTOs.

In SIGMOD. 723–735.
[19] Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,

Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas
Mueller, et al. 2021. Magpie: Python at Speed and Scale using Cloud Backends..
In CIDR.

[20] John B Kam and Je�rey D Ullman. 1976. Global data �ow analysis and iterative
algorithms. In JACM. 158–171.

[21] John B Kam and Je�rey D Ullman. 1977. Monotone data �ow analysis frameworks.
In Acta informatica. 305–317.

[22] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making of TPC-DS.
In VLDB. 1049–1058.

[23] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why You
Should Run TPC-DS: A Workload Analysis.. In VLDB. 1138–1149.

[24] Miodrag Potkonjak, Mani B Srivastava, and Anantha P Chandrakasan. 1996. Mul-
tiple constant multiplications: E�cient and versatile framework and algorithms
for exploring common subexpression elimination. In IEEE TCAD. 151–165.

[25] Karthik Ramachandra, Kwanghyun Park, K Venkatesh Emani, Alan Halverson,
César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
imperative programs in a relational database. In VLDB. 432–444.

[26] Maximilian E Schüle, Jakob Huber, Alfons Kemper, and Thomas Neumann. 2020.
Freedom for the sql-lambda: Just-in-time-compiling user-injected functions in
postgresql. In SSDBM. 1–12.

[27] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propagation with
conditional branches. In TOPLAS. 181–210.

[28] Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig. 2021. UDF to SQL
translation through compositional lazy inductive synthesis. In OOPSLA. 1–26.

https://engineering.fb.com/2019/02/20/open-source/sparta/
https://learn.microsoft.com/en-us/sql/analytics-platform-system/common-sub-expression-elimination?view=aps-pdw-2016-au7%20
https://learn.microsoft.com/en-us/sql/analytics-platform-system/common-sub-expression-elimination?view=aps-pdw-2016-au7%20
https://learn.microsoft.com/en-us/sql/analytics-platform-system/common-sub-expression-elimination?view=aps-pdw-2016-au7%20
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-materialized-view-as-select-transact-sql?view=azure-sqldw-latest%20
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-materialized-view-as-select-transact-sql?view=azure-sqldw-latest%20
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-materialized-view-as-select-transact-sql?view=azure-sqldw-latest%20
https://www.nikoport.com/2019/07/16/froid-vs-freud-scalar-t-sql-udf-inlining/%20
https://www.nikoport.com/2019/07/16/froid-vs-freud-scalar-t-sql-udf-inlining/%20
https://www.ibm.com/docs/en/db2-for-zos/11?topic=statements-create-function-inlined-sql-scalar%20
https://www.ibm.com/docs/en/db2-for-zos/11?topic=statements-create-function-inlined-sql-scalar%20
https://dev.mysql.com/doc/refman/8.0/en/function-optimization.html%20
https://dev.mysql.com/doc/refman/8.0/en/function-optimization.html%20
https://www.postgresql.org/docs/current/sql-createfunction.html
https://www.postgresql.org/docs/current/sql-createfunction.html
https://learn.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=azuresqldb-current&viewFallbackFrom=sql-server-2017%20
https://learn.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=azuresqldb-current&viewFallbackFrom=sql-server-2017%20
https://learn.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=azuresqldb-current&viewFallbackFrom=sql-server-2017%20
https://github.com/sub-helper/lambda_artifact
https://arxiv.org/abs/1909.03291

	Abstract
	1 Introduction
	2 Background
	2.1 Java UDFs
	2.2 Motivating Example
	2.3 Case Study
	2.4 Dataflow Analysis

	3 Problem Formulation
	4 Key Conceptual Insights
	4.1 Commonalities
	4.2 Differences

	5 Evaluation
	5.1 Implementation
	5.2 Evaluation Setup
	5.3 RQ1 — Efficacy and Efficiency
	5.4 RQ2 — Performance Improvement
	5.5 RQ3 — Comparative Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

