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Figure 1: Architecture of EVA

So, they do not support holistic optimization for more complex
queries, both during query optimization and execution. These limi-
tations signi�cantly constrain the adoption of VDBMSs in practical
applications. Raven [27] optimizes ML and relational pipelines with
cross-query optimization. Gandhi et al. [16] utilizes tensor abstrac-
tion for trainable pipelines in AI and relational workloads. We plan
to support the training pipeline in the future.
Our Vision. To overcome existing limitations, we’re developing
an innovative VDBMS that’s speci�cally designed for exploratory
video analytics - EVA. EVA provides extensible support for UDFs(§
3.1), allowing users to de�ne bespoke UDFs based on their require-
ments and compose them with existing UDFs and operators to
construct complex queries. For example, the F���D�������� and
E������C������������� models can be used to construct an emo-
tion detection query. Additionally, UDFs can import third-party
Python packages and execute arbitrary logic, which makes it easy
for EVA to support new features in the future.
To optimize query plans, EVA contains a Cascades-style query op-
timizer (§ 3.2) that leverages di�erent forms of derived models and
data structures. Like relational DBMSs, EVA estimates the cost of
query plans by pro�ling operator costs and estimating predicate
selectivity. It goes further by optimizing for query accuracy (§ 4.2).
Moreover, EVA’s distributed E�������� E����� powered by R��
(§ 3.3) provides additional scalability and performance. We’re also
exploring hardware-speci�c optimizations and drawing inspira-
tion from the adaptive query processing literature [13] to facilitate
runtime optimizations (§ 4.3).

2 ARCHITECTURE of EVA
The architecture of the EVA VDBMS is shown in Fig. 1. We �rst
present the query language that the P����� supports. We then
describe the internals of the other three components.
2.1 EVA Query Language (EVAQL)
EVA’s parser supports a query language tailored for exploratory
video analytics, called EVAQL. The queries in this section all con-
cern a movie dataset. EVA stores all the videos of this dataset in
the following table:

MOVIE_DATA(
ID SERIAL INTEGER , VIDEO_ID INTEGER ,
VIDEO_FRAME_ID INTEGER , VIDEO_NAME TEXT (30),
DATA NDARRAY UINT8(3, ANYDIM , ANYDIM));

Listing 2: Schema of the movie dataset

Loading Data. EVA supports loading both videos and semi-structured
data. The following query depicts how the user loads videos in EVA:

/* Loading a video into the table */
LOAD VIDEO 'movies /*.mp4' INTO MOVIE_DATA;

EVA automatically creates a table called MOVIE_DATA with fol-
lowing columns: (1) ��, (2) ����, (3) �����_��, (4) �����_�����_��,

and (5) �����_����. They denote the frame identi�er, the contents
of the frame, and the video to which that frame belongs to.
EVAQL supports queries for loading structured data (e.g., CSVs) for
populating the metadata of videos (e.g., bounding boxes of faces
in a frame). Similar to traditional DBMSs, the user must explicitly
de�ne the schema before loading the CSV �le:

/* Defining the schema and loading a CSV file */
CREATE TABLE IF NOT EXISTS MOVIE_METADATA (

ID SERIAL INTEGER , VIDEO_ID INTEGER ,
VIDEO_FRAME_ID INTEGER , VIDEO_NAME TEXT (30),
FACE_BBOXES NDARRAY FLOAT32 (4));

LOAD CSV 'movie.csv' INTO MOVIE_METADATA;

User-De�ned Functions. EVAQL is tailored for supporting user-
de�ned functions (UDFs). UDFs allow users to extend the VDBMS
to support the requirements of their applications. In EVA, UDFs are
often wrappers around deep learning models. For example, a face
detection UDF takes a frame as input and returns the bounding
boxes of the faces detected in the frame as output. Internally, it
wraps around a F���D�������� PyTorch model [35].
EVAQL supports arbitrary UDFs that take a variety of inputs (e.g.,
videometa-data or raw frames etc.) and generate a variety of outputs
(e.g., labels, bounding boxes, video frames, etc.). The following
command registers a F���D�������� UDF in EVA:

/* Registering a User-Defined Function */
CREATE UDF IF NOT EXISTS FaceDetector
TYPE FaceDetection
IMPL '/udfs/face_detector.py'
PROPERTIES ('ACCURACY '='HIGH');

TYPE speci�es the logical model type of theUDF (e.g., FaceDetection
or ObjectDetection). IMPL speci�es the path to the Python �le
containing the implementation of the UDF. Internally, EVA uses
importlib for creating an importing UDF objects from the �le
[14]. The user can specify other metadata like the accuracy in
PROPERTIES. EVA uses these properties to accelerate queries. For
example, if the overall query accuracy requirement is moderate (e.g.,
0.8⇥ the oracle model), EVA uses faster (but less accurate) models
of the same model type to accelerate the query. After registering
the UDF, it can be executed on a video as shown in Listing 1.
Interfaces. EVA currently supports EVAQL queries from both a
command line interface and Jupyter notebooks. We seek to support
a Pythonic dataframe API in the future.
2.2 Query Optimizer
EVA’s O�������� is based on the Cascades framework [17]. It ap-
plies a series of rules for rewriting the query and then performs
cost-based optimization to generate a physical query plan . The
O�������� in a VDBMS di�ers from that in a relational DBMS in
two ways. First, it must focus on minimizing query processing time
while meeting the accuracy constraint (which often does not exist
in a typical relational DBMS). Second, it is expensive to derive sta-
tistics from videos a priori as that involves running expensive deep
learning models. So, while processing an ad-hoc query, the O����
����� runs vision models on a subset of frames to guide important
optimization decisions (e.g., whether the query plan will meet the
accuracy constraint or how should the predicates invoking vision
models be ordered [22, 31, 40]).
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Figure 3: Illustration of Exchange Operator — This query retrieves the
emotions of all the faces detected in the video.

the F���D�������� on a movie video with 13 K frames using a
server with two GPUs. With a single GPU, it takes 402 s to pro-
cess the query. Using R��, EVA automatically splits the video into
two partitions and uses both GPUs for model inference, reducing
the query processing time to 209 s. Besides data-level parallelism,
EVA also supports parallel processing of complex query predicates.
For example, to evaluate: “UDF1(a) < 10 AND UDF2(b) > 20”, the
VDBMS may either evaluate the two atomic predicates in parallel,
or perform canonical predicate reordering and short-circuit the
predicate evaluation.
Exchange Operator. The O�������� uses the �������� opera-
tor [6] to encapsulate the degree of parallelism (dop) in the query
plan. The �������� operator splits the plan into two stages and con-
�gures the parallelism of the lower stage. Consider the query plan
shown in Fig. 3. First, as speci�ed by the lower �������� operator,
two processes will run the F���D�������� UDF on the video. Then,
the upper �������� operator indicates that a single process should
run the E������C�������������UDF on the bounding boxes of the
detected faces. To leverage R��, the O�������� in EVA transforms
the query plan into R�� actors and chains them via R�� queues.

4 ROADMAP
We next describe our ongoing work and open questions in imple-
menting EVA. We seek to continue improving the usability of EVA,
and also the e�cacy of the O�������� and the E�������� E�����.
4.1 Extensibility - Enhancing Querying Capability
Action Queries. In our prior work in Z��� [8], we emphasized
the need to improve the querying capabilities of VDBMSs to encom-
pass action queries. Z��� assumes the availability of a vision model
explicitly trained for the target action (e.g., a person riding a motor-
cycle). However, in real-world applications the action may rarely
occur in the dataset, leading to insu�cient true positive examples
(i.e., class imbalance) during training. In addition, the number of
ad-hoc combinations of objects and their interactions that form the
actions is exponential. To overcome these challenges, we seek to
pursue a more practical approach in EVA. We are investigating tech-
niques to break ad-hoc actions into a collection of spatio-temporal
predicates over the bounding boxes and the trajectories of objects
across a sequence of frames [10, 33].
Similarity Search. Tomeet the needs of real-world applications [38],
we seek to support object re-identi�cation and similarity search
queries in EVA. Consider a query that retrieves all the frames in
a movie that contain a target actor. E�ciently searching for the
speci�c actor using a target image requires the use of computa-
tionally expensive object re-identi�cation models. We are currently
investigating the integration of incremental search techniques into
EVA’s O�������� to accelerate re-identi�cation queries.

4.2 QueryOptimizer - Accuracy-GuidedOptimization
As in relational DBMSs, the VDBMS’s O�������� estimates the
query plan’s cost by pro�ling the cost of the operators and esti-
mating the selectivity of predicates. However, there are two key
di�erences. First, deep learning models are not always accurate.
So, unlike relational DBMSs, VDBMSs cannot guarantee accurate
results. This gives the O�������� an opportunity to jointly opti-
mize the query plan for both runtime performance and accuracy
constraints.
Second, the O�������� must not treat an UDF as a black box. In-
stead, it should exploit the semanticproperties of UDFs. For example,
the O�������� in EVA has the �exibility to pick a suitable physi-
cal model for processing a logical vision task, as long as it meets
the query’s accuracy constraint. In our prior work [7], we showed
how the O�������� may dynamically pick di�erent models for pro-
cessing video chunks of varying complexity. We are investigating
how to extend the Cascades-style O�������� in EVA to jointly op-
timize for query execution cost and query accuracy. We seek to
support complex model pipelines – proxy models, model cascades,
and model ensembles.
4.3 Execution Engine - GPU-aware Optimization
Resource utilization. As EVA extensively uses GPUs for query
processing, it is critical to optimize query execution on GPUs. The
O�������� needs to insert the �������� operator and tune the
degree-of-parallelism (DOP) parameter. The optimal DOP value
depends on the model execution cost, the overall query, and the
underlying data. We are investigating how to optimize this critical
parameter to better leverage GPUs. Concretely, given the number of
GPUs and their computational capabilities, EVAmust decide where
to inject the �������� operators in the query plan, and what is the
suitable degree of parallelism for each operator. To achieve this,
the O�������� �rst generates a statically optimized plan. Later, it
leverages the adaptive E�������� E����� by adjusting the pipeline
dynamically during execution to reduce overall processing time.
Minimize data transfer cost. In queries with multiple UDFs, the
same input frames may be transferred to the GPU multiple times
(from the CPU) during query execution. Second, EVA only has CPU
implementations of certain operators like join, predicate �ltering,
and cropping. That results in data transfer between CPU and GPU
between di�erent operators (e.g., 10-GB additional data movement
for the query shown in Listing 1. To minimize this cost, we seek
to investigate two optimizations: (1) lazy eviction and (2) operator
fusion. First, with lazy eviction, the E�������� E����� caches the
frames on GPU if they are required by later operators in the query
pipeline. Second, with operator fusion, we plan to add GPU-centric
implementations of general-purpose operators (e.g., join and image
cropping) to reduce data movement overhead.

5 CONCLUSION
In this paper, we present our vision, current progress, and road map
for future improvements on EVA, focusing on querying capability,
query optimization, and query execution. We hope that EVA will
enable a broader set of application developers to leverage recent
advances in vision for analysing unstructured data.
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