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Abstract—Project AR-Classroom aims to enhance undergrad-
uate students learning spatial transformations and their math-
ematical representations. Understanding closely allied spatial
and mathematical concepts significantly contributes to STEM
learning in fields of computer graphics, computer-aided design,
computer vision, robotics, and many more. The technology and
learning innovations of this research include novel AR features
and their implications for learning. In AR-Classroom, a student
can hold and manipulate a 3D physical model (a LEGO space
shuttle as an example) while simultaneously interacting with
AR visualization of 3D rotations. Two usability tests with 24
participants total have been conducted for AR-Classroom leading
to promising results and recommendations for improvements.
The project contributes to advancing our knowledge in (1) the
role of interplay between physical and virtual manipulatives to
engage students in embodied learning and (2) the features of
AR to make difficult, invisible concepts visible for supporting
an intuitive and formal understanding of spatial reasoning and
mathematical formulation.

Index Terms—Augmented Reality, Spatial Transformation,
Mathematical Representation, Rotation Matrix, Embodied
Learning

I. INTRODUCTION

Spatial and mathematical thinking are closely allied. Un-

derstanding tightly coupled spatial transformations and math-

ematical concepts significantly contributes to STEM learning

in fields of geometric modeling, computer graphics, computer-

aided design (CAD), computer vision, robotics, video games,

quantum mechanics, and more. For example, the phenomenon

of gimbal lock when using Euler angles for spacecraft rotation

rose in prominence in NASA’s Project Apollo [1], inverse

perspective transformation in the visual odometry process

determined the position and orientation of Mars Exploration

Rovers [2], and control of an object’s orientation in a game

can be very difficult and cause the “game developer’s night-

mare” [3]. The study of spatial transformations and linear

algebra provides opportunities for students to learn important

mathematical concepts, view mathematics as an interconnected

discipline, and engage in higher-level reasoning activities

using a variety of representations [4]. However, the difficul-

ties students face when learning transformations and their

mathematical representations are well documented, including:

generalizing geometric ways of reasoning, understanding the

symbolic notation of linear algebra [5], and switching to

matrix representations of the transformations resulting in lost

intuitive connection [6]. The most reliable results of research

on improving linear algebra learning are ‘negative’ in nature

and the previous recommendations are conjectures that are still

open to questioning [7]. While there are mixed views on the

impact of geometric visualization in learning linear algebra

[7], [8], and less research with respect to learning, teaching,

and assessment of haptic and proprioceptive sensation-based

math learning [9], from literature [10]–[14] and our team’s

preliminary work [15], we learned about the unique potentials
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Fig. 1. System diagram of Workshop 2 in AR-Classroom.

of Augmented Reality (AR) and associated Artificial Intel-

ligence (AI) in enhancing embodiment and visualization for

learning. The goals of this research are to (1) systematically

investigate how AR/AI-powered embodiment and visualization

can enhance learning major mathematical representations of

spatial transformations and (2) create an innovative learning

environment - an app named AR-Classroom - for learning

spatial transformations and their mathematical representations

(rotation matrices) to contribute to Science, Technology, En-

gineering, and Mathematics (STEM) learning.

II. RELATED WORK

Research shows that incorporating technologies into teach-

ing and learning promotes students’ understandings of math-

ematics [16], [17]. The use of dynamic math software with

three-dimensional (3D) visualization for learning geometric

transformations in the constructivist pedagogical style has

proven to be effective, e.g., using Geometer’s Sketchpad [18],

[19] or GeoGebra [20], [21]. GeoGebra is free and open-source

dynamic math software linking interactive geometry with

algebra and is widely used in K-12 and college mathematics

education [22]–[24]. GeoGebra has many possibilities to help

students get an intuitive feeling and visualize adequate math

process, make the connections between symbolic and visual

representations [23], [25], and deepen students’ knowledge

and enthusiasm for the geometrical representations of linear

algebra [22].

Augmented Reality (AR) superimposes digital images on a

user’s view of the real world through AR glasses or mobile

devices, having significant potentials to benefit manufacturing,

building construction, and part assembly, and to enhance geo-

metric and spatial inference abilities of users [10]–[14], [26].

Existing research on AR-assisted geometry learning (including

GeoGebra AR) has utilized virtual 3D models projected on

physical surfaces (e.g., a desktop surface or a book page) but

without registered virtual and physical models [10]–[12], [14],

[27]–[30]. Based on the state-of-the-art, our AR-Classroom

research investigates how AR can support the understanding

of spatial transformations using the motion, mapping, and

function conceptions [4], [31], [32], utilizing AR’s inherent

and unique power: integrating capabilities of (1) embodied

learning and (2) visualization of R
3 → R

3 mapped images

and superimposed synchronously changing math formulas.

III. AR-CLASSROOM

AR-Classroom is an AR application, which provides an

interactive learning environment for students. The app aims

to run on AR device, such as an AR-enabled tablet, an AR

headset, or even a computer with a camera (e.g., a laptop with

a webcam, whose camera view is shown in Fig. 1). A student

can hold and manipulate a 3D physical model (e.g., a LEGO

space shuttle in Fig. 1) to learn spatial transformations by

the help of the augmented mathematical representation (e.g.,

a rotation matrix multiplication displayed in the AR scene

in Fig. 1) and visualization (e.g., a rotation angle arc and

value θ with the directional arrow in Fig. 1) on the graphical

user interface (GUI). The X-, Y-, and Z-axes of the models’

coordinate systems are also displayed in the GUI. In the

beginning of using the app, an instruction session is offered

for helping students register the models in AR - aligning the

virtual model with the physical model automatically. After the

instruction session, Workshop 1 and 2 can start.

Workshop 1 & Workshop 2 in AR-Classroom: We

designed two workshops in AR-Classroom: Workshop 1 and

Workshop 2. Their major difference is how the spatial transfor-

mation is performed. In Workshop 1 the spatial transformation

of the 3D virtual model is rotated by the UI component (a rota-

tion angle slider), while in Workshop 2 the students manipulate

the 3D physical model to perform the spatial transformation

using their hands. By doing so, we can make Workshop 1

and Workshop 2 a continuous learning process, in which the

students can learn the knowledge of spatial transformation

in Workshop 1 and enhance the learning in Workshop 2, by

rotating the virtual and physical models, respectively, while

observing the changes in the matrix representation. Here we

use both Workshop 1 and 2 to demonstrate AR-Classroom but



with a focus on Workshop 2 (See Fig. 1) since hand motion

for the physical model rotation introduces more challenges and

opportunities associated with AR, for which we added three

additional steps (See orange-colored boxes in Fig. 1) to handle

the hand motion in AR-Classroom.

(a)

(b)

Fig. 2. (a) The guide view of model registration to assist the students for
model registration - alignment between the virtual and physical models. (b)
Virtual model visualization after model registration.

A. Model Registration

Model registration is a crucial step in AR to align our virtual

content (e.g., the virtual model of the 3D LEGO space shuttle)

with the physical object or the physical world. To do so, we use

a model-based 3D object registration to find the relationship

between the world coordinate (e.g., the coordinate system

defined on the LEGO set) and the camera coordinate. Here

we adopt the Model Target from Vuforia [33] to detect and

localize the 3D physical model with the help of a trained 3D

model-based recognition database of our 3D physical model.

Fig. 2a shows the guide view provided by Model Target for

model registration assistance. Note that we can switch to other

model registration methods in our design. After the model

registration, we can superimpose the virtual model and align

it with the 3D physical model. We use the virtual model to

assist in visualizing the spatial transformations. Fig. 2b shows

that the virtual model and physical model are aligned.

B. Visualization of the Transformation

When a model starts to rotate after model registration, the

visualization of the rotation can be seen on the AR screen.

As an example, in Workshop 1, the following AR scene

components are shown in Fig. 4a:

1) a physical model, called pre-image of the transformation,

showing the state before rotation

2) a 3D reference frame coordinate with red, green, and

blue solid arrows for X-, Y-, and Z-axis, attached to the

physical model

3) a 3D wireframe model, called image of a transformation,

showing the state after rotation

4) a 3D body frame coordinate with red, green, and blue

dashed arrows for X-, Y-, and Z-axis, attached to the 3D

wireframe model

Reference Frame vs. Body Frame: Since the spatial trans-

formation is always described between the reference frame

and the body frame, it is necessary to visualize the reference

frame and the body frame. By convention, the reference frame

is the coordinate system that defines the initial orientation of a

rotating object, and the body frame is attached to the object to

describe its orientation changes. We use the 3D physical model

and the 3D wireframe model to represent the body frame and

reference frame, respectively, and we interchange their roles

according to the design of the two workshops. In Workshop

1, we assign the wireframe model to be the body frame. Then

we can use the GUI component to control its transformation.

The transformation in Workshop 2, on the other hand, is

manipulated by the student’s hand motion. Therefore, the 3D

physical model is the body frame while the wireframe model

is the reference frame. The 3D reference coordinate axes (solid

arrow system) and the 3D body coordinate axes (dashed arrow

system) are attached accordingly.

C. Z-axis Direction/Visualization Mode Switch

Different fields have different conventions to define the

coordinate system. We provide a module to switch the co-

ordinate definition according to the student’s field of study

by using a toggle on the GUI (See the red-circled box e in

Fig. 3). For example, in aerospace and aircraft-related fields,

the Z-axis is often pointing downward (See Fig. 4b). For

mathematics, robotics, and architecture, the Z-axis, on the

other hand, is pointing upward (See Fig. 4a). Our default

setting follows the principle in aerospace and aircraft-related

fields. The coordinate system is a right-handed system. We

set the Z-axis to point downward, and the X-axis follows the

heading direction.

Besides, we also provide a module to enable the component

of the virtual model (e.g., item 2, 3, or 4 in Sec. III-B) to be

visualized. It gives the students opportunities to choose the

most beneficial visualization for their study. Fig. 4b, 4c, 4d

shows the three visualization modes, and the mode switching

can be done by clicking the visualization mode button (See

the red-circled box d in Fig. 3) or pressing the “V” key on a

computer.
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Fig. 3. A zoom-in view of our user interface components. (a) Dropdown list
for rotation axis selection. (b) Button to switch rotation matrix representation
between 2D space and 3D space. (c) Button to switch the unit of the rotation
angle between degree and radian. (d) Button to switch the visualization mode.
(e) Toggle group to select the Z-axis direction. (f) Slider to control the rotation
angle (only in Workshop 1). (g) Rotation matrix display panel.

D. Reference Rotation Axis Selection

It is worth noting that we only focus on the rotation instead

of the spatial transformation including the translation since

the rotation is much more challenging and difficult in learning

compared with the translation. Besides, adding additional

translation information together on the GUI can raise the

distraction for the students. Therefore, we are highly interested

in teaching the rotation in AR-Classroom.

We emphasize on 1 degree of freedom (DoF) rotation

instead of a complete 3 DoFs rotation. Namely, we want to

rotate along one axis (X-, Y-, or Z-axis) every time. The

rationale behind that is that 1 DoF rotation is fundamental

since every rotation R ∈ SO(3) can be decomposed as

R = RZ(θz)RY (θy)RX(θx), where RX(θx), RY (θy), and

RZ(θz) denote the 1 DoF rotation with the angle, θx ∈

[−180◦, 180◦] along X-axis, θy ∈ [−180◦, 180◦] along Y-axis,

and θz ∈ [−180◦, 180◦] along Z-axis, respectively. Besides,

the clear correspondence between the rotation and the matrix

representation will be obscure when the DoF is more than

1. Visualizing the rotation and the matrix representation with

DoF more than 1 on GUI also can distract and hinder the

students in learning. Therefore, we allow students to select any

one axis to be the reference rotation axis using a dropdown

list (See the red-circled box a in Fig. 3) before the rotation is

performed. The selected reference axis is also highlighted in

the AR scene (See the yellow box highlighted the “Z” text in

Fig. 4b).

Meanwhile, in Workshop 1, the orientation of the physical

model is set to be the reference frame after the reference

rotation axis is selected. Because the physical model is held

in hand, its orientation may change because of hand motion,

thus the reference frame is set to be constantly updating to

align with the physical model’s orientation. The position of

the reference frame is also dynamic by hand motion. The

position of the reference frame is set to be co-centered with the

physical model. In Workshop 2, the physical model coordinate

is the body frame. Since we want to focus on learning rotation

only, the reference frame (the wireframe model coordinate) is

set to be co-centered with body frame (the physical model

coordinate). In both Workshop 1 and 2, it is clearer for the

students to see the rotation by constantly aligning the two

frames in position (but not orientation) based on the physical

model’s center, eliminating the effect of translation.

(a)

(b)

(c)

(d)

Fig. 4. Here we use Workshop 1 as an example to show the switch between
visualization. (a) Virtual model with Z-axis pointed upwardly and all the three
virtual items in Sec. III-B enabled. (b) Virtual model with Z-axis pointed
downwardly and all three items enabled in Sec. III-B. (c) A visualization
mode with the 3D wireframe model disabled. (d) Another visualization mode
with the 3D body frame coordinate disabled.
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Fig. 5. (a) Illustration of general 1 DoF rotation along the Z-axis. (b)
Illustration of 1 DoF rotation along the Z-axis manipulated by hand motion.

E. Body Frame Rotation Update

After the reference rotation axis is selected, we are ready to

manipulate the rotation and update the body frame orientation.

Note that the two workshops adopt different approaches: we

use a slider on the GUI (See the red-circled box f in Fig. 3)

to control the angle value θ ∈ [−180◦, 180◦] in Workshop 1

while the student rotates the 3D physical model in Workshop

2 by hand.

F. Hand Motion Challenges

When students try to rotate the LEGO model around a

certain axis, undesired rotations will happen inevitably. These

rotations are mainly caused by two reasons: the limitation of

human hand motion and the misunderstanding of the rotation

axis concept. There are two main challenges introduced by

hand motion. First, the DoF of hand motion is more than 1.

Second, it is difficult to ask the students to perform a 1 DoF

rotation precisely by their hands. Both challenges can easily

downgrade the students’ learning experience. For example,

the non-smooth rotation visualization can be caused by the

inevitable hand-jittering. Therefore, it is necessary to tackle

the challenges carefully with innovative ideas. Furthermore,

when a student is asked to rotate the physical model around

an axis, e.g., Z-axis, they may mistakenly rotate the model

around another axis, e.g., X- or Y-axis.

The false rotation caused by hand-jittering should be au-

tomatically corrected by the app to provide a smooth user

experience, but the rotation around a wrong axis should be

conveyed to and corrected by the students, so that they can

learn from the mistake. Our application distinguishes between

these two types of false rotations using the tilt angle of the

selected rotation axis. We set a threshold on the maximum

allowed tilt angle and compensate for the undesired rotations

within the threshold. When the tilt of the rotation axis exceeds

the threshold, a warning will be shown to the students.

1) Rotation Angle Estimation: The rotation angle of a 1

DoF rotation along a selected reference rotation axis can be

calculated by using an axis that is not selected. For example,

if we rotate along the selected Z-axis, the rotation angle can

be calculated by using the angle between the orientations

before and after the rotation with either X-axis or Y-axis:

θ1 or θ2, respectively, where the two angles θ1 = θ2 (See

Fig. 5a). However, the reference rotation axis can move when

the rotation is performed by the hand motion, which leads to

the fact that θ1 and θ2 are not necessarily equal (See Fig. 5b).

Using an example to illustrate this problem: if after a rotation

around Z-axis with angle θ1 = θ2, another rotation is made, by

hand-jittering, around the updated X-axis, then θ1 will remain

the same, but θ2 will be changed. To solve this issue, we

average θ1 and θ2 as the rotation angle around Z-axis. Given

the angles θ1 and θ2 between the orientations before and after

the rotation for the two non-rotation axes, i.e., X-axis and

Y-axis, respectively, the hand-motion rotation angle can be

calculated by

θ =
θ1 + θ2

2
. (1)

Note that (1) assumes that the rotation axis of the hand-motion

rotation manipulated by the student is close to the selected

reference rotation axis, and this assumption helps us design

how we detect the hand motion which rotates along a different

rotation axis in the next section Sec. III-F2.

2) False Rotation Detection: Recall that we assume that

the rotation axis of the hand-motion rotation is close to

the reference axis when we calculate the rotation angle in

(1). However, this assumption can be easily violated, and

create inconsistency between the rotation and the visualization

since the hand motion has more DoFs. Plus, we cannot pose

constraints on how the student performs the rotation, and the

student can rotate along any direction. Both issues can impact

the student’s learning experience.

To handle these issues, we design a false rotation warning

to check if the assumption is violated. Given the angle θ0
between the body frame’s selected axis and the reference

frame’s selected axis, we consider the false rotation happens

when

θ0 > ϵ, (2)

where ϵ is determined by experiments (ϵ = 15◦, but can

be configured by the user). Fig. 6 shows an example of the

false rotation. When the false rotation is detected, we pose

a warning message on the GUI (See the red message “False

Rotation !!!” on the top panel in Fig. 6b).

3) Reference Rotation Axis Alignment: The fact that the

hand motion often does not rotate around a selected reference

rotation axis can lead to the situation, in which there is no

aligned axes between the body frame and the reference frame,

which contradicts to our assumption of the rotation on a

fixed axis. Besides, the dynamic body frame can cause the

visualization distracting and confusion for the students. To

clean up the visualization of rotations by showing the only

rotation around the selected axis for enhanced learning, within

the threshold ϵ, we re-align the selected axis of the reference

frame to the corresponding axis of the body frame, to cancel

the hand-jittering problem (θ0 ̸= 0◦ problem). Note that the

rotations of the other two axes are maintained and displayed

using the angle arcs and values.

G. Switching Axes of Rotations

In both Workshop 1 and Workshop 2, students can switch

the rotation axis at any time. Once the new rotation axis is



selected from a dropdown menu in GUI (See the red-circled

box a in Fig. 3), both the body frame and the reference frame

are immediately aligned to the physical LEGO model and the

tracking of the new rotation is restarted from 0 degree. In

Workshop 2, the false rotation detection is also reset.

H. Augmented Spatial Information Visualization

To assist the student in understanding the rotation, we

display the rotation’s mathematical representation - a rotation

matrix, and its multiplication with a general column vector [x

y z] representing any point on the geometry of the rotating

model on the GUI. Given the rotation angle θ in (1), the

rotation matrix displayed (See the red-circled box g in Fig. 3)

is:








































































1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)






, if rotating along X-axis,







cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)






, if rotating along Y-axis,







cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






, if rotating along Z-axis.

(3)

Each row of the rotation matrix is a unit vector and can be

considered as a weight vector which is applied on the original

3D point to obtain its transformed position. Besides, we also

visualize the rotation angle θ, and its rotating direction by a 3D

arc with the arrow (See the pink θ and the pink arc in Fig. 1).

For students learning 2D transformations and their matrices,

switching between 3 × 3 and 2 × 2 matrices is enabled (See

the red-circled box b in Fig. 3). The rotation angle value can

be switched between degree and radian (See the red-circled

box c in Fig. 3).

I. Switching Different Models and Separating Coordinate Sys-

tems

To expand AR-Classroom’s accessibility to a wider user

base, we made our app compatible with various LEGO models.

By utilizing the latest Vuforia [33] Model Target Generator, we

are able to train the Vuforia engine on multiple LEGO models

and save the result into a database file. Once this database is

imported into our app, a LEGO model in the database can

be automatically recognized and tracked, so that the models

can be freely switched in the AR scene while all the AR-

Classroom functions remain the same. A demonstration of

the app working with a LEGO race plane model is shown in

Fig. 7b. However, during our development and experiments,

we found that the tracking results provided by Vuforia are

not consistent (See Fig. 7a). The inconsistent results often

lead to misalignment in the model registration step, which can

downgrade the students’ learning experience if the alignment

is not precise. The inconsistent tracking issue, in fact, is caused

by the default coordinate system attached to the LEGO model

by Vuforia, e.g., the X-axis is always parallel to the horizontal

(a)

(b)

Fig. 6. False rotation detection example in Workshop 2 to handle high DoFs
of hand motion challenges. (a) The Z-axis is selected as the rotation reference
axis. It is initially pointing downward; (b) The user rotates along the Y-axis,
and the orientation of the reference axis (Z-axis) is changed significantly. This
is detected by the app and the warning message is displayed.

plane of the physical environment, but our models may have

a different coordinate system, e.g., a LEGO race plane’s X-

axis may have a pitch angle of 15 degrees. To solve the

issue, we measure the transformation between the coordinate

system used by Vufoia and the coordinate system defined by

us based on the actual geometry of the model. We correct

the misalignment of the model registration by applying the

transformation difference instead of merely relying on Vuforia

tracking. The results of the correction are shown in Fig. 7.

IV. EXPERIMENTS

Two user studies were conducted to investigate the AR

classroom’s usability [15]. First, a benchmark usability test

was conducted to explore the AR Classroom’s discoverability

and usability under its starting conditions, then an updated

usability study to examine user-app-interaction after improve-

ments were made. The benchmark and updated usability

test both have 12 participants and they followed similar

procedures. Participants first completed a pre-test assessing

their math abilities and confidence and watched a video on

geometric transformations. Then, they were randomly assigned

to either the Workshop 1 or 2 of the app. While interacting



(a)

(b)

Fig. 7. The model is switched from the previous LEGO Space Shuttle
Adventure 31117, $39.99, to LEGO Technic Race Plane 42117, $9.99, which
is more affordable for use in learning. (a) The virtual model alignment directly
uses the transform provided by Vuforia [33]. In this case, both the position
and orientation of the virtual model are inconsistent with the physical model.
(b) After using the corrected transform, the virtual model is aligned with the
physical model.

with the app, participants were asked to complete either virtual

or physical model rotations around X-, Y-, and Z-axes, and

observe the rotation matrix updates when rotation changes.

Once done interacting with the app, participants completed

a post-test assessing their math abilities and confidence, and

provided feedback on their overall experience with the app

(i.e., System Usability Scale, or SUS).

A thematic analysis was performed after each test to identify

and code themes in user-app-interaction and compare findings

from the benchmark and updated tests. Findings from the

benchmark usability test were then used to formulate recom-

mendations to enhance the AR Classroom’s usability and func-

tionality. After changes were made to the app such as adding

additional instructions on model registration, restructuring and

updating the instructions, and turning ‘visualization type’ into

a button to make it easier to find, the updated usability test

assessed usability again so that the impact of the modifications

could be evaluated.

Both usability studies demonstrate substantial advancements

in students’ accuracy and confidence levels regarding the ma-

trix representation of spatial transformations. The utilization

of both Workshop 1 and 2 yielded an approximate 10%

enhancement in math test scores, measured on a 100% scale,

accompanied by a one-point increase in confidence levels,

measured on a five-point scale. The updated usability study

indicated that after changes were made to the app, the usability

of both workshops in the app improved, users were better able

to set up the LEGO space shuttle model, effectively utilize the

in-app instructions, and easily access all of the app’s functions.

The details of the usability studies are described in ”AR-

Classroom: Usability of AR educational technology for learn-

ing rotations using three-dimensional matrix algebra” [15].

V. CONCLUSIONS AND FUTURE WORK

To improve the learning experience in spatial transforma-

tions and their mathematical representations, we presented

our new AR-Classroom, an AR-based application designed to

combine the learning and the practice in real time. We focused

on rotation only since rotation is less intuitive and more

challenging to students in understanding compared with some

other transformations such as translation and scale. To focus on

learning rotation, the effect of model translation is eliminated

by constantly aligning the two frames in position (but not

orientation). The multiplication of the rotation matrix by the

[x y z] coordinates is displayed in the AR scene and updated

in real time when the models rotate. While in reality students

cannot perform a rotation of the physical model strictly around

only one axis by hand, which has 3 DoFs of rotation, it is

desired to clearly visualize a rotation around only one axis

at a time in the learning process. Such a clear visualization

is achieved by aligning the selected rotation axis (e.g., Z-

axis) between the reference frame and the body frame, and

displaying the rotation angle between the two frames for each

of the other non-selected axes (X and Y). Detection for human

errors of rotating around wrong axes (false rotation) is enabled

with a rotation angle estimation and a threshold setting. To

help students understand different conventions in different

disciplines, the Z-axis can be switched to point up (e.g., in

robotics) or down (e.g., in aerospace engineering). The AR-

Classroom’s novel features and their implications for learning

spatial transformations and their mathematical representations

demonstrate technology and learning innovations of this re-

search. Our two usability tests have shown promising results

and recommendations for improvements of the innovations.

As part of our future work, we will conduct more user

studies on how the AR’s unique power of integrating embod-

ied learning and visualization can enhance students learning

spatial transformations and their mathematical representations.

We will integrate other transformations such as translation into

AR-Classroom for students to learn the challenging topic of

composition of transformations. Other important mathematical

representations of rotations such as Axis-Angles, Euler An-

gles, and Quaternions can be included into AR-Classroom.

New features can be added to support students navigating

in AR-Classroom more efficiently. We plan to add audio-

visual AR instructions that demonstrate spatial transformations



using a virtual model. Additionally, we intend to include AI-

generated real-time audio guidance to enhance the learning

experience by providing assistance to the students in terms of

user instructions and mathematical concepts.
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