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ABSTRACT

Hydration fronts penetrate 50—135 um into glassy rhyolite embayments hosted in quartz
crystals from the Mesa Falls Tuff in the Yellowstone Plateau volcanic field. The hydration
fronts occur as steep enrichments that reach 2.4 *+ 0.6 wt% H,O at the embayment open-
ing, representing much higher values than interior concentrations of 0.9 = 0.2 wt% H,0.
Molecular water accounts for most of the water enrichment. Water speciation indicates the
hydration fronts comprise absorbed meteoric water that modified the original magmatic
composition of the rhyolitic glass. We used finite difference diffusion models to demonstrate
that glass rehydration was likely produced over a few decades as the ignimbrite cooled. Such
temperatures and time scales are consistent with rare firsthand observations of decadal hy-
drothermal systems associated with cooling ignimbrites at Mount Pinatubo (Philippines) and

the Valley of Ten Thousand Smokes (Alaska).

INTRODUCTION

Volcanic glasses rehydrate when exposed
to moisture. Rehydration is a diffusion-limited
process that produces concentration gradients
of water that become enriched at interfaces
exposed to water. The shape and magnitude of
water enrichment in a concentration gradient are
functions of many variables, including water dif-
fusivity, water solubility, glass composition, tem-
perature, and time. Archaeologists were the first
to exploit this relationship, using the thickness
of hydration rinds on obsidian artifacts to estab-
lish the age of burial (e.g., Friedman and Smith,
1960; Liritzis and Laskaris, 2011). Geoscientists
subsequently recognized that rehydration of natu-
ral glasses provides opportunities to reconstruct
past geologic processes related to climate, hydrol-
ogy, topography, tectonics, and volcanology (e.g.,
Cassel and Breecker, 2017; Mitchell et al., 2018;
Hudak et al., 2021; Mclntosh et al., 2022).

The use of rehydrated glass in volcanology
requires careful assessment of water abundance
and speciation because all volcanic glasses con-
tain water. The source of water in volcanic glass
may be primary magmatic, secondary meteoric,
secondary marine, or combinations thereof.
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Magmatic melts contain dissolved water, with
values commonly ranging between 0.1 and
~6 wt%. Dissolved magmatic water occurs
as two separate species, molecular water and
hydroxyl (Stolper, 1982). During eruption, both
species of primary magmatic water exsolve dur-
ing degassing, but they may also be partially pre-
served in erupted material by rapid ascent and
quenching. The molecular water and hydroxyl
preserved in erupted products record past vol-
canic processes because their relative propor-
tions are controlled by intrinsic thermodynamic
properties and kinetics. In contrast, low-temper-
ature rehydration of rhyolite glass occurs almost
entirely by diffusive absorption of molecular
water. The resulting rehydration fronts occur as
oversteepened, “S-shaped” concentration gradi-
ents (Anovitz et al., 2008; Hudak and Bindeman,
2020). The unique S-shaped form of the gradi-
ents is produced by the self-dependence of water
diffusivity, meaning higher water concentration
produces higher diffusion rates (Ni and Zhang,
2008). Information about water abundance, dis-
tribution, and speciation can consequently help
to untangle the record of competing geologic
processes preserved in volcanic glasses.

We discovered S-shaped enrichments of
molecular water in rhyolitic glasses preserved
within quartz-hosted embayments from the
Mesa Falls Tuff, Yellowstone Plateau volcanic

field, western United States (Fig. 1A). Embay-
ments are glass-filled channels that tunnel into
crystal interiors (Figs. 1B and 1C). The crystal
host partially shields the entrapped melt from
subsequent modification, with exchange only
allowed via the embayment “mouth” at the
crystal’s surface. During eruptive degassing,
diffusion-limited loss of H,O and CO, from
embayments produces negative concentration
gradients that can be used for geospeedometry
of volcanic decompression rates (e.g., Hum-
phreys et al., 2008; Myers et al., 2018). Quartz-
hosted embayments from the Mesa Falls Tuff
preserve negative CO, concentration gradients,
indicating slow decompressive ascent rates of
103405 MPa s! (Befus et al., 2023). Contrary
to expectation, H,O gradients increase toward
the embayment mouth. In this study, we dem-
onstrate that positive concentration gradients
of H,O in Mesa Falls fall deposit embayments
were produced by diffusion-limited addition of
meteoric water over a period of years to decades
in response to a hydrothermal system that was
established following deposition of the Mesa
Falls ignimbrite. Our work suggests that embay-
ment glasses, already a significant avenue for
research because they track syneruptive decom-
pression, also present opportunities to constrain
the posteruptive history of volcanic deposits.

METHODS AND RESULTS

Quartz crystals were handpicked from gen-
tly crushed pumice lapilli and loose bulk aggre-
gate from a Mesa Falls pyroclastic fall deposit
(44.122°N, 111.441°W). At this location, the
fall deposit is directly overlain by ~10 m of
Mesa Falls ignimbrite produced from the same
eruption. Quartz crystals with glassy embay-
ments were mounted in Crystalbond (Aremco),
oriented, and ground and polished to produce
a wafer of doubly exposed, doubly polished
embayment glass. We analyzed 40 embayments
in 39 quartz crystals.
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Figure 1. (A) Thickness
and extent of Mesa Falls
ignimbrite and its source,
Henrys Fork caldera
(dashed), with isopachs in
meters after Christiansen
(2001). (B) First descrip-
tion of embayments by
Iddings (1899) as “bays of
groundmass” in quartz set
within welded Yellowstone
tuff. (C) Plane-polarized
photomicrograph of
quartz-hosted embay-
ment from Mesa Falls Tuff
(MF-2). Ml—glassy melt
inclusion. Quartz crystal
is ~1 mm across.

100 um

The embayments were analyzed by Fourier
transform infrared spectroscopy (FTIR) using
the synchrotron-source infrared Beamline 1.4
at the Advanced Light Source, Berkeley, Cali-
fornia. The exceptional brightness and ~3 pm
diffraction-limited spot size of the synchrotron
allowed us to collect high-resolution transects
of each embayment during ~60 h of continuous
beamtime. Absorbances at 3500 and 2350 cm™!
were converted to volatile concentrations of total
H,O and CO, using the Beer-Lambert law and
a representative rhyolite density of 2300 g L.
We used a molar absorption coefficient of 1214
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L cm™ mol™! for CO, after Behrens et al. (2004)
and a speciation-dependent coefficient for H,O
that varied between ~60 and ~80 L cm™' mol™!
(see Supplemental Material'). Molecular H,O
was calculated using absorbance at 1630 cm™

!Supplemental Material. Summary of H,O con-
tents of the embayments, Figures S1-S2, and Tables
S1-S2. Please visit https://doi.org/10.1130/GEOL
.S.25439152 to access the supplemental material; con-
tact editing @geosociety.org with any questions. The
algorithm developed to model the diffusion caused by
rehydration can be found at https://doi.org/10.5281
/zenodo.10171874.

and converted into concentration using an
absorption coefficient of 55 L cm™ mol~' (New-
man et al., 1986). Sample thicknesses, ranging
from ~30 to 160 pm, were measured in multiple
spots along the embayment length using a petro-
graphic microscope equipped with a linear drive
encoder. Thickness uncertainties ranged up to 6
pm, and we used that 20 uncertainty to establish
error bars for volatile data.

Mesa Falls Tuff embayments preserve con-
centration gradients of H,O and CO,. CO,
contents follow standard diffusion-limited
gradients that decrease toward the embayment
mouth (Supplemental Material). The form of
the decreasing CO, was produced during erup-
tive decompression, and it was not altered by
rehydration (Befus et al., 2023). The distribu-
tion of H,O is similar across all embayments.
Embayment interiors preserve flat, consistent
H,O concentrations ranging from 0.72 4 0.10 to
1.04 £ 0.10 wt%. These interior concentrations
are composed of both hydroxyl and molecular
H,0 in roughly equal proportion (54% =+ 10%).
Those relatively uniform interior concentrations
reflect equilibrium speciation during cooling
from magmatic temperatures. The interiors
ramp into steep, S-shaped rehydration fronts
in the final 50-135 pm closest to the embay-
ment mouth (Fig. 2). Rehydration fronts are
enriched up to 1.73 £ 0.06-3.17 &+ 0.10 wt%
H,O. Most of the water in those enrichments
occurs as molecular H,O (82% + 5%). Such
high molecular H,O is a disequilibrium specia-
tion produced by low-temperature rehydration.

GEOSPEEDOMETER MODEL

The diffusion-limited form of the rehydra-
tion fronts in the Mesa Falls pyroclastic fall
embayments can be used as a geospeedometer,
one that presents the opportunity to extract the
cooling time scale of the subsequent landscape-
altering Mesa Falls ignimbrite. Geospeedom-
eters exploit some geochemical signatures of
the time scale of a volcanic process (e.g., Wal-
lace et al., 2003; Lavallée et al., 2015). Here,
time-temperature information is preserved in the
S-shaped rehydration fronts, which are super-
imposed upon concentration gradients originally
produced during volcanic decompression. To
model the rehydration process, we assumed the
relatively flat, consistent H,O gradients in the
embayment interiors represent the initial con-
dition for rehydration. The one-dimensional
(1-D) finite-difference script, its description,
and boundary conditions are provided in the
Supplemental Material.

The diffusivity of H,O in rhyolite glass
(Dyy,0) expected in a cooling ignimbrite is one
variable that must be established. Both archaeo-
logic and volcanic research concurs that Dy, is
~10235£05m? 57l in dry rhyolite glass at ambient
conditions at Earth’s surface (~0.1 wt% H,0;
Liritzis and Laskaris, 2011; Giachetti et al.,

www.gsapubs.org | Volume 52 | Number 7 | GEOLOGY | Geological Society of America

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/52/7/507/6508620/g51905.1.pdf

bv auest


https://doi.org/10.1130/GEOL.S.25439152
https://doi.org/10.1130/GEOL.S.25439152
mailto:editing@geosociety.org
https://doi.org/10.5281/zenodo.10171874
https://doi.org/10.5281/zenodo.10171874
https://doi.org/10.1130/GEOL.S.25439152

HO ment glasses have not altered to clays, nor have
(Wzt%) the rhyolite glasses lost alkalis. No columnar
2 alteration was observed (e.g., Self et al., 2022).
Together, the absence of those alteration features
suggests limited temporal exposure to fluids
>100 °C. Diffusivity is better constrained than
1 cooling rate, so we treated the time-temperature
path as the primary unknown in our model.
We first calculated the time-temperature
path for a cooling ignimbrite using a 1-D
finite-difference thermal conductivity model.
Conductive cooling presented a cooling time

0

3.0 B scale for the ignimbrite of ~40 yr to return to
20 0.1 wt% 1 5 °C. To establish this time scale, we modeled
] cooling of a 10-m-thick, crystal-rich rhyolitic
Inflection ignimbrite as a single sheet. The ignimbrite was
201 distance Figure 2. (A, B)Water dis- emplaced on top of a 5 m fall deposit initially at
3 tribution in quartz-hosted 5 °C. Bulk porosity (vesicles and interparticle
9; e HO embayment measured gpace) was assumed to be 60% for all deposits
= 1 2 torel (3500 with synchrotron Fourier ., . ko gtens et al., 2023). Density and ther-

o © H,0,, (1630 transform infrared spec- | conductivity of the solid d
IN 0 H,04,, wieronce troscopy (FTIR) and 3 ym  Mal conductivity of the solids were assumed to
1.0+ { ) spatial resolution (MF-2 be 2600 kg m™ and 1.6 W m™' K-! (Sass et al.,
as in Fig. 1C). Dashed line  1988), respectively, with the effects of porosity
- in A shows transect in B.  ,.counted for using the model of Bagdassarov

------ @@ @B (C) Compilation of tran- - :

sects demonstrates range and Dingwell (1994). Spef:lﬁc heatiwas from
0 . ' . . and similarity of rehydra- Lavallée et al. (2015). This model inherently
0 100 200 tion across all samples simplifies the cooling system by neglecting liq-
3.0 Position (um) (n = 40). uid and gas flow, the temperature dependence of

H,0 (Wt%)

0 100
Position (um)

2020). It is also accepted that Dy, will increase
with increasing temperature and/or increasing
water concentration. In experiments, >400 °C,
Dy increases linearly with H,O contents up
to 1.8-2 wt% (Ni and Zhang, 2008; Coumans
etal., 2020). The proportionality becomes expo-
nential as water contents increase further (Zhang
and Ni, 2010). It is the exponential relationship
that produces the S shapes observed here, as well
as those described in Yellowstone perlites and
hydrothermal experiments (Bindeman and Low-
enstern, 2016; Hudak and Bindeman, 2020). We
suggest the formulation by Ni and Zhang (2008)
is the best available approach for modeling Dy,
in rhyolite glasses <400 °C, although their work
specifically constrained diffusivity across the
interval of ~400 to ~1600 °C (Ni and Zhang,

200

2008). Extrapolating the data presented by Ni
and Zhang (2008) down from 400 °C to 0 °C
reveals two important results: (1) It maintains
the appropriate Arrhenian form, and (2) it pre-
dicts H,O diffusivity of 1072 to 10~ m? s~ at
ambient conditions, coinciding with expectation
(e.g., Giachetti et al., 2020; Fig. S1).

We emphasize that rehydration modeling
does not produce unique solutions but instead
matches with observed concentration gradients
as joint time-temperature-diffusivity combina-
tions. We assumed the pyroclastic fall cooled
to ambient temperatures during deposition,
and that no rehydration occurred in the erup-
tion column. We have no direct constraints on
the emplacement temperature or cooling rate of
the Mesa Falls ignimbrite. Matrix and embay-
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thermodynamic properties, and possible changes
in porosity.

We focused on the form of the time-temper-
ature path for material at ~1 m depth within
the pyroclastic fall deposit where our samples
were collected (Fig. 3B; Fig. S2). Conductive
cooling predicts that the samples warmed rap-
idly in the first months after ignimbrite depo-
sition. After reaching maximum temperatures
between 150 °C and 250 °C, samples likely then
cooled along an exponentially decreasing trend
for the subsequent decades (Fig. 3C). Conduc-
tive cooling models have been shown to well
approximate the time-temperature paths directly
observed in some cooling ignimbrites follow-
ing their historic eruptions (Riehle et al., 1995;
Keating, 2005). When water sourced by pre-
cipitation or groundwater transports significant
amounts of heat by liquid or vapor flows, cool-
ing can be either faster or slower than the con-
ductive limit depending on position within the
ignimbrite (Randolph-Flagg et al., 2017). Here,
we neglected cooling by precipitation because it
would affect the upper parts of the ignimbrite,
and the subsurface under the fall deposits would
not reach the boiling temperature of water.

GEOLOGIC SIGNIFICANCE OF THE
HYDRATION FRONTS

The Mesa Falls ignimbrite erupted to produce
the Henrys Fork caldera at 1.300 & 0.001 Ma
(Rivera et al., 2016). The eruption age represents
the maximum diffusive time scale permitted for
meteoric rehydration. The region’s alpine, glacial-
interglacial climate has been largely consistent

509



Emplaced at 500 °C

Time-Temperature

A B 15 C
Sample position = ¥y 100, @ 1 m sample depth
~— . 7y s 600 °C
= = % 200
S S % %)
=10 w8 8 <
f=)) Sk o ] /500 °C
o) $ S
5 D &
Q » o
< g
g 5 E
2 2
<
n
0 T T T T 1
0 100 300 500
Temperature (°C)
2 -
20 £0.1 wt% 1 E
- e MF-4
@ MF-15
2 2.0
2 W 1]
o, i
T
1 O T v
S U (@)
T T T 1 O T T T T T 1
0 100 200 300 400 500 600
Position (um) Temperature (°C)

Figure 3. (A) Mesa Falls Tuff outcrop in Ashton Quarry (U.S. Geological Survey image). (B) Measured section of deposit stratigraphy and sam-
pling depth. Pumice, lapilli, and bedding are schematic, with colors chosen to represent outcrop appearance. (C) Conductive cooling model
of temperature evolution at sample depth upon deposition of 10-m-thick ignimbrite at varying temperatures. (D) Comparison of transects from
samples MF-4 and MF-15 with models produced using 10-m-thick ignimbrite emplaced at various temperatures. (E) Monte Carlo style analyses

(x? minima) present best-fit emplacement temperatures for MF-15 assuming different cooling time scales.

since 1.3 Ma. Past climate supplied ample mete-
oric waters produced by orographic precipitation
during cold winters and cool summers (seasonal
range of ~—10 °C to ~10 °C; Licciardi and Pierce,
2018). H,O diffusivity during cold rehydration
has been estimated to be ~10235+0> m? g1 (see
Giachetti et al., 2020, and references therein), but
modeling cold rehydration since the eruption at
1.3 Ma produced enrichments that extend <20
pm into embayments (Fig. S1). Cold rehydration
therefore would require impermissibly long dif-
fusive time scales ranging from 10 to 100 m.y. to
reproduce the observed gradients.

Rehydration fronts must have been gener-
ated by much higher diffusivity. We propose
the embayment glasses were instead rehy-
drated after the ignimbrite transformed the
extant cold hydrologic system into a high-tem-
perature hydrothermal system. By analogy, we
introduce the Valley of Ten Thousand Smokes,
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Alaska. The Griggs expedition first reached
Novarupta in 1916, 4 yr after its caldera-form-
ing eruption. They christened a nearby valley
as the Valley of Ten Thousand Smokes because
“the whole valley as far as the eye could reach
was full of hundreds, no thousands—literally
tens of thousands—of smokes curling up from
the fissured floor.” The Valley of Ten Thousand
Smokes hydrothermal system remained active
for ~100 yr (Griggs, 1922; Hogeweg et al.,
2005). Year-to-decade hydrothermal systems
have been also observed in pyroclastic density
current deposits at Mount Pinatubo, Philippines
(e.g., Self et al., 2022).

Geospeedometry modeling recovered the
penetration distance, enrichment, and S-shaped
forms of the observed rehydration fronts in
the ~40 yr permitted by conductive cooling
(Figs. 3D and 3E). Modeling also demonstrated
how variations in ignimbrite character can each

influence rehydration. Whereas sample depth
and ignimbrite thickness were directly mea-
sured, emplacement temperature is unknown.
Our observations generated model results that
suggest emplacement at 400-450 °C, coinciding
with published estimates for unwelded rhyolitic
ignimbrites (Figs. 3D and 3E). Equally good fits
to the data can be produced at higher tempera-
tures, but only if the ignimbrite cooled faster
than expected from pure end-member conduc-
tive cooling. More rapid cooling could be pro-
duced by effects of latent heat of vaporization.
The paleoclimate of the Yellowstone region
likely supplied ample groundwater and perco-
lating precipitation to cycle through the cooling
ignimbrite and its substrate.

Embayments have a relatively simple geom-
etry that can only be modified across the spa-
tially limited, unprotected mouth. Glass will
consequently be preserved in embayments
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much longer than other glasses in the same
environment. Glass preservation, and its use,
is also improved because embayment glasses
are commonly dense, which reduces complica-
tions associated with vesiculation. Embayment-
hosted crystals are emplaced instantaneously by
volcanic eruptions that tend to have tight geo-
chronologic constraints. Taken together, glassy
embayments may be an as-of-now untapped
record for paleoclimate and archaeology that
could preserve information in deposits where
no other glass remains because of age or other
glass degradation processes.
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