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ABSTRACT
This paper envisions having an open-source web portal for detailed
worldwide road network maps with rich metadata. This would be
major advancement from current portals that only have road net-
works without important metadata, including traffic-related ones.
The envisioned portal will not only enable researchers to exploit
more practical research, but would also enable practitioners and
small/medium enterprises to avoid the high cost of commercial
maps. The paper presents eight directions that can be exploited
towards realizing the vision and acts as an invitation to the com-
munity to exploit these directions.

CCS CONCEPTS
• Information systems → Location based services.
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1 CURRENT STATUS
Having access to accurate digital maps have empowered widely
used applications, including transportation, road network routing,
location-based services, ride-sharing, food delivery, and last-mile
delivery. It used to be the case that accurate digital maps are only
built and sold by major industry, e.g., NavTeq in USA (later become
Nokia, then part of HERE) [11] and TeleAtlas in Europe (now, part
of TomTom) [13]. However, the high cost and proprietary nature
of commercial maps along with their inherent inaccuracy due to
not being able to be frequently updated, made researchers, devel-
opers, practitioners, and enterprises turn their attention towards
open source maps [12, 21]. A prime example of such maps is Open-
StreetMap (OSM) [27], known as the Wikipedia of maps. OSM is a
platform for crowdsourcing-based maps that has recently replaced
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commercial providers in various sectors of academia, government,
and industry [22, 24]. For example, Facebook uses OSM as its back-
bone mapping support [9], Lyft has described OSM as the "Freshest
Map for Rideshare" [19], while Tesla uses OSM for its routing [38].
All these companies, and many others including Apple, Amazon,
Mapbox, Microsoft, and Uber, are not only using OSM, but are also
extensively contributing to it [1, 8].

Even though OSM is deemed accurate and has become the de-
facto map infrastructure for various governmental and industrial
sectors, we acknowledge that an accurate topological map is only
necessary but not sufficient for accurate map services. For exam-
ple, path finding (i.e., routing), as the most commonly used map
service, would need to understand map metadata as much as it
understands the topological map itself. One particular type of meta-
data that is immensely needed by all routing algorithms is the
edge weights associated with each road segment, which indicates
the time needed to travel throughout the road segment. A map
service provider that employs the most efficient shortest path algo-
rithms (e.g., [17, 34, 44, 45]), and is equipped with the most accurate
topological map, would still provide inaccurate routing, if it has
inaccurate edge weights. Other kinds of metadata including turn
restrictions, u-turns, directions, and many others would also affect
routing, among other map services.

2 THE VISION
We envision having a full open-source map portal, parallel to OSM,
but fully enriched with all sorts of metadata. We distinguish be-
tween two kinds of metadata, structural and functional. Structural
metadata refers to road segment characteristics, including length,
number of lanes, stop signs, driving directions, and turn restrictions.
Functional metadata refers to traffic-related data, including average
speed, standard deviation, edge weight, and energy consumption.
While each structural metadata is computed as one value per road
segment, each functional metadata is computed as one value per
time granularity (e.g., hour) per road segment. OSMmaintains some
structural metadata, yet with very poor coverage in terms of num-
ber of segments that have it [16, 23, 33]. Meanwhile, OSM does not
maintain any kind of functional metadata.

Should this vision succeed, it would be transformative for several
applications and research communities who are extensively dealing
with road networks, including, transportation, urban computing,
and location-based services. This will be similar to the impact that
OSM has made for these communities over the last two decades.
Before OSM, obtaining worldwide digital maps was only available
to those who can afford buying it or have access to it through
their employers. This was a major block hindering the advances in
research projects that require digital maps. We believe that our en-
visioned portal would have similar impact as it would pave the way
for researchers, developers, and practitioners worldwide to have
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free access to worldwide maps enriched with accurate structural
and functional metadata. This will not only empower academic
research, but it will also support small/medium enterprises to make
their products affordable by removing the significantly high cost
for having access to accurate maps metadata.

For a particular example, consider one of the basic and most
common map services, namely, shortest path, where the objective
is to find the shortest path between source and destination points.
With lots of efforts dedicated to this problem [45, 48], only major en-
terprises (e.g., Apple and Google Maps) are able to provide accurate
answers as they own the traffic metadata on top of the topological
map. The reason they have such metadata is that they can easily col-
lect it through their own devices. Though there are many attempts
to have open-source routing engines (e.g., OSRM [30], GraphHop-
per [14], among others [25]), they all fall short to commercial ones
as they are all based on OpenStreetMap (OSM), which does not
maintain any functional metadata. Hence, such routing engines
mainly try to guess the weight metadata for each edge, either as
the maximum edge speed (if known) or some heuristic value. This a
major hindering block for further research in this area. This is why
many major industry had to add their traffic metadata layer as their
own proprietary layer on top of OSM [10, 18, 39]. Apparently, this
is out of reach from academics, practitioners, and small/medium
enterprises, whom we target by our vision.

3 THE ROAD TO THE VISION
To realize our vision, a first step would be to build a dedicated web
portal, similar to OSM, where users worldwide can collectively en-
rich the map metadata anywhere in the world. Unlike OSM where
only manually curated map updates are allowed [20, 29], our vi-
sion is to allow updates coming from data-driven algorithms and
machine learning (ML) modules. We believe that the community
wisdom will lead to enhanced accuracy over time. In this section,
we present nine directions for map metadata inference. The first
four directions aim to do so by harvesting publicly available data.
The fifth direction calls for incentives for volunteer users. The sixth
to eighth directions aim to learn from the metadata inferred from
the first five directions to fill in the remaining missing metadata.
The last direction aims for quality assessment of the learning ap-
proaches. This section acts as an invitation to the community to
exploit these directions, and even come up with more directions,
all geared towards map metadata inference, as a means of realizing
the vision of building an open-source map metadata portal.

3.1 Direction 1: Fine-grained Trajectories
Various groups have recently released detailed trajectory data for
few cities, including Athens, Greece [31], Beijing, China [49], San
Francisco, USA [36], and Singapore [46]. Figure 1(a) is an exam-
ple of a detailed trajectory where there is as many GPS points as
possible between source and destination points. Inferring some
functional metadata (e.g., edge weights) from detailed trajectories
is pretty straightforward by first doing a trajectory map match-
ing [5, 15] to layout the trajectories on the map, and then use the
trajectories to infer traffic-related statistics for the covered road
segments. However, to realize our vision, we call on exploiting the
trajectory detailed data more for inferring structural metadata and

functional metadata. In particular, analyzing detailed trajectories
has the potential to help in inferring directions, turn restrictions,
stop signs, and traffic lights. All these can be inferred from the time
that vehicles stop at each intersection. Moreover, each road seg-
ment can have more functional data, e.g., different weights based on
whether a vehicle is going straight, taking a left turn, or a u-turn.

3.2 Direction 2: OD Matrix
Due to the difficulty of collecting and obtaining detailed trajectory
data, several companies and authorities start to share an Origin Des-
tination Matrix (OD Matrix) [4], which represents trip information
on the form (origin point, destination point, starting time, duration).
Figure 1(b) gives an example of an entry of such matrix, where
only the source and destination points are known. Examples of
such public datasets are available for Austin, USA [2], Guangdong,
China [47, 50], and Porto, Portugal [32]. OD Matrices have been
extensively exploited by the transportation community to under-
stand city traffic. To realize our vision, we would need to exploit
OD matrices for map metadata inference. One attempt for doing
so mapped each trip entry in the OD matrix to a linear equation
as the sum of edges taken for the trip, under the strict assumption
that trips use shortest distance path [37]. Hence, the OD matrix has
become a set of linear equations with large number of unknown
edge weights. With some approximations and assumptions, the
equations can be solved to infer edge weights. More techniques are
required in this direction. For example, if some edges in between ori-
gin and destination already have known weights from Direction 1,
that would significantly decrease the number of unknown weights,
which would increase the accuracy of solving the equations.

3.3 Direction 3: Coarse-grained OD Matrix
Releasing detailed trajectories andODmatrices have serious privacy
concerns, where personal location information and whereabouts
can be identified [7]. As a result, a recent trend in releasing datasets
focus more on coarse grained OD matrices on the form (origin zone,
destination zone, time zone, statistics), where origin and destination
points are represented as geographical zones rather than exact
points, which cloaks the actual trip information as a means of
privacy. Figure 1(c) gives an example of this. The time zone could
be rush hour, morning, evening, or weekend. Statistics can include
mean, max, min, or standard deviation between the origin and
destination zones within the specified time zone. Geographical
zones can be zip codes, based on traffic, or just by truncating the
latitude and longitude coordinates of each GPS point. Examples
of such datasets are released for many major US cities, e.g., New
York City [26], and Seattle [35]. Uber has also released such data for
51 cities across 6 continents [40]. Due to the coarse granularity of
such data, there is almost no work that have exploited it to enrich
the map infrastructure. However, we believe that such data is still
rich and can benefit our vision, especially if combined with other
available data. In particular, though as mentioned in Section 2, open
source routing engines like OSRM [30] and GraphHopper [14] lack
accurate traffic data, they still have pretty accurate ranking. For
example, for any two trips, if OSRM reported their duration as
𝑡1 and 𝑡2, where 𝑡1 > 𝑡2, then, even though 𝑡1 and 𝑡2 may not be
accurate, it is highly likely that their respective ranking, i.e., 𝑡1 takes
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(a) Fine Grained Trajectories (b) OD Matrix (c) Coarse Grained OD Matrix
Figure 1: Trajectory Data

more time than 𝑡2, is pretty accurate. Hence, for a pair of zones in
a coarse-grained OD matrix, we can literally compute all possible
paths between the two zones via an open-source routing engine to
obtain a relative ranking of all paths. The ranking can be then used
with the statistics of the OD matrix to fit each path on a curve. This
will convert the coarse-grained OD matrix to be just an OD matrix,
and then we can use it for metadata inference as in Direction 2.

3.4 Direction 4: Satellite Images
Satellite images, wherever available at any resolution, have been a
great source for inferring the underlying road network topology [3,
6]. We would like to go beyond this and exploit satellite images
for structural metadata. Examples of such metadata would include
number of lanes, road width, and road quality. More sophisticated
techniques can determine road directions through the color of
lines between lanes, the availability of traffic lights or stop signs at
each intersection, along with turn restrictions. A main challenge
in analyzing satellite images is the cost of obtaining high quality
images. Low quality images are more affordable and available, yet,
it may lead to less accurate results.

3.5 Direction 5: User Incentives
A major part of OSM success is its wide set of 250+K annual users
contributing to it [28]. Users are mostly volunteers who have similar
incentives to contributors of Wikipedia and open-source systems.
We envision developing a similar set of users to our portal over the
years. One way to initially boost the number of contributors is to
exploit the gamification concept [41], which is always used as a
means for engaging more contributors. Image labeling is one prime
successful example of gamification [42]. One attempt to do so is
through geospatial data labeling [43], which shows the potential
of exploiting gamification for metadata labeling. More techniques
need to be exploited, where users can either directly contribute
their observed structural metadata for road segments, or (parts) of
their trajectories that can be used to infer functional metadata with
any of the first three directions in this section.

3.6 Direction 6: Intra City Learning
All previous directions are geared towards harvesting various forms
of available data for metadata inference. This will likely work for all
major road segments, e.g., highways and freeways, where there are
available data. Unfortunately, this is not the case for less popular
road segments, e.g., residential and service roads, where there is
no enough coverage in the available data. Hence, this direction
aims to complement and take advantage of the inferred metadata

through any of the five previous directions to infer the missing
metadata for other segments within the same city. One way to do
so is to convert each road segment with knownmetadata to a feature
vector. Then, a ML model can be built to get the relation between
the feature vector and the known metadata, and then used to infer
the unknown metadata for other road segments. A main challenge
would be forming the feature vector and considering all the factors
that would impact the metadata. Examples of such features would
include the length of the road segment, metadata of neighbor roads,
distance from major roads, types of buildings on the road sides, and
the number of intersections at both ends. Another challenge, which
is also applicable to the next two directions, is that state-of-the-art
ML models are not spatially-aware. This results in low accuracy
when dealing with spatial data, where the spatial neighborhood
information is of utmost importance and would have the greatest
impact on the result. One way to tackle this is to spatially zone the
city in a hierarchical way, where each zone will have its own model,
only based on the data within the zone. Then, use such model to
infer the metadata for the road segments within the zone.

3.7 Direction 7: Inter City Learning
This directions goes along the same lines of Direction 6, except
that we aim to learn map metadata from one city to another rather
than from one road segment to another within the same city. The
rationale here is that, due to lack of available data, the large major-
ity of cities worldwide have no data whatsoever. The goal of this
direction is to exploit the possibility that cities that follow simi-
lar road structure would follow similar map metadata. Unlike the
case of Direction 6 that targets residential and service roads, this
direction actually targets major roads, e.g., highways and freeways,
as they are more likely to keep their metadata structure across
cities. Similar to Direction 6, a major challenge would be to identify
the features that will be fed to a model learning process to get the
relations between road structure and its metadata. These features
would be different from the ones used in intra city learning, as it
needs to focus more on the city structure as a whole rather than
road structure. Examples of such features would include the city
area size and shape, number of major roads, number of road exits,
and downtown area(s). Combined with intra city learning, we envi-
sion the possibility of inferring full detailed metadata for a whole
city, even if there is no available data for such city.

3.8 Direction 8: Error Learning
All the previous seven directions in this section aim to infer map
metadata. Naturally, all of them would have various degrees of
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accuracy, and none would be perfect. Hence, in this direction, we
are not targeting inferring any new metadata. Instead, we aim to
learn the error of the inferred metadata, and then use that error to
offset the estimated values for functionalmetadata. This can be used
in conjunction with any of the previous directions that estimate
functional metadata to calibrate their results. For example, assume
a road segment with a known weight 𝑤 that was either entered
manually or inferred from Direction 1, hence it has the highest
possible accuracy and can be considered as ground truth. Then,
assume that applying our efforts using one (or all) of the other six
directions have estimated the weight for the same road segment
to be𝑤𝑒 . This means that our efforts had an error offset 𝛿=𝑤-𝑤𝑒 ,
which could be positive or negative value. With this, and along the
same lines of Direction 6, we can build a ML model that relates a
road segment to its error offset. In particular, we can represent each
road segment by a feature vector similar to Direction 6, and add
to it the known error offset. We can then use the learned model
for those road segments that do not have a ground truth. For any
such road segment, whatever weight we will get for it, we add the
learned offset 𝛿 for a more accurate weight.

3.9 Direction 9: Quality Assessment
Unlike OSM, we allowmetadata inferred fromMLmodels alongside
the manual addition of metadata. However, this integration raises
concerns about quality of the inferred data. We envision using
a concept similar to probabilistic knowledge base construction
systems, where the confidence probability generated by the ML
model of its output is utilized. Metadata with a confidence above a
threshold will go through without moderation, while the metadata
with less confidence will either go for moderation or flagged as less
confident information for the users.
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