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ABSTRACT
GPS-enabled devices, including vehicles, smartphones, wearable
and tracking devices, as well as various check-in and social net-
work data are continuously producing tremendous amounts of
trajectory data, which are used consistently in many applications
such as urban planning and map inference. Existing techniques
for trajectory data imputation rely heavily on the existing maps to
perform map-matching operations. However, modern applications
such as map construction and map update assume no map exists.
In this paper, we propose GTI - a scalable graph-based trajectory
imputation approach for trajectory data completion. GTI relies on
cross-trajectory imputation, as it exploits “mutual information” of
the aggregated knowledge of all input sparse trajectories to im-
pute the missing data for each single one of them. GTI can act as
a pre-processing step for any trajectory data management system
or trajectory-based application, as it takes raw sparse trajectory
data as its input and outputs dense imputed trajectory data that sig-
ni�cantly increase the accuracy of di�erent systems that consume
trajectory data. We evaluate GTI on junction-scale as well as city-
scale real datasets. In addition, GTI is used as a pre-processing step
in multiple trajectory-based applications and it boosts the accuracy
across these applications compared with the state-of-the-art work.
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1 INTRODUCTION
GPS-enabled devices, including vehicles, smart phones, wearable
and tracking devices, as well as various check-in and social network
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(a) Raw ”Dense” (b) Linear Interpolation (c) GTI

Figure 1: E�ect of GTI on improving quality of trajectories.

data are continuously producing tremendous amounts of trajectory
data [40]. In general, a trajectory is represented by a sequence of
GPS samples where each sample has spatial and temporal coor-
dinates, but due to the power cost of these GPS-enabled devices,
most recorded trajectory data are stored sparsely [39]. Trajectory
imputation solves this issue by reconstructing missing GPS samples
and enriching sparse trajectories with additional dense samples,
resulting in the restoration of the original recording frequency.

The recent explosion of such trajectory data has empowered
countless of principal trajectory operations that are heavily em-
ployed in highly important services used by millions of people on
a daily basis. These principal operations include trajectory data
management [13] trajectory similarity [34] and trajectory cluster-
ing [37]. In addition, many services that are based on such trajec-
tory operations, including map inference [8, 18, 33], map match-
ing [21, 24], and travel time estimation [20, 30] necessitate dense
trajectories in terms of spatial and temporal attributes. It has been
practically shown that many of these services and applications
su�er from a low accuracy [9, 19, 36] that not only hinders its wide
spread use, but it also causes severe accidents [6, 19, 29]. The main
reason behind such sub par performance is the sparsity and the
inaccuracy of the input trajectory data. As a recorded trajectory
comes from GPS-enabled devices of inherent inaccuracy due to
battery savings, it is common to have sparse trajectory data where
there are large spatio-temporal gaps between consecutive samples
as well as o�-road inaccurate samples [15, 19].

As a means of providing high quality services, there have been
many attempts to increase the accuracy of collected trajectory
data by �lling the gaps between consecutive trajectory samples;
a process that had various names, including trajectory imputa-
tion [10, 14], trajectory completion [22], trajectory data clean-
ing [38], or trajectory interpolation [23]. Unfortunately, one major
drawback of such attempts is that they rely on road network data.
Therefore, they get invalidated in cases when the road network is
unavailable or changed (as in the case of bicycle tra�c). Wang et
al. [36], highlights that ⇠15% of the roads around the world undergo
changes each year. The challenge here is that traditional techniques
for increasing the accuracy of trajectory data are inapplicable as
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Figure 2: Example of applying a range query at three inter-
sections. Background map is shown only for reference.

these techniques rely on the map itself, which is not always avail-
able. Recent techniques that are agnostic of the underlying road
networks have been presented [14, 22]. These techniques work
well in small regions in the absence of road network. However,
they are not scalable enough to work in large road networks, time
consuming, or unable to produce reliable temporal data.

In this paper, we propose GTI a Graph-based approach for Tra-
jectory data imputation. GTI relies on the “mutual information” of
aggregated knowledge of all input sparse trajectories to impute
the data for each single one of them. The main idea of GTI is to
create a connected directed graph from the sparse trajectories and
�nd the shortest-path between every two successive GPS samples
by traversing the graph nodes. This means that GTI exploits ex-
isting knowledge of neighboring trajectories to densify the target
trajectory - without any prior knowledge of the underlying road
network. GTI complements spatial imputation with temporal im-
putation. Hence, GTI would act as a pre-processing step for any
trajectory data management system or trajectory-based application.

Figure 1 (a), shows a road network that has been inferred using
the raw “dense” GPS samples, whereas Figure 1 (b), depicts the
inferred road network of sparse trajectories using linear interpo-
lation. It is clear that the main problem of trajectory imputation
solutions based on linear interpolation method is that GPS samples
get generated in areas where there are no roads. This obviously
penalizes many applications, especially when the underlying maps
are outdated, or not available to them. Therefore, GTI solves this is-
sue by imputing samples only in areas where tra�c was previously
reported. Clearly, as shown in Figure 1 (c), GTI imputed samples
are very similar to the dense dataset representation. To show the
importance of GTI, here is one trajectory-related application:
Tra�c�owmanagement: Since the raw trajectory data is sparse,
using simple imputation techniques such as linear interpolation
is far from approximating the actual route traversed by a moving
vehicle. In addition, estimating capacities and the resulting vehicle
delays at intersections can not be assessed correctly. For example,
Figure (2), shows an example of applying a range query at three
intersections with the goal of monitoring vehicles passing through
these intersections using linear interpolation and GTI framework.
As visually implied, linear interpolation misses all the intersection
range queries, while GTI is able to capture that a vehicle passes
through all three intersections.

The main idea of GTI relies on cross-trajectory information,
where any GPS sample can consult its neighboring samples, in spite
of their belonging trajectories, to guide the imputation process
without any knowledge of the underlying road network. Hence,
GTI exploits all input trajectory dataset to build the graph and �nds
the route between every two consecutive sparse GPS samples.While

Figure 3: Overview of the GTI framework.
individual trajectories can be noisy, when plotting a large number
of them together, it becomes easy to visually spot the approximate
position of roads (as you will see in the Experiments Section 7).
Thus, GTI borrows this interesting concept of Right-of-Way (RoW)
that is widely used in civil engineering literature to refer to the
piece of land that is planned to host future road constructions. That
is, if a road is to be built in the future, it should be built within the
RoW boundaries. We argue that when enough sparse trajectories are
available, their corresponding GPS samples can be used to create
some sort of a RoW graph that GTI can utilize to �gure out the right
position of missing GPS samples.

The GTI framework accepts a sparse GPS trajectory data, where
as a pre-processing step, it associates metadata (i.e., angle and
speed) to every GPS sample. Then, it builds a directed connected
graph from the input sparse trajectory data. Next, it utilizes the
RoW graph to impute sparse trajectories by inferring missing GPS
samples between consecutive distant samples. GTI enriches the
spatial imputation with temporal imputation. Finally, it re�nes
imputed trajectories to improve their quality. In case the input
sparse trajectory data is huge, for instance, in large-scale cities, GTI
has an optimization module that can be exploited to increase the
e�ciency and e�ectiveness of the imputation process.

We perform extensive experimental results based on real trajec-
tory datasets, two public [2, 28] and one private that was collected
from a real deployment of GTI within the QARTA system [3, 27],
that show: (a) GTI is highly scalable to a city-wide trajectory impu-
tation, (b) GTI is very e�cient in imputing large amount of sparse
trajectories, (c) GTI imputed trajectories resemble the originally
raw dense trajectories that were made sparse for experimental
evaluation purposes, (d) GTI imputed GPS samples have high accu-
racy when compared to a ground truth map, obtained from Open-
StreetMap [1], and (e) GTI was able to signi�cantly boost the per-
formance of four di�erent trajectory-based applications: map infer-
ence, trajectory similarity and search engine, and estimated arrival
time, when it was used as a preprocessing step in these applications.

2 GTI FRAMEWORK
This section describes the GTI framework for imputing GPS trajec-
tory data without any knowledge of the underlying map (i.e., road
network). The input to GTI is a collection of sparse GPS trajectory
data, each of which is a sequence of: trajectory_ID, latitude, longi-
tude, and timestamp. The output is a dense imputed GPS trajectory
data with additional contextual information represented in bearing
angle (i.e., vehicle moving direction) and speed. As shown in Fig-
ure (3), after preprocessing the input data, there are three phases
that comprise the GTI framework, namely, RoW graph generation
with an optimization step, trajectory imputation, and trajectory
re�nements, which can be highlighted as follows:
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Figure 4: E�ect of the angle penalty � on edge distance. Black
dot is the sample being considered for imputation. Other
dots are neighbors colored by their movement direction.
Preprocessing: GTI preprocesses input sparse trajectories by asso-
ciating it with metadata (i.e., contextual information). Hence, GTI
takes the raw trajectory data which consists of <vehicle_id, latitude,
longitude, timestamp> and appends to each GPS sample the bearing
angle and its speed [14]. The estimated metadata will be utilized by
the next phases of GTI framework.
RoW graph generation: [Section 3], is responsible for creating a
directed connected graph that GTI uses as a right-of-way to �nd a
plausible path that connects two consecutive trajectory GPS sam-
ples (si , si+1). The graph vertices represent GPS samples and the
graph edges represent the plausible path between two vertices. Here,
the estimated angles are exploited during the RoW graph generation,
to penalize abrupt changes in direction of a moving vehicle.
Graph Generation Optimization: [Section 4], is responsible for
extracting representative GPS samples from the input trajectory
dataset. Based on the size of input trajectory data and its nature,
this step may used to boost the e�ciency of GTI framework.
Trajectory imputation: [Section 5], uses the RoW generated graph
to perform the spatial data imputation by performing a path search.
Based on the distance of the imputed samples and the approximated
speed at that geolocation, which is computed by utilizing themutual
information of quali�ed neighbors, a timestamp is also attached as
a temporal coordinate.
Trajectory re�nements: [Section 6], re�nes the imputed trajecto-
ries by removing di�erent types of noise to produce cleaned dense
trajectories. The input here is the noisy spatio-temporal imputed
trajectories and it outputs more elegant imputed trajectories.

3 ROW GRAPH GENERATION
Objective: Build a directed connected graph from sparse GPS tra-
jectory data.
Main Idea: The main idea of this phase is to construct a connected
directed graphG = (V , E) out of the sparse GPS samples included in
the input trajectories. The set of vertices (V ) is formed by all unique
GPS samples that are provided in the input sparse trajectories. We
create the set of edges (E) by linking all pairs of vertices, i.e., GPS
samples, whose distance is equal or below a prede�ned distance
threshold (d). However, not all such edges are optimal to build a path.
Therefore, we penalize edges that have a large impact on the change
of bearing angle of the current sample. As shown in Figure (4), if a
sample is going east (black dot), we do not want to suggest candidate
edges that change the direction to west (yellow dots). To achieve
that, we replace the distance function by a modi�ed distance metric

Algorithm 1 RoW Graph Generation Algorithm

1: Procedure: GraphGeneration(T , d , � )
2: V  uniquePoints(T )
3: E  {}
4: for si 2 V do
5: rNN (si )  Ran�eQuer�(si ,V , r )
6: if rNN (si ).isempt�() then
7: d = d(si , si+1)
8: rNN (si )  Ran�eQuer�(si ,V , r )
9: end if
10: for sj 2 rNN (si ) do
11: if d� (si , sj )  d then
12: E  E [ newEd�e(si , sj )
13: end if
14: end for
15: end for
16: Return G =< V , E >

for a candidate edge (s, t) [33]. Consequently, the new distance
between two consecutive GPS samples can be calculated as follows:

d� (si , st ) =
r
d(si , st )2 + (� d0(�i ,�t )

180o
)2 (1)

Where d(si ,si+1) is the regular distance of an edge, d0(�i ,�t )=min(|�i�
�t |, 360o -|�i -�t |) is the unit circle distance between bearing angles
of two consecutive GPS samples, and � is the angle penalty.

In addition, it is worth noting that the output graph needs to
satisfy the connectivity property. To ensure that, we check if the
set of neighbors derived from the range query is not empty. In case
there are no neighbors within a radius d , we change the radius to
d = d(si , si+1), to make sure that in the worst case scenario, we
connect the sample to the next one in the trajectory.
Algorithm: As indicated in Algorithm (1), the data input to the
graph construction algorithm is a collection of n sparse GPS trajec-
tories (T = {�1, . . . �n }), a radius distance d and an angle penalty � .
The GPS samples of each trajectory � = {s1, . . . sm } are chronolog-
ically sorted in the ascendant order of their associated time stamps.
First, we computed the bearing angle of each GPS sample. Then, the
graph is constructed in two steps. First, we union all GPS samples in
T and unique them to create the set of verticesV . We can optionally
optimize the generated graph to reduce the size ofV . We will show
in the next section, how di�erent clustering algorithms can easily
be plugged here to reduce the size of the graph, and hence improve
the empirical running time of subsequent operations. Second, we
generate edges between vertices as follows: For each sample si 2 V ,
we run a range query centered on si with a radius d to retrieve all
neighboring samples (rNN (si )). We then calculate the new distance
(see Equation 1), for each of the neighboring samples, considering
the di�erence between the bearing angles. The neighbors that have
a distance larger than our threshold d get discarded, while the rest
form an edge with si .

4 GRAPH GENERATION OPTIMIZATIONS
Objective: The main objective of this module is to improve e�-
ciency of the RoW graph generation phase.



SIGSPATIAL ’23, November 13-16, 2023, Hamburg, Germany Keivin Isufaj1 Mohamed M. Elshrif1 Sofiane Abbar1 Mohamed F. Mokbel2

(a) Dense high precision GPS samples (#196,525) (b) r-NN based clustering (#2,510) (c) Four digit precision GPS samples (#3,167)

Figure 5: Impact of di�erent optimization techniques.

Main Idea: When the input trajectory data is huge, which could
represent a large city, generating the corresponding graph becomes
a bottleneck. Hence, graph generation could be optimized. So, de-
pending on the size of trajectory data and its nature, some opti-
mizations may help boost the e�ciency of GTI framework.

Indeed, depending on the number of trajectories and the preci-
sion of GPS readings (number of �oating digits), one can quickly
number millions of candidate GPS samples to be vertices in the RoW
graph. Therefore, with millions of vertices and probably one order
of magnitude more edges (i.e. tens of millions), one can quickly hits
some memory issues. Besides this, searching for paths that connect
consecutive samples in sparse trajectories can turn to be extremely
slow. Figure (5), shows the impact of di�erent GPS sample cluster-
ing techniques on the size of RoW graph. Figure 5 (a) is an example of
a high precision input to GTI framework for a small area of interest.
After applying r-NN based clustering, even though the number
of GPS samples drops ⇠ 80 times, the data quality is not highly
impacted, as visually described in Figure 5 (b). Contrary, naively
reducing the precision of the data to less signi�cant digits tends to
be worse than clustering, resulting in a lower quality dataset and
loss of road network attributes, such as roundabout structures as
shown in Figure 5 (c). Here’s how r-NN based clustering could be
used to optimize graph generation.

Algorithm: r-NN based clustering: Given the raw input GPS tra-
jectories, we start with an empty centroids list (i.e., representative
GPS samples) and go over all input GPS samples sequentially. Rep-
resentative samples were chosen randomly and serve as cluster
centroids. A GPS representative sample “seed” is added to the list of
centroids if there are no other centroids within a speci�c radius. In
case that there are two adjacent seeds, we take only one. This pro-
cess ensures that the resulting centroid list is uniformly distributed
throughout the search space, i.e., the space that covers all input GPS
trajectories. Then, for each cluster centroid, a query point is issued
to report all neighboring GPS samples within a speci�c threshold
radius (r ), e.g., 20 meters. After that, the seed and its neighboring
GPS samples are removed from the search space. Since the number
of GPS samples is huge, we accelerate the searching process by
using a kd �Tree structure for quick nearest-neighbor lookup [26].
By doing this sampling/clustering step, the total number of original
GPS samples, which should be considered during the imputation
process, is dramatically decreased ⇠%90, from order of millions
(106) to order of thousands (103), or even order of hundreds (102).
This means that the clustering step optimizes the usage of memory

and accelerates the running time, but it sacri�ces the accuracy, as
you will see in the Experimental Section 7.

5 TRAJECTORY IMPUTATION
Objective: The main objective of this phase is to exploit the RoW
graph created in the previous phase in order to impute sparse tra-
jectories by inferring missing samples between consecutive distant
samples.
Main Idea: The main idea of the imputation is to map each pair
of consecutive samples into their corresponding vertices in the
RoW graph. Then, use graph traversal techniques to �nd a possible
path that links the two vertices. This process is quite similar to the
traditional map-matching technique, where people use the existing
map (represented as a graph) to link discrete trajectory samples.
However, in GTI, we assume that the map is not available.
Algorithm: Trajectory imputation phase has two main compo-
nents, which can be explained as follows:
- Spatial imputation module: The spatial imputation process is
conducted by �nding the shortest path between every pair of con-
secutive GPS samples in the sparse trajectory data by traversing the
connected neighboring vertices, i.e. representative GPS samples, on
the generated graph (RoW). The algorithm used to �nd the shortest
path is the Dijkstra’s shortest path �rst algorithm [12]. However, if
we limit ourselves to distance only, most of the imputation will be
positioned on the end-sides of the roads each time there is some
sort of a turn. Ideally, we would like the imputed samples to be on
the center-line of roads. To this end, we introduce a new weighting
function to score graph edges by incorporating knowledge about
the density of the GPS samples (i.e, graph vertices) forming each
edge. Our intuition is that samples that lay on road center-lines
achieve higher density as compared to peripheral samples on the
side. Figure (6) shows an example, where we project GPS samples
from a road in Doha dataset onto a 2D scatter plot. After aligning
the direction of the movement to the north, we draw a histogram
that shows the distribution of GPS samples that are positioned
within the road. As indicated, there is a higher density on the cen-
ter of the road compared to the sides of it. To signify that within
our GTI framework, we de�ne the density of a vertex si as follows:

densit�(si ) =
| |rNN (si )| |

a��(| |rNN (sk )sk 2rN N (si ) | |)
(2)

This means that the density of each vertex is evaluated based on
the density of its neighbors. We use the density score of each vertex
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Figure 6:HistogramofGPS samples positioning along a road
in Doha dataset.

Figure 7: Distance based (red dots) vs. Density-based shortest
path (green dots) GTI imputation. Grey dots represent GPS
samples across all neighboring sparse trajectory data.

to re-evaluate the weight of edges, e = (si , sj ), as follows:

wei�ht(si , sj ) = len�th(si , sj ) + � ⇥ 1
densit�(sj )

(3)

That is, the higher the density, the lower the penalty applied to the
edge e; � is a constant factor we used to regulate the amplitude
of the density-induced penalty. Figure (7), shows the di�erences
between distance-based (a) and our density sensitive (b) trajectory
imputations. It is clear that accounting for vertex density does have
an impact on moving the imputation to the road center-line.
- Temporal imputationmodule: To enrich the spatial imputation
with time stamps, for each imputed GPS sample, we need to know
what the speed of that sample is. In the pre-processing step, we
already added speed as part of the metadata to each GPS sample.
However, the process of estimating the actual speed of a moving
vehicle is not straight forward like the bearing angle computation
process. This is because other associated factors, such as the travel
time and road conditions, vary over time and space. For example, the
vehicle speed during the working day is di�erent from the speed if
the vehicle passes the same street, but during theweekend. Similarly,
the road conditions vary when the vehicle is moving during rush
hours (e.g., morning, or afternoon), or at night. To support that,
Figure (8) illustrates the distribution of the number of vehicles over
the week days derived from all GPS samples (⇠ 23 million) from
Doha dataset. The pattern of the distribution has a similar trend
during the weekdays (Sunday - Thursday). However, it has a very
di�erent representation during the weekend days. In addition, the
metadata di�ers across moving vehicles which traverse the same
path even at similar times. This means that it is not straight forward
to use the information of the input GPS samples only. Instead, we
rely on using the idea of having dynamic travel cost distributions.
We start by inferring this contextual information on every imputed
sample by using the following scheme:

Figure 8: Distribution of the number of vehicles duringweek
days.

• Calculate the speed of every sample in the sparse trajectory given
the spatial geolocation, i.e., latitude and longitude, of itself and the
successor sample as well as both timestamps.
• Discretize the week intoweekda�s ,weekend_1,weekend_2 and
each one of them into 24 time slot intervals (one for each hour).
• For each sample si de�ne the speed of that sample to be the
average speed of the neighboring samples within a radius r that
fall in the same time slot interval.

Now that we have a better estimation of what speed the vehicle
should move at that geolocation, we can easily estimate the time
of arrival from si to a neighbor sample sj by dividing their spatial
distance by the acquired speed as follows:

sj .timestamp = si .timestamp +
d(si , sj )
si .speed

(4)

6 TRAJECTORY REFINEMENTS
Objective: Improve the quality of imputed trajectories.
Main Idea: The main idea of this phase is to segment imputed tra-
jectories into sub-trajectories and re-align the imputed GPS samples,
so they produce more natural shapes.
Algorithm: During the previous phase (i.e., trajectory imputation),
we occasionally face a zig-zag problem in which the imputed sam-
ples are not correctly aligned. While this minor problem has very
insigni�cant impact on several applications built on top of trajectory
data, such as map inference, trajectory clustering, and trajectory
similarity. Our goal is for the imputed trajectories to mimic realistic
scenarios. Figure (9), shows the two re�nement cases we would
like to �x. Figure 9 (a), shows a case where imputed GPS samples
(in green) are within a reasonably small distance from the linear
line that joins the two consecutive samples in the sparse trajectory
(dotted-red line). Ideally, we should proceed to moving all imputed
GPS samples towards the dotted-red line. This is particularly rel-
evant when segments of the imputed trajectory lay on highways.
However, there are more complicated cases, as shown in Figure 9
(b), where we need to pay attention to di�erent sub-trajectories
in order to perform the most optimal re�nement. As indicated in
Algorithm (2), we adapt the concept of a Sliding Window to �nd the
best representation of multiple best-�t lines. If there are only two
samples, then we just connect them with a straight line. Otherwise,
we start with the �rst three samples and try to �nd the line of best-
�t among them, solving a linear matrix equation and getting the
least-squares solution to it. If the residuals of such an equation are
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Algorithm 2 Trajectory Re�nement

1: Procedure: Re�ne(�i , �)
2: anchor  0
3: window_size  3
4: re f ined  {}
5: pre�_re f ined_se�ment  �i [0 : 2]
6: for i  3 to len�th(�i ) do
7: se�ment  �i [anchor : anchor +window_size]
8: re f ined_se�ment, residual  best_f it(se�ment)
9: if residual > � then
10: re f ined  re f ined [ pre�_re f ined_se�ment
11: anchor  anchor +window_size
12: window_size  3
13: pre�_re f ined_se�ment  �i [anchor : anchor + 2]
14: else
15: pre�_re f ined_se�ment  re f ined_se�ment
16: window_size  window_size + 1
17: end if
18: end for
19: return re f ined

(a) Straight-line re�nement

(b) Best-line �t re�nement

Figure 9: Trajectory re�nement use cases.
below a small enough threshold � ; then we know that these three
samples can be represented by a straight line, so we try to add one
more sample to this bu�er. Otherwise, this will be the breaking sam-
ple. We map the previous samples to their best-�t representation,
and we continue building the next window. An example of such a
bu�er of samples and the breaking sample is shown in Figure 9 (b).
We repeat this process, until we cover all the imputed samples. Pro-
ceeding this way ensures that a large trajectory is segmented into
smaller chunks that can be relatively approximated with straight
lines, mimicking real-world moving patterns.

7 EXPERIMENTS
In this section, we extensively evaluate the accuracy and e�ciency
of GTI framework1 in imputing real sparse trajectories in the ab-
sence of the road network “map”. We compare the performance of
GTIwith existingmethods including linear interpolation, knowledge-
based trajectory completion framework [22], and network-less tra-
jectory imputation [14], which is the state-of-the-art work. In this
section, we will refer to [22] as Knowledge Based and [14] as TrIm-
pute. Also, we assess our results by comparing the imputed trajecto-
ries to the OpenStreetMap (OSM) [1]. Furthermore, we demonstrate
the applicability of GTI framework to serve as a preprocessing step

1The GitHub repository of our GTI framework can be found at:
https://github.com/qcri/QCAI-TransportaionGroup-GTI.

on four di�erent trajectory-based applications: map inference, esti-
mated arrival time, trajectory similarity and search engine.

7.1 Real Trajectory Datasets
We utilize three real datasets from UIC, Chicago, NYC, New York City
and Doha, Qatar for spatio-temporal imputation. The UIC, Chicago
dataset has⇠900 trajectories, which covers an area of approximately
2km⇥3km in downtown of Chicago. The total trajectory length
is ⇠3,000Km and density 13K samples per Km2. It is generated
by a �eet of 13 University buses for approximately one month
with relatively regular routes. The NYC, New York City dataset
has 1.4 million trajectories, which cover an area of 14km⇥4km in
Manhattan and released by the New York City Taxi and Limousine
Commission [28]. The total trajectory length is 6.8⇥106 Km and
density 50K samples per Km2. Since this dataset is sparse and there
is no ground truth of it, we exploit it only for estimated arrival time
experiments. The Doha dataset contains ⇠200K trajectories, which
covers almost the whole city of Doha with total trajectory length
750,000 Km and density ⇠15K samples per Km2. It is generated by a
�eet of ⇠4K taxis. We processed all datasets to have four attributes
for each trajectory: trajectory_ID, latitude, longitude and timestamp.
In addition, GTI estimates the bearing angle (i.e., heading of the
moving direction) and speed.

In order to facilitate GTI framework using these datasets, we
perform the following processing steps. First, we partition all trajec-
tories based on trajectory_ID. Next, for each trajectory, we split it if
we �nd the sampling interval exceeds 300 seconds , which represents
either a long stop, or another trip by the same vehicle. Then, we
retain all trajectories that have more than two GPS samples. Finally,
we arti�cially sparsify these trajectories based on the dataset size.
1) For small areas like Chicago, we sparsify trajectories every 250
meters. 2) For city-wide scale like Doha: we sparsify trajectories
every 1000 meters. These prepared datasets are used as input to all
imputation frameworks. Since the NYC dataset is already sparsi�ed
at around 2.5 kilometers, we used it as it is.

7.2 Experimental Evaluation
We extensively evaluate GTI using the following metrics:
1) Accuracy: The average Euclidean distance between imputed
trajectory segments to its corresponding dense trajectory segments.
2) Completion Rate: The ratio of imputed trajectory segments
to all segments. 3) OSM Accuracy:Measures the accuracy, using
Euclidean distance with 50 meters threshold, of imputed segments
compared to the OpenStreetMap (OSM) [1]. 4) Trajectory Simi-
larity Accuracy:We used four metrics, two of them as complete
matches (Dynamic Time Warping (DTW) [5] and Euclidean Dis-
tance) and two as partial matches (Edit Distance with Real Penalty
(ERP) [11] and Frechet Distance (FRECH) [4]). 5) Range Query
Accuracy: It counts the number of vehicles passing through a junc-
tion in the sparse, or imputed trajectory compared to the dense
trajectory. 6) Map Inference Accuracy: It utilizes the holes and
marbles method for measuring the accuracy of the inferred map [7].
The proposed procedure relies on two metrics: a. GEO metric: it
evaluates how well the inferred map geometrically matches the
ground truth map. In our work, we treat the raw “dense” dataset as
a ground truth map. First, we take sample points every 5 meters
from both maps. Then, we put a hole on each sampled point of
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Figure 10: E�ect of the distance
threshold on Doha dataset.

Figure 11: E�ect of the angle
penalty on Doha dataset.

Figure 12: Comparison of imputation
algorithms in di�erent regions.

the ground truth map. Similarly, we put a marble on each sampled
point of the inferred map. After that, we say a marble is matched if
there is a hole within a matching tolerance. In our case, we vary the
matching tolerance in a range between 10 and 50 meters with an
increasing step size 10 meters. Finally, we compute the precision,
recall and Fscore as directed in [7].
b. TOPO metric: it assesses the quality of the topological charac-
teristics of the inferred map compared with the ground truth map
through measuring the connectivity structure of the inferred roads.
The TOPO procedure starts by selecting a random marble (or hole).
Then, �nds all reachable marbles (or holes) from the starting marble
that are within a radius distance. For the neighborhood of each
selected marble, we calculate the precision, recall, and Fscore , as
above. We repeat this process n times, and report the mean values.
7.3 GTI Sensitivity Analysis
Here, we study the impact of varying GTI main two parameters
d and � on the accuracy and completion rate. The impact of both
parameters is studied on small as well as on large regions as follows:
- Distance threshold (d): Figure (10), depicts the impact of varying
the distance threshold (d) from 25 meters to 100 meters on both the
accuracy and completion rate. As the distance threshold increases,
the accuracy decreases because GTI creates an edge between two
GPS samples that belong to di�erent roads. However, with small
distance threshold, the completion rate decreases because the graph
has less number of edges. Therefore, we pick the 50 meters as the
best threshold value and use it for all GTI experiments.
- Angle penalty (� ): Figure (11), depicts the impact of varying the
angle penalty (� ) from 0 to 100. A small value of � would reduce
the accuracy because it will create an edge between two vertices
that have large angle di�erence (i.e., the two vehicles are moving
in the opposite directions). Using a large value of � would increase
the accuracy, as it will create an edge between vertices that share
similar direction. In other words, this means that GTI is penalizing
signi�cantly the vehicles that are moving in opposite directions.
Contrary, the completion rate decreases as the angle penalty in-
creases because the graph has less number of edges. We choose 50
as the default value for the angle penalty threshold.
7.4 GTI Spatial Evaluation
We perform two di�erent levels of evaluations based on region size:
- Junction-wise scale: Figure (12), shows that GTI is more accurate,
in terms of both accuracy and completion rate, than all baselines
for Burger King roundabout and Lakhwiya intersection. However,
for Chicago downtown dataset, TrImpute is more accurate (5.72m).

Algorithm accuracy completion rate
Linear Interpolation 43.44 m N/A

TrImpute 13.88 m 85.68 %
Knowledge Based N/A N/A

GTI 10.04 m 92.11 %
Table 1: Comparing imputation algorithms for Doha city.

Yet, it completes only 50.04% from input trajectories, whereas GTI
completes almost all input trajectories (99.30%). Knowledge Based
fails to give an imputation on the Chicago dataset.
- City-wide scale: Table (1), depicts the superiority of GTI frame-
work across all di�erent imputation algorithms. Imputing sparse
trajectories using GTI (⇠ 10 meters) improves the accuracy by more
than 4 times compared to the linear interpolation method (⇠ 43
meters). Also, it improves the imputation by almost 40% compared
with TrImpute framework (⇠ 14 meters), while knowledge-based
algorithm is not scalable enough to run on large regions. For com-
pletion rate, GTI is the best, where it imputes more than 92% of input
trajectories followed by TrImpute, which imputes⇠86%. Knowledge
Based does not give any imputation for the city of Doha.
7.5 Impact of Input Data Size
We evaluate the optimal size and density of input trajectory data:
- Number of input trajectories: The approach proceeds by choos-
ing a random sample from input trajectories, ranging from 1,000
to ⇠200k trajectories. Since the chosen trajectories still cover the
same area, this approach mostly impacts the density of the samples
per km2. Figure (13), depicts the robustness of GTI, where inspite
of the number of input trajectories, it is still very accurate (⇠10 me-
ters). Except, when the number of input trajectories are very small
(less than 1%), then, the linear interpolation is the most accurate
one, followed by GTI and TrImpute in the third place. As per the
completion rate, with the number of input trajectories increasing,
GTI imputes more trajectories and it reaches the best value (⇠92%),
when we use the whole Doha dataset.
- Sparsi�cation rate: Instead of choosing trajectories randomly, in
this experiment we use the entire set of trajectories, but we change
the number of representative samples for each one. Thus, we extract
a sample every 750, 1000, 1500 and 2000 meters respectively from
each trajectory for each of the reported results in Figure (14). For
accuracy, GTI being constantly 3-4 times better than linear interpo-
lation and 4-6 meters closer to the raw “dense” dataset. TrImpute
resides in the middle and more closer to GTI. In terms of completion
rate, GTI has the best imputation for the 1000 meters sparsi�ca-
tion. The completion rate only falls short to 85% on a 2000 meters



SIGSPATIAL ’23, November 13-16, 2023, Hamburg, Germany Keivin Isufaj1 Mohamed M. Elshrif1 Sofiane Abbar1 Mohamed F. Mokbel2

Figure 13: Euclidean distance and com-
pletion rate when we change the num-
ber of input trajectories

Figure 14: The impact of sparsi�cation
length on the average Euclidean dis-
tance and completion rate.

Figure 15: Matching accuracy of Sparse,
Raw “Dense” and GTI compared to Doha
road network from OpenStreetMap.

d (in meters) 0 2.5 5 10 25
# nodes 535 k 93 k 53 k 25 k 9 k
# edges 250 mill 7.7 mill 2 mill 300 k 25 k

accuracy (in m) 10.04 9.90 10.25 10.67 12.80
completion rate 92.11% 85.72% 84.96% 84.79% 74.81%
time/traj (sec) 3.13 0.19 0.084 0.059 0.035

Table 2: E�ect of the cluster radius for Doha dataset.

sparsi�cation, and it is more than 89% on the rest. TrImpute on the
other hand, reaches ⇠87% on a 750 meters sparsi�cation rate and
gradually falls to ⇠ 75% on 2000 meters.
7.6 Graph Generation Optimization
In this section, we showcase the importance of the cluster radius
parameter in the computational time of GTI. Table (2), depicts the
impact of varying the cluster radius (r ) from 0 to 25 meters for
the Doha dataset. Initially, the dataset is represented by more than
half a million vertices and ⇠250 million edges. However, by slowly
increasing the cluster radius to 25 meters, we see a drop of around
60 times for the vertices and around 10,000 for the number of
edges. Also, the imputation speed becomes faster by ⇠90 times. The
accuracy and the completion rate are both be reversely associated
with the cluster radius, impacting them negatively when the radius
increases. However, we notice that when the cluster radius r is
2.5 meters, we achieve the best accuracy at 9.90 meters, and the
completion rate is the second highest at 85.72%. This is still more
than 16 times faster than working with the initial dataset, having
minor impact on accuracy and completion rate.
7.7 OSM Accuracy
We evaluate the performance of GTI with respect to the ground
truth road network extracted from OpenStreetMap (OSM). We then
compare it to both linear interpolation and the raw “dense” dataset.
Our goal is to con�rm that the imputed trajectories are within the
actual road network and that GTI makes meaningful imputations.
Figure (15) reports the results of this experiment, which is set up as
follows: Given one of the datasets, we try to map each of their GPS
samples to the closest road from the OSM road-network. If such
a road exists within a de�ned tolerance threshold (ranging from
10 to 75 meters). Then, we consider the GPS sample as matched.
Otherwise, we label that sample as a non-match. After gathering
the results, we report the OSM accuracy, which is the number of
matched samples divided by the total number of samples. Note that

in Figure (15) GTI has the highest accuracy, even higher than the
raw “dense” dataset. This occurs because of the following reasons:
1) GTI imputation is denser than the raw dataset. 2) All the samples
of GTI are part from the raw dataset. 3) GTI gives preference to the
most visited paths that reduces noise. Hence, GTI attains higher
accuracy. Starting from a 20 meters tolerance, GTI achieves an
accuracy of 90% or higher. At a threshold of 10 meters, GTI is more
than 1.6 times better than linear interpolation. However, the latter
catches up to performing 1.12 times worse at 75 meters tolerance. It
is important to note that 75 meters is su�cient to cover the width
of a road with around 20 lanes (3.3 meters per lane).

7.8 GTI Temporal Evaluation
Here, we evaluate the temporal aspect of GTI, as illustrated in
Figure (16). We performed time of arrival tests on four services,
Google Maps [17], OSRM [25], GraphHopper [16] and GTI, using
road segments from both Doha and NYC datasets. Because the
others are commercial services, we perform the analysis on the same
20,000 randomly chosen road segments for all services including
GTI. Then, to support and validate the partial results, we perform
the same analysis for GTI on the entire datasets for both Doha
and NYC. While Google Maps and GraphHopper are both tra�c-
aware, OSRMprimarily relies on segment lengths and themaximum
speed of the queried road segments to make predictions. To �lter
inaccurate time predictions, we eliminate predictions that took
longer than 10 minutes in Doha and 25 minutes in NYC, and those
that have a di�erence of more than 5 minutes with the ground
truth in Doha and 12.5 minutes in NYC. After �ltering, we are left
with around 18,000 segments, and we report the Mean Absolute
Error, Median Absolute Error, Mean Relative Error, and the Median
Relative Error.

As depicted in Figure 16 (a), our �ndings show that GTI has the
most accurate time prediction, with a Mean Error of 42 seconds
(35%) and Median Error of 22 sec (22%) in the Doha Dataset. On the
same dataset, Google Maps is the second best, having predictions
twice as worse as GTI. GraphHopper has comparable results to
Google Maps performing around 10% worse, while OSRM is far
o� with Mean Error of 142 sec (168%) and Median Error of 128 sec
(98%). The NYC dataset, reported in Figure 16 (b), gives a similar
output, with GTI giving time predictions as close as 186 seconds
(20%) on average to the ground truth and with a Median Error of 81
seconds (15%). Google Maps is again in second place, peaking at an
absolute median of 141 seconds (25.63%) away from the raw “dense”
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Measure Distance Metric Linear
Interpol. TrImpute GTI

Complete
match

DTW 7 5287.16 1471.39 970.40
Euclidean 3 43.44 13.88 10.04

Partial
match

ERP 3 5215056 137934 55355
FRECH 3 122.34 46.18 34.28

Table 3: Trajectory similarity metrics on Doha dataset.

Junction Type #Trajectories Linear
Interpolation TrImpute GTI

Sidra 24348 10383 17939 21305
Gharrafa 520 300 207 341
Samari 277 33 83 98
Elite 1113 78 415 401

Souq Ali 11594 9608 9385 10629
Table 4: Range query on di�erent junction types in Doha.

dataset. GraphHopper had a lot of errors in segment duration in the
NYC dataset, leaving the third place for absolute errors to OSRM,
while both of them maintain a Mean and Median Error of ⇠ 50%.
7.9 Trajectory Similarity Application
In this section, we evaluate the similarity of GTI imputed trajecto-
ries to raw “dense” trajectories. GTI shows signi�cant improvements
when compared to both linear interpolation and TrImpute. From
Table (3), it is obvious that GTI outperforms both linear interpo-
lation and TrImpute in terms of these measures in the city-wide
experiment. In the ERP context, GTI is around 100 times better than
linear interpolation and provides results 2.5 times more similar to
ground truth than TrImpute, while for the rest of the measures,
GTI is between 3.5 - 15 times better than linear interpolation and
1.3 - 1.5 times better than TrImpute. In the city-wide experiment,
the input segments are sparse (1 kilometer ); therefore the room for
error for both linear interpolation and TrImpute is large.

7.10 Trajectory Search Engine Application
Range Query Accuracy: In this experiment, we evaluate the ac-
curacy of GTI on raw “dense” trajectories within junctions of three
di�erent types and compare them to linear interpolation and TrIm-
pute results. We identify junctions from the Doha dataset of the
following types: roundabouts (Sidra and Gharrafa), T-intersections
(Samari and Elite), and interchanges (Souq Ali). To set up the ex-
periment, we �rst de�ne a rectangular shape bounding box that
covers the area of interest from each of the mentioned junctions.
Then, we proceed to counting the number of trajectories that have
sample points that pass through the rectangle.

Table (4), shows that GTI allows to increase the overall accuracy
of range queries that are of a capital importance for many trans-
portation studies, e.g., counts, �ux analysis, etc. We notice that in
areas that are very dense, such as Sidra and Souq Ali, GTI is able
to deduce that the trajectory imputations should go through them.
On the other hand, junctions such as Samari and Elite, because
the amount of trajectories that pass by them are relatively small,
GTI �nds it harder to make the imputation through them, even
though it is around 3-4 times more accurate than linear interpola-
tion. The only junction where GTI is not the most accurate is Elite,
where TrImpute performs better by a small margin, while linear
interpolation is able to capture only 7% of those trajectories.

7.11 Map Inference Application
In this experiment, we evaluate the impact of imputing sparse tra-
jectories using GTI on the quality of a map inference application,
Kharita [33]. We run this experiment on the Chicago dataset with
sparse trajectories, raw “dense” trajectories and then with the im-
puted trajectories from TrImpute and GTI. Figure (17), quanti�es
the impact of using data imputation algorithms as a preprocessing
step for the map inference application. We use Holes & Marbles
to perform such a comparison. We report the Fscore of the match-
ing between Kharita+Sparse, Kharita+TrImpute and Kharita+GTI
compared to Kharita+Raw “dense”. As supported with numerical
evidence in Figure (17), sparse trajectories are incapable to infer the
road network. They only get a 20% Fscore with a 50 meter tolerance,
where the recall is very low, because most of the road segments are
not captured. On the other hand, TrImpute starts with a 44% Fscore ,
and then it maintains a di�erence of 6-7% below GTI. As mentioned
before, TrImpute has a low completion rate in Chicago dataset,
which shows again the importance of high imputation. GTI on the
other hand, provides a result that is the closest to the Kharita+Raw
map, reaching an Fscore of 81% with 50 meters tolerance.

8 RELATEDWORK
A trajectory interpolation application is tremendously studied un-
der various names such as: trajectory imputation [10, 14], trajectory
completion [22], trajectory data cleaning [38], and trajectory inter-
polation [23], with the objective of �lling gaps between consecutive
GPS samples in a trajectory. Various techniques have been proposed
such as linear, cubic spline, random walk, Bézier curve, and kine-
matic path. However, a speci�c interpolation technique could be
bene�cial in one domain and worthless in others. For example, ran-
dom walk interpolation [35] is useful for free movement objects
such as interpolating wild animal behavior. Chen et al. [10], pro-
poses a probabilistic framework that imputes raw trajectories with
a focus on enriching the semantic meaning of raw trajectories in
real time. The main issue with this study [10] is that it needs an
updated road network available. Recently, various deep learning
architectures [31, 32] were exploited to reconstruct trajectories.
However, these architectures assume that the provided trajectories
are dense. Li et. al. [22] is one study that doesn’t assume the un-
derlying road network is available. However, it su�ers from few
shortcomings such as it requires spatially dense trajectories to pre-
compute the junction network, and it is not scalable enough to work
on large regions (city scale). Elshrif et. al. [14] is another study that
doesn’t assume the underlying road network is available. The work
proposes TrImpute, a state-of-the-art approach for trajectory im-
putation, which takes the sparse GPS data and exploits the crowd
wisdom idea to guide its imputation process by placing arti�cial
samples in between the sparse ones. The main drawback of this
work is the scalability issue which impacts its performance.

9 CONCLUSION
This paper presented GTI; a novel framework for trajectory impu-
tation that has the ability to impute sparse trajectory data, without
knowledge of the underlying road network. Hence, it depends on
the nearby trajectory samples to perform its imputation process.
Fundamentally, it creates a directed connected graph that GTI uses
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(a) Doha Dataset (b) NYC dataset

Figure 16: Time of Arrival Errors from four services (Google Maps, OSRM, GraphHopper and GTI).

Figure 17: Numerical comparison (Holes & Marbles) be-
tween Sparse, TrImpute and GTI when using the Kharita al-
gorithm [33] on Chicago Dataset.

as a Right-of-Way (RoW) to �nd a plausible path that connects two
consecutive trajectory GPS samples. Then, GTI formalizes its spatial
imputation process for each trajectory segment as to �nd the short-
est path between every two consecutive samples. GTI follows up by
doing temporal imputation, where the spatially imputed samples
are annotated by timestamp information that respect the tra�c
conditions of the trajectory segment end samples. Extensive exper-
imental results based on real data and deployment show that GTI
is highly accurate and scalable. In addition, GTI signi�cantly boost
the performance of four trajectory-based applications.
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