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Abstract: Robust and effective fruit detection and localization is essential for robotic harvesting

systems. While extensive research efforts have been devoted to improving fruit detection, less

emphasis has been placed on the fruit localization aspect, which is a crucial yet challenging task due

to limited depth accuracy from existing sensor measurements in the natural orchard environment

with variable lighting conditions and foliage/branch occlusions. In this paper, we present the system

design and calibration of an Active LAser-Camera Scanner (ALACS), a novel perception module for

robust and high-precision fruit localization. The hardware of the ALACS mainly consists of a red

line laser, an RGB camera, and a linear motion slide, which are seamlessly integrated into an active

scanning scheme where a dynamic-targeting laser-triangulation principle is employed. A high-fidelity

extrinsic model is developed to pair the laser illumination and the RGB camera, enabling precise

depth computation when the target is captured by both sensors. A random sample consensus-based

robust calibration scheme is then designed to calibrate the model parameters based on collected data.

Comprehensive evaluations are conducted to validate the system model and calibration scheme. The

results show that the proposed calibration method can detect and remove data outliers to achieve

robust parameter computation, and the calibrated ALACS system is able to achieve high-precision

localization with the maximum depth measurement error being less than 4 mm at distance ranging

from 0.6 to 1.2 m.

Keywords: agriculture; laser scanning; fruit localization; robotic harvesting; precision agriculture

1. Introduction

With the growing global population, the agriculture industry has been pushing to
adopt mechanization and automation for increasing, sustainable food production at lower
economic and environmental costs. While such technologies have been deployed for field
crops such as corn and wheat, the fruit sector (e.g., apple, citrus, and pear) still heavily
relies on seasonal, manual labor. In many advanced economies, the availability of labor
for farming has been on steady decline, while the cost of labor has increased significantly.
Moreover, tasks like manual harvesting involve extensive body motion repetitions and
awkward postures (especially when picking fruits at high places or deep in the canopy and
repeatedly ascending and descending on ladders with heavy loads), which put workers at
risk for ergonomic injuries and musculoskeletal pain [1]. Considering the aforementioned
issues, robotic harvesting is thus considered to be a promising solution for sustainable fruit
production and has received increasing attention in recent years.

Research on robotic harvesting technology has been ongoing for several decades, and
different robotic systems have been attempted for semi-automated or fully automated fruit

Horticulturae 2024, 10, 40. https://doi.org/10.3390/horticulturae10010040 https://www.mdpi.com/journal/horticulturae



Horticulturae 2024, 10, 40 2 of 16

harvesting [2–15]. A typical robotic harvesting system consists of a perception module,
a manipulator, and an end-effector. Specifically, the perception module exploits onboard
sensors (e.g., cameras and LiDARs) to detect and localize the fruit. Once the fruit position is
determined by the perception system, the manipulator is controlled to reach the target fruit,
and then a specialized end-effector (e.g., gripper or vacuum tube) is actuated to detach the
fruit. Therefore, the development of a robotic harvesting system requires multi-disciplinary
advancements to enable a variety of synergistic functionalities. Among the various tasks,
fruit detection and localization is the first and foremost one to support robotic manipulation
and fruit detachment. Specifically, the fruit detection function aims at segmenting fruits
from the complex background, while the localization is to calculate the spatial positions
of the detected fruits. Due to variable lighting conditions, color variations of fruits with
different degrees of ripeness and varietal differences, and fruit occlusions by foliage and
branches, developing sensing modules and perception algorithms capable of robust and
effective fruit detection and localization in the real orchard environment poses significant
technical challenges.

To date, extensive studies have been devoted to efficient and robust fruit detection,
which is most commonly accomplished using color images captured by RGB cameras. In
general, these approaches can be classified into two categories: feature-based and deep
learning-based. The feature-based methods [16–21] use differences among predefined
features (e.g., color, texture, and geometric shape) to identify the fruit, and various conven-
tional computer vision techniques (e.g., Hough transform-based circle detection method,
optical flow method, and Ostu adaptive threshold segmentation) are used for feature
extraction. Such methods perform well under certain simple harvesting scenarios but
are susceptible to varying lighting conditions and heavy occlusions. This is because the
extracted features are defined artificially and they are not universally adaptable and may
lack generalization capabilities in distinguishing target fruits when the harvesting scene
changes [22]. Different from feature-based methods, deep learning-based methods exploit
convolutional neural networks to extract abstract features from color images, making
them suitable for complex recognition problems. Deep learning-based object recogni-
tion algorithms have seen tremendous success in recent years, and a variety of network
structures, i.e., region convolution neural network (RCNN) [23], Faster RCNN [24], Mask
RCNN [25,26], You Only Look Once (YOLO) [27–29], and Single-Shot Detection (SSD) [30],
have been studied and extended for fruit detection. Specifically, RCNN-based approaches
employ a two-stage network architecture, in which a region proposal network (RPN) is used
to search the region of interest and a classification network is used to conduct bounding-box
regression. As opposed to two-stage networks, YOLO- and SSD-based one-stage networks
merge the RPN and classification branch into a single convolution network architecture,
which enjoys improved computation efficiency.

Once the fruits are recognized and a picking sequence is determined (see e.g., [12]),
three-dimensional (3D) localization needs to be conducted to compute the spatial coordi-
nates of a target fruit. Accurate fruit localization is crucial since erroneous localization
will cause the manipulator to miss the target and subsequently degrade the harvesting
performance of the robotic system. Various sensor configurations and techniques have
been used for fruit localization [31–35]. One example is (passive) stereo vision systems,
which exploit two-camera layout and the triangulation optical measurement principle to
obtain depth information. For such systems, the relative geometric pose of the two cameras
needs to be carefully designed and calibrated, and sophisticated algorithms are required
to search common features in two dense RGB images for stereo matching. Therefore, the
main disadvantages of stereo vision systems are that the generation of depth informa-
tion is computationally expensive and the performance of stereo matching is inevitably
affected by occluded pixels or varying lighting conditions that are common in the natural
orchard environment.

Consumer RGB-D cameras are another type of depth measurement sensors that have
recently been employed to localize fruits [36–39]. Different from passive stereo-vision
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systems that purely rely on natural light, the RGB-D sensors include a separate artificial
illumination source to aid the depth computation. According to the methods on how
the depth measurements are computed, RGB-D cameras can be divided into three cate-
gories: structured light (SL), time of flight (ToF), and active infrared stereo (AIRS) [33]. An
SL-based RGB-D sensor usually consists of a light source and a camera system. The light
source projects a series of light patterns onto the workspace, and the depth information
can then be extracted from the images based on the deformation of the light pattern. So
far, the consumer sensors that operate with SL have been utilized in different agricultural
applications [40–42]. The ToF-based RGB-D sensors use an infrared light emitter to emit
light pulses onto the scene. The distance between the sensor and the object is calculated
based on the known speed of light and the round trip time of the light signal. One im-
portant feature of the ToF systems is that their depth measurement precision does not
deteriorate with distance, which makes them suitable for harvesting applications requiring
a long perception range. Moreover, the AIRS-based RGB-D sensors are an extension of the
conventional passive stereo-vision system. They combine an infrared stereo camera pair
with an active infrared light source to improve the depth measurement under low-texture
environment. Despite some successes, the sensors mentioned above may have limited and
unstable performance in the natural orchard environment. For example, the SL-based sen-
sors are sensitive to the natural light condition and to the interference of multiple patterned
light sources. The ToF systems are vulnerable to scattered light and multi-path interference
and usually provide lower resolution of depth images compared to other RGB-D cameras.
Similar to passive stereo-vision systems, the AIRS-based sensors encounter stereo matching
issues, which can lead to flying pixels or over-smoothing around the contour edges [33].
In addition, the performance of these sensors could deteriorate significantly when target
fruits are occluded by leaves and branches due to low or limited density of the illuminating
light patterns or point cloud.

It is thus clear that both the stereo vision systems and the RGB-D sensors have inherent
depth measurement limitations in providing precise fruit localization information that is
necessary for effective robotic harvesting systems. Inaccurate fruit localization stands out
as a primary cause leading to the failure of robotic harvesting, which has been reported by
several recent works [10,11]. For instance, the field experiment detailed in [11] shows that
about 70% of the total failed attempts are attributed to inaccurate fruit localization. Towards
this end, we devise a novel perception module, called the Active LAser-Camera Scanner
(ALACS), to improve fruit localization accuracy and robustness for ready deployment in
apple harvesting robots. In this paper, we present the system design and calibration scheme
of the ALACS, and the main contributions of this paper are highlighted as follows.

1. A hardware system consisting of a red line laser, an RGB camera, and a linear motion
slide, coupled with an active scanning scheme, is developed for fruit localization
based on the laser-triangulation principle.

2. A high-fidelity extrinsic model is developed to capture 3D measurements by matching
the laser illumination source with the RGB pixels. A robust calibration scheme is then
developed to calibrate the model parameters by leveraging random sample consensus
(RANSAC) techniques to detect and remove data outliers.

3. The effectiveness of the developed model and calibration scheme is evaluated through
comprehensive experiments. The results show that the calibrated ALACS system can
achieve high-precision localization with millimeter-level accuracy.

This is the first effort that, to the best of our knowledge, combines a line laser with a
camera to accomplish millimeter-level localization performance. Our focus has predomi-
nantly centered on the development of an effective automated apple harvesting system,
with the ALACS being specifically tailored and validated for this application. Nonetheless,
the ALACS possesses inherent adaptability and can be extended and adopted for the
harvesting of other tree fruits.

The rest of the paper is organized as follows. Section 2 provides an overview of
our newly developed robotic apple harvesting system. Section 3 presents the system
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design of the ALACS. The extrinsic model for 3D measurement characterization and the
corresponding robust calibration scheme are introduced in Section 4. Simulation and
experimental results are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Overview of the Robotic Apple Harvesting System

In this section, we first briefly introduce our robotic apple harvesting platform, into
which the ALACS is integrated. As shown in Figure 1, the robotic platform consists of
four main components: a perception module, a four-degree-of-freedom manipulator, a soft
vacuum-based end-effector, and a dropping module. The robotic system is mounted on a
trailer base to facilitate movement in the orchard environment. An industrial computer
is utilized to coordinate the perception module, the manipulator, and all communication
devices. The entire software is fully integrated using the robot operating system (ROS),
where different software components are primarily communicated via custom messages.

(a) (b)

Figure 1. The developed robotic apple harvesting system. (a) Image of the whole system operating in
the orchard environment. (b) Main components of the robotic system.

The following introduces the steps that our system takes to harvest an apple. At the
beginning of each harvesting cycle, the perception module is activated to detect and localize
the fruits within the manipulator’s workspace. Given the 3D apple location, the planning
algorithm is used to generate a reference trajectory, and the control module then actuates
the manipulator to follow this reference trajectory to approach the fruit. After successfully
attaching the fruit to the end-effector, a rotation mechanism is triggered to rotate the end-
effector by a certain angle, and then the manipulator is driven to pull and detach the apple.
Finally, the manipulator retracts to a dropping spot and releases the fruit. According to the
aforementioned picking procedure, it can be seen that the fruit detection and localization is
a key task in automated apple harvesting. Our previous system prototypes [10,12] utilized
RGB-D cameras to facilitate fruit detection and localization. However, laboratory and
field tests found that the commercial RGB-D cameras could not provide accurate depth
information of the target fruits under leaf/branch occlusions and/or challenging lighting
conditions. Inaccurate apple localization has been identified as one of the primary causes
for harvesting failure. To enhance the apple localization accuracy and robustness, we
designed a new perception unit (called ALACS), which seamlessly integrates the line laser
with RGB image for active sensing.

3. Design of the Active Laser-Camera Scanner

As shown in Figure 2, the perception module of the robotic apple harvesting system
includes an Intel RealSense D435i RGB-D camera (Intel Corp., Santa Clara, CA, USA) and a
custom ALACS unit. The RGB-D camera is mounted on a horizontal frame that is above the
manipulator to provide a global view of the scene. The ALACS unit is comprised of a red
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line laser (Laserglow Technologies, North York, ON, Canada), a FLIR RGB camera (Teledyne
FLIR, Wilsonville, OR, USA), and a linear motion slide. The line laser is mounted on top of
the linear motion slide that enables the laser to move left and right horizontally with a full
stroke of 20 cm. Meanwhile, the FLIR RGB camera is installed at the rear end of the linear
motion slide with a relative angle to the laser. The hardware configuration of the ALACS
is designed to facilitate depth measurements using the principle of laser triangulation.
The laser triangulation-based technique captures depth measurements by pairing a laser
illumination source with a camera, which has been widely used in industry applications
for precision 3D object profiling. It should be noted that the ALACS unit is different from
the conventional laser triangulation sensors. For conventional laser triangulation sensors,
the relative position between the laser and the camera is fixed (i.e., both of them are either
stationary or moving simultaneously). For the ALACS, the camera is fixed while the laser
position can be adjusted with the linear motion slide.

Figure 2. CAD model of the perception module.

The RGB-D camera and the ALACS unit are fused synergistically to achieve apple
detection and localization. Specifically, the fusion scheme includes two steps. In the first
step, the images captured by the RGB-D camera are fed into a deep learning approach
for fruit detection (see [43]), and the target apple location is then roughly calculated with
the depth measurements provided by the RGB-D camera. In the second step, by using
the rough apple location, the ALACS unit is triggered to actively scan the target apple,
and an ameliorative apple position is obtained. As shown in Figure 3, the basic working
principle of the ALACS is to project the laser line onto the target fruit and then use the
image information and triangulation technique to localize the fruit. The perception strategy
of the ALACS unit is designed as follows:

1. Initialization. The linear motion slide is actuated to regulate the laser towards an
initial position, ensuring that the red laser line is projected on the left half region
of the target apple. The initial laser position is obtained by transforming the rough
target apple location provided by the RGB-D camera into the coordinate frame of the
ALACS unit.

2. Interval scanning. When the laser reaches the initial position, the FLIR camera is
activated to capture an image. The linear motion slide then travels to the right by
four centimeters in one centimeter increments, pausing at each increment to allow
the FLIR camera to take an image. A total of five images are acquired through this
scanning procedure, with the laser line projected on various positions in each image.
The purpose of utilizing such scanning strategy is to mitigate the impact of occlusion,
since the laser line provides high spatial-resolution localization information for the
target fruit. More precisely, when the target apple is partially occluded by foliage,
moving the laser to multiple positions can reduce the likelihood that the laser lines
will be entirely blocked by the obstacle.
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3. Refinement of 3D position. For each image captured by the FLIR camera, the laser
line projected on the target apple surface is extracted and then used to generate a
3D location candidate. Computer vision approaches and laser triangulation-based
techniques are exploited to accomplish laser line extraction and position candidate
computation, respectively. Five position candidates will be generated as a result, and
a holistic evaluation function is used to select one of the candidates as the final target
apple location.

Figure 3. Fundamental working principle of the ALACS unit.

To accomplish the aforementioned fruit localization scheme, laser line extraction and
position candidate computation are two key tasks. The laser line extraction is achieved
by leveraging computer vision techniques, and a detailed description on the extraction
algorithm can be found in our recent work [44]. To facilitate the computation of fruit 3D
positions, a high-fidelity model is derived based on the principle of laser triangulation, and
a robust calibration scheme is designed. The following will detail the development of the
high-fidelity model and calibration scheme.

4. Extrinsic Model and Calibration

4.1. Modeling of the ALACS Unit

The basic idea of laser triangulation-based technique is to capture depth measurements
by pairing a laser illumination source with a camera. Both the laser beam and the camera
are aimed at the target object, and based on the extrinsic parameters between the laser
source and the camera sensor, the depth information can be collected with trigonometry. As
shown in Figure 4, Fl and Fc are denoted as the laser frame and camera frame, respectively.
³ ∈ R is the rotating angle along the yl-axis between Fl and Fc. L ∈ R is the horizontal
distance (i.e., the translation along the xl-axis) between Fl and Fc. ´ ∈ R is the angle
between the laser plane and the (yl , zl) plane of Fl . ³, L, and ´ are considered as the
extrinsic parameters between the laser illumination source and the camera, which are
essential for deriving the high-fidelity model of the ALACS unit. In the following, we first
introduce the pin-hole model of the camera and then present the model of the ALACS.
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Let pi be a point located at the intersection of the laser line and the object. The 3D

position of pi under the camera frame Fc is denoted by pc,i =
[

xc,i, yc,i, zc,i
]¦

∈ R3. The
corresponding normalized coordinate p̄c,i ∈ R3 is defined by

p̄c,i =
[

ūc,i, v̄c,i, 1
]¦

=
[

xc,i
zc,i

, yc,i
zc,i

, 1
]¦

. (1)

Denote mc,i =
[

uc,i, vc,i, 1
]¦

∈ R3 as the pixel coordinate of pi on the image plane. Then,
the following pin-hole camera model can be used to describe the projection from p̄c,i to mc,i:

mc,i = ϖ(Kp̄c,i), (2)

where ϖ(·) is the camera distortion model and K ∈ R3×3 is the camera intrinsic matrix.
Both ϖ(·) and K can be obtained via standard calibration approaches, and thus once mc,i is
detected from the image, the normalized coordinate p̄c,i can be calculated by

p̄c,i = K−1ϖ−1(mc,i). (3)

We now derive the high-fidelity model for the ALACS unit. Denote pl,i =
[

xl,i, yl,i, zl,i
]¦

∈ R3 as the 3D position of pi under the laser frame Fl . According to the relative pose
between Fl and Fc (see Figure 4), it can be concluded that





xc,i
yc,i
zc,i



 =





cos(³) 0 sin(³)
0 1 0

− sin(³) 0 cos(³)









xl,i
yl,i
zl,i



+





−L cos(³)
0

L sin(³)



. (4)

In addition, as there is an angle, i.e., ´, between the laser plane and the (yl , zl) plane of Fl ,
we have

xl,i = −yl,i tan(´). (5)

Based on (4) and (5), the following expression can be derived:

tan(³) =
xc,i + L cos(³) + yc,i cos(³) tan(´)

zc,i − L sin(³)− yc,i sin(³) tan(´)
. (6)

It can be concluded from (1) that xc,i = zc,iūc,i and yc,i = zc,i v̄c,i. After submitting these two
relations into (6), we can derive that

zc,i =
L

sin(³)− ūc,i cos(³)− v̄c,i tan(´)
. (7)

Using (7) and the facts that xc,i = zc,iūc,i and yc,i = zc,i v̄c,i, we have

xc,i =
Lūc,i

sin(³)− ūc,i cos(³)− v̄c,i tan(´)
,

yc,i =
Lv̄c,i

sin(³)− ūc,i cos(³)− v̄c,i tan(´)
.

(8)

Equations (7) and (8) are the high-fidelity model that reveals the 3D measurement
mechanism of the ALACS unit. Specifically, given the pixel coordinate mc,i, p̄c,i, i.e., ūc,i
and v̄c,i, this can be computed via (3). Then, models (7) and (8) can be exploited to calculate

the 3D position pc,i =
[

xc,i, yc,i, zc,i
]¦

provided that the extrinsic parameters ³, L, and ´ are
well calibrated.
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Figure 4. Coordinate frames and extrinsic parameters of the ALACS unit.

4.2. Robust Calibration Scheme

The extrinsic parameters ³, L, and ´ play a crucial role in facilitating the 3D measure-
ment of the ALACS unit. In this subsection, we focus on introducing how we perform
robust calibration on the extrinsic parameters ³, L, and ´. Note that ³ and ´ are constants,
while L is variable as the linear motion slide can move to different positions. During
the calibration procedure, the linear motion slide is fixed at an initial position, and the
corresponding horizontal distance between laser and camera is denoted by L0 ∈ R. ³,
´, and L0 (i.e., the initial value of L) are obtained via offline calibration. Then, when the
linear motion slide is moving, L can be updated online based on its initial value L0 and the
movement distance of the linear motion slide.

The calibration procedure includes two steps. In the first step, multiple sets of data

si =
[

ūc,i, v̄c,i, zc,i
]¦

∈ R3 (i = 1, 2, · · · , n) are collected from recorded images. The second
step then formulates an optimization problem by using the collected data and the model (7)
to compute the extrinsic parameters. The following details these two steps in sequence.

The hardware setup for image and data collection is shown in Figure 5, where a planar
checkerboard is placed in front of the ALACS unit so that the laser line will be projected on
it. We use the planar checkerboard as the calibration pattern to facilitate the data collection.
Specifically, given an image that covers the whole checkerboard, the pixel coordinates of
laser points projected on the checkerboard are extracted based on the color feature. Once
pixel coordinate mc,i is obtained, the corresponding normalized coordinate p̄c,i, i.e., ūc,i and
v̄c,i, is calculated with (3). Furthermore, we leverage the following scheme to calculate zc,i
(see Figure 6):
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1. Corner Detection. The checkerboard corners are detected from the image by using
the algorithm developed in [45].

2. Pose Reconstruction. Based on the detected checkerboard corners and the prior
knowledge about the checkerboard square size, the relative pose information between
the planar checkerboard and the camera is reconstructed [46]. The pose information
is described by the rotation matrix Rb ∈ SO

3 and the translation vector tb ∈ R3.
3. Computation of zc,i. Based on the relative pose information Rb, tb and the normalized

coordinate p̄c,i, zc,i is calculated with projection geometry [46].

Figure 5. Hardware setup for extrinsic parameter calibration.

(a) (b) (c)

Figure 6. Scheme to compute zc,i. (a) Corner detection. (b) Pose reconstruction. (c) Computation
of zc,i.

To obtain multiple data samples si =
[

ūc,i, v̄c,i, zc,i
]¦

(i = 1, 2, · · · , n), the planar
checkerboard is moved to different positions, and an image is recorded at each position.
For each image, several laser points are selected and the corresponding data samples
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si =
[

ūc,i, v̄c,i, zc,i
]¦

are computed by using the aforementioned strategy. A total of n data
samples will be collected and then used for the calibration of extrinsic parameters.

In the second step, the extrinsic parameters are to be identified based on the model (7)

and the collected data samples si =
[

ūc,i, v̄c,i, zc,i
]¦

(i = 1, 2, · · · , n). In the ideal case, each
data sample si should satisfy the relation (7). According to this observation, the extrinsic
parameters ³, L0, and ´ can be estimated by solving the following optimization problem:

min
³̂,L̂0, ˆ́

f =
n

∑
i=1

(zc,i − ẑc,i)
2,

s.t. ẑc,i =
L̂0

sin(³̂)− ūc,i cos(³̂)− v̄c,i tan( ˆ́)
,

i = 1, 2, · · · , n,

(9)

where ³̂, L̂0, and ˆ́ ∈ R are estimated values of ³, L0, and ´, respectively. Note that the
minimization problem (9) directly applies all data samples to compute extrinsic param-
eters, which is not robust in the presence of data outliers. In general, the data samples

si =
[

ūc,i, v̄c,i, zc,i
]¦

(i = 1, 2, · · · , n) are corrupted with noise and may contain outliers that
do not satisfy the relation (7). These outliers can severely influence the calibration accuracy
and thus need to be removed. Towards that end, we adopt the random sample consensus
(RANSAC) methodology [47,48] to extract credible data from S = {s1, s2, · · · , sn}. The
RANSAC-based robust calibration scheme is detailed in Algorithm 1. Specifically, the
calibration scheme is divided into three steps. First, subsets of S are randomly selected to
calculate different possible solutions to problems (9). Each one of these possible solutions
is called a hypothesis in the RANSAC algorithm. Second, hypotheses are scored using the
data points in S , and the hypothesis that obtains the best score is returned as the solution.
Finally, the data points that voted for the solution are categorized as a set of inliers and will
be used to calculate the final solution.

Algorithm 1 RANSAC-based robust calibration

Input: S = {s1, s2, · · · , sn}, kmax, ϵ
Output: ³̂, L̂0, ˆ́

k = 0, Imax = 0
while k < kmax do

1. Hypothesis generation
Randomly select 4 data samples from S to construct the subset Sk =

{

sk1
, sk2

, sk3
, sk4

}

,
where {k1, k2, k3, k4} ¢ {1, 2, · · · , n}

Estimate parameters
(

³̂k, L̂0,k, ˆ́
k

)

based on Sk and (9)
2. Verification
Initialize the inlier set Ik = {}
for i = 1, 2, · · · , n do

if

∣

∣

∣

∣

zc,i −
L̂0,k

sin(³̂k)−ūc,i cos(³̂k)−v̄c,i tan( ˆ́
k)

∣

∣

∣

∣

f ϵ then

Add si to the inlier set Ik

end if
end for
if |Ik| > Imax then

I∗ = Ik, Imax = |Ik|
end if
k = k + 1

end while
Estimate parameters

(

³̂, L̂0, ˆ́) based on I∗ and (9)

The developed calibration scheme leverages RANSAC techniques to iteratively es-
timate the model parameters and select the solution with the largest number of inliers.
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Therefore, it is able to robustly identify the model parameters when some data samples are
corrupted or noisy.

5. Experiments

5.1. Calibration Methods and Results

As shown in Figure 5, the experimental setup mainly consists of a specially designed
ALACS unit and a planar checkerboard. To collect data samples for calibration, the pla-
nar checkerboard is placed in sequence at 10 different positions between 0.6 and 1.2 m
from the ALACS unit, and at each position the FLIR camera is triggered to capture an
image. For each image, three laser points are selected and the corresponding data samples

si =
[

ūc,i, v̄c,i, zc,i
]¦

are computed by using the strategy introduced in Section 4.2. A total of
n = 30 data samples are collected and then used for the calibration of extrinsic parameters.

To better evaluate the effectiveness of the developed high-fidelity model and robust
calibration scheme, four different methods are implemented and tested on the same data
samples. These four methods are introduced, as follows:

• Method 1: This method utilizes the low-fidelity model to conduct the calibration.
Specifically, the low-fidelity model only considers two extrinsic parameters, ³ and L,
and assumes that ´ = 0. Under this case, the depth measurement mechanism of the
ALACS unit degenerates into

zc,i =
L

sin(³)− ūc,i cos(³)
. (10)

The model (10) and all collected data samples are used to estimate the extrinsic
parameters ³ and L.

• Method 2: Both the low-fidelity model (10) and RANSAC techniques are used for
calibration. Compared with Method 1, this method leverages RANSAC to remove
outlier data.

• Method 3: This method computes the extrinsic parameters ³, L0, and ´ by solving the
optimization problem (9), which is designed based on the high-fidelity model (7) and
all data samples.

• Method 4: This is our developed method which combines the high-fidelity model
with RANSAC techniques for calibration. The method is detailed in Algorithm 1.

The mean error of |zc,i − ẑc,i| is computed to evaluate the performance of these four
methods. The calibration results are summarized in Table 1. Both Methods 1 and 2 use
model (10) for calibration, while Methods 3 and 4 rely on model (7). From Table 1, it
can be seen that Methods 3 and 4 achieve better calibration performance than Methods
1 and 2, indicating that the high-fidelity model (7) can well pair the laser with the RGB
camera for depth measurements. Moreover, by comparing Method 3 with Method 4, it
can be concluded that the RANSAC technique is robust for the removal of outlier data
and the developed calibration method is effective in determining the extrinsic parameters
of the ALACS unit. The precision of the extrinsic model and the existence of outlier
data are two main contributors to calibration errors. The extrinsic model plays a crucial
role in establishing the correlation between the raw data captured by the ALACS and
the corresponding 3D measurements. Inaccuracies in the extrinsic model, which fails to
faithfully represent the characteristics of the ALACS, result in improper corrections, leading
to substantial calibration errors. Additionally, outliers within data samples can introduce
significant distortions in the estimation of extrinsic parameters, further contributing to
inaccuracies in calibration. The removal of outliers becomes imperative to ensure that the
calibration model is founded on the majority of reliable and accurate data points.
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Table 1. Calibration results for the four methods used.

α (deg) L0 (mm) β (deg)
Mean Error

∣

∣zc,i − ẑc,i

∣

∣ (mm)

Method 1 (Low-fidelity model + All data) 19.03 382.83 / 4.91
Method 2 (Low-fidelity model + RANSAC) 19.28 386.37 / 3.80
Method 3 (High-fidelity model + All data) 19.01 381.09 0.73 1.84
Method 4 (High-fidelity model + RANSAC) 19.07 381.98 0.69 0.39

All four methods are implemented in MATLAB 2022a on a laptop equipped with an
Intel i7-10710U CPU boasting 6 cores, a 1.6 GHz clock rate, and 16 GB RAM. The compu-
tation time for each method is presented in Table 2. It can be seen that the computation
time for Methods 2 and 4 is much larger than that for Methods 1 and 3. Both Methods 2
and 4 employ the RANSAC technique to remove outlier data. As introduced in Section 4.2,
RANSAC involves the random selection of data point subsets to form candidate solutions,
and this process is repeated for a predetermined number of iterations or until a termination
condition is satisfied. The inherent randomness and iterative nature of RANSAC con-
tribute significantly to the computational cost. Therefore, Methods 2 and 4 exhibit longer
computation time in comparison to Methods 1 and 3.

Table 2. Computation time for four methods.

Computation Time(s)

Method 1 (Low-fidelity model + All data) 0.015
Method 2 (Low-fidelity model + RANSAC) 1.741
Method 3 (High-fidelity model + All data) 0.023
Method 4 (High-fidelity model + RANSAC) 1.824

5.2. Localization Accuracy

As mentioned in Section 4.2, the parameters ³ and ´ are constants, while L is variable
since the laser position can be adjusted via the linear motion slide. The linear motion slide
is fixed at an initial position (i.e., L is fixed to L0) during the calibration procedure. We
change the value of L by moving the laser to different positions and collect data samples
to fully evaluate the localization accuracy of the ALACS unit. More precisely, the laser is
moved from its initial position towards the camera side by d cm, where d is selected as the
following values in turn:

d = 0, 5, 10, 15, 20.

Given L0 and d, L can be computed by L = L0 − d. For each laser position (i.e., for each
L value), 10 images are collected with the planar checkerboard being placed at different
positions between 0.6 and 1.2 m away from the ALACS unit. Three laser points are
randomly chosen from each image, and then at each laser position, a total of 30 data samples
are utilized to evaluate the localization accuracy of the ALACS unit. The 3D measurements

of the collected data, i.e., pc,j =
[

xc,j, yc,j, zc,j
]¦

(j = 1, 2, · · · , 30), are obtained with the
aid of the checkerboard setup. Meanwhile, the extrinsic parameters calculated with the
developed robust calibration scheme (see Table 1) are used to determine the estimated 3D

measurements p̂c,j =
[

x̂c,j, ŷc,j, ẑc,j
]¦

.
The localization results are shown in Figure 7. Specifically, Figure 7a shows the

localization error distribution of the ALACS with laser being placed at five different
positions, and Figure 7b depicts the corresponding statistical metrics. It can be found
from the results that the ALACS unit achieves precise localization in the x (horizontal), y
(vertical), and z (depth) directions. In most instances, the localization errors along x, y, and
z directions are within 0.4 mm, 0.8 mm, and 3 mm, respectively. Even under the worst-case
scenarios, the largest localization errors along these three directions are less than 0.6 mm,
1.2 mm, and 4 mm, respectively, when the distance between the planar checkerboard and
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the ALACS is within 0.6∼1.2 m. Note that our robotic harvesting system uses a vacuum-
based end-effector to grasp and detach fruits, and the end-effector is able to attract fruits
within a distance of about 1.5 cm. Therefore, according to the evaluation results, it can be
concluded that the ALACS unit can meet the requirements for fruit localization and can be
integrated with other hardware modules for automated apple harvesting.

(a)

(b)

Figure 7. Localization accuracy of ALACS when the laser is adjusted to different positions
(i.e., d = 0, 5, 10, 15, 20 cm). (a) Localization error distribution at 5 different laser positions.
(b) Statistics summary of the localization error distribution. On each box, the central red mark
is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the
most extreme data points.

The RealSense D435i RGB-D camera was used in our previous apple harvesting robotic
prototypes to localize the fruit [10,12]. According to the manufacturer’s datasheet [49], this
camera offers a measurement accuracy of less than 2% of the depth range. This suggests
that the maximum localization error along the depth direction is estimated to be less than
24 mm within the distance range of 0.6 to 1.2 m between the target and the camera. On
the other hand, the ALACS unit demonstrates a maximum depth measurement error of
4 mm at distance ranging from 0.6 to 1.2 m. These results indicate that the ALACS unit has
promising potential for achieving precise and reliable fruit localization. Meanwhile, it is
worth noting that, in contrast to passive stereo-vision systems and RGB-D cameras capable
of generating dense depth information across their entire workspace, the ALACS unit is
specifically tailored for fruit localization and can only provide precise 3D measurements
for the target fruits.

6. Conclusions

This paper has reported the system design and calibration scheme of a new perception
module, called the Active LAser-Camera Scanner (ALACS), for fruit localization. A red line
laser, an RGB camera, and a linear motion slide were fully integrated as the main compo-
nents of the ALACS unit. A high-fidelity model was established to reveal the localization
mechanism of the ALACS unit. Then, a robust scheme was proposed to calibrate the model
parameters in the presence of data outliers. Experimental results demonstrated that the
proposed calibration scheme can achieve accurate and robust parameter computation, and
the ALACS unit can be exploited for localization with the maximum errors being less than
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0.6 mm, 1.2 mm, and 4 mm in the horizontal, vertical, and depth directions, respectively,
when the distance between the target and the ALACS is within 0.6∼1.2 m. Future work will
focus on enhancing the efficiency and scalability of the scanner such that it can provide a
faster measurement to support multiple arms planned in our next version of the harvesting
robot. Additionally, improvements will be made in the localization algorithm to address
diverse environmental conditions (e.g., variations in lighting). The system will be extended
to facilitate the localization and harvesting of other tree fruits. Last but not least, we will
design comprehensive experiments to compare the measurement accuracy of the ALACS
unit and consumer depth cameras.
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