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ABSTRACT: Internal waves generated by the interaction of the surface tides with topography

are known to propagate long distances and lead to observable effects such as sea level variability,

ocean currents, and mixing. In an effort to describe and predict these waves, the present work is

concerned with using geographically-distributed data from satellite altimeters and drifting buoys to

estimate and map the baroclinic sea level associated with the M2, S2, N2, K1, and O1 tides. A new

mapping methodology is developed, based on a mixed 𝐿1/𝐿2-norm optimization, and compared

with previously-developed methods for tidal estimation from altimeter data. The altimeter and

drifter data are considered separately in their roles for estimating tides and for cross-validating

estimates obtained with independent data. Estimates obtained from altimetry and drifter data

are found to agree remarkably well in regions where the drifter trajectories are spatially dense;

however, heterogeneity of the drifter trajectories is a disadvantage when they are considered

alone for tidal estimation. When the different data types are combined by using geodetic-mission

altimetry to cross-validate estimates obtained with either exact-repeat altimetry or drifter data, and

subsequently averaging the latter estimates, the estimates significantly improve on the previously-

published HRET8.1 model, as measured by their utility for predicting either sea level anomaly

or ocean surface currents in the open ocean. The methodology has been applied to estimate the

annual modulations of M2, which are found to have much smaller amplitudes compared to those

reported in HRET8.1, and suggest that the latter estimates of these tides were not reliable.
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SIGNIFICANCE STATEMENT: The mechanical and thermodynamic forcing of the ocean occurs26

primarily at very large scales associated with the gravitational perturbations of the sun and moon27

(tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean28

act on very small scales. This research addresses the question of how the large-scale tidal forcing29

is transformed into the smaller-scale motion capable of being influenced by friction. The results30

show where internal waves are generated, and how they transport energy across ocean basins to31

eventually be dissipated by friction. The results are useful to scientists interested in mapping32

the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean33

temperature, and ocean currents.34

1. Introduction35

This paper is concerned with estimating and mapping the tidal harmonic constants associated36

with the sea level anomaly (SLA) of baroclinic tides in the open ocean. It develops an approach37

based on a model for the SLA consisting of spatial Fourier modes modulated in time by the38

astronomical gravitational tide-generating potential. It thus extends approaches from the literature39

in which different forms of a relatively simple kinematic wave model are used to map baroclinic40

tides (Ray and Cartwright 2001; Zhao et al. 2012; Dushaw 2015; Zaron 2019). This work is41

broadly motivated by the desire to improve baroclinic tide prediction and to understand the role of42

the tides in the dynamics of the ocean.43

Carrere et al. (2021) compared different models for predicting the baroclinic tides. Broadly, such44

models could be classified as follows: (1) ad-hoc empirical models in which observed harmonics45

of the baroclinic tides are smoothly interpolated and extrapolated to yield continuous fields for46

prediction of the tides at arbitrary locations (Ray and Zaron 2016), (2) kinematic wave models47

which represent the observed harmonics as a superposition of idealized waves (Dushaw 2015;48

Zhao et al. 2016; Zaron 2019; Ubelmann et al. 2022), (3) dynamic wave models which solve49

for the baroclinic tides from the known astronomical tide-generating force (Shriver et al. 2014),50

and (4) data-assimilative models which assimilate observations into a dynamic wave model, using51

assumptions about the expected errors of the observations and the model (Egbert and Erofeeva52

2014). In approach (2), the kinematic wave models, there are different criteria for identifying the53

constituent waves and describing their waveforms. In approach (4), the data-assimilative model,54
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the attributes of the dynamical model errors must be quantified, rather than the attributes of the55

wave field per se, and there is considerable uncertainty about how the dynamical errors should56

be represented. One might anticipate that a data-assimilative model would be more accurate than57

a kinematic wave model, because the SLA obtained would unambiguously correspond to some58

dynamics, even if these differ from the ones specified a priori; however, Carrere et al. (2021) found59

that the most accurate tidal SLA predictions were obtained from a kinematic wave model, rather60

than a data-assimilative model. The working hypothesis of this paper is that the systematic pursuit61

of a descriptive kinematic model will provide insight into the causes of the surprising results62

of Carrere et al. (2021), and lead to a better understanding of baroclinic wave dynamics in the63

ocean.64

The approach taken here is to extend previous works in two ways. First, different formulations of65

the estimators for the kinematic wave model are considered, including the stepwise least-squares66

approaches of Zhao et al. (2016) and the penalized least-squares of Dushaw (2015), leading to the67

preferred approach, a type of least-angle regression (Efron et al. 2004). And, second, different68

independent data sources are used for building the kinematic wave models and for cross-validating69

them. The independent data are exact-repeat mission altimetry, geodetic mission altimetry, and70

surface currents estimated with Lagrangian surface drifters. The altimeter data are used in two71

forms, both as along-track sea level anomaly and as along-track collinear sea level anomaly72

differences, i.e., sea surface slope. The different kinds of data provide alternate stopping criteria73

for the iterative estimation algorithms, and reveal the degree to which different criteria lead to74

different estimates. The different data types were collected over different time periods, they are75

subject to different sources of instrumental error, and they are subject to different degrees of76

contamination by non-tidal signals which interfere with the tidal estimation. There is evidence77

that the baroclinic tides are undergoing long-term secular changes (Zhao 2023), but the focus of78

the present work is on estimating the time-mean baroclinic tides, the so-called phase-locked or79

stationary tides, with the hope of returning to the question of long-term variability in the future80

using the tools developed herein.81

The organization of this manuscript is as follows. Section 2 provides an overview of the family of82

estimators used for analyzing and mapping the diverse data sources mentioned above, and Section83

3 describes these data sources in detail. In Section 4, the implementations of the estimators are84
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Table 1. Tides considered. Darwin symbols and corresponding Doodson numbers for the mapped tides

are listed. The alias periods of the tides are are shown, in days, for the exact-repeat mission sampling along

the Topex/Poseidon/Jason tracks (TX), the Geosat Follow-On tracks (G1), and the ERS-2/Envisat/Saral-AltiKa

tracks (E2)

88

89

90

91

Darwin Doodson Alias periods Data window
symbol number TX/G1/E2 [day] 𝐿𝑑 [km]

O1 1 455 554 46/113/75 1000
K1 1 655 556 173/175/365 1000
N2 2 456 555 50/52/97 1000

MA2 2 545 555 75/170/75 1000
M2 2 555 555 62/318/94 500

MB2 2 565 555 53/2459/127 1000
S2 2 735 555 59/169/∞ 1000

described and tested, leading to the selection of the formulation which is used subsequently in85

Section 5. Finally, in Sections 6 and 7, the results are discussed and summarized.86

2. Mapping Methodology, Part I: Overview87

a. A kinematic wave model92

The tides are unique among ocean phenomena in that their temporal structure is well-defined by93

the known gravitational dynamics of the Sun, Earth, and Moon. The baroclinic tides are represented94

here by the SLA that is phase-locked with the astronomical gravitational tidal potential,95

𝜂(𝜃, 𝜙, 𝑡) =
∑︁
𝑗

𝑅𝑒[𝜁 𝑗 (𝜃, 𝜙) 𝑓 𝑗 (𝑡) exp(−𝑖(𝜔 𝑗 𝑡 +𝑢 𝑗 (𝑡)))], (1)

where 𝑗 indexes the partial tides which are here denoted by their Darwin symbols, e.g., M2,96

with corresponding frequencies 𝜔 𝑗 obtained from the Doodson numbers enumerated in Table 1;97

(𝜃, 𝜙) are spherical-polar spatial coordinates; 𝜁 𝑗 (𝜃, 𝜙) is the complex-valued field giving the spatial98

structure of the 𝑗-th partial tide; and 𝑓 𝑗 (𝑡) and 𝑢 𝑗 (𝑡) are given functions which account for the99
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Fig. 1. Centers of tangent-planes used for mapping M2 are indicated with black dots overlaid on (a) water

depth and (b) the M2 baroclinic sea level anomaly in the region around Madagascar in the West Indian Ocean.

The red dot and red circle indicate the center of a tangent-plane and the data disk of a representative 𝐷𝑚. The

SLA shown in panel (b) is the E∗ estimate discussed later in the text.

109

110

111

112

modulations associated with the 18.6-yr precession of the node of the lunar orbit (Foreman et al.100

2009).101

The spatial structure of the tides, 𝜁 𝑗 (x), is represented with a kinematic wave model (as dis-102

tinct from a dynamical wave model) comprised of a linear combination of idealized propagating103

waveforms. For computational considerations, the properties of the waves are assumed to be104

independent within a patchwork of locally-defined tangent-planes, 𝐷𝑚, overlapping around the105

globe. The centers of the tangent planes used for mapping M2 are shown in Figure 1. The spacing106

between 𝐷𝑚 centers is approximately one-fourth the radius of a data disk, 𝐿𝑑 , at the center of each107

tangent-plane, to be described later.108

Let 𝜁 𝑗𝑚 (x) be the estimate of 𝜁 𝑗 obtained for x ∈ 𝐷𝑚. Within 𝐷𝑚, the spatial structure of 𝜁 𝑗𝑚 is113

assumed to be,114

𝜁 𝑗𝑚 (x) =
𝑝+𝑞=𝑃∑︁
𝑝,𝑞=0

∑︁
k
𝑎 𝑗𝑚𝑝𝑞k𝑥

𝑝𝑦𝑞 exp(𝑖k ·x), (2)

which can be regarded as a sum of propagating plane-waves with vector wavenumbers, k, modulated115

by a polynomial amplitude envelope, 𝑥𝑝𝑦𝑞, for 0 ≤ 𝑝 + 𝑞 ≤ 𝑃. Note that the order-𝑃 polynomial116

amplitude envelope provides 𝑁𝑝 = (𝑃+1) (𝑃+2)/2 polynomial coefficients per wavenumber com-117
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ponent, and a quadratic envelope is used here (𝑃 = 2; 𝑁𝑝 = 6). Within each tangent-plane, local118

Cartesion coordinates are used, x = (𝑥, 𝑦), relative to the center (𝜃𝑚, 𝜙𝑚), and the wavenumbers119

k = (𝑘, 𝑙) are taken as the set of discrete Fourier wavenumbers at Δ𝑥 = 6 km spatial resolution, the120

approximate spatial resolution of the along-track altimetry data. Note that the coefficients, 𝑎 𝑗𝑚00k,121

are the discrete Fourier transform coefficients of the local plane-wave representation of 𝜁 𝑗𝑚; the122

other coefficients, 𝑎 𝑗𝑚𝑝𝑞k for 𝑝, 𝑞 ≠ 0, represent non-plane-wave features of 𝜁 𝑗𝑚.123

Let â 𝑗𝑚𝑝𝑞 = {𝑎 𝑗𝑚𝑝𝑞k} denote the collection of coefficients for all the discrete Fourier wavenum-124

bers, k, and let 𝐹 and 𝐹† denote the unitary discrete Fourier transform pair. A compact represen-125

tation of equation (2) is given by,126

𝜁 𝑗𝑚 (x) =
𝑝+𝑞=𝑃∑︁
𝑝,𝑞=0

𝑥𝑝𝑦𝑞𝐹†â 𝑗𝑚𝑝𝑞, (3)

which is the core of the computationally-efficient implementation of the estimators presented below.127

For notational convenience, equation (3) shall be written as a linear system,128

𝜁 𝑗𝑚 = Fa 𝑗𝑚, (4)

where the vector a 𝑗𝑚 = {â 𝑗𝑚𝑝𝑞} collects all the unknown coefficients, and F is a linear operator129

assembled from the modified Fourier operators, 𝑥𝑝𝑦𝑞𝐹†. The vector, a 𝑗𝑚, will be referred to as the130

vector of generalized Fourier coefficients, since each element of the vector is the coefficient of a131

plane-wave component with a discrete Fourier wavenumber, multiplied by 𝑥𝑝𝑦𝑞. In equation (4),132

𝜁 𝑗𝑚 is a vector of gridded harmonic constants for tide- 𝑗 within the Cartesian tangent-plane 𝐷𝑚133

corresponding to the function, 𝜁 𝑗𝑚 (x), in equation (2). To be explicit, on a square domain containing134

𝑀 ×𝑀 grid-points, the dimension of the 𝜁 𝑗𝑚 vector is 𝑀2 × 1, the dimension of the F matrix is135

𝑀2 ×𝑁𝑝𝑀2, and the dimension of the a 𝑗𝑚 vector is 𝑁𝑝𝑀2 ×1.136

b. The local Cartesian planes and their blending137

Estimates of 𝜁 𝑗𝑚 are found using data within a circular patch of radius 𝐿𝑑 contained within each138

𝐷𝑚. Each 𝐷𝑚 is a square with side length, 𝐿 =
√

2𝐿𝑑 , which provides a data-free region around139

the data patch. The domains, 𝐷𝑚, are overlapping and staggered so that the centers are offset by140
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approximately 𝐿𝑑/2. The data-free region prevents the periodic boundary condition of the Fourier141

basis from unduly influencing 𝜁 𝑗𝑚 estimates within the data disk, while the overlapping tangent142

planes insure that at least two independent estimates of the harmonic constants are made at any143

location, except near coastlines. The radius of the data window, 𝐿𝑑 , will be specified, below.144

A continuously-differentiable representation of 𝜁 𝑗 (x) is computed as a weighted average,145

𝜁 𝑗 (x) = 𝑁−1
𝑗 (x)

∫
𝐷

∑︁
𝑚

𝐾 ( | |x−x𝑚 | |/𝐿𝑑)𝜁 𝑗𝑚 (x)𝑑x, (5)

where the normalization factor is given by,146

𝑁 𝑗 (x) =
∫
𝐷

∑︁
𝑚

𝐾 ( | |x−x𝑚 | |/𝐿𝑑)𝑑x, (6)

for the global domain, 𝐷. The averaging kernel, 𝐾 (𝑟), is a radial basis function with compact147

support (Wendland 1995),148

𝐾 (𝑟) = (1− 𝑟)3(3𝑟 +1), (7)

for 0 ≤ 𝑟 ≤ 1, and zero otherwise. Explicitly, the distance function is defined by | |x− x𝑚 | |2 =149

[(𝜃 − 𝜃𝑚)2 + ((𝜙−𝜙𝑚) cos𝜃𝑚))2]𝑟2
𝑒 , where 𝑟𝑒 is Earth’s radius.150

c. A dynamical relationship between surface velocity and 𝜂151

One goal of the present work is to estimate ocean surface currents due to baroclinic tides. Here,152

currents are estimated with the horizontal momentum equation,153

−𝑖𝜔 𝑗u 𝑗 + 𝑓 𝑘̂ ×u 𝑗 = −𝑔∇𝜂 𝑗 , (8)

where u 𝑗 = (𝑢 𝑗 , 𝑣 𝑗 ) is the horizontal velocity vector associated with the 𝑗-th partial tide, 𝑓 is the154

Coriolis frequency, and 𝑔 is gravitational acceleration. This equation is an approximation which155

neglects nonlinear advection and turbulent stresses. In keeping with the kinematic nature of the156

wave model for 𝜂 𝑗 , these approximations are accepted as part of the descriptive nature of the model,157

and they can be partly justified a posteriori. Note that the u 𝑗 and 𝑓 in equation (8) should not be158

confused with the nodal factors, 𝑢 𝑗 and 𝑓 𝑗 , appearing in equation (1), above.159
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When 𝜔 𝑗 = 𝑓 , equation (8) is singular and cannot be inverted for u 𝑗 . Initially, a Rayleigh160

damping term was added to regularize the inversion, but experimentation revealed that no damping161

was necessary so long as |𝜔 𝑗 − 𝑓 | is larger than machine precision at the gridpoints of the local162

tangent plane. In principle, a physical model for damping could be justified (Savva and Vanneste163

2018; Kafiabad et al. 2019; Dong et al. 2020; Kelly et al. 2021); however, at this stage it is unclear164

if the data are sufficient to distinguish among plausible alternative models.165

d. Estimators for a 𝑗𝑚166

As described above, the baroclinic tidal sea level anomaly is represented in terms of generalized167

Fourier coefficients, a 𝑗𝑚. This section introduces a family of estimators for a 𝑗𝑚 capable of168

incorporating both observed data (measurements of SLA and surface velocity) and constraints on169

allowable wavenumbers, k, inferred from the dispersion relation. Recall that the 𝑗 and𝑚 subscripts170

on a 𝑗𝑚 refer to the tidal frequency (𝜔 𝑗 ) and the local tangent plane (𝐷𝑚). For convenience in this171

section, let a𝑚 = {a 𝑗𝑚} denote a single vector of generalized Fourier coefficients for all the partial172

tides; furthermore, subscript 𝑚 shall be omitted since the generalized Fourier coefficients will be173

estimated independently within each tangent plane.174

One family of estimators for a are minimizers of an objective function of the form,175

J (a;𝜆,𝛼,B,C) = 𝜆 | |B−1/2a| |𝛼 + (d−HFa)𝑇C−1(d−HFa), (9)

where 𝜆 is a scalar regularization parameter; 𝛼 ∈ {0,1,2} is a scalar which determines the norm176

used in the regularization; B1/2 is the matrix square-root of B, a positive-semidefinite weighting177

matrix (commonly identified with the background error covariance of a for the case 𝛼 = 2); C is178

a positive-definite weighting matrix, referred to as the observation error covariance matrix; d is179

a vector of observational data; and H is a linear observation operator which samples the fields of180

harmonic constants (𝜁 =Fa) to produce model-based estimates of the observations. Note that H may181

involve spatial interpolation (corresponding to observations of along-track harmonic constants),182

interpolation and harmonic synthesis in time (corresponding to observations of along-track SLA),183

interpolation, harmonic synthesis, and spatial gradients (corresponding to observations of ocean184

surface currents), or other linear operations (such as along-track differencing). The definitions of185

the norm | |a| |𝛼 are as follows: | |a| |0 is the number of non-zero elements of a, | |a| |1 =
∑
𝑖 |𝑎𝑖 |, and186
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Table 2. Exact-repeat orbit satellite altimeter missions used. Abbreviations follow the usage in the Radar

Altimeter Database System (Scharroo et al. 2013).

197

198

Satellite mission Time period Orbit cycles

(TOPEX/Jason reference orbit, Δ𝑡 = 9.9156d)
TXA 1992–2002 4–364
J1A 2002–2009 1–259
J2A 2008–2015 1–303
J3A 2016–2021 1–216

(TOPEX/Jason interleaved orbit, Δ𝑡 = 9.9156d)
TXB 2002–2005 369–480
J1B 2009–2012 262–374
J2B 2016–2017 305–327

(Geosat orbit, Δ𝑡 = 17.0505d)
G1A 2000–2008 37–223

(ERS/Envisat reference orbit, Δ𝑡 = 35.0000d)
E2A 1995–2003 1–83
N1B 2002–2010 10–94
SAA 2013–2017 1–34

| |a| |2 = a𝑇a, where superscript 𝑇 indicates transpose and 𝑖 ranges over the elements of a, taken as187

a real-valued vector.188

The general formulation of (9) is used here because it is capable of representing many of the189

previous approaches to estimating the baroclinic tides. One of the key distinctions among methods190

is the choice of model complexity, specifically, the number of component plane waves used in191

stepwise regression (Zhao et al. 2014), the order of the polynomial model for the amplitude192

modulation (Zaron 2019), and the bandwidth of allowable waves around the predicted dispersion193

relation (Dushaw 2015). In (9), the gamut of component waves is determined by the non-zero194

entries of B. The model complexity (i.e., the number of waves with significant or non-zero195

coefficients) can be controlled by the scalar 𝜆, a tradeoff parameter, and 𝛼, the type of norm used.196
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(a) (b) J2D altimetry (c) Drifter trajectories

Fig. 2. Data locations within a representative data patch northeast of Madagascar (indicated with the red

circle in Figure 1). (a) M2 harmonic constants from ERM altimetry, (b) GM altimeter data from the J2D mission,

which represents only 5% of GM data within this patch, and (c) drifter trajectories. The contour in panel (a) is

the 500m isobath; the scale image in panels (b) and (c) is the optimal estimate of the M2 tide using the same

colorscale as panel (a); the dashed line is the boundary of the data patch, with radius 𝐿𝑑 = 250km from the center

of the tangent-plane.

199

200

201

202

203

204

3. Data205

Data from three different sources are used to build and evaluate the family of estimators proposed206

in the previous section. The purpose of using different data sources is to conduct robust cross-207

validation studies, wherein the model estimated from one source is evaluated by comparison with208

another source.209

a. SLA Harmonic Constants from Exact-Repeat Orbit Altimetry210

The exact-repeat mission (ERM) altimetry data used here include those used in Zaron (2019),211

updated through 2020-12-31. The data were pre-processed and harmonic constants computed as212

described in Zaron (2019) with one change: prior to harmonic analysis, the DT-2021 version of213

the SSALTO/DUACS gridded mesoscale SLA is subtracted from the altimeter SLA, rather than214

the older version of the SSALTO/DUACS product (Zaron and Ray 2018) used previously.215

Table 2 summarizes the ERM altimeter missions used, and Figure 2a illustrates these data within216

the 𝐷𝑚 indicated in red in Figure 1. The data are typical of observations close to complex217
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Table 3. Long-repeat- and non-repeat-orbit satellite altimeter missions used. Abbreviations follow the Radar

Altimeter Database System (Scharroo et al. 2013).

230

231

Satellite mission Time period Orbit cycles

Cryosat-2/phase A (C2A) 2010–2020 7–136
Jason-1/phase C (J1C) 2012–2013 382–425
Jason-2/phase C (J2C) 2017–2018 332–355
Jason-2/phase D (J2D) 2018–2019 356–383
Saral-AltiKa/phase B (SAB) 2016–2021 36–92

topography and exhibit amplitudes of several centimeters, correlated at nearby mission ground218

tracks, but without a clear large-scale spatial structure.219

In order to reduce the effect of residual long-wavelength errors, the complex harmonic constants220

are differenced in the along-track direction. This approach is different from the along-track filtering221

employed in other works (e.g., Dushaw 2015; Zhao et al. 2016) since it is used within the least-222

squares data-fitting, rather than being done as an independent data processing step. The original223

harmonic constants (along-track non-differenced) are used in some of the cross-validation metrics,224

below, but along-track-differenced data are always used to build the wave models.225

Confidence intervals for the harmonic constants are estimated using a Monte Carlo method226

to generate realizations of colored noise from the de-tided residuals (Matte et al. 2013). These227

confidence intervals are averaged along each ground track within the data analysis windows and228

used to identify and exclude outliers.229

b. SLA Time Series from Long-Repeat- and Non-Repeat-Orbit Altimetry232

The primary source of data for cross-validation are SLA measurements from long-repeat- and233

non-repeat-orbit altimeter missions, listed in Table 3. Together, these datasets will be referred to234

as geodetic mission (GM) altimetry.235

In contrast to the ERM ground tracks, the GM ground tracks are closely spaced and are therefore236

useful for assessing models in the spatial gaps not sampled by other data. Figure 2b shows the237

locations of measurements from the J2D mission. The spatial density of the GM data is remarkable,238
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considering that the J2D data shown is only about 5% of the total available. Quantitatively, the239

GM data are dominated by C2A, which accounts for about 50% of the total.240

As with the ERM data, discussed above, the GM data are used in the form of both SLA and241

along-track SLA differences. We have experimented with the using the GM data in both forms to242

estimate the baroclinic tides, but the models obtained have lower prediction skill than those based243

on ERM data. Hence, the ERM data are used here for estimating the tides, while the GM data are244

withheld and used for cross-validation of the ERM-based estimates.245

c. Velocity Time Series from Lagrangian Surface Drifters246

Several authors have noted the presence of baroclinic tidal signals in velocity time series obtained247

from Lagrangian surface drifters (Elipot and Lumpkin 2008; Poulain and Centurioni 2015; Kodaira248

et al. 2016; Elipot et al. 2016; Zaron and Ray 2017; Zaron and Elipot 2021). The hourly drifter-249

derived surface-currents are used here to explore whether the baroclinic tides estimated from them250

are consistent with those estimated from altimetry. The Global Drifter Program (GDP) dataset,251

version 2.0, is used (Elipot et al. 2022b,a), which consists of approximately 165 million hourly252

estimates of position and velocity obtained from 17,234 individual drifters, collected between253

1990 and 2021, although 86% of the data were collected after 2005. Data from both drogued and254

undrogued drifters are used since there appears to little shear near the ocean surface at the diurnal255

and semidiurnal tidal frequencies (Arbic et al. 2022).256

Similar to the altimetry, it is useful to remove an estimate of the low-frequency signals prior257

to using the drifter-derived currents for tidal mapping. For this purpose, the original currents258

were filtered around the dominant M2 and K1 tidal frequencies with a bandpass filter of width259

0.4 cycles-per-day (cpd) and 0.2 cpd. Without this filtering, significant mapping artifacts appeared260

in regions of strong currents with sparse data, such as within the equatorial current systems of the261

Pacific and Indian Oceans.262

Figure 2c shows the drifter tracks in the 𝐷𝑚 near Madagascar, and the tracks are indeed dense263

compared to the 50-to-120 km scales baroclinic waves over most of the patch. However, the264

data density is notably sparser in the northen half of the domain, compared to the southern half.265

Compared to the ERM and GM datasets described above, the GDP are heterogeneous over the266

globe.267
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(a)

(b)

(c)

Fig. 3. Number of observations of different types. Note that the colorscale is non-uniform (log-scaled).

d. Summary268

Figure 3 maps the number of observations within the𝐷𝑚 domains for M2, discussed in the Results269

section, below. The ERM data comprise by far the most numerous and homogeneously-distributed270
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form of data; although, the ERM data fall exclusively along a relatively sparse set of ground tracks271

(e.g., there are about 6000 data locations shown in Figure 2a). The sustained observations along the272

TP/Jason reference orbit (29-years) and ERS/Envisat orbit (20-years) comprise the bulk of the ERM273

data. The GM dataset is, overall, homogeneous, with the exception of regions where the Cryosat-2274

sampling mode has been changed over the years (e.g., near 20◦N, 180◦E); it comprises about 19-275

years of satellite data. In contrast, the GDP data are not evenly distributed, as a consequence of both276

the distribution of deployment locations and the Lagrangian character of the surface trajectories.277

Preliminary experiments sought to combine all the data types within each 𝐷𝑚, but the results (not278

shown) were very sensitive to the relative weighting of the observations. In principle, one would279

expect the optimal weighting to be equal to the inverse of the error covariance of the observations;280

however, the error covariance appears to be dominated by the presence of non-tidal signals, rather281

than instrumental errors, and developing consistent estimates for the covariance proved to be too282

challenging. Instead, the preliminary experiments motivated the approach used below, where the283

data sources are used one-at-a-time, and the 𝜆 parameter is optimized through cross-validation284

with the other datasets.285

4. Mapping Methodology, Part II: Implementation286

a. Choosing 𝛼, 𝜆, B, and C287

What values of the parameters, 𝛼, 𝜆, B, and C, lead to the best estimates of a? This is a big design288

space which is only partially explored here. Optimal values of these parameters might depend on289

geographic location, 𝐷𝑚, the size of the data window, 𝐿𝑑 , and the data used for mapping, d. The290

criteria for judging whether a is the “best estimate” is also important. Among the design choices291

investigated in this section, ERM altimeter data comprise d, and a comparison dataset of GDP data292

are used to assess the parameter choices.293

Previous work has assumed either that the component waves are exactly described by the disper-294

sion relation for mode-𝑛 linear internal waves (e.g., Zhao et al. 2014),295

|k𝑛 |2 =
𝜔2
𝑗
− 𝑓 2

𝑐2
𝑛

, (10)
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where 𝑓 is the latitude-dependent Coriolis frequency, and 𝑐𝑛 is the non-rotating eigenspeed of mode-296

𝑛 waves (Kelly 2016), or that the waves fall within a prescribed bandwidth around the dispersion297

relation (Dushaw 2015; Zaron 2019). There are several rationales for allowing wavenumbers which298

fall off the dispersion relation: (1) the waves are locally-defined with respect to particular values299

of 𝑓 and 𝑐𝑛 which vary spatially within the data windows, (2) there may be a directly-forced300

component of the tidal SLA which does not fall on the dispersion relation, and (3) time-variability301

of the propagation medium can lead to a distribution of waves around the mean dispersion relation.302

To allow for wavenumbers that fall off the dispersion relation, the nonzero elements of B are303

required to correspond to wavenumbers within a prescribed fractional bandwidth, 𝜈, such that304

(1−𝜈) |k𝑛 | ≤ |k| ≤ (1−𝜈)−1 |k𝑛 |, following Dushaw (2015). Recall, following equation (9), that for305

𝛼 = 2 the matrix B may be regarded as the background error covariance of the generalized Fourier306

coefficient vector, a; hence, more generally, the diagonal of B1/2 is taken as an a priori estimate of the307

magnitude of the elements of a. Here, B is assumed to be diagonal, and the wavenumber components308

are a priori uncorrelated. Experiments were conducted (not shown) in which bandwidth parameters309

of 𝜈 ∈ {0.45,0.30,0.23,0.11} were used to estimate modes 𝑛 = 1, . . . ,3. Through trial and error,310

it was found that the 0.23 and 0.11 bandwidths were best for modes 1 and 2, respectively, values311

used to generate the results reported, below. Experiments found that mode-3 could not be stably312

estimated from ERM altimetry.313

The matrix C is taken as the identity, which is equivalent to assuming the data errors are314

uncorrelated and homogeneous within the domain 𝐷𝑚 when equation (9) is regarded as a Bayesian315

estimator. As already mentioned, the assignment of different error levels to the different data types316

did not lead to notably better estimators, and, likewise, the weighting of data from different ERM317

missions did not improve the results either.318

The choices for 𝛼 and 𝜆 are related. For 𝛼 = 0, 𝜆 may be varied to yield sparse least-squares319

estimates of a. This type of estimator is closely related to the stepwise least-squares algorithms320

of Zhao et al. (2014) and Zaron (2019). In contrast, the choice 𝛼 = 2 is the prototype of estimators321

used in variational data assimilation where the full gamut of possible waves are used, and 𝜆 controls322

the goodness-of-fit to the data and provides protection against overfitting (Dushaw 2015). The new323

approach used here, 𝛼 = 1, combines the sparsity-favoring properties of the 𝛼 = 0 estimator with324

control on overfitting similar to the 𝛼 = 2 estimator.325
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Fig. 4. An example of the performance of three different forms of the estimator (9) for 𝛼 = 0,1,2, for mapping

the M2 baroclinic tide from harmonically analyzed ERM altimetry near the Hawaiian Ridge. The influence of 𝜆

is represented by the goodness-of-fit metric on the 𝑥-axis, 𝐺𝑜𝐹 (𝜆) = ( |d𝐸𝑅𝑀 |2 − |d𝐸𝑅𝑀 −H𝐸𝑅𝑀Fa|2)/𝑁𝐸𝑅𝑀 .

The performance of the estimators is shown by the cross-validation metric on the 𝑦-axis, 𝐶𝑉𝐺𝐷𝑃 = ( |d𝐺𝐷𝑃 |2 −

|d𝐺𝐷𝑃 −H𝐺𝐷𝑃Fa|2)/𝑁𝐺𝐷𝑃 . The line for the 𝛼 = 0 case depicts the performance of the HRET8.1 model (Zaron

2019); it is shown as a line for comparison of𝐶𝑉𝐺𝐷𝑃 with the other estimators, but it represents a single estimate

of a with 𝐺𝑜𝐹 indicated by the solid dot. Performance for three cases: (a) a narrow-bandwidth 𝐵, 𝜈 = 0.15,

using the simplest plane-wave basis, 𝑃 = 0, (b) a narrow-bandwidth, 𝜈 = 0.15, but with a quadratically-modulated

plane-wave basis, 𝑃 = 2, (c) a wide-bandwidth, 𝜈 = 0.3, and a quadratically-modulated plane-wave basis, 𝑃 = 2.
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Figure 4 illustrates the influence of different choices of 𝛼, 𝜆, and 𝜈 on the performance of the335

estimator (9). The 𝑥-axis represents variations in 𝜆 as measured by a goodess-of-fit (GoF) metric,336

( | |d𝐸𝑅𝑀 | |2− ||d𝐸𝑅𝑀 −H𝐸𝑅𝑀Fa| |2)/𝑁𝐸𝑅𝑀 , which measures the explained variance of the estimate337

with respect to the data used, d𝐸𝑅𝑀 . In this example, d𝐸𝑅𝑀 consists of the same ERM data as used338

in the HRET8.1 model (Zaron 2019). On the 𝑦-axis, the performance of the estimator is measured339

using cross-validation (𝐶𝑉𝐺𝐷𝑃) with respect to an independent dataset, d𝐺𝐷𝑃, by the explained340

variance ( | |d𝐺𝐷𝑃 | |2 − ||d𝐺𝐷𝑃 −H𝐺𝐷𝑃Fa| |2)/𝑁𝐺𝐷𝑃, where d𝐺𝐷𝑃 represents GDP surface current341

observations, and H𝐺𝐷𝑃 is the measurement operator corresponding to d𝐺𝐷𝑃, an 𝑁𝐺𝐷𝑃×1 vector.342

The 𝛼 = 0 estimator is taken from HRET8.1, which utilizes exactly 6 quadratically-modulated343

(𝑃 = 2) component waves; this estimate is the reference against which the others are evaluated, and344

it is identical in each panel (indicated with the dot labelled 𝛼 = 0 on the line of constant 𝐶𝑉𝐺𝐷𝑃).345

The 𝛼 = 1 and 𝛼 = 2 estimates are parameterized by 𝜆 within each panel, for different choices of346

B (bandwidth) and 𝑃 (polynomial modulation). The three different cases as are as follows: (a) A347
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narrow bandwidth, 𝜈 = 0.15, is used, and no polynomial amplitude modulation is used, 𝑃 = 0. In348

this case, the 𝛼 = 0 estimate performs better than either of the 𝛼 = 1 or 𝛼 = 2 alternatives. The349

𝛼 = 1 estimate consistently explains more variance than the 𝛼 = 2 estimate, the conventional 𝐿2350

estimator, and it is more efficient, in the sense that it achieves its maximum 𝐶𝑉𝐺𝐷𝑃 statistic for351

a smaller value of the 𝐺𝑜𝐹 statistic. (b) A narrow bandwidth, 𝜈 = 0.15, is used, and a quadratic352

amplitude modulation is used, 𝑃 = 2. In this case, the 𝛼 = 1 estimate exceeds the performance353

of both the 𝛼 = 0 and 𝛼 = 2 estimates. (c) A wider bandwidth, 𝜈 = 0.30, is used, and a quadratic354

amplitude modulation is used, 𝑃 = 2. The added bandwidth allows for further improvements in the355

𝐶𝑉𝐺𝐷𝑃 metric and conclusively shows that the 𝛼 = 0 and 𝛼 = 2 solutions are sub-optimal.356

Reasons for the differences among the estimators are not completely understood. If (9) is357

interpreted in a Bayesian context, then the better performance of the 𝛼 = 1 estimator compared358

to the 𝛼 = 2 estimator may be related to the non-Gaussian distribution of the component wave359

coefficients. Whereas both the 𝛼 = 0 and 𝛼 = 1 estimators are inherently sparsity-selecting (Candès360

et al. 2006), only the 𝛼 = 1 estimator allows for controlling the goodness-of-fit (avoiding overfitting)361

among the non-zero elements of a.362

This study was partly motivated by the desire to implement a non-arbitrary stopping criterion in363

the estimator of Zaron (2019). Experiments using stopping criteria based on the 𝐹-test, Mallows364

𝐶𝑝 (Mallows 1973), and Aikake’s Information Criterion (Akaike 1974) yielded sub-optimal results365

when evaluated using cross-validation. For a modern review of these, and other, approaches to366

stopping criteria and their sensitivity to unmodeled signals or non-Gaussian noise, the dissertation367

by Lysen (2009) is recommended. For these reasons, the estimators used below exclusively use a368

cross-validation metric (i.e., comparison against withheld or independent data) to determine the369

optimal value of the regularization parameter, 𝜆.370

b. Numerical methods and implementation details371

The generalized Fourier coefficient vector, a, consists of the coefficients of the generalized372

Fourier components on 𝐷𝑚. Many of these coefficients are zero, though, due to the a priori373

bandwidth selection, as defined by B, which is taken as a diagonal matrix consisting either of 0’s or374

1’s. Let the vector b denote the elements of a corresponding to the gamut of possible generalized375

wavenumbers. Let b be such that a = B1/2
𝑏

b, where B1/2
𝑏

is the rectangular matrix containing only376

18



those of columns of B1/2 with non-zero elements. With this transformation, equation (9) fits the377

canonical form,378

J (b;𝜆,𝛼,B,C) = 𝜆 | |b| |𝛼 + (d−Ab)𝑇C−1(d−Ab), (11)

where A = HFB1/2
𝑏

.379

Different methods were used to compute the minimizer of (11), depending on the value of 𝛼. For380

the case, 𝛼 = 2, given 𝜆, equation (11) is minimized using the conjugate gradient algorithm (Shanno381

1985). Alternately, when the gamut of non-zero wavenumbers is small enough, equation (11) may382

be minimized using direct methods by solving,383

(𝜆I+A𝑇C−1A)b = A𝑇C−1d, (12)

which was used as a check on the conjugate gradient solver.384

For the case 𝛼 = 1, a generalization of the least-angle regression algorithm is used (Efron et al.385

2004). In its original form, this elegant algorithm produces a sequence of scalar regularization386

parameters 𝜆 = 𝜆𝑘 and vectors 𝑏 = b𝑘 which minimize J , where 𝑘 = 1, . . . , 𝑁𝑏, with 𝑁𝑏 being387

the dimension of the vector b. At each step, the rank of the linear system to be solved is 𝑘 and388

corresponds to the 𝑘-dimensional subspace of A which is most correlated with the residual from389

the previous step, r𝑘−1 = d−Ab𝑘−1. In this way, the algorithm proceeds to build the minimizer of390

J which has the sparsity property that | |b| |0 = 𝑘 and which would terminate after 𝑘 = 𝑁𝑏 steps at391

the least-squares solution of Ab = d (when 𝜆 = 0). The generalization of the algorithm used here392

is one which expands the subspace at each step with pairs of variables corresponding to the real393

and imaginary parts of the generalized Fourier coefficients (Yuan and Lin 2006). The algorithm394

is computationally and memory efficient since it is based on forming rank-2 updates of the QR-395

decomposition of A. In practice it is not run to completion at step 𝑘 = 𝑁𝑏; instead, the algorithm396

is terminated when the optimal agreement with the cross-validation dataset is obtained.397

The 𝛼 = 0 case for minimizing (11) proceeds similar to the 𝛼 = 1 case, except that the least-398

squares solution of Ab𝑘 = d is computed at each step, where the nonzero entries of b𝑘 comprise the399

same set of variables as used in the 𝛼 = 1 solver (described above). By construction, the solution400

sequence achieves a smaller residual (better goodness-of-fit) compared to the corresponding 𝛼 = 1401

case; however, in practice, the cross-validation metric is worse than the 𝛼 = 1 case (cf., Figure 4).402
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Table 4. Estimators. Seven estimators for each of the tides are computed, and these are labelled according to

the dataset employed for computing generalized Fourier coefficients, and the dataset employed for cross-validation

(optimization of 𝜆). The notation 𝐸𝑎𝑏 is used, where 𝑎 indicates the data used to build the model, and 𝑏 indicates

the data used for cross-validation (1=ERM, 2=GM, 3=GDP). The estimate E∗ is the linear combination of the

E12 and E32 estimates which optimizes the explained variance with respect to the GM data (Appendix A). (Note

that the E21 and E23 estimates are not shown, but are available from the authors.)

403

404

405

406

407

408

Estimate d d𝐶𝑉 description

E12 ERM GM fit to ERM, optimize w.r.t. GM
E13 ERM GDP fit to ERM, optimize w.r.t. GDP
E21 GM ERM fit to GM, optimize w.r.t. ERM
E23 GM GDP fit to GM, optimize w.r.t. GDP
E31 GDP ERM fit to GDP, optimize w.r.t. ERM
E32 GDP GM fit to GDP, optimize w.r.t. GM

E* ERM, GDP GM optimal linear combination of
E13 and E31 w.r.t. GM

5. Results409

The above-described methodology has been applied to estimate the baroclinic SLA and surface410

currents associated with the tides listed in Table 1. In every case the 𝛼 = 1 estimator with 𝑃 = 2411

(quadratic) amplitude modulation is used. A data window (disk radius) of 𝐿𝑑 = 250 km is used412

for the M2 tide, while a 𝐿𝑑 = 500 km data window is used for the other tides, justified as follows:413

(1) for the diurnal tides, K1 and O1, because of their longer wavelengths, (2) for S2, because of the414

sparse ground track sampling by ERM altimetry, and (3) for N2, MA2, and MB2, because of their415

small signal-to-noise ratio in the data.416

The three data sources described in Section 3 are used in pairs to create different estimates, as417

enumerated in Table 4. Rather than fitting a wave model to all the data sources simultaneously,418

each data source is used, in turn, and the 𝜆 parameter (which controls the goodness-of-fit to the419

data) is selected to optimize the estimate with respect to another of the datasets. For example, E12420

involves building the wave model from ERM data, but using the GM data to select the optimal 𝜆.421

In other words, the E12 estimate minimizes the prediction error with respect to the GM data, while422
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fitting the ERM data. In addition to the pairwise fit-and-predict pairs, an estimate E∗ is computed423

which is the optimal linear combination of the E12 and E32 solutions with respect to the GM data424

(see Appendix A).425

Two aspects of this work are novel. First, the estimator defined by equation (9) involves the426

absolute value (the first term on the right-hand-side; 𝛼 = 1, an 𝐿1-norm) as well as the sum-427

of-squares (the second term on the right-hand-side; an 𝐿2-norm), so it is a mixed 𝐿1/𝐿2-norm428

estimator. And, second, the use of different data types for building and cross-validating the models429

is another novel aspect of this work. While the GM data have been used previously for evaluating430

and comparing models (Zaron and Ray 2017; Carrere et al. 2021), it is not clear if these are the431

best data for this task, considering how non-tidal signals and various sources of noise overlap with432

the tidal alias frequencies (e.g., see Zaron 2018 for a detailed analysis of aliasing for the Cryosat-2433

mission). Experiments were conducted to compare SLA versus along-track SLA differences for434

cross-validation, which revealed minor differences between the estimates (examples shown, below).435

Ultimately, along-track SLA differences were favored for cross-validation under the presumption436

that the errors are less correlated in the along-track direction than in the original SLA data.437

a. M2 tide438

Figure 5 compares the M2 baroclinic sea level anomaly estimate from Zaron (2019), HRET8.1,443

with the new estimates based on ERM data and GDP data, E12 and E32, respectively. Perhaps the444

most noteworthy aspect of the estimates is the remarkable visual similitude of the E12 and E32445

estimates, which are based on completely independent data, and the similitude of these estimates446

with HRET8.1. Careful study of the panels does reveal subtle differences, though. For example,447

the HRET8.1 solution was masked to zero in much of the Southern Ocean and in the western448

boundary currents, while the E12 and E32 estimates smoothly go to zero in these regions. Also,449

the background noise in the E12 and E32 estimates appears smaller than in the HRET8.1 solution.450

While this is most visually evident in the southern Indian Ocean, explained variance metrics, shown451

below, confirm that the noise is in fact smaller throughout most of the global oceans. The same452

internal wave sources and large-scale beams are apparent in all three estimates. One difference453

among the estimates is the low-amplitude of the E32 solution in the Banda Sea (5◦S,130◦E) and454
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Fig. 5. Three estimates of the M2 baroclinic sea level anomaly (real part, in-phase with the astronomical tidal

potential): (a) HRET8.1, based on ERM data; (b) E12, based on ERM data using the estimator described in

Section 2 with 𝜆 optimized by comparison to GM along-track sea surface slope data; (c) E32, based on GDP

data, but otherwise as in (b).
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and generally throughout the equatorial oceans. In addition, there are differences in clarity of the455

beam-like features in the South Atlantic, for example.456

In order to develop the best possible estimate using both the ERM and GDP data, another estimate457

is formed, denoted E∗, which is the optimal linear combination of E12 and E32 as cross-validated458

by the GM data. This estimate is computed as described in Appendix A. The generalized Fourier459

coefficients for the E12 and E32 estimates are computed using the independent ERM and GDP460

data; however, the optimal goodness-of-fit parameter 𝜆, is determined by GM data in both cases.461

Thus, the E∗ estimate is not adding any new data to the estimate, it simply forms a weighted average462

which better agrees with the GM data used for validation.463

The visual diffence between E∗ and the other solutions is subtle. Figure 6 illustrates the amplitude467

of the complex baroclinic sea level, 𝜂. It is apparent from comparison of panels (a) and (b) that the468

E∗ amplitude is smaller than the HRET8.1 amplitude in many regions where the amplitude of 𝜂 is469

itself small (e.g., in the mid-Indian Ocean, and in the Eastern Equatorial Pacific). The difference470

in amplitudes, panel (c), illustrates the same point, but also shows that the E∗ estimate is larger471

than HRET8.1 in many of the generation sites. The E∗ estimate thus appears to be less noisy than472

HRET8.1, and more detailed near the generation sites.473

Detailed comparisons of the E12 and E32 estimates, from which E∗ is constructed, show many480

small-scale differences, in spite of the large-scale similarity. Figure 7 illustrates the real part of E12481

and E32 in the region around the Azores, a significant generation site in the North Atlantic, and a482

region with a high density of GDP data (𝑁𝐺𝐷𝑃 ≈ 4× 105 within each 𝐷𝑚). The pattern of wave483

radiation, and the location of maxima and minima are reproduced in both estimates. However,484

the difference field, denoted 𝛿M2, contains both small-scale noise and features which are coherent485

across multiple data windows, 𝐷𝑚. The difference field is a measure of the combined effects of486

random measurement error, mapping error, and systematic error possibly reflecting changes in the487

tides between the time periods over which the measurements were obtained (1993-2022 for the488

ERM data, and predominantly 2008-2020 for the GDP data). The difference between the E12 and489

E32 fields is assumed to be a measure of the uncertainty in E∗. For this region, the root-mean-490

square amplitude differences are about 20% of the amplitude, and phase differences are about491

15◦. Phase differences are, of course, larger in regions with smaller amplitude signals. When the492

difference estimates are evaluated globally, differences in relative amplitude are directly related to493
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Fig. 6. Amplitude of the complex-valued baroclinic M2 SLA for (a) the HRET8.1 estimate, and (b) the new

E∗ estimate, which is the optimal linear combination of the E12 and E32 estimates. The difference between the

amplitudes, (b) minus (a), is shown in panel (c).
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(a) E12 (b) E32 (c) E32 - E12

Fig. 7. The real part of the M2 SLA for (a) E12, (b) E32, and (c) their difference, E32 minus E21, for a region

around the Azores in the North Atlantic. The same colorscale is used in each panel, which is identical to that

used in Figure 5 .

474

475

476

the number-density of GDP measurements (see Figure 3c) and increase to about 35% where 𝑁𝐺𝐷𝑃494

drops to 105 per 𝐷𝑚.495

For practical purposes, one useful metric of the difference between the E∗ and HRET8.1 estimates496

is the prediction error, as measured by the explained variance with respect to different datasets.497

The explained variance (more-precisely, the reduction in mean-square residual from the model498

prediction; however, the mean values are negligable here and are expected to be zero), is defined499

as,500

𝑒𝑥 = ( |d𝑥 |2 − |d𝑥 −H𝑥Fa|2)/𝑁𝑥 , (13)

where the 𝑥 subscript indicates the data source, ERM, GM, or GDP. Figure 8 shows differences in501

the quantity, Δ𝑒𝑥 = 𝑒𝑥 (E∗) −𝑒𝑥 (HRET8.1), for the GM mission SLA (denoted Δ𝑒𝐺𝑀), GM mission502

along-track SLA differences (denoted Δ𝑒′
𝐺𝑀

), and GDP velocity data (denoted Δ𝑒𝐺𝐷𝑃). In most503

regions, particularly near the main internal tide generation sites, the E∗ estimate explains more504

variance than the older HRET8.1 estimate. Note that the magnitude of the change in explained505

variance is small for the GM data, and not likely to be of practical significance in most parts of the506

world Ocean; however, the difference is more substantial for the GDP dataset. Generally speaking,507

the small-magnitude and small-scale changes in baroclinic SLA (cf., Figure 5 and Figure 6c) alter508

25



(a)

(b)

(c)

Fig. 8. Differences of explained variance, E∗ minus HRET8.1. Positive values indicate that the E∗ estimate

explains more variance (e.g., it has smaller prediction error) than HRET8.1, based on the following datasets: (a)

GM altimeter SLA, (b) GM altimeter along-track SLA differences, and (c) GDP surface velocity data.
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the estimated sea surface slope in a manner which brings it in to better agreement with the observed509

velocity field.510

b. MA2, and MB2 tides515

The seasonal modulations of the M2 tide, denoted with the Darwin symbols MA2 and MB2, were516

estimated in Zaron (2019) and included in HRET8.1. Figure 9 illustrates the amplitudes of these517

tides in the HRET8.1 and E∗ estimates. The new estimates of the seasonal modulates are much518

smaller than the HRET8.1 estimates. Simultaneously, the E∗ estimate explains more variance than519

the HRET8.1 estimate. Thus, it appears that the HRET8.1 estimates for these quantities were520

largely spurious.521

There are two plausible reasons for the differences in the new estimates, compared to the old.522

First, MA2 and MB2 are dominated by the non-tidal environmental processes (Ray 2022), rather523

than the variability of the astronomical tidal potential. The E∗ estimate is based on optimizing 𝜆 by524

comparison with GM data which were collected only within the latter half of the ERM record on525

which E12 is based, and the non-tidal processes responsible for MA2 and MB2 might decorrelate526

over these time periods. A similar argument applies to the GDP data used to form the E32 estimate.527

Another explanation for the difference involves the use of the 𝛼 = 1 estimator in the new approach;528

it may simply provide better protection against over-fitting, and result in less-noisy estimates. In529

any case, it is clear that the MA2 and MB2 estimates provided in HRET8.1 are not accurate.530

c. S2 and N2 tides531

The S2 and N2 tides represent the second and third largest astronomical tides in the semidiurnal532

group, with astronomical potential about 1/2 and 1/5 as large as M2, respectively. The data533

available to estimate these two tides differ, though, because there are fewer (non-sun-synchronous534

orbit) satellite missions capable of observing S2. Due to the sparse ERM sampling of S2 and the535

small amplitude of N2, both tides are estimated using a data window twice as large as used for M2536

(Table 1).537

A comparison of the HRET8.1 and E∗ estimates of S2 identifies most of the same large-scale540

generation sites in both estimates (Figure 10). The newer estimate achieves better prediction541

error in mid-ocean regions associated with the main generation sites, but notable deficits occur542
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(a)

(b)

(c)

Fig. 9. Amplitude of the MB2 tide, an annual modulate of M2: (a) MB2 from HRET8.1, and (b) MB2 from E∗.

(c) Difference of explained variance, E∗ minus HRET8.1. The new estimates of MB2 and MA2 (not shown) are

much smaller than in HRET8.1, and the explained variance is larger, which suggests that the HRET8.1 estimates

for these frequencies was dominated by error.
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(a)

(b)

(c)

Fig. 10. S2 tide comparison: (a) HRET8.1 amplitude, (b) E∗ amplitude, and (c) Δ𝑒′
𝐺𝑀

, the difference in

explained variance compared to along-track GM SLA differences.
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in regions such as the Indonesian Seas, near the Amazon plume, and near the Andamans on the543

eastern boundary of the Indian Ocean. It is hypothesized that the 𝛼 = 0-like approach of HRET8.1544

is better in these regions, which are all close to land boundaries, where the inhomogeneities in545

the observations and larger non-tidal signals (due to lower accuracy of the mesoscale corrections546

near land) obscure the distinction between “active” and “non-active” degrees of freedom in 𝛼 = 1547

algorithm. In other word, attempts to balance the active modes (a priori assumed to be signal)548

and in-active modes (a priori assumed to be a mix of signals and noise) are not useful when the549

in-active modes are dominated by noise. Although more systematic parameter tuning could lead550

to more accurate estimates of S2 in these regions, this has not been attempted.551

The N2 tide was not estimated in HRET8.1, so there are no alternatives available for comparison555

of the E∗ estimate (Figure 11). Overall, the maps of the N2 tide are similar to M2, as expected556

from the identical spatial pattern of forcing and nearby frequencies of the constituents, but the N2557

fields are notably sparser, consistent with their smaller signal-to-noise ratio and the use of the 𝛼 = 1558

estimator. Incorporation of N2 in predictions of baroclinic sea level should be expected to explain559

a few millimeters of root-mean-square sea level near the main generation sites.560

d. K1 and O1 tides561

The diurnal K1 and O1 tides were estimated previously in Zaron (2019), and it is interesting to566

see the extent to which that estimate can be improved with the new estimator and the addition of567

GDP data. Compared to HRET8.1, the new estimates are remarkably similar. The amplitudes568

of the new estimates are slightly larger and exhibit more detail than in HRET8.1, as shown in569

the Eastern Pacific and Atlantic for K1 in Figures 12a and 12b. Waves emanating from Luzon570

and Halmahera Sea (Figure 12c) and southward from the Lombok Strait (Figure 12d) are resolved571

better than previously (not shown). Although the K1 waves are smaller amplitude than M2, it is572

evident that they propagate long distances within their waveguide between ±30◦ latitude. Similar573

features are found in the new O1 solution.574

The increased detail of the new diurnal tide estimates is associated with better explained variance580

statistics, shown for K1 in the far western Pacific and Indonesian Seas (Figure 13). The extent581

of improvement for K1 depends more on the specific data source used for comparison than M2,582

though (cf., Figure 8). Considerable area now shows essentially the same or even slightly worse583
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(a)

(b)

(c)

Fig. 11. N2 tide metrics for the E∗ estimate: (a) the real part of SLA, (b) amplitude, and (c) explained variance

with respect to along-track GM altimetry SLA differences. Note that the colorscale is scaled by a factor of 1/5

compared to plots for M2 in Figures 5-8, corresponding to the magnitude of the astronomical potential.
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(d)

Fig. 12. K1 baroclinic sea level anomaly (real part, in-phase with the astronomical tidal potential): (a)

HRET8.1, based on ERM data; (b-d) E∗, based on combined ERM and GDP data using the estimator described

in Section 2 with 𝜆 optimized by comparison to GM along-track sea surface slope. Note the different colorscales

used in panels (b-d).
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565

explained variance for the comparison with GM SLA data (Figure 13a); although, the comparison584

with GM along-track SLA difference is more uniformly favorable, which is expected since these585

32



ΔeGM K1

−10

0

10

20

30
la

tit
ud

e 
[d

eg
 N

]

110 120 130 140 150
longitude [deg E]

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
[cm2](a) Δe'GM K1

−10

0

10

20

30

la
tit

ud
e 

[d
eg

 N
]

110 120 130 140 150
longitude [deg E]

−1

−0.5

0

0.5

1
[mm2](b)

ΔeGDP K1

−10

0

10

20

30

la
tit

ud
e 

[d
eg

 N
]

110 120 130 140 150
longitude [deg E]

−10

−5

0

5

10
[(cm/s)2](c)

Fig. 13. Differences of explained variance, E∗ minus HRET8.1, within the same domain pictured in Figure 12c.

Positive values indicate that the E∗ estimates explains more variance than HRET8.1. (a) GM altimeter SLA,

(b) GM altimeter along-track SLA differences, and (c) GDP surface velocity data. The green contours in panel

(c) indicate the estimated standard error of Δ𝑒𝐺𝐷𝑃 at three levels: 1 cm2 s−2 (thin), 3 cm2 s−2 (medium), and

9 cm2 s−2 (thick).
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576

577

578

579

data are used to optimize the 𝜆 regularization parameter. The comparisons with GDP-derived586

currents shows the limitations of these data, caused in part by non-uniform spatial density and587

contamination by near-inertial currents near the K1 inertial latitude, ±30◦. The explained variance588

metric, Δ𝑒𝐺𝐷𝑃 in Figure 13c, is overlaid with contours of its expected errors as estimated by a589

modification of bootstrap resampling which accounts for correlations in the data errors (data are590

resampled in 100-hr segments). Regions which explain less variance than HRET8.1 (shaded with591

blue) generally coincide with regions where the standard error is larger than 3 cm2 s−2.592
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One interesting feature of K1 is the apparent decay of the waves within about 3◦ of the inertial593

latitude (apparent near 190◦E in Figure 12b and between 60◦E and 80◦E in Figure 12d). The struc-594

ture of diurnal waves near their inertial latitude depends strongly on the direction of propagation,595

with an Airy-function structure for the meridional component (Hendershott 1981; Dushaw and596

Worcester 1998). But we should also expect the waves to be particularly sensitive to modulations597

of relative vorticity which will change the effective value of the inertial frequency in the propaga-598

tion environment (Kunze 1985). Thus, the apparent decay of the waves near ±30◦ could be due599

to wave structures which cannot be represented by the present kinematic wave model, or due to600

time-dependent modulations which reduce the phase-locked signal. In either case, the interesting601

features of the diurnal waves deserve further investigation.602

The O1 tide is largely similar to the above description of K1. It contains no striking new qualitative603

features, and is therefore not shown.604

e. Summary of Results605

Table 5 summarizes the main differences in the new E∗ estimates compared to HRET8.1. It is606

noteworthly that the best-resolved M2 tide is essentially the same amplitude in both estimates, but607

the new model explains nearly a factor of 5 more GDP velocity variance than HRET8.1. The use608

of the new 𝛼 = 1 estimator seems to reduce the noise level and problems with the MA2 and MB2609

estimates from HRET8.1. In every case except S2, the measures of explained variance are either610

the same or improved. There is no reason to think the dynamics of S2 are fundamentally different611

from those of M2 or N2, so the larger difference between E∗ and HRET8.1 for this frequency likely612

reflect its larger uncertainty, a consequence of the relatively poor sampling by altimetry.613

6. Discussion632

The new estimates of baroclinic tides, above, are useful for the prediction and description of the633

baroclinic waves. An illustrative example is shown in Figure 14a, which maps the surface kinetic634

energy associated with the baroclinic M2 tide. The surface kinetic energy (Figure 14a) is computed635

from 𝜂 using surface velocities computed with equation (8); it provides an estimate which may be636

useful in planning future ocean surface current measurement satellite mission concepts, for example637

(Rodríguez et al. 2019; Du et al. 2021). Figures 14b and 14c compare the rotary kinetic energy638
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Table 5. Summary statistics for E∗ compared to HRET8.1. ⟨|𝜂 |2⟩1/2 is the area-weighted root-mean-sqaure

of the estimated tidal SLA amplitude. Other columns indicate the square root of the area-weighted mean of the

explained variance with respect to ERM data (𝑒𝐸𝑅𝑀 ), GM data (𝑒𝐺𝑀 ), along-track-differenced GM data (𝑒′
𝐺𝑀

),

and GDP data (𝑒𝐺𝐷𝑃). HRET8.1 did not include an estimate of N2, which is indicated with an “-”.

614

615

616

617

⟨|𝜂 |2⟩1/2 𝑒𝐸𝑅𝑀 𝑒𝐺𝑀 𝑒′
𝐺𝑀

𝑒𝐺𝐷𝑃

Tide Model [cm] [cm] [cm] [cm] [cm s−1]

O1 E∗ 0.24 0.18 0.18 0.02 0.67
HRET8.1 0.22 0.17 0.18 0.02 0.36

K1 E∗ 0.32 0.24 0.26 0.03 0.72
HRET8.1 0.27 0.23 0.24 0.03 0.45

N2 E∗ 0.05 0.06 0.05 0.02 0.37
HRET8.1 - - - - -

MA2 E∗ 0.03 0.02 0.03 0.01 0.35
HRET8.1 0.11 0.00 0.00 0.00 0.00

M2 E∗ 0.60 0.41 0.51 0.14 1.13
HRET8.1 0.61 0.40 0.48 0.12 0.52

MB2 E∗ 0.03 0.03 0.04 0.01 0.38
HRET8.1 0.11 0.00 0.00 0.00 0.00

S2 E∗ 0.15 0.16 0.14 0.04 0.62
HRET8.1 0.19 0.15 0.15 0.04 0.13

of the observed Lagrangian currents (Elipot et al. 2016) with the predicted tidal currents. The639

examples show that the predicted currents exhibit considerable spreading in the frequency domain640

solely due to the Lagrangian character of the observations, independent of any non-phase-locked641

tidal variability. It is also interesting to note that the predicted tides in the semidiurnal band are a642

factor of 2 to 3 weaker than the observed currents. This difference in energy level likely reflects the643

presence of non-phase-locked tidal variability in the observations. In contrast, the kinetic energy644

near -1 cycle-per-day (cpd) consists of a mixture of tidal and inertial energy, and it is impossible645

to assess any bias in the predicted diurnal tidal currents.646
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(c) North Atlantic

Fig. 14. (a) Kinetic energy of the baroclinic M2 tide from the E∗ estimate at the ocean surface. Note that

the latitude range shown is expanded slightly compared to Figure 5 in order to show some small features at high

latitude, such in the Labrador Sea. The rotary kinetic energy spectra of the observed Lagrangian currents (black)

and predicted tidal currents (red) are shown for representative drifter trajectories in (b) the West Pacific and (c)

the North Atlantic. Due to the drifters’ proximity to 30◦ latitude, the kinetic energy near -1-cycle-per-day (cpd)

consists of a mixture of tidal and inertial energy.
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619

620
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622

623

The new tidal estimates may also stimulate new approaches to oceanographic data analysis. For647

example, Figure 15 illustrates the probability distribution function of the squared baroclinic M2648

amplitude in two forms. The first, Figure 15a, quantifies the spatial inhomogeneity of the beams649
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Fig. 15. The probability density function (pdf) of squared baroclinic M2 amplitude. The pdf is computed by

sampling the E∗ gridpoints, weighted by the cosine of latitude, so it represents the density of oceanic area (from

66◦S to 66◦N, and depth greater than 250 m) with given squared amplitude. (a) The cumulative probability

density (cdf) quantifies the spatial heterogeneity of the internal tides, showing, for example, that baroclinic tides

with amplitude exceeding 1 cm amplitude only occupy about 7.5% of the oceanic area. (b) For scales less than

400 km, the pdf of the normalized amplitude, 𝐴2 = |M2 |2/⟨|M2 |2⟩ (black line), agrees with the 𝜒2
2-distribution

(red dashed line), consistent with strong multi-wave interference. Over larger scales the pdf is influenced by

spatial heterogeneity of the wave field (blue and green lines).
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625

626

627

628

629

630

631

of tidal energy; over 90% of the area of the deep ocean is associated with an M2 amplitude of 1 cm650

or less. The second, Figure 15b, shows the probability density function and compares it with the651

exponential distribution, a model for squared wave amplitude in the presence of strong interference;652

it shows that within patches of the ocean in which the the wave field may be considered spatially653

homogeneous, its statistics are well-characterized by the exponential distribution.654

It is important to recall that the E∗ estimate describes the phase-locked component of the baro-655

clinic tides. The instantaneous tide, i.e., the sum of the phase-locked and modulated components,656

could be significantly different (Zaron 2022). It is also useful to note that the presence of diffraction657

patterns in the baroclinic tides is not necesssarily an indication of the phase-stability of the instan-658

taneous tides, as has been asserted (Dushaw et al. 2011). A time-mean diffraction pattern could659

arise solely because of time-dependent modulations. For example, if two separate point sources660
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turned on and off alternately, the mean wave field would exhibit an interference pattern even though661

none exists at any instant. Whether such a mechanism could explain any of the observed features662

of the wave field is speculative, but it is an interesting contrast to the interference of steady wave663

sources (Rainville et al. 2010).664

The small amplitudes of the MA2 and MB2 tides found here is hypothesized to be related to665

non-phase-locked variability of the processes which modulate the M2 tides. A better approach to666

capturing the baroclinic tidal variability at annual periods might use non-harmonic or year-by-year667

estimates, as implemented recently by Zhao (2022).668

There are additional questions related to the form of the estimator used here. The mixed 𝐿1/𝐿2-669

norm estimator is well known from the compressive-sampling literature (Candès et al. 2006), but670

it is not clear why it performs better than an 𝐿2 estimator in the present application. There are671

other arbitrary choices, too, such as the size of the data-window and the wavenumber bandwidth.672

Given the heterogeneous nature of the fields to be mapped, the non-tidal noise, and the character673

of the observing arrays, it is unlikely that a single set of parameters are optimal for all of the local674

domains, 𝐷𝑚.675

One particularly vexing issue concerns the appropriate estimators near the coastline or topo-676

graphic features where barotropic tidal corrections may contain errors and where the barotropic677

and baroclinic dynamics may be coupled. This is a serious limitation of the kinematic wave678

approach, since the separation of barotropic and baroclinic sea level anomalies depends on the679

utility of the dispersion relation which, for all estimates made so far, has been derived in the limit680

of flat-bottom topography. It is not clear how the existing approaches to mapping or assimilation681

based on dynamical models (e.g., Egbert and Erofeeva 2014) could be modified to exceed the682

accuracy of the kinematic models, though. The mixed 𝐿1/𝐿2 approach could be adapted for use in683

assimilative models to allow better control of model complexity; although, this would not address684

the approximations inherent in models based on a truncated modal decomposition (Lahaye and685

Llewellyn Smith 2020).686

The presentation of results in Section 5, above, used explained variance to assess the tidal690

estimates; however, an alternative approach to assessment could be provided by estimates of691

standard errors. Users of HRET concerned with tidal prediction are generally interested in the692

accuracy of the prediction relative to the instantaneous tide, so the standard error of only the693
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Fig. 16. An error estimate for the M2 harmonic constants based on the assumption that the E12 and E32

estimates are affected by the same (non-instrumental) noise sources, namely, non-phase-locked tides and model

structural error.

687

688

689

phase-locked tide may be of little practical use. Nonetheless, standard errors for the phase-locked694

tide could help assess differences among models, and a brief discussion of these errors follows.695

Errors in the tidal estimates provided here arise from a combination of systematic and random696

errors in the observational data, model structural error (uncertainty in the form of the functions697

used to describe the data, equation 2), and noise due to non-phase-locked tides. If it is assumed698

that the latter two factors are dominant and affect the altimeter- and GDP-derived estimates equally,699

then the errors in these estimates should depend only on the number of data used for each estimate.700

In other words, assume that the E12 and E32 estimates are independent but affected by noise with701

same variance, 𝜎2. The errors of the estimates should be, 𝜎2
𝐸12 = 𝜎

2/𝑁𝐸12 and 𝜎2
𝐸32 = 𝜎

2/𝑁𝐸32,702

respectively, where 𝑁𝑒 is the number of data minus the number of parameters estimated in estimate703

𝑒 ∈ {𝐸12, 𝐸32}. With these assumptions, the difference field Δ = 𝐸12− 𝐸32 may be used to704

estimate 𝜎2,705

𝜎2 = ⟨Δ2⟩
(

1
𝑁𝐸12

+ 1
𝑁𝐸32

)
, (14)

where the angle-brackets denote spatial averaging over 1-degree cells. This error estimate for M2706

is shown in Figure 16.707
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7. Conclusions708

The estimates for the baroclinic tides derived herein will be useful for the prediction of baroclinic709

tidal variability in the open ocean. The new methdology for estimating and mapping the wave710

fields is a definite improvement compared to prior methods. It is hoped that these estimators may711

be useful for analysis of temporal and spatial subsets of data, to identify non-phase-locked tidal712

variability, or to estimate the dispersion-relation parameters from the mapped fields.713

Considering the small quantitative improvement of the present estimates compared to the older714

HRET8.1 estimates for mapping or predicting SLA, further efforts to map the time-mean phase-715

locked baroclinic tides with kinematic waves appear to be of questionable value. It seems that the716

greatest gains in baroclinic tide prediction will result from mapping or predicting the “instanta-717

neous” tides, for which new methods need to be developed. The approaches in Egbert and Erofeeva718

(2021), Le Guillou et al. (2021), Ubelmann et al. (2022), and Zhao (2022) appear promising.719

Nonetheless, the tidal estimates presented here are useful for predicting the baroclinic tidal SLA720

and ocean surface currents. The harmonic constants on a regular (1/20)◦ grid between the latitudes721

of ±66◦, and associated tidal prediction software, are publicly available1 for the M2, S2, N2, K1,722

and O1 tides. The netcdf-formatted files contain the E12 (altimeter-only) and E31 (drifter-only)723

tidal estimates, in addition to the optimal E∗ estimate, and harmonic constants are provided for the724

vector surface currents as well as the SLA. Sub-surface tidal currents and other baroclinic tidal725

fields may be predicted using the generalized Fourier coefficient representation of each tide; these726

coefficients comprise roughly 60 GB of data for each constituent and are available from the authors727

upon request.728
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APPENDIX A750

Definition of the E∗ estimator751

As stated in the text, the E∗ estimate is an optimal linear combination of the E12 and E32752

estimators. Let a∗, a(12) , and a(32) denote the generalized Fourier coefficients for these estimates,753

respectively, with a∗ = 𝑎a(12) + (1−𝑎)a(32) for scalar, 𝑎, to be deteremined. Within each data patch,754

𝑎 is chosen to maximize the explained variance with respect to the along-track-differenced GM755

data, the quantity,756

𝐽 (𝑎) = d𝑇𝐺𝑀d𝐺𝑀 − (d𝐺𝑀 −H𝐺𝑀Fa∗)𝑇 (d𝐺𝑀 −H𝐺𝑀Fa∗). (A1)

The coefficient 𝑎 is obtained by solving conditions where the quadratic function 𝐽 (𝑎) is maximum,757

1
2
𝑑𝐽 (𝑎)
𝑑𝑎

= [H𝐺𝑀F(a(12) −a(32))]𝑇 [d𝐺𝑀 −H𝐺𝑀F(𝑎a(12) + (1− 𝑎)a(32))] = 0. (A2)

Using the notation d(12)
𝐺𝑀

= H𝐺𝑀Fa(12) for a(12) sampled at the GM data sites, and likewise for d(32)
𝐺𝑀

,758

the optimal value of 𝑎 is derived as follows:759

0 = (d(12)
𝐺𝑀

−d(32)
𝐺𝑀

)𝑇 (d𝐺𝑀 − 𝑎d(12)
𝐺𝑀

− (1− 𝑎)d(32)
𝐺𝑀

) (A3)

0 = (d(12)
𝐺𝑀

−d(32)
𝐺𝑀

)𝑇 (d𝐺𝑀 −d(32)
𝐺𝑀

− 𝑎(d(12)
𝐺𝑀

−d(32)
𝐺𝑀

)) (A4)

0 = (Δd𝐺𝑀)𝑇 (d𝐺𝑀 −d(32)
𝐺𝑀

− 𝑎(Δd𝐺𝑀)) (A5)

0 = (Δd𝐺𝑀)𝑇 (d𝐺𝑀 −d(32)
𝐺𝑀

) − 𝑎(Δd𝐺𝑀)𝑇 (Δd𝐺𝑀) (A6)

𝑎 =
(Δd𝐺𝑀)𝑇 (d𝐺𝑀 −d(32)

𝐺𝑀
)

(Δd𝐺𝑀)𝑇 (Δd𝐺𝑀)
. (A7)

The E∗ estimate is computed independently on each domain, 𝐷𝑚, and these solutions are blended760

together, following Section 2b, to obtain the maps of global fields which are shown in the main761

text.762
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