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ABSTRACT: Internal waves generated by the interaction of the surface tides with topography
are known to propagate long distances and lead to observable effects such as sea level variability,
ocean currents, and mixing. In an effort to describe and predict these waves, the present work is
concerned with using geographically-distributed data from satellite altimeters and drifting buoys to
estimate and map the baroclinic sea level associated with the M, S,, N, Kj, and Oy tides. A new
mapping methodology is developed, based on a mixed L/L,-norm optimization, and compared
with previously-developed methods for tidal estimation from altimeter data. The altimeter and
drifter data are considered separately in their roles for estimating tides and for cross-validating
estimates obtained with independent data. Estimates obtained from altimetry and drifter data
are found to agree remarkably well in regions where the drifter trajectories are spatially dense;
however, heterogeneity of the drifter trajectories is a disadvantage when they are considered
alone for tidal estimation. When the different data types are combined by using geodetic-mission
altimetry to cross-validate estimates obtained with either exact-repeat altimetry or drifter data, and
subsequently averaging the latter estimates, the estimates significantly improve on the previously-
published HRETS.1 model, as measured by their utility for predicting either sea level anomaly
or ocean surface currents in the open ocean. The methodology has been applied to estimate the
annual modulations of M;, which are found to have much smaller amplitudes compared to those

reported in HRETS.1, and suggest that the latter estimates of these tides were not reliable.
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SIGNIFICANCE STATEMENT: The mechanical and thermodynamic forcing of the ocean occurs
primarily at very large scales associated with the gravitational perturbations of the sun and moon
(tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean
act on very small scales. This research addresses the question of how the large-scale tidal forcing
is transformed into the smaller-scale motion capable of being influenced by friction. The results
show where internal waves are generated, and how they transport energy across ocean basins to
eventually be dissipated by friction. The results are useful to scientists interested in mapping
the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean

temperature, and ocean currents.

1. Introduction

This paper is concerned with estimating and mapping the tidal harmonic constants associated
with the sea level anomaly (SLA) of baroclinic tides in the open ocean. It develops an approach
based on a model for the SLA consisting of spatial Fourier modes modulated in time by the
astronomical gravitational tide-generating potential. It thus extends approaches from the literature
in which different forms of a relatively simple kinematic wave model are used to map baroclinic
tides (Ray and Cartwright 2001; Zhao et al. 2012; Dushaw 2015; Zaron 2019). This work is
broadly motivated by the desire to improve baroclinic tide prediction and to understand the role of
the tides in the dynamics of the ocean.

Carrere et al. (2021) compared different models for predicting the baroclinic tides. Broadly, such
models could be classified as follows: (1) ad-hoc empirical models in which observed harmonics
of the baroclinic tides are smoothly interpolated and extrapolated to yield continuous fields for
prediction of the tides at arbitrary locations (Ray and Zaron 2016), (2) kinematic wave models
which represent the observed harmonics as a superposition of idealized waves (Dushaw 2015;
Zhao et al. 2016; Zaron 2019; Ubelmann et al. 2022), (3) dynamic wave models which solve
for the baroclinic tides from the known astronomical tide-generating force (Shriver et al. 2014),
and (4) data-assimilative models which assimilate observations into a dynamic wave model, using
assumptions about the expected errors of the observations and the model (Egbert and Erofeeva
2014). In approach (2), the kinematic wave models, there are different criteria for identifying the

constituent waves and describing their waveforms. In approach (4), the data-assimilative model,
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the attributes of the dynamical model errors must be quantified, rather than the attributes of the
wave field per se, and there is considerable uncertainty about how the dynamical errors should
be represented. One might anticipate that a data-assimilative model would be more accurate than
a kinematic wave model, because the SLA obtained would unambiguously correspond to some
dynamics, even if these differ from the ones specified a priori; however, Carrere et al. (2021) found
that the most accurate tidal SLA predictions were obtained from a kinematic wave model, rather
than a data-assimilative model. The working hypothesis of this paper is that the systematic pursuit
of a descriptive kinematic model will provide insight into the causes of the surprising results
of Carrere et al. (2021), and lead to a better understanding of baroclinic wave dynamics in the
ocean.

The approach taken here is to extend previous works in two ways. First, different formulations of
the estimators for the kinematic wave model are considered, including the stepwise least-squares
approaches of Zhao et al. (2016) and the penalized least-squares of Dushaw (2015), leading to the
preferred approach, a type of least-angle regression (Efron et al. 2004). And, second, different
independent data sources are used for building the kinematic wave models and for cross-validating
them. The independent data are exact-repeat mission altimetry, geodetic mission altimetry, and
surface currents estimated with Lagrangian surface drifters. The altimeter data are used in two
forms, both as along-track sea level anomaly and as along-track collinear sea level anomaly
differences, i.e., sea surface slope. The different kinds of data provide alternate stopping criteria
for the iterative estimation algorithms, and reveal the degree to which different criteria lead to
different estimates. The different data types were collected over different time periods, they are
subject to different sources of instrumental error, and they are subject to different degrees of
contamination by non-tidal signals which interfere with the tidal estimation. There is evidence
that the baroclinic tides are undergoing long-term secular changes (Zhao 2023), but the focus of
the present work is on estimating the time-mean baroclinic tides, the so-called phase-locked or
stationary tides, with the hope of returning to the question of long-term variability in the future
using the tools developed herein.

The organization of this manuscript is as follows. Section 2 provides an overview of the family of
estimators used for analyzing and mapping the diverse data sources mentioned above, and Section

3 describes these data sources in detail. In Section 4, the implementations of the estimators are



o TaBLe 1. Tides considered. Darwin symbols and corresponding Doodson numbers for the mapped tides
s are listed. The alias periods of the tides are are shown, in days, for the exact-repeat mission sampling along
o the Topex/Poseidon/Jason tracks (TX), the Geosat Follow-On tracks (G1), and the ERS-2/Envisat/Saral-AltiKa
o1 tracks (E2)

Darwin  Doodson Alias periods ~ Data window
symbol number TX/G1/E2 [day] L, [km]

Oy 1 455 554 46/113/75 1000
K 1 655 556 173/175/365 1000
N> 2456 555 50/52/97 1000
MA, 2545555 75/170/75 1000
M, 2 555 555 62/318/94 500
MB, 2565555  53/2459/127 1000
S 2735555 59/169/0c0 1000

s described and tested, leading to the selection of the formulation which is used subsequently in

s Section 5. Finally, in Sections 6 and 7, the results are discussed and summarized.

& 2. Mapping Methodology, Part I: Overview

e d. A kinematic wave model

s The tides are unique among ocean phenomena in that their temporal structure is well-defined by
o« the known gravitational dynamics of the Sun, Earth, and Moon. The baroclinic tides are represented

»s here by the SLA that is phase-locked with the astronomical gravitational tidal potential,
n(6.6.1)= > Re[£;(0,) f; (1) exp(=i(w;t +u;(1))], (1)
J

« Wwhere j indexes the partial tides which are here denoted by their Darwin symbols, e.g., Mj,
o with corresponding frequencies w; obtained from the Doodson numbers enumerated in Table 1;

(6, ¢) are spherical-polar spatial coordinates; {; (6, ¢) is the complex-valued field giving the spatial

©
©

s structure of the j-th partial tide; and f;(¢) and u;(¢) are given functions which account for the
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Fic. 1. Centers of tangent-planes used for mapping M are indicated with black dots overlaid on (a) water
depth and (b) the M, baroclinic sea level anomaly in the region around Madagascar in the West Indian Ocean.
The red dot and red circle indicate the center of a tangent-plane and the data disk of a representative D,,. The

SLA shown in panel (b) is the E* estimate discussed later in the text.

modulations associated with the 18.6-yr precession of the node of the lunar orbit (Foreman et al.
2009).

The spatial structure of the tides, ;(x), is represented with a kinematic wave model (as dis-
tinct from a dynamical wave model) comprised of a linear combination of idealized propagating
waveforms. For computational considerations, the properties of the waves are assumed to be
independent within a patchwork of locally-defined tangent-planes, D,,, overlapping around the
globe. The centers of the tangent planes used for mapping M, are shown in Figure 1. The spacing
between D, centers is approximately one-fourth the radius of a data disk, L, at the center of each
tangent-plane, to be described later.

Let {;(x) be the estimate of {; obtained for x € D,,. Within D,,, the spatial structure of ;,, is

assumed to be,
p+q=P

Gm(X) = D > ajmpax? ¥ exp(ik-x), )

p.g=0 k
which can be regarded as a sum of propagating plane-waves with vector wavenumbers, k, modulated
by a polynomial amplitude envelope, x”y?, for 0 < p+¢g < P. Note that the order-P polynomial

amplitude envelope provides N, = (P+1)(P+2)/2 polynomial coefficients per wavenumber com-



118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

ponent, and a quadratic envelope is used here (P =2; N, = 6). Within each tangent-plane, local
Cartesion coordinates are used, X = (x,y), relative to the center (6,,,¢,,), and the wavenumbers
k = (k,l) are taken as the set of discrete Fourier wavenumbers at Ax = 6 km spatial resolution, the
approximate spatial resolution of the along-track altimetry data. Note that the coefficients, a o0k,
are the discrete Fourier transform coefficients of the local plane-wave representation of {;,,; the
other coeflicients, a 4k for p,q # 0, represent non-plane-wave features of ;.

Let 4., = {ajmpqk} denote the collection of coefficients for all the discrete Fourier wavenum-
bers, k, and let F and F' denote the unitary discrete Fourier transform pair. A compact represen-

tation of equation (2) is given by,

p+q=P
LX) = D XY g, (3)
p-q=0
which is the core of the computationally-efficient implementation of the estimators presented below.

For notational convenience, equation (3) shall be written as a linear system,
éjm = Fajm, (4)

where the vector a;, = {44} collects all the unknown coefficients, and F is a linear operator
assembled from the modified Fourier operators, x” y4 F . The vector, a im> Will be referred to as the
vector of generalized Fourier coefficients, since each element of the vector is the coefficient of a
plane-wave component with a discrete Fourier wavenumber, multiplied by x”y4. In equation (4),
{jm is a vector of gridded harmonic constants for tide-j within the Cartesian tangent-plane D,
corresponding to the function, £}, (x), in equation (2). To be explicit, on a square domain containing
M x M grid-points, the dimension of the {;,, vector is M 2 x 1, the dimension of the F matrix is

M?x NpMz, and the dimension of the a;,, vector is NpM2 x1.

b. The local Cartesian planes and their blending

Estimates of {},, are found using data within a circular patch of radius L, contained within each
D,,. Each D,, is a square with side length, L = V2L, which provides a data-free region around

the data patch. The domains, D,,, are overlapping and staggered so that the centers are offset by
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approximately L;/2. The data-free region prevents the periodic boundary condition of the Fourier
basis from unduly influencing ;,, estimates within the data disk, while the overlapping tangent
planes insure that at least two independent estimates of the harmonic constants are made at any
location, except near coastlines. The radius of the data window, L4, will be specified, below.

A continuously-differentiable representation of {;(x) is computed as a weighted average,
£(x) = N7\ (x) /D S KX =Xall/ L) (X)d, 5)
m
where the normalization factor is given by,
M= [ Y K(Ix-xal/Lads, ©)
"

for the global domain, D. The averaging kernel, K(r), is a radial basis function with compact
support (Wendland 1995),
K(r)=(1-r)(3r+1), (7)

for 0 <r < 1, and zero otherwise. Explicitly, the distance function is defined by ||x — x,,||*> =

[(8=6)%+((¢p— pm)cosb,,))?]r2, where r, is Earth’s radius.

c. A dynamical relationship between surface velocity and n

One goal of the present work is to estimate ocean surface currents due to baroclinic tides. Here,

currents are estimated with the horizontal momentum equation,
—iwjuj+fk><uj:—gan, (8)

where u; = (u;,v;) is the horizontal velocity vector associated with the j-th partial tide, f is the
Coriolis frequency, and g is gravitational acceleration. This equation is an approximation which
neglects nonlinear advection and turbulent stresses. In keeping with the kinematic nature of the
wave model for 7;, these approximations are accepted as part of the descriptive nature of the model,
and they can be partly justified a posteriori. Note that the u; and f in equation (8) should not be

confused with the nodal factors, u; and f;, appearing in equation (1), above.
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When w; = f, equation (8) is singular and cannot be inverted for u;. Initially, a Rayleigh
damping term was added to regularize the inversion, but experimentation revealed that no damping
was necessary so long as |w; — f| is larger than machine precision at the gridpoints of the local
tangent plane. In principle, a physical model for damping could be justified (Savva and Vanneste
2018; Kafiabad et al. 2019; Dong et al. 2020; Kelly et al. 2021); however, at this stage it is unclear

if the data are sufficient to distinguish among plausible alternative models.

d. Estimators for a;p,

As described above, the baroclinic tidal sea level anomaly is represented in terms of generalized
Fourier coeflicients, a;,,. This section introduces a family of estimators for a;, capable of
incorporating both observed data (measurements of SLA and surface velocity) and constraints on
allowable wavenumbers, k, inferred from the dispersion relation. Recall that the j and m subscripts
on a;,, refer to the tidal frequency (w;) and the local tangent plane (D,,). For convenience in this
section, let a,, = {a;,,} denote a single vector of generalized Fourier coefficients for all the partial
tides; furthermore, subscript m shall be omitted since the generalized Fourier coefficients will be
estimated independently within each tangent plane.

One family of estimators for a are minimizers of an objective function of the form,
J (a;2,@.B,C) = 1||B™'a||, + (d~ HFa)"C"' (d - HFa), ©)

where A is a scalar regularization parameter; « € {0, 1,2} is a scalar which determines the norm
used in the regularization; B'/? is the matrix square-root of B, a positive-semidefinite weighting
matrix (commonly identified with the background error covariance of a for the case @ = 2); C is
a positive-definite weighting matrix, referred to as the observation error covariance matrix; d is
a vector of observational data; and H is a linear observation operator which samples the fields of
harmonic constants ({ = Fa) to produce model-based estimates of the observations. Note that H may
involve spatial interpolation (corresponding to observations of along-track harmonic constants),
interpolation and harmonic synthesis in time (corresponding to observations of along-track SLA),
interpolation, harmonic synthesis, and spatial gradients (corresponding to observations of ocean
surface currents), or other linear operations (such as along-track differencing). The definitions of

the norm ||a||, are as follows: ||a||o is the number of non-zero elements of a, ||a||; = >;|a;|, and
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TaBLE 2. Exact-repeat orbit satellite altimeter missions used. Abbreviations follow the usage in the Radar

Altimeter Database System (Scharroo et al. 2013).

Satellite mission Time period  Orbit cycles

(TOPEX/Jason reference orbit, At =9.9156d)

TXA 1992-2002 4-364
JIA 2002-2009 1-259
I2A 2008-2015 1-303
J3A 20162021 1-216
(TOPEX/Jason interleaved orbit, At =9.9156d)
TXB 2002-2005 369480
J1B 2009-2012 262-374
2B 20162017 305-327

(Geosat orbit, Ar = 17.0505d)
GIA 2000-2008 37-223

(ERS/Envisat reference orbit, Ar = 35.0000d)

E2A 1995-2003 1-83
N1B 2002-2010 10-94
SAA 2013-2017 1-34

||a||, = a’a, where superscript T indicates transpose and i ranges over the elements of a, taken as
a real-valued vector.

The general formulation of (9) is used here because it is capable of representing many of the
previous approaches to estimating the baroclinic tides. One of the key distinctions among methods
is the choice of model complexity, specifically, the number of component plane waves used in
stepwise regression (Zhao et al. 2014), the order of the polynomial model for the amplitude
modulation (Zaron 2019), and the bandwidth of allowable waves around the predicted dispersion
relation (Dushaw 2015). In (9), the gamut of component waves is determined by the non-zero
entries of B. The model complexity (i.e., the number of waves with significant or non-zero

coeflicients) can be controlled by the scalar A, a tradeoff parameter, and «, the type of norm used.

10
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Fic. 2. Data locations within a representative data patch northeast of Madagascar (indicated with the red

circle in Figure 1). (a) M, harmonic constants from ERM altimetry, (b) GM altimeter data from the J2D mission,
which represents only 5% of GM data within this patch, and (c) drifter trajectories. The contour in panel (a) is
the 500m isobath; the scale image in panels (b) and (c) is the optimal estimate of the M, tide using the same
colorscale as panel (a); the dashed line is the boundary of the data patch, with radius L4 = 250km from the center

of the tangent-plane.

3. Data

Data from three different sources are used to build and evaluate the family of estimators proposed
in the previous section. The purpose of using different data sources is to conduct robust cross-
validation studies, wherein the model estimated from one source is evaluated by comparison with

another source.

a. SLA Harmonic Constants from Exact-Repeat Orbit Altimetry

The exact-repeat mission (ERM) altimetry data used here include those used in Zaron (2019),
updated through 2020-12-31. The data were pre-processed and harmonic constants computed as
described in Zaron (2019) with one change: prior to harmonic analysis, the DT-2021 version of
the SSALTO/DUACS gridded mesoscale SLA is subtracted from the altimeter SLA, rather than
the older version of the SSALTO/DUACS product (Zaron and Ray 2018) used previously.

Table 2 summarizes the ERM altimeter missions used, and Figure 2a illustrates these data within

the D,, indicated in red in Figure 1. The data are typical of observations close to complex

11
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TaBLE 3. Long-repeat- and non-repeat-orbit satellite altimeter missions used. Abbreviations follow the Radar

Altimeter Database System (Scharroo et al. 2013).

Satellite mission Time period Orbit cycles

Cryosat-2/phase A (C2A) 2010-2020 7-136

Jason-1/phase C (J1C) 2012-2013 382425
Jason-2/phase C (J2C) 2017-2018 332-355
Jason-2/phase D (J2D) 2018-2019 356-383

Saral-AltiKa/phase B (SAB) 2016-2021 36-92

topography and exhibit amplitudes of several centimeters, correlated at nearby mission ground
tracks, but without a clear large-scale spatial structure.

In order to reduce the effect of residual long-wavelength errors, the complex harmonic constants
are differenced in the along-track direction. This approach is different from the along-track filtering
employed in other works (e.g., Dushaw 2015; Zhao et al. 2016) since it is used within the least-
squares data-fitting, rather than being done as an independent data processing step. The original
harmonic constants (along-track non-differenced) are used in some of the cross-validation metrics,
below, but along-track-differenced data are always used to build the wave models.

Confidence intervals for the harmonic constants are estimated using a Monte Carlo method
to generate realizations of colored noise from the de-tided residuals (Matte et al. 2013). These
confidence intervals are averaged along each ground track within the data analysis windows and

used to identify and exclude outliers.

b. SLA Time Series from Long-Repeat- and Non-Repeat-Orbit Altimetry

The primary source of data for cross-validation are SLA measurements from long-repeat- and
non-repeat-orbit altimeter missions, listed in Table 3. Together, these datasets will be referred to
as geodetic mission (GM) altimetry.

In contrast to the ERM ground tracks, the GM ground tracks are closely spaced and are therefore
useful for assessing models in the spatial gaps not sampled by other data. Figure 2b shows the

locations of measurements from the J2D mission. The spatial density of the GM data is remarkable,

12
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considering that the J2D data shown is only about 5% of the total available. Quantitatively, the
GM data are dominated by C2A, which accounts for about 50% of the total.

As with the ERM data, discussed above, the GM data are used in the form of both SLA and
along-track SLA differences. We have experimented with the using the GM data in both forms to
estimate the baroclinic tides, but the models obtained have lower prediction skill than those based
on ERM data. Hence, the ERM data are used here for estimating the tides, while the GM data are

withheld and used for cross-validation of the ERM-based estimates.

c. Velocity Time Series from Lagrangian Surface Drifters

Several authors have noted the presence of baroclinic tidal signals in velocity time series obtained
from Lagrangian surface drifters (Elipot and Lumpkin 2008; Poulain and Centurioni 2015; Kodaira
et al. 2016; Elipot et al. 2016; Zaron and Ray 2017; Zaron and Elipot 2021). The hourly drifter-
derived surface-currents are used here to explore whether the baroclinic tides estimated from them
are consistent with those estimated from altimetry. The Global Drifter Program (GDP) dataset,
version 2.0, is used (Elipot et al. 2022b,a), which consists of approximately 165 million hourly
estimates of position and velocity obtained from 17,234 individual drifters, collected between
1990 and 2021, although 86% of the data were collected after 2005. Data from both drogued and
undrogued drifters are used since there appears to little shear near the ocean surface at the diurnal
and semidiurnal tidal frequencies (Arbic et al. 2022).

Similar to the altimetry, it is useful to remove an estimate of the low-frequency signals prior
to using the drifter-derived currents for tidal mapping. For this purpose, the original currents
were filtered around the dominant M, and K tidal frequencies with a bandpass filter of width
0.4 cycles-per-day (cpd) and 0.2 cpd. Without this filtering, significant mapping artifacts appeared
in regions of strong currents with sparse data, such as within the equatorial current systems of the
Pacific and Indian Oceans.

Figure 2c¢ shows the drifter tracks in the D,, near Madagascar, and the tracks are indeed dense
compared to the 50-to-120 km scales baroclinic waves over most of the patch. However, the
data density is notably sparser in the northen half of the domain, compared to the southern half.
Compared to the ERM and GM datasets described above, the GDP are heterogeneous over the

globe.

13
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Fic. 3. Number of observations of different types. Note that the colorscale is non-uniform (log-scaled).

xs  d. Summary

2 Figure 3 maps the number of observations within the D,,, domains for M», discussed in the Results

e section, below. The ERM data comprise by far the most numerous and homogeneously-distributed
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form of data; although, the ERM data fall exclusively along a relatively sparse set of ground tracks
(e.g., there are about 6000 data locations shown in Figure 2a). The sustained observations along the
TP/Jason reference orbit (29-years) and ERS/Envisat orbit (20-years) comprise the bulk of the ERM
data. The GM dataset is, overall, homogeneous, with the exception of regions where the Cryosat-2
sampling mode has been changed over the years (e.g., near 20°N, 180°E); it comprises about 19-
years of satellite data. In contrast, the GDP data are not evenly distributed, as a consequence of both
the distribution of deployment locations and the Lagrangian character of the surface trajectories.
Preliminary experiments sought to combine all the data types within each D,,, but the results (not
shown) were very sensitive to the relative weighting of the observations. In principle, one would
expect the optimal weighting to be equal to the inverse of the error covariance of the observations;
however, the error covariance appears to be dominated by the presence of non-tidal signals, rather
than instrumental errors, and developing consistent estimates for the covariance proved to be too
challenging. Instead, the preliminary experiments motivated the approach used below, where the
data sources are used one-at-a-time, and the A parameter is optimized through cross-validation

with the other datasets.

4. Mapping Methodology, Part II: Implementation

a. Choosing a, A, B, and C

What values of the parameters, a, 4, B, and C, lead to the best estimates of a? This is a big design
space which is only partially explored here. Optimal values of these parameters might depend on
geographic location, D, the size of the data window, L, and the data used for mapping, d. The
criteria for judging whether a is the “best estimate” is also important. Among the design choices
investigated in this section, ERM altimeter data comprise d, and a comparison dataset of GDP data
are used to assess the parameter choices.

Previous work has assumed either that the component waves are exactly described by the disper-
sion relation for mode-r linear internal waves (e.g., Zhao et al. 2014),

=20

b
ci

(10)
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where f is the latitude-dependent Coriolis frequency, and ¢, is the non-rotating eigenspeed of mode-
n waves (Kelly 2016), or that the waves fall within a prescribed bandwidth around the dispersion
relation (Dushaw 2015; Zaron 2019). There are several rationales for allowing wavenumbers which
fall off the dispersion relation: (1) the waves are locally-defined with respect to particular values
of f and ¢, which vary spatially within the data windows, (2) there may be a directly-forced
component of the tidal SLA which does not fall on the dispersion relation, and (3) time-variability
of the propagation medium can lead to a distribution of waves around the mean dispersion relation.
To allow for wavenumbers that fall off the dispersion relation, the nonzero elements of B are
required to correspond to wavenumbers within a prescribed fractional bandwidth, v, such that
(1-v)|k,| < k| < (1-=v)71k,]|, following Dushaw (2015). Recall, following equation (9), that for
a =2 the matrix B may be regarded as the background error covariance of the generalized Fourier
coefficient vector, a; hence, more generally, the diagonal of B!/2istakenasana priori estimate of the
magnitude of the elements of a. Here, B is assumed to be diagonal, and the wavenumber components
are a priori uncorrelated. Experiments were conducted (not shown) in which bandwidth parameters
of v € {0.45,0.30,0.23,0.11} were used to estimate modes n = 1,...,3. Through trial and error,
it was found that the 0.23 and 0.11 bandwidths were best for modes 1 and 2, respectively, values
used to generate the results reported, below. Experiments found that mode-3 could not be stably
estimated from ERM altimetry.

The matrix C is taken as the identity, which is equivalent to assuming the data errors are
uncorrelated and homogeneous within the domain D,, when equation (9) is regarded as a Bayesian
estimator. As already mentioned, the assignment of different error levels to the different data types
did not lead to notably better estimators, and, likewise, the weighting of data from different ERM
missions did not improve the results either.

The choices for a and A are related. For @ =0, 4 may be varied to yield sparse least-squares
estimates of a. This type of estimator is closely related to the stepwise least-squares algorithms
of Zhao et al. (2014) and Zaron (2019). In contrast, the choice a = 2 is the prototype of estimators
used in variational data assimilation where the full gamut of possible waves are used, and A controls
the goodness-of-fit to the data and provides protection against overfitting (Dushaw 2015). The new
approach used here, @ = 1, combines the sparsity-favoring properties of the @ = 0 estimator with

control on overfitting similar to the @ = 2 estimator.
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Fic. 4. An example of the performance of three different forms of the estimator (9) for @ =0, 1, 2, for mapping
the M, baroclinic tide from harmonically analyzed ERM altimetry near the Hawaiian Ridge. The influence of A
is represented by the goodness-of-fit metric on the x-axis, GoF () = (|dgrm I>—|dgry —HermFal?) /Neras
The performance of the estimators is shown by the cross-validation metric on the y-axis, CVgpp = (|dgpp|> —
|dgpp —HgppFal?)/NGpp. The line for the & = 0 case depicts the performance of the HRETS.1 model (Zaron
2019); it is shown as a line for comparison of CVgp p with the other estimators, but it represents a single estimate
of a with GoF indicated by the solid dot. Performance for three cases: (a) a narrow-bandwidth B, v = 0.15,
using the simplest plane-wave basis, P =0, (b) a narrow-bandwidth, v = 0.15, but with a quadratically-modulated

plane-wave basis, P =2, (c) a wide-bandwidth, v = 0.3, and a quadratically-modulated plane-wave basis, P = 2.

Figure 4 illustrates the influence of different choices of @, 4, and v on the performance of the
estimator (9). The x-axis represents variations in A as measured by a goodess-of-fit (GoF) metric,
(|1derml|? = lderm — HeryFal|?) / Ng gy, which measures the explained variance of the estimate
with respect to the data used, dggps. In this example, dg gy consists of the same ERM data as used
in the HRETS8.1 model (Zaron 2019). On the y-axis, the performance of the estimator is measured
using cross-validation (CVgpp) with respect to an independent dataset, dgpp, by the explained
variance (||dgpr||® —|ldgpp — HgprFal|?)/Ngpp, where dgpp represents GDP surface current
observations, and Hgpp is the measurement operator corresponding to dgpp, an Ngpp X 1 vector.

The a = 0 estimator is taken from HRETS.1, which utilizes exactly 6 quadratically-modulated
(P =2) component waves; this estimate is the reference against which the others are evaluated, and
it is identical in each panel (indicated with the dot labelled @ = 0 on the line of constant CVgpp).
The @ =1 and a = 2 estimates are parameterized by A within each panel, for different choices of

B (bandwidth) and P (polynomial modulation). The three different cases as are as follows: (a) A
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narrow bandwidth, v = 0.15, is used, and no polynomial amplitude modulation is used, P =0. In
this case, the @ = 0 estimate performs better than either of the @ = 1 or a = 2 alternatives. The
a = 1 estimate consistently explains more variance than the @ = 2 estimate, the conventional L,
estimator, and it is more efficient, in the sense that it achieves its maximum CVgpp statistic for
a smaller value of the GoF statistic. (b) A narrow bandwidth, v = 0.15, is used, and a quadratic
amplitude modulation is used, P = 2. In this case, the @ = 1 estimate exceeds the performance
of both the @ =0 and @ =2 estimates. (c¢) A wider bandwidth, v = 0.30, is used, and a quadratic
amplitude modulation is used, P = 2. The added bandwidth allows for further improvements in the
CVspp metric and conclusively shows that the @ = 0 and @ = 2 solutions are sub-optimal.

Reasons for the differences among the estimators are not completely understood. If (9) is
interpreted in a Bayesian context, then the better performance of the @ = 1 estimator compared
to the @ = 2 estimator may be related to the non-Gaussian distribution of the component wave
coeflicients. Whereas both the @ =0 and @ = 1 estimators are inherently sparsity-selecting (Candes
etal. 2006), only the @ = 1 estimator allows for controlling the goodness-of-fit (avoiding overfitting)
among the non-zero elements of a.

This study was partly motivated by the desire to implement a non-arbitrary stopping criterion in
the estimator of Zaron (2019). Experiments using stopping criteria based on the F-test, Mallows
C, (Mallows 1973), and Aikake’s Information Criterion (Akaike 1974) yielded sub-optimal results
when evaluated using cross-validation. For a modern review of these, and other, approaches to
stopping criteria and their sensitivity to unmodeled signals or non-Gaussian noise, the dissertation
by Lysen (2009) is recommended. For these reasons, the estimators used below exclusively use a
cross-validation metric (i.e., comparison against withheld or independent data) to determine the

optimal value of the regularization parameter, A.

b. Numerical methods and implementation details

The generalized Fourier coefficient vector, a, consists of the coefficients of the generalized
Fourier components on D,,. Many of these coefficients are zero, though, due to the a priori
bandwidth selection, as defined by B, which is taken as a diagonal matrix consisting either of 0’s or
1I’s. Let the vector b denote the elements of a corresponding to the gamut of possible generalized

wavenumbers. Let b be such that a = B;/ 2b, where Bll)/ % is the rectangular matrix containing only
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those of columns of B'/2 with non-zero elements. With this transformation, equation (9) fits the
canonical form,

J(b;2,2,B,C) =2 |b||, + (d—Ab) C 1 (d - Ab), (11)

where A = HFB,/.

Different methods were used to compute the minimizer of (11), depending on the value of @. For
the case, @ =2, given 4, equation (11) is minimized using the conjugate gradient algorithm (Shanno
1985). Alternately, when the gamut of non-zero wavenumbers is small enough, equation (11) may

be minimized using direct methods by solving,
(AI+ATC'A)b=ATC 14, (12)

which was used as a check on the conjugate gradient solver.

For the case @ = 1, a generalization of the least-angle regression algorithm is used (Efron et al.
2004). In its original form, this elegant algorithm produces a sequence of scalar regularization
parameters A = Ay and vectors b = by which minimize J, where k = 1,..., N, with N; being
the dimension of the vector b. At each step, the rank of the linear system to be solved is k and
corresponds to the k-dimensional subspace of A which is most correlated with the residual from
the previous step, ry—; = d — Ab;_;. In this way, the algorithm proceeds to build the minimizer of
J which has the sparsity property that ||b||o = & and which would terminate after k = N, steps at
the least-squares solution of Ab =d (when A =0). The generalization of the algorithm used here
is one which expands the subspace at each step with pairs of variables corresponding to the real
and imaginary parts of the generalized Fourier coefficients (Yuan and Lin 2006). The algorithm
is computationally and memory efficient since it is based on forming rank-2 updates of the QR-
decomposition of A. In practice it is not run to completion at step k = Np; instead, the algorithm
is terminated when the optimal agreement with the cross-validation dataset is obtained.

The @ =0 case for minimizing (11) proceeds similar to the @ = 1 case, except that the least-
squares solution of Ab; =d is computed at each step, where the nonzero entries of by comprise the
same set of variables as used in the @ = 1 solver (described above). By construction, the solution
sequence achieves a smaller residual (better goodness-of-fit) compared to the corresponding @ =1

case; however, in practice, the cross-validation metric is worse than the @ = 1 case (cf., Figure 4).

19



403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

TaBLE 4. Estimators. Seven estimators for each of the tides are computed, and these are labelled according to
the dataset employed for computing generalized Fourier coefficients, and the dataset employed for cross-validation
(optimization of ). The notation Eab is used, where a indicates the data used to build the model, and b indicates
the data used for cross-validation (1=ERM, 2=GM, 3=GDP). The estimate E* is the linear combination of the
E12 and E32 estimates which optimizes the explained variance with respect to the GM data (Appendix A). (Note

that the E21 and E23 estimates are not shown, but are available from the authors.)

Estimate d dcy  description

E12 ERM GM fit to ERM, optimize w.r.t. GM
E13 ERM GDP fit to ERM, optimize w.r.t. GDP
E21 GM ERM fit to GM, optimize w.r.t. ERM
E23 GM GDP fit to GM, optimize w.r.t. GDP
E31 GDP ERM fit to GDP, optimize w.r.t. ERM
E32 GDP GM fit to GDP, optimize w.r.t. GM
E* ERM, GDP GM optimal linear combination of

E13 and E31 w.r.t. GM

5. Results

The above-described methodology has been applied to estimate the baroclinic SLA and surface
currents associated with the tides listed in Table 1. In every case the @ = 1 estimator with P =2
(quadratic) amplitude modulation is used. A data window (disk radius) of L; =250 km is used
for the M; tide, while a L; = 500 km data window is used for the other tides, justified as follows:
(1) for the diurnal tides, K; and Oy, because of their longer wavelengths, (2) for S,, because of the
sparse ground track sampling by ERM altimetry, and (3) for N, MA,, and MB,, because of their
small signal-to-noise ratio in the data.

The three data sources described in Section 3 are used in pairs to create different estimates, as
enumerated in Table 4. Rather than fitting a wave model to all the data sources simultaneously,
each data source is used, in turn, and the A parameter (which controls the goodness-of-fit to the
data) is selected to optimize the estimate with respect to another of the datasets. For example, E12
involves building the wave model from ERM data, but using the GM data to select the optimal A.

In other words, the E12 estimate minimizes the prediction error with respect to the GM data, while
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fitting the ERM data. In addition to the pairwise fit-and-predict pairs, an estimate E* is computed
which is the optimal linear combination of the E12 and E32 solutions with respect to the GM data
(see Appendix A).

Two aspects of this work are novel. First, the estimator defined by equation (9) involves the
absolute value (the first term on the right-hand-side; @ = 1, an L{-norm) as well as the sum-
of-squares (the second term on the right-hand-side; an L;-norm), so it is a mixed L{/L;-norm
estimator. And, second, the use of different data types for building and cross-validating the models
is another novel aspect of this work. While the GM data have been used previously for evaluating
and comparing models (Zaron and Ray 2017; Carrere et al. 2021), it is not clear if these are the
best data for this task, considering how non-tidal signals and various sources of noise overlap with
the tidal alias frequencies (e.g., see Zaron 2018 for a detailed analysis of aliasing for the Cryosat-2
mission). Experiments were conducted to compare SLA versus along-track SLA differences for
cross-validation, which revealed minor differences between the estimates (examples shown, below).
Ultimately, along-track SLA differences were favored for cross-validation under the presumption

that the errors are less correlated in the along-track direction than in the original SLA data.

a. M tide

Figure 5 compares the M, baroclinic sea level anomaly estimate from Zaron (2019), HRETS.1,
with the new estimates based on ERM data and GDP data, E12 and E32, respectively. Perhaps the
most noteworthy aspect of the estimates is the remarkable visual similitude of the E12 and E32
estimates, which are based on completely independent data, and the similitude of these estimates
with HRETS.1. Careful study of the panels does reveal subtle differences, though. For example,
the HRETS8.1 solution was masked to zero in much of the Southern Ocean and in the western
boundary currents, while the E12 and E32 estimates smoothly go to zero in these regions. Also,
the background noise in the E12 and E32 estimates appears smaller than in the HRETS.1 solution.
While this is most visually evident in the southern Indian Ocean, explained variance metrics, shown
below, confirm that the noise is in fact smaller throughout most of the global oceans. The same
internal wave sources and large-scale beams are apparent in all three estimates. One difference

among the estimates is the low-amplitude of the E32 solution in the Banda Sea (5°S,130°E) and
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FiG. 5. Three estimates of the M, baroclinic sea level anomaly (real part, in-phase with the astronomical tidal
potential): (a) HRETS.1, based on ERM data; (b) E12, based on ERM data using the estimator described in
Section 2 with A optimized by comparison to GM along-track sea surface slope data; (c) E32, based on GDP

data, but otherwise as in (b).

22



455

456

457

458

459

460

461

462

463

467

468

469

470

471

472

473

480

481

482

483

484

485

486

487

488

489

490

491

492

493

and generally throughout the equatorial oceans. In addition, there are differences in clarity of the
beam-like features in the South Atlantic, for example.

In order to develop the best possible estimate using both the ERM and GDP data, another estimate
is formed, denoted E*, which is the optimal linear combination of E12 and E32 as cross-validated
by the GM data. This estimate is computed as described in Appendix A. The generalized Fourier
coeflicients for the E12 and E32 estimates are computed using the independent ERM and GDP
data; however, the optimal goodness-of-fit parameter A, is determined by GM data in both cases.
Thus, the E* estimate is not adding any new data to the estimate, it simply forms a weighted average
which better agrees with the GM data used for validation.

The visual diffence between E* and the other solutions is subtle. Figure 6 illustrates the amplitude
of the complex baroclinic sea level, n. It is apparent from comparison of panels (a) and (b) that the
E* amplitude is smaller than the HRETS8.1 amplitude in many regions where the amplitude of 7 is
itself small (e.g., in the mid-Indian Ocean, and in the Eastern Equatorial Pacific). The difference
in amplitudes, panel (c), illustrates the same point, but also shows that the E* estimate is larger
than HRETS.1 in many of the generation sites. The E* estimate thus appears to be less noisy than
HRETS.1, and more detailed near the generation sites.

Detailed comparisons of the E12 and E32 estimates, from which E* is constructed, show many
small-scale differences, in spite of the large-scale similarity. Figure 7 illustrates the real part of E12
and E32 in the region around the Azores, a significant generation site in the North Atlantic, and a
region with a high density of GDP data (Ngpp = 4 X 10° within each D,,). The pattern of wave
radiation, and the location of maxima and minima are reproduced in both estimates. However,
the difference field, denoted 6M», contains both small-scale noise and features which are coherent
across multiple data windows, D,,. The difference field is a measure of the combined effects of
random measurement error, mapping error, and systematic error possibly reflecting changes in the
tides between the time periods over which the measurements were obtained (1993-2022 for the
ERM data, and predominantly 2008-2020 for the GDP data). The difference between the E12 and
E32 fields is assumed to be a measure of the uncertainty in E*. For this region, the root-mean-
square amplitude differences are about 20% of the amplitude, and phase differences are about
15°. Phase differences are, of course, larger in regions with smaller amplitude signals. When the

difference estimates are evaluated globally, differences in relative amplitude are directly related to
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464 Fic. 6. Amplitude of the complex-valued baroclinic M, SLA for (a) the HRETS.1 estimate, and (b) the new
s EB* estimate, which is the optimal linear combination of the E12 and E32 estimates. The difference between the

«s amplitudes, (b) minus (a), is shown in panel (c).
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Fic. 7. The real part of the M, SLA for (a) E12, (b) E32, and (c) their difference, E32 minus E21, for a region
around the Azores in the North Atlantic. The same colorscale is used in each panel, which is identical to that

used in Figure 5 .

the number-density of GDP measurements (see Figure 3c) and increase to about 35% where Ngpp
drops to 10° per D,,.

For practical purposes, one useful metric of the difference between the E* and HRETS.1 estimates
is the prediction error, as measured by the explained variance with respect to different datasets.
The explained variance (more-precisely, the reduction in mean-square residual from the model
prediction; however, the mean values are negligable here and are expected to be zero), is defined
as,

er = (|d,|*> - |d, — H,Fa|*)/N,, (13)

where the x subscript indicates the data source, ERM, GM, or GDP. Figure 8 shows differences in
the quantity, Ae, = e, (E*) — e, (HRETS.1), for the GM mission SLA (denoted Aeg ), GM mission
along-track SLA differences (denoted Ae’G y)» and GDP velocity data (denoted Aegpp). In most
regions, particularly near the main internal tide generation sites, the E* estimate explains more
variance than the older HRETS.1 estimate. Note that the magnitude of the change in explained
variance is small for the GM data, and not likely to be of practical significance in most parts of the
world Ocean; however, the difference is more substantial for the GDP dataset. Generally speaking,

the small-magnitude and small-scale changes in baroclinic SLA (cf., Figure 5 and Figure 6c) alter
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477 Fic. 8. Differences of explained variance, E* minus HRETS8.1. Positive values indicate that the E* estimate
a8 explains more variance (e.g., it has smaller prediction error) than HRETS.1, based on the following datasets: (a)

o9 GM altimeter SLA, (b) GM altimeter along-track SLA differences, and (c) GDP surface velocity data.
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the estimated sea surface slope in a manner which brings it in to better agreement with the observed

velocity field.

b. MA», and MB> tides

The seasonal modulations of the M, tide, denoted with the Darwin symbols MA, and MB,, were
estimated in Zaron (2019) and included in HRETS8.1. Figure 9 illustrates the amplitudes of these
tides in the HRETS.1 and E* estimates. The new estimates of the seasonal modulates are much
smaller than the HRETS.1 estimates. Simultaneously, the E* estimate explains more variance than
the HRETS8.1 estimate. Thus, it appears that the HRETS.1 estimates for these quantities were
largely spurious.

There are two plausible reasons for the differences in the new estimates, compared to the old.
First, MA; and MB, are dominated by the non-tidal environmental processes (Ray 2022), rather
than the variability of the astronomical tidal potential. The E* estimate is based on optimizing A by
comparison with GM data which were collected only within the latter half of the ERM record on
which E12 is based, and the non-tidal processes responsible for MA,; and MB, might decorrelate
over these time periods. A similar argument applies to the GDP data used to form the E32 estimate.
Another explanation for the difference involves the use of the @ = 1 estimator in the new approach;
it may simply provide better protection against over-fitting, and result in less-noisy estimates. In

any case, it is clear that the MA, and MB, estimates provided in HRETS.1 are not accurate.

c. S> and N> tides

The S; and N tides represent the second and third largest astronomical tides in the semidiurnal
group, with astronomical potential about 1/2 and 1/5 as large as M,, respectively. The data
available to estimate these two tides differ, though, because there are fewer (non-sun-synchronous
orbit) satellite missions capable of observing S,. Due to the sparse ERM sampling of S, and the
small amplitude of Ny, both tides are estimated using a data window twice as large as used for M,
(Table 1).

A comparison of the HRETS8.1 and E* estimates of S, identifies most of the same large-scale
generation sites in both estimates (Figure 10). The newer estimate achieves better prediction

error in mid-ocean regions associated with the main generation sites, but notable deficits occur
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511 F1G. 9. Amplitude of the MB, tide, an annual modulate of M;: (a) MB; from HRETS.1, and (b) MB, from E*.
sz (c) Difference of explained variance, E* minus HRETS8.1. The new estimates of MB, and MA, (not shown) are
sz much smaller than in HRETS.1, and the explained variance is larger, which suggests that the HRETS.1 estimates

sia for these frequencies was dominated by error.
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538 Fic. 10. S, tide comparison: (a) HRETS.1 amplitude, (b) E* amplitude, and (c) Ae’G - the difference in

s explained variance compared to along-track GM SLA differences.
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in regions such as the Indonesian Seas, near the Amazon plume, and near the Andamans on the
eastern boundary of the Indian Ocean. It is hypothesized that the & = 0-like approach of HRETS. 1
is better in these regions, which are all close to land boundaries, where the inhomogeneities in
the observations and larger non-tidal signals (due to lower accuracy of the mesoscale corrections
near land) obscure the distinction between “active” and “non-active” degrees of freedom in @ =1
algorithm. In other word, attempts to balance the active modes (a priori assumed to be signal)
and in-active modes (a priori assumed to be a mix of signals and noise) are not useful when the
in-active modes are dominated by noise. Although more systematic parameter tuning could lead
to more accurate estimates of S, in these regions, this has not been attempted.

The N, tide was not estimated in HRETS.1, so there are no alternatives available for comparison
of the E* estimate (Figure 11). Overall, the maps of the N, tide are similar to M5, as expected
from the identical spatial pattern of forcing and nearby frequencies of the constituents, but the N;
fields are notably sparser, consistent with their smaller signal-to-noise ratio and the use of the @ = 1
estimator. Incorporation of N in predictions of baroclinic sea level should be expected to explain

a few millimeters of root-mean-square sea level near the main generation sites.

d. K; and O tides

The diurnal K; and O; tides were estimated previously in Zaron (2019), and it is interesting to
see the extent to which that estimate can be improved with the new estimator and the addition of
GDP data. Compared to HRETS.1, the new estimates are remarkably similar. The amplitudes
of the new estimates are slightly larger and exhibit more detail than in HRETS.1, as shown in
the Eastern Pacific and Atlantic for K; in Figures 12a and 12b. Waves emanating from Luzon
and Halmahera Sea (Figure 12¢) and southward from the Lombok Strait (Figure 12d) are resolved
better than previously (not shown). Although the K; waves are smaller amplitude than My, it is
evident that they propagate long distances within their waveguide between +30° latitude. Similar
features are found in the new O; solution.

The increased detail of the new diurnal tide estimates is associated with better explained variance
statistics, shown for K; in the far western Pacific and Indonesian Seas (Figure 13). The extent
of improvement for K; depends more on the specific data source used for comparison than M,

though (cf., Figure 8). Considerable area now shows essentially the same or even slightly worse
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552 FiG. 11. N; tide metrics for the E* estimate: (a) the real part of SLA, (b) amplitude, and (c) explained variance
ss3  with respect to along-track GM altimetry SLA differences. Note that the colorscale is scaled by a factor of 1/5

ss«  compared to plots for M, in Figures 5-8, corresponding to the magnitude of the astronomical potential.
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Fic. 12. K;j baroclinic sea level anomaly (real part, in-phase with the astronomical tidal potential): (a)
HRETS.1, based on ERM data; (b-d) E*, based on combined ERM and GDP data using the estimator described
in Section 2 with A optimized by comparison to GM along-track sea surface slope. Note the different colorscales

used in panels (b-d).

explained variance for the comparison with GM SLA data (Figure 13a); although, the comparison

with GM along-track SLA difference is more uniformly favorable, which is expected since these
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Fic. 13. Differences of explained variance, E* minus HRETS.1, within the same domain pictured in Figure 12c.
Positive values indicate that the E* estimates explains more variance than HRETS8.1. (a) GM altimeter SLA,
(b) GM altimeter along-track SLA differences, and (c) GDP surface velocity data. The green contours in panel
(¢) indicate the estimated standard error of Aegpp at three levels: 1 cm?s™2 (thin), 3 cm?s™2 (medium), and

9 cm?s72 (thick).

data are used to optimize the A regularization parameter. The comparisons with GDP-derived
currents shows the limitations of these data, caused in part by non-uniform spatial density and
contamination by near-inertial currents near the K; inertial latitude, +30°. The explained variance
metric, Aegpp in Figure 13c, is overlaid with contours of its expected errors as estimated by a
modification of bootstrap resampling which accounts for correlations in the data errors (data are
resampled in 100-hr segments). Regions which explain less variance than HRETS.1 (shaded with

blue) generally coincide with regions where the standard error is larger than 3 cm?s~2.
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One interesting feature of K is the apparent decay of the waves within about 3° of the inertial
latitude (apparent near 190°E in Figure 12b and between 60°E and 80°E in Figure 12d). The struc-
ture of diurnal waves near their inertial latitude depends strongly on the direction of propagation,
with an Airy-function structure for the meridional component (Hendershott 1981; Dushaw and
Worcester 1998). But we should also expect the waves to be particularly sensitive to modulations
of relative vorticity which will change the effective value of the inertial frequency in the propaga-
tion environment (Kunze 1985). Thus, the apparent decay of the waves near +30° could be due
to wave structures which cannot be represented by the present kinematic wave model, or due to
time-dependent modulations which reduce the phase-locked signal. In either case, the interesting
features of the diurnal waves deserve further investigation.

The O tide is largely similar to the above description of K;. It contains no striking new qualitative

features, and is therefore not shown.

e. Summary of Results

Table 5 summarizes the main differences in the new E* estimates compared to HRETS8.1. It is
noteworthly that the best-resolved M tide is essentially the same amplitude in both estimates, but
the new model explains nearly a factor of 5 more GDP velocity variance than HRETS8.1. The use
of the new a =1 estimator seems to reduce the noise level and problems with the MA, and MB,
estimates from HRETS.1. In every case except Sy, the measures of explained variance are either
the same or improved. There is no reason to think the dynamics of S, are fundamentally different
from those of M, or N», so the larger difference between E* and HRETS.1 for this frequency likely

reflect its larger uncertainty, a consequence of the relatively poor sampling by altimetry.

6. Discussion

The new estimates of baroclinic tides, above, are useful for the prediction and description of the
baroclinic waves. An illustrative example is shown in Figure 14a, which maps the surface kinetic
energy associated with the baroclinic M, tide. The surface kinetic energy (Figure 14a) is computed
from 7 using surface velocities computed with equation (8); it provides an estimate which may be
useful in planning future ocean surface current measurement satellite mission concepts, for example

(Rodriguez et al. 2019; Du et al. 2021). Figures 14b and 14c compare the rotary kinetic energy
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TaBLE 5. Summary statistics for E* compared to HRETS.1. {|n|?)
of the estimated tidal SLA amplitude. Other columns indicate the square root of the area-weighted mean of the
explained variance with respect to ERM data (egras), GM data (eGpr), along-track-differenced GM data (e’G M)

and GDP data (egpp). HRETS.1 did not include an estimate of N, which is indicated with an “-”.

(InHY? eprm eom €y ecpp

Tide Model [cm] [cm] [cm] [cm] [cms™']
0, E* 0.24 0.18 0.18 0.02 0.67
HRETS.1 0.22 0.17 0.18 0.02 0.36
K; E* 0.32 0.24 026 0.03 0.72
HRETS.1 0.27 0.23 024 0.03 0.45
N> E* 0.05 0.06 0.05 0.02 0.37
HRETS.1 - - - - -
MA, E* 0.03 0.02 0.03 0.01 0.35

HRETS.1 0.11 0.00 0.00 0.00 0.00

M, FE° 0.60 041 051 0.14 1.13
HRETS.1 0.61 040 048 0.12 0.52

MB, E* 0.03 0.03 0.04 0.01 0.38
HRETS.1 0.11 0.00 0.00 0.00 0.00

S E* 0.15 0.16 0.14 0.04 0.62
HRETS.1 0.19 0.15 0.15 0.04 0.13

of the observed Lagrangian currents (Elipot et al. 2016) with the predicted tidal currents. The
examples show that the predicted currents exhibit considerable spreading in the frequency domain
solely due to the Lagrangian character of the observations, independent of any non-phase-locked
tidal variability. It is also interesting to note that the predicted tides in the semidiurnal band are a
factor of 2 to 3 weaker than the observed currents. This difference in energy level likely reflects the
presence of non-phase-locked tidal variability in the observations. In contrast, the kinetic energy
near -1 cycle-per-day (cpd) consists of a mixture of tidal and inertial energy, and it is impossible

to assess any bias in the predicted diurnal tidal currents.
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FiG. 14. (a) Kinetic energy of the baroclinic M, tide from the E* estimate at the ocean surface. Note that
the latitude range shown is expanded slightly compared to Figure 5 in order to show some small features at high
latitude, such in the Labrador Sea. The rotary kinetic energy spectra of the observed Lagrangian currents (black)
and predicted tidal currents (red) are shown for representative drifter trajectories in (b) the West Pacific and (c)
the North Atlantic. Due to the drifters’ proximity to 30° latitude, the kinetic energy near -1-cycle-per-day (cpd)

consists of a mixture of tidal and inertial energy.

The new tidal estimates may also stimulate new approaches to oceanographic data analysis. For
example, Figure 15 illustrates the probability distribution function of the squared baroclinic M,

amplitude in two forms. The first, Figure 15a, quantifies the spatial inhomogeneity of the beams
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Fic. 15. The probability density function (pdf) of squared baroclinic M, amplitude. The pdf is computed by
sampling the E* gridpoints, weighted by the cosine of latitude, so it represents the density of oceanic area (from
66°S to 66°N, and depth greater than 250 m) with given squared amplitude. (a) The cumulative probability
density (cdf) quantifies the spatial heterogeneity of the internal tides, showing, for example, that baroclinic tides
with amplitude exceeding 1 cm amplitude only occupy about 7.5% of the oceanic area. (b) For scales less than
400 km, the pdf of the normalized amplitude, A> = |[M,|?/(|M,|?) (black line), agrees with the y3-distribution
(red dashed line), consistent with strong multi-wave interference. Over larger scales the pdf is influenced by

spatial heterogeneity of the wave field (blue and green lines).

of tidal energy; over 90% of the area of the deep ocean is associated with an M, amplitude of 1 cm
or less. The second, Figure 15b, shows the probability density function and compares it with the
exponential distribution, a model for squared wave amplitude in the presence of strong interference;
it shows that within patches of the ocean in which the the wave field may be considered spatially
homogeneous, its statistics are well-characterized by the exponential distribution.

It is important to recall that the E* estimate describes the phase-locked component of the baro-
clinic tides. The instantaneous tide, i.e., the sum of the phase-locked and modulated components,
could be significantly different (Zaron 2022). It is also useful to note that the presence of diffraction
patterns in the baroclinic tides is not necesssarily an indication of the phase-stability of the instan-
taneous tides, as has been asserted (Dushaw et al. 2011). A time-mean diffraction pattern could

arise solely because of time-dependent modulations. For example, if two separate point sources
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turned on and off alternately, the mean wave field would exhibit an interference pattern even though
none exists at any instant. Whether such a mechanism could explain any of the observed features
of the wave field is speculative, but it is an interesting contrast to the interference of steady wave
sources (Rainville et al. 2010).

The small amplitudes of the MA, and MB; tides found here is hypothesized to be related to
non-phase-locked variability of the processes which modulate the M, tides. A better approach to
capturing the baroclinic tidal variability at annual periods might use non-harmonic or year-by-year
estimates, as implemented recently by Zhao (2022).

There are additional questions related to the form of the estimator used here. The mixed L{/L,-
norm estimator is well known from the compressive-sampling literature (Candes et al. 2006), but
it is not clear why it performs better than an L, estimator in the present application. There are
other arbitrary choices, too, such as the size of the data-window and the wavenumber bandwidth.
Given the heterogeneous nature of the fields to be mapped, the non-tidal noise, and the character
of the observing arrays, it is unlikely that a single set of parameters are optimal for all of the local
domains, D,,.

One particularly vexing issue concerns the appropriate estimators near the coastline or topo-
graphic features where barotropic tidal corrections may contain errors and where the barotropic
and baroclinic dynamics may be coupled. This is a serious limitation of the kinematic wave
approach, since the separation of barotropic and baroclinic sea level anomalies depends on the
utility of the dispersion relation which, for all estimates made so far, has been derived in the limit
of flat-bottom topography. It is not clear how the existing approaches to mapping or assimilation
based on dynamical models (e.g., Egbert and Erofeeva 2014) could be modified to exceed the
accuracy of the kinematic models, though. The mixed L /L, approach could be adapted for use in
assimilative models to allow better control of model complexity; although, this would not address
the approximations inherent in models based on a truncated modal decomposition (Lahaye and
Llewellyn Smith 2020).

The presentation of results in Section 5, above, used explained variance to assess the tidal
estimates; however, an alternative approach to assessment could be provided by estimates of
standard errors. Users of HRET concerned with tidal prediction are generally interested in the

accuracy of the prediction relative to the instantaneous tide, so the standard error of only the
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Fic. 16. An error estimate for the M, harmonic constants based on the assumption that the E12 and E32
estimates are affected by the same (non-instrumental) noise sources, namely, non-phase-locked tides and model

structural error.

phase-locked tide may be of little practical use. Nonetheless, standard errors for the phase-locked
tide could help assess differences among models, and a brief discussion of these errors follows.
Errors in the tidal estimates provided here arise from a combination of systematic and random
errors in the observational data, model structural error (uncertainty in the form of the functions
used to describe the data, equation 2), and noise due to non-phase-locked tides. If it is assumed
that the latter two factors are dominant and affect the altimeter- and GDP-derived estimates equally,
then the errors in these estimates should depend only on the number of data used for each estimate.
In other words, assume that the E12 and E32 estimates are independent but affected by noise with

same variance, o-2. The errors of the estimates should be, o2, = o2 /NE12 and 0]%32 = g2 /NE32,

E12
respectively, where N, is the number of data minus the number of parameters estimated in estimate

e € {E12,E32}. With these assumptions, the difference field A = E12 — E32 may be used to

estimate o2,

1 1
2 2
o= (A —+ —], (14)
< >(NE12 NE32)

where the angle-brackets denote spatial averaging over 1-degree cells. This error estimate for M,

is shown in Figure 16.
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7. Conclusions

The estimates for the baroclinic tides derived herein will be useful for the prediction of baroclinic
tidal variability in the open ocean. The new methdology for estimating and mapping the wave
fields is a definite improvement compared to prior methods. It is hoped that these estimators may
be useful for analysis of temporal and spatial subsets of data, to identify non-phase-locked tidal
variability, or to estimate the dispersion-relation parameters from the mapped fields.

Considering the small quantitative improvement of the present estimates compared to the older
HRETS.1 estimates for mapping or predicting SLA, further efforts to map the time-mean phase-
locked baroclinic tides with kinematic waves appear to be of questionable value. It seems that the
greatest gains in baroclinic tide prediction will result from mapping or predicting the “instanta-
neous” tides, for which new methods need to be developed. The approaches in Egbert and Erofeeva
(2021), Le Guillou et al. (2021), Ubelmann et al. (2022), and Zhao (2022) appear promising.

Nonetheless, the tidal estimates presented here are useful for predicting the baroclinic tidal SLA
and ocean surface currents. The harmonic constants on a regular (1/20)° grid between the latitudes
of £66°, and associated tidal prediction software, are publicly available! for the M,, S,, N», Kj,
and O tides. The netcdf-formatted files contain the E12 (altimeter-only) and E31 (drifter-only)
tidal estimates, in addition to the optimal E* estimate, and harmonic constants are provided for the
vector surface currents as well as the SLA. Sub-surface tidal currents and other baroclinic tidal
fields may be predicted using the generalized Fourier coefficient representation of each tide; these
coeflicients comprise roughly 60 GB of data for each constituent and are available from the authors

upon request.
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APPENDIX A

Definition of the E* estimator

As stated in the text, the E* estimate is an optimal linear combination of the E12 and E32
estimators. Let a*, a1?, and a®? denote the generalized Fourier coefficients for these estimates,
respectively, with a* = aa(1?) 4+ (1- a)a(32) for scalar, a, to be deteremined. Within each data patch,
a is chosen to maximize the explained variance with respect to the along-track-differenced GM

data, the quantity,
J(a)=d%,,dy — (dgy —HouFa*)" (dgy —HgyFa®). (A1)

The coeflicient a is obtained by solving conditions where the quadratic function J(a) is maximum,

ldJ(a)

5= = [HguF(a"? —aB) | [dgy —HonF(aa'? + (1-a)a®?)]=0.  (A2)
a

(32)

Using the notation dgf,l) =HgFa'? for al'? sampled at the GM data sites, and likewise for d;ys

the optimal value of a is derived as follows:

0= (") —aSh (dgy —ad)) - (1-a)dsr) (A3)

0= (A3 —dgy) (dow —dgy —a(dgy —dg) (Ad)

0= (Adgy)" (doum - d((ff} —a(Adgm)) (AS)

0= (Adow)" (dou —d5y)) - a(Adgu) (Adgar) (A6)

. (Adga) (dGm — d(GSZ%}) (A7)
(Adgy)T (AdGy)

The E* estimate is computed independently on each domain, D,,, and these solutions are blended
together, following Section 2b, to obtain the maps of global fields which are shown in the main

text.
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