

Estimates of Baroclinic Tidal Sea Level and Currents from Lagrangian Drifters and Satellite Altimetry

Edward D. Zaron^a and Shane Eliopot^b

^a Oregon State University, Corvallis, Oregon, USA

^b Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA

⁷ Corresponding author: Edward D. Zaron, edward.d.zaron@oregonstate.edu

8 ABSTRACT: Internal waves generated by the interaction of the surface tides with topography
9 are known to propagate long distances and lead to observable effects such as sea level variability,
10 ocean currents, and mixing. In an effort to describe and predict these waves, the present work is
11 concerned with using geographically-distributed data from satellite altimeters and drifting buoys to
12 estimate and map the baroclinic sea level associated with the M_2 , S_2 , N_2 , K_1 , and O_1 tides. A new
13 mapping methodology is developed, based on a mixed L_1/L_2 -norm optimization, and compared
14 with previously-developed methods for tidal estimation from altimeter data. The altimeter and
15 drifter data are considered separately in their roles for estimating tides and for cross-validating
16 estimates obtained with independent data. Estimates obtained from altimetry and drifter data
17 are found to agree remarkably well in regions where the drifter trajectories are spatially dense;
18 however, heterogeneity of the drifter trajectories is a disadvantage when they are considered
19 alone for tidal estimation. When the different data types are combined by using geodetic-mission
20 altimetry to cross-validate estimates obtained with either exact-repeat altimetry or drifter data, and
21 subsequently averaging the latter estimates, the estimates significantly improve on the previously-
22 published HRET8.1 model, as measured by their utility for predicting either sea level anomaly
23 or ocean surface currents in the open ocean. The methodology has been applied to estimate the
24 annual modulations of M_2 , which are found to have much smaller amplitudes compared to those
25 reported in HRET8.1, and suggest that the latter estimates of these tides were not reliable.

26 SIGNIFICANCE STATEMENT: The mechanical and thermodynamic forcing of the ocean occurs
27 primarily at very large scales associated with the gravitational perturbations of the sun and moon
28 (tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean
29 act on very small scales. This research addresses the question of how the large-scale tidal forcing
30 is transformed into the smaller-scale motion capable of being influenced by friction. The results
31 show where internal waves are generated, and how they transport energy across ocean basins to
32 eventually be dissipated by friction. The results are useful to scientists interested in mapping
33 the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean
34 temperature, and ocean currents.

35 1. Introduction

36 This paper is concerned with estimating and mapping the tidal harmonic constants associated
37 with the sea level anomaly (SLA) of baroclinic tides in the open ocean. It develops an approach
38 based on a model for the SLA consisting of spatial Fourier modes modulated in time by the
39 astronomical gravitational tide-generating potential. It thus extends approaches from the literature
40 in which different forms of a relatively simple kinematic wave model are used to map baroclinic
41 tides (Ray and Cartwright 2001; Zhao et al. 2012; Dushaw 2015; Zaron 2019). This work is
42 broadly motivated by the desire to improve baroclinic tide prediction and to understand the role of
43 the tides in the dynamics of the ocean.

44 Carrere et al. (2021) compared different models for predicting the baroclinic tides. Broadly, such
45 models could be classified as follows: (1) ad-hoc empirical models in which observed harmonics
46 of the baroclinic tides are smoothly interpolated and extrapolated to yield continuous fields for
47 prediction of the tides at arbitrary locations (Ray and Zaron 2016), (2) kinematic wave models
48 which represent the observed harmonics as a superposition of idealized waves (Dushaw 2015;
49 Zhao et al. 2016; Zaron 2019; Ubelmann et al. 2022), (3) dynamic wave models which solve
50 for the baroclinic tides from the known astronomical tide-generating force (Shriver et al. 2014),
51 and (4) data-assimilative models which assimilate observations into a dynamic wave model, using
52 assumptions about the expected errors of the observations and the model (Egbert and Erofeeva
53 2014). In approach (2), the kinematic wave models, there are different criteria for identifying the
54 constituent waves and describing their waveforms. In approach (4), the data-assimilative model,

55 the attributes of the dynamical model errors must be quantified, rather than the attributes of the
56 wave field per se, and there is considerable uncertainty about how the dynamical errors should
57 be represented. One might anticipate that a data-assimilative model would be more accurate than
58 a kinematic wave model, because the SLA obtained would unambiguously correspond to some
59 dynamics, even if these differ from the ones specified a priori; however, Carrere et al. (2021) found
60 that the most accurate tidal SLA predictions were obtained from a kinematic wave model, rather
61 than a data-assimilative model. The working hypothesis of this paper is that the systematic pursuit
62 of a descriptive kinematic model will provide insight into the causes of the surprising results
63 of Carrere et al. (2021), and lead to a better understanding of baroclinic wave dynamics in the
64 ocean.

65 The approach taken here is to extend previous works in two ways. First, different formulations of
66 the estimators for the kinematic wave model are considered, including the stepwise least-squares
67 approaches of Zhao et al. (2016) and the penalized least-squares of Dushaw (2015), leading to the
68 preferred approach, a type of least-angle regression (Efron et al. 2004). And, second, different
69 independent data sources are used for building the kinematic wave models and for cross-validating
70 them. The independent data are exact-repeat mission altimetry, geodetic mission altimetry, and
71 surface currents estimated with Lagrangian surface drifters. The altimeter data are used in two
72 forms, both as along-track sea level anomaly and as along-track collinear sea level anomaly
73 differences, i.e., sea surface slope. The different kinds of data provide alternate stopping criteria
74 for the iterative estimation algorithms, and reveal the degree to which different criteria lead to
75 different estimates. The different data types were collected over different time periods, they are
76 subject to different sources of instrumental error, and they are subject to different degrees of
77 contamination by non-tidal signals which interfere with the tidal estimation. There is evidence
78 that the baroclinic tides are undergoing long-term secular changes (Zhao 2023), but the focus of
79 the present work is on estimating the time-mean baroclinic tides, the so-called phase-locked or
80 stationary tides, with the hope of returning to the question of long-term variability in the future
81 using the tools developed herein.

82 The organization of this manuscript is as follows. Section 2 provides an overview of the family of
83 estimators used for analyzing and mapping the diverse data sources mentioned above, and Section
84 3 describes these data sources in detail. In Section 4, the implementations of the estimators are

88 TABLE 1. Tides considered. Darwin symbols and corresponding Doodson numbers for the mapped tides
 89 are listed. The alias periods of the tides are shown, in days, for the exact-repeat mission sampling along
 90 the Topex/Poseidon/Jason tracks (TX), the Geosat Follow-On tracks (G1), and the ERS-2/Envisat/Saral-Altika
 91 tracks (E2)

Darwin symbol	Doodson number	Alias periods TX/G1/E2 [day]	Data window L_d [km]
O ₁	1 455 554	46/113/75	1000
K ₁	1 655 556	173/175/365	1000
N ₂	2 456 555	50/52/97	1000
MA ₂	2 545 555	75/170/75	1000
M ₂	2 555 555	62/318/94	500
MB ₂	2 565 555	53/2459/127	1000
S ₂	2 735 555	59/169/ ∞	1000

85 described and tested, leading to the selection of the formulation which is used subsequently in
 86 Section 5. Finally, in Sections 6 and 7, the results are discussed and summarized.

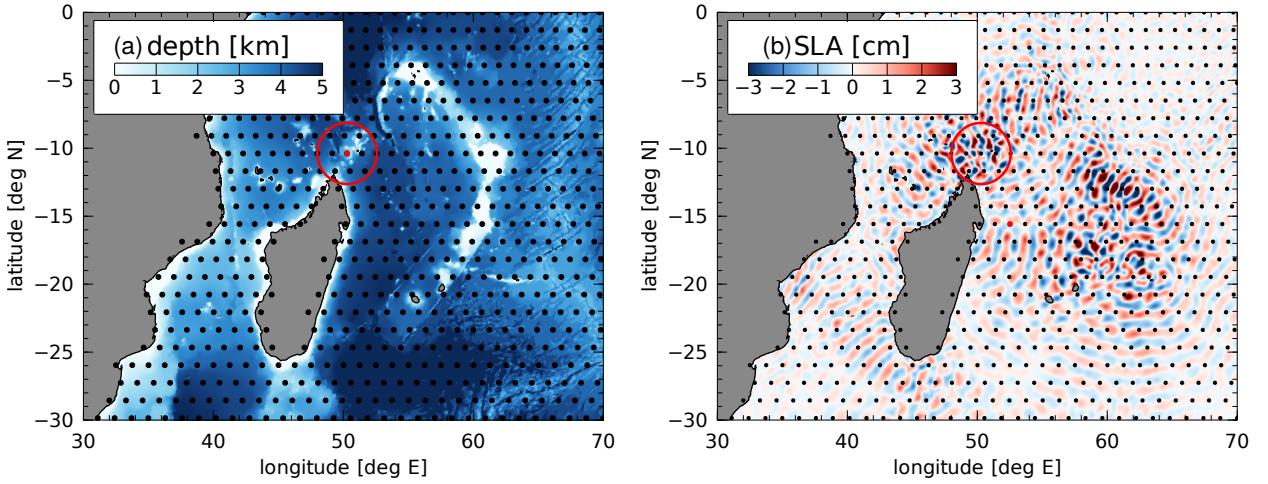
87 2. Mapping Methodology, Part I: Overview

92 a. A kinematic wave model

93 The tides are unique among ocean phenomena in that their temporal structure is well-defined by
 94 the known gravitational dynamics of the Sun, Earth, and Moon. The baroclinic tides are represented
 95 here by the SLA that is phase-locked with the astronomical gravitational tidal potential,

$$96 \eta(\theta, \phi, t) = \sum_j \operatorname{Re} [\zeta_j(\theta, \phi) f_j(t) \exp(-i(\omega_j t + u_j(t)))], \quad (1)$$

96 where j indexes the partial tides which are here denoted by their Darwin symbols, e.g., M₂,
 97 with corresponding frequencies ω_j obtained from the Doodson numbers enumerated in Table 1;
 98 (θ, ϕ) are spherical-polar spatial coordinates; $\zeta_j(\theta, \phi)$ is the complex-valued field giving the spatial
 99 structure of the j -th partial tide; and $f_j(t)$ and $u_j(t)$ are given functions which account for the



109 FIG. 1. Centers of tangent-planes used for mapping M_2 are indicated with black dots overlaid on (a) water
 110 depth and (b) the M_2 baroclinic sea level anomaly in the region around Madagascar in the West Indian Ocean.
 111 The red dot and red circle indicate the center of a tangent-plane and the data disk of a representative D_m . The
 112 SLA shown in panel (b) is the E^* estimate discussed later in the text.

100 modulations associated with the 18.6-yr precession of the node of the lunar orbit (Foreman et al.
 101 2009).

102 The spatial structure of the tides, $\zeta_j(\mathbf{x})$, is represented with a kinematic wave model (as dis-
 103 tinct from a dynamical wave model) comprised of a linear combination of idealized propagating
 104 waveforms. For computational considerations, the properties of the waves are assumed to be
 105 independent within a patchwork of locally-defined tangent-planes, D_m , overlapping around the
 106 globe. The centers of the tangent planes used for mapping M_2 are shown in Figure 1. The spacing
 107 between D_m centers is approximately one-fourth the radius of a data disk, L_d , at the center of each
 108 tangent-plane, to be described later.

109 Let $\zeta_{jm}(\mathbf{x})$ be the estimate of ζ_j obtained for $\mathbf{x} \in D_m$. Within D_m , the spatial structure of ζ_{jm} is
 110 assumed to be,

$$\zeta_{jm}(\mathbf{x}) = \sum_{p,q=0}^{p+q=P} \sum_{\mathbf{k}} a_{jmpq\mathbf{k}} x^p y^q \exp(i\mathbf{k} \cdot \mathbf{x}), \quad (2)$$

111 which can be regarded as a sum of propagating plane-waves with vector wavenumbers, \mathbf{k} , modulated
 112 by a polynomial amplitude envelope, $x^p y^q$, for $0 \leq p + q \leq P$. Note that the order- P polynomial
 113 amplitude envelope provides $N_p = (P+1)(P+2)/2$ polynomial coefficients per wavenumber com-

ponent, and a quadratic envelope is used here ($P = 2$; $N_p = 6$). Within each tangent-plane, local Cartesian coordinates are used, $\mathbf{x} = (x, y)$, relative to the center (θ_m, ϕ_m) , and the wavenumbers $\mathbf{k} = (k, l)$ are taken as the set of discrete Fourier wavenumbers at $\Delta x = 6$ km spatial resolution, the approximate spatial resolution of the along-track altimetry data. Note that the coefficients, $a_{jm00\mathbf{k}}$, are the discrete Fourier transform coefficients of the local plane-wave representation of ζ_{jm} ; the other coefficients, $a_{jmpq\mathbf{k}}$ for $p, q \neq 0$, represent non-plane-wave features of ζ_{jm} .

Let $\hat{\mathbf{a}}_{jmpq} = \{a_{jmpq\mathbf{k}}\}$ denote the collection of coefficients for all the discrete Fourier wavenumbers, \mathbf{k} , and let F and F^\dagger denote the unitary discrete Fourier transform pair. A compact representation of equation (2) is given by,

$$\zeta_{jm}(\mathbf{x}) = \sum_{p,q=0}^{p+q=P} x^p y^q F^\dagger \hat{\mathbf{a}}_{jmpq}, \quad (3)$$

which is the core of the computationally-efficient implementation of the estimators presented below. For notational convenience, equation (3) shall be written as a linear system,

$$\zeta_{jm} = \mathbf{F} \mathbf{a}_{jm}, \quad (4)$$

where the vector $\mathbf{a}_{jm} = \{\hat{\mathbf{a}}_{jmpq}\}$ collects all the unknown coefficients, and \mathbf{F} is a linear operator assembled from the modified Fourier operators, $x^p y^q F^\dagger$. The vector, \mathbf{a}_{jm} , will be referred to as the vector of generalized Fourier coefficients, since each element of the vector is the coefficient of a plane-wave component with a discrete Fourier wavenumber, multiplied by $x^p y^q$. In equation (4), ζ_{jm} is a vector of gridded harmonic constants for tide- j within the Cartesian tangent-plane D_m corresponding to the function, $\zeta_{jm}(\mathbf{x})$, in equation (2). To be explicit, on a square domain containing $M \times M$ grid-points, the dimension of the ζ_{jm} vector is $M^2 \times 1$, the dimension of the \mathbf{F} matrix is $M^2 \times N_p M^2$, and the dimension of the \mathbf{a}_{jm} vector is $N_p M^2 \times 1$.

137 b. The local Cartesian planes and their blending

138 Estimates of ζ_{jm} are found using data within a circular patch of radius L_d contained within each 139 D_m . Each D_m is a square with side length, $L = \sqrt{2}L_d$, which provides a data-free region around 140 the data patch. The domains, D_m , are overlapping and staggered so that the centers are offset by

141 approximately $L_d/2$. The data-free region prevents the periodic boundary condition of the Fourier
 142 basis from unduly influencing ζ_{jm} estimates within the data disk, while the overlapping tangent
 143 planes insure that at least two independent estimates of the harmonic constants are made at any
 144 location, except near coastlines. The radius of the data window, L_d , will be specified, below.

145 A continuously-differentiable representation of $\zeta_j(\mathbf{x})$ is computed as a weighted average,

$$\zeta_j(\mathbf{x}) = N_j^{-1}(\mathbf{x}) \int_D \sum_m K(||\mathbf{x} - \mathbf{x}_m||/L_d) \zeta_{jm}(\mathbf{x}) d\mathbf{x}, \quad (5)$$

146 where the normalization factor is given by,

$$N_j(\mathbf{x}) = \int_D \sum_m K(||\mathbf{x} - \mathbf{x}_m||/L_d) d\mathbf{x}, \quad (6)$$

147 for the global domain, D . The averaging kernel, $K(r)$, is a radial basis function with compact
 148 support (Wendland 1995),

$$K(r) = (1 - r)^3(3r + 1), \quad (7)$$

149 for $0 \leq r \leq 1$, and zero otherwise. Explicitly, the distance function is defined by $||\mathbf{x} - \mathbf{x}_m||^2 =$
 150 $[(\theta - \theta_m)^2 + ((\phi - \phi_m) \cos \theta_m)^2]r_e^2$, where r_e is Earth's radius.

151 *c. A dynamical relationship between surface velocity and η*

152 One goal of the present work is to estimate ocean surface currents due to baroclinic tides. Here,
 153 currents are estimated with the horizontal momentum equation,

$$-i\omega_j \mathbf{u}_j + f \hat{\mathbf{k}} \times \mathbf{u}_j = -g \nabla \eta_j, \quad (8)$$

154 where $\mathbf{u}_j = (u_j, v_j)$ is the horizontal velocity vector associated with the j -th partial tide, f is the
 155 Coriolis frequency, and g is gravitational acceleration. This equation is an approximation which
 156 neglects nonlinear advection and turbulent stresses. In keeping with the kinematic nature of the
 157 wave model for η_j , these approximations are accepted as part of the descriptive nature of the model,
 158 and they can be partly justified a posteriori. Note that the \mathbf{u}_j and f in equation (8) should not be
 159 confused with the nodal factors, u_j and f_j , appearing in equation (1), above.

160 When $\omega_j = f$, equation (8) is singular and cannot be inverted for \mathbf{u}_j . Initially, a Rayleigh
 161 damping term was added to regularize the inversion, but experimentation revealed that no damping
 162 was necessary so long as $|\omega_j - f|$ is larger than machine precision at the gridpoints of the local
 163 tangent plane. In principle, a physical model for damping could be justified (Savva and Vanneste
 164 2018; Kafiabad et al. 2019; Dong et al. 2020; Kelly et al. 2021); however, at this stage it is unclear
 165 if the data are sufficient to distinguish among plausible alternative models.

166 *d. Estimators for \mathbf{a}_{jm}*

167 As described above, the baroclinic tidal sea level anomaly is represented in terms of generalized
 168 Fourier coefficients, \mathbf{a}_{jm} . This section introduces a family of estimators for \mathbf{a}_{jm} capable of
 169 incorporating both observed data (measurements of SLA and surface velocity) and constraints on
 170 allowable wavenumbers, \mathbf{k} , inferred from the dispersion relation. Recall that the j and m subscripts
 171 on \mathbf{a}_{jm} refer to the tidal frequency (ω_j) and the local tangent plane (D_m). For convenience in this
 172 section, let $\mathbf{a}_m = \{\mathbf{a}_{jm}\}$ denote a single vector of generalized Fourier coefficients for all the partial
 173 tides; furthermore, subscript m shall be omitted since the generalized Fourier coefficients will be
 174 estimated independently within each tangent plane.

175 One family of estimators for \mathbf{a} are minimizers of an objective function of the form,

$$\mathcal{J}(\mathbf{a}; \lambda, \alpha, \mathbf{B}, \mathbf{C}) = \lambda \|\mathbf{B}^{-1/2} \mathbf{a}\|_\alpha + (\mathbf{d} - \mathbf{H}\mathbf{F}\mathbf{a})^T \mathbf{C}^{-1} (\mathbf{d} - \mathbf{H}\mathbf{F}\mathbf{a}), \quad (9)$$

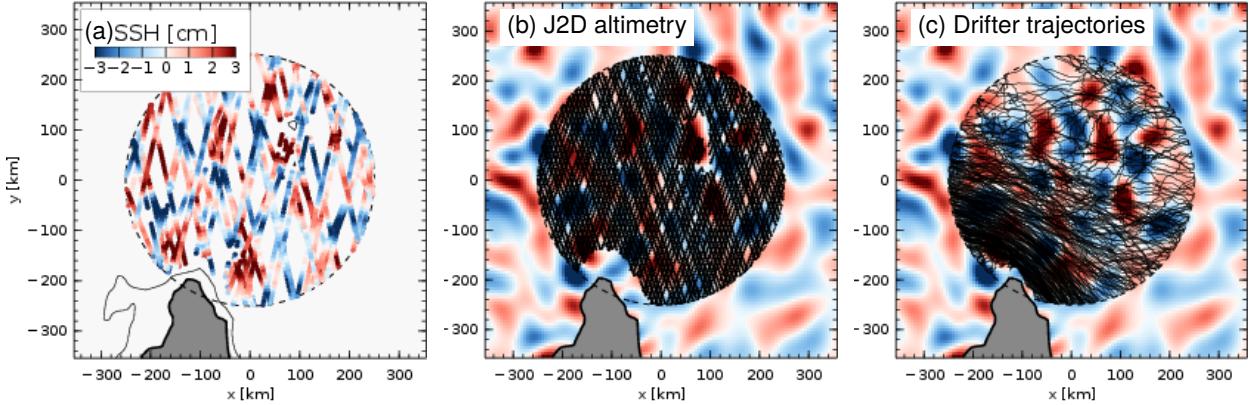
176 where λ is a scalar regularization parameter; $\alpha \in \{0, 1, 2\}$ is a scalar which determines the norm
 177 used in the regularization; $\mathbf{B}^{1/2}$ is the matrix square-root of \mathbf{B} , a positive-semidefinite weighting
 178 matrix (commonly identified with the background error covariance of \mathbf{a} for the case $\alpha = 2$); \mathbf{C} is
 179 a positive-definite weighting matrix, referred to as the observation error covariance matrix; \mathbf{d} is
 180 a vector of observational data; and \mathbf{H} is a linear observation operator which samples the fields of
 181 harmonic constants ($\zeta = \mathbf{F}\mathbf{a}$) to produce model-based estimates of the observations. Note that \mathbf{H} may
 182 involve spatial interpolation (corresponding to observations of along-track harmonic constants),
 183 interpolation and harmonic synthesis in time (corresponding to observations of along-track SLA),
 184 interpolation, harmonic synthesis, and spatial gradients (corresponding to observations of ocean
 185 surface currents), or other linear operations (such as along-track differencing). The definitions of
 186 the norm $\|\mathbf{a}\|_\alpha$ are as follows: $\|\mathbf{a}\|_0$ is the number of non-zero elements of \mathbf{a} , $\|\mathbf{a}\|_1 = \sum_i |a_i|$, and

197 TABLE 2. Exact-repeat orbit satellite altimeter missions used. Abbreviations follow the usage in the Radar
 198 Altimeter Database System (Scharroo et al. 2013).

Satellite mission	Time period	Orbit cycles
(TOPEX/Jason reference orbit, $\Delta t = 9.9156\text{d}$)		
TXA	1992–2002	4–364
J1A	2002–2009	1–259
J2A	2008–2015	1–303
J3A	2016–2021	1–216
(TOPEX/Jason interleaved orbit, $\Delta t = 9.9156\text{d}$)		
TXB	2002–2005	369–480
J1B	2009–2012	262–374
J2B	2016–2017	305–327
(Geosat orbit, $\Delta t = 17.0505\text{d}$)		
G1A	2000–2008	37–223
(ERS/Envisat reference orbit, $\Delta t = 35.0000\text{d}$)		
E2A	1995–2003	1–83
N1B	2002–2010	10–94
SAA	2013–2017	1–34

187 $||\mathbf{a}||_2 = \mathbf{a}^T \mathbf{a}$, where superscript T indicates transpose and i ranges over the elements of \mathbf{a} , taken as
 188 a real-valued vector.

189 The general formulation of (9) is used here because it is capable of representing many of the
 190 previous approaches to estimating the baroclinic tides. One of the key distinctions among methods
 191 is the choice of model complexity, specifically, the number of component plane waves used in
 192 stepwise regression (Zhao et al. 2014), the order of the polynomial model for the amplitude
 193 modulation (Zaron 2019), and the bandwidth of allowable waves around the predicted dispersion
 194 relation (Dushaw 2015). In (9), the gamut of component waves is determined by the non-zero
 195 entries of \mathbf{B} . The model complexity (i.e., the number of waves with significant or non-zero
 196 coefficients) can be controlled by the scalar λ , a tradeoff parameter, and α , the type of norm used.



199 FIG. 2. Data locations within a representative data patch northeast of Madagascar (indicated with the red
 200 circle in Figure 1). (a) M_2 harmonic constants from ERM altimetry, (b) GM altimeter data from the J2D mission,
 201 which represents only 5% of GM data within this patch, and (c) drifter trajectories. The contour in panel (a) is
 202 the 500m isobath; the scale image in panels (b) and (c) is the optimal estimate of the M_2 tide using the same
 203 colorscale as panel (a); the dashed line is the boundary of the data patch, with radius $L_d = 250$ km from the center
 204 of the tangent-plane.

205 3. Data

206 Data from three different sources are used to build and evaluate the family of estimators proposed
 207 in the previous section. The purpose of using different data sources is to conduct robust cross-
 208 validation studies, wherein the model estimated from one source is evaluated by comparison with
 209 another source.

210 a. SLA Harmonic Constants from Exact-Repeat Orbit Altimetry

211 The exact-repeat mission (ERM) altimetry data used here include those used in Zaron (2019),
 212 updated through 2020-12-31. The data were pre-processed and harmonic constants computed as
 213 described in Zaron (2019) with one change: prior to harmonic analysis, the DT-2021 version of
 214 the SSALTO/DUACS gridded mesoscale SLA is subtracted from the altimeter SLA, rather than
 215 the older version of the SSALTO/DUACS product (Zaron and Ray 2018) used previously.

216 Table 2 summarizes the ERM altimeter missions used, and Figure 2a illustrates these data within
 217 the D_m indicated in red in Figure 1. The data are typical of observations close to complex

230 TABLE 3. Long-repeat- and non-repeat-orbit satellite altimeter missions used. Abbreviations follow the Radar
 231 Altimeter Database System (Scharroo et al. 2013).

Satellite mission	Time period	Orbit cycles
Cryosat-2/phase A (C2A)	2010–2020	7–136
Jason-1/phase C (J1C)	2012–2013	382–425
Jason-2/phase C (J2C)	2017–2018	332–355
Jason-2/phase D (J2D)	2018–2019	356–383
Saral-AltiKa/phase B (SAB)	2016–2021	36–92

218 topography and exhibit amplitudes of several centimeters, correlated at nearby mission ground
 219 tracks, but without a clear large-scale spatial structure.

220 In order to reduce the effect of residual long-wavelength errors, the complex harmonic constants
 221 are differenced in the along-track direction. This approach is different from the along-track filtering
 222 employed in other works (e.g., Dushaw 2015; Zhao et al. 2016) since it is used within the least-
 223 squares data-fitting, rather than being done as an independent data processing step. The original
 224 harmonic constants (along-track non-differenced) are used in some of the cross-validation metrics,
 225 below, but along-track-differenced data are always used to build the wave models.

226 Confidence intervals for the harmonic constants are estimated using a Monte Carlo method
 227 to generate realizations of colored noise from the de-tided residuals (Matte et al. 2013). These
 228 confidence intervals are averaged along each ground track within the data analysis windows and
 229 used to identify and exclude outliers.

232 *b. SLA Time Series from Long-Repeat- and Non-Repeat-Orbit Altimetry*

233 The primary source of data for cross-validation are SLA measurements from long-repeat- and
 234 non-repeat-orbit altimeter missions, listed in Table 3. Together, these datasets will be referred to
 235 as geodetic mission (GM) altimetry.

236 In contrast to the ERM ground tracks, the GM ground tracks are closely spaced and are therefore
 237 useful for assessing models in the spatial gaps not sampled by other data. Figure 2b shows the
 238 locations of measurements from the J2D mission. The spatial density of the GM data is remarkable,

239 considering that the J2D data shown is only about 5% of the total available. Quantitatively, the
240 GM data are dominated by C2A, which accounts for about 50% of the total.

241 As with the ERM data, discussed above, the GM data are used in the form of both SLA and
242 along-track SLA differences. We have experimented with the using the GM data in both forms to
243 estimate the baroclinic tides, but the models obtained have lower prediction skill than those based
244 on ERM data. Hence, the ERM data are used here for estimating the tides, while the GM data are
245 withheld and used for cross-validation of the ERM-based estimates.

246 *c. Velocity Time Series from Lagrangian Surface Drifters*

247 Several authors have noted the presence of baroclinic tidal signals in velocity time series obtained
248 from Lagrangian surface drifters (Elipot and Lumpkin 2008; Poulain and Centurioni 2015; Kodaira
249 et al. 2016; Elipot et al. 2016; Zaron and Ray 2017; Zaron and Elipot 2021). The hourly drifter-
250 derived surface-currents are used here to explore whether the baroclinic tides estimated from them
251 are consistent with those estimated from altimetry. The Global Drifter Program (GDP) dataset,
252 version 2.0, is used (Elipot et al. 2022b,a), which consists of approximately 165 million hourly
253 estimates of position and velocity obtained from 17,234 individual drifters, collected between
254 1990 and 2021, although 86% of the data were collected after 2005. Data from both drogued and
255 undrogued drifters are used since there appears to little shear near the ocean surface at the diurnal
256 and semidiurnal tidal frequencies (Arbic et al. 2022).

257 Similar to the altimetry, it is useful to remove an estimate of the low-frequency signals prior
258 to using the drifter-derived currents for tidal mapping. For this purpose, the original currents
259 were filtered around the dominant M_2 and K_1 tidal frequencies with a bandpass filter of width
260 0.4 cycles-per-day (cpd) and 0.2 cpd. Without this filtering, significant mapping artifacts appeared
261 in regions of strong currents with sparse data, such as within the equatorial current systems of the
262 Pacific and Indian Oceans.

263 Figure 2c shows the drifter tracks in the D_m near Madagascar, and the tracks are indeed dense
264 compared to the 50-to-120 km scales baroclinic waves over most of the patch. However, the
265 data density is notably sparser in the northern half of the domain, compared to the southern half.
266 Compared to the ERM and GM datasets described above, the GDP are heterogeneous over the
267 globe.

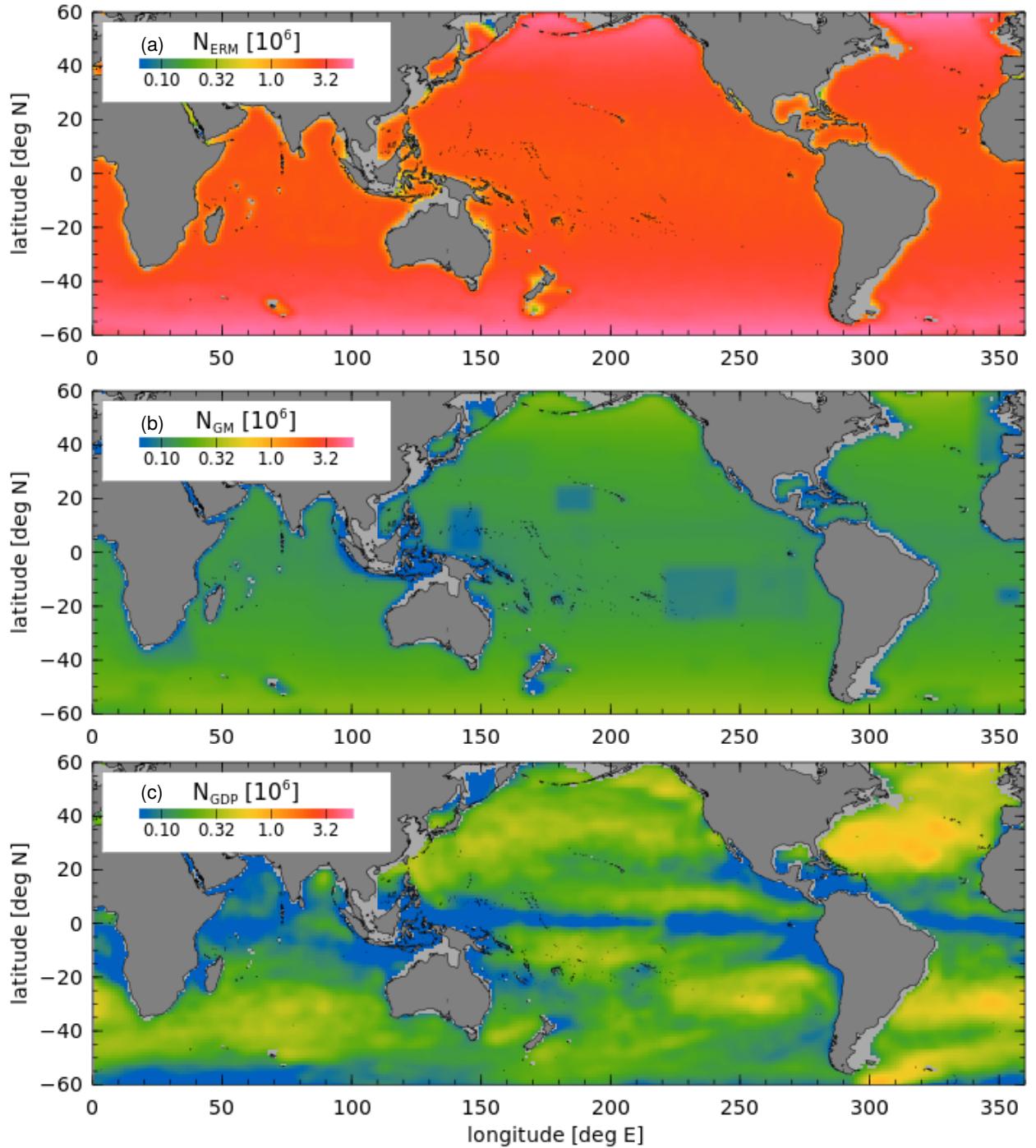


FIG. 3. Number of observations of different types. Note that the colorscale is non-uniform (log-scaled).

268 *d. Summary*

269 Figure 3 maps the number of observations within the D_m domains for M_2 , discussed in the Results
 270 section, below. The ERM data comprise by far the most numerous and homogeneously-distributed

271 form of data; although, the ERM data fall exclusively along a relatively sparse set of ground tracks
272 (e.g., there are about 6000 data locations shown in Figure 2a). The sustained observations along the
273 TP/Jason reference orbit (29-years) and ERS/Envisat orbit (20-years) comprise the bulk of the ERM
274 data. The GM dataset is, overall, homogeneous, with the exception of regions where the Cryosat-2
275 sampling mode has been changed over the years (e.g., near 20°N, 180°E); it comprises about 19-
276 years of satellite data. In contrast, the GDP data are not evenly distributed, as a consequence of both
277 the distribution of deployment locations and the Lagrangian character of the surface trajectories.

278 Preliminary experiments sought to combine all the data types within each D_m , but the results (not
279 shown) were very sensitive to the relative weighting of the observations. In principle, one would
280 expect the optimal weighting to be equal to the inverse of the error covariance of the observations;
281 however, the error covariance appears to be dominated by the presence of non-tidal signals, rather
282 than instrumental errors, and developing consistent estimates for the covariance proved to be too
283 challenging. Instead, the preliminary experiments motivated the approach used below, where the
284 data sources are used one-at-a-time, and the λ parameter is optimized through cross-validation
285 with the other datasets.

286 4. Mapping Methodology, Part II: Implementation

287 a. Choosing α , λ , \mathbf{B} , and \mathbf{C}

288 What values of the parameters, α , λ , \mathbf{B} , and \mathbf{C} , lead to the best estimates of \mathbf{a} ? This is a big design
289 space which is only partially explored here. Optimal values of these parameters might depend on
290 geographic location, D_m , the size of the data window, L_d , and the data used for mapping, \mathbf{d} . The
291 criteria for judging whether \mathbf{a} is the “best estimate” is also important. Among the design choices
292 investigated in this section, ERM altimeter data comprise \mathbf{d} , and a comparison dataset of GDP data
293 are used to assess the parameter choices.

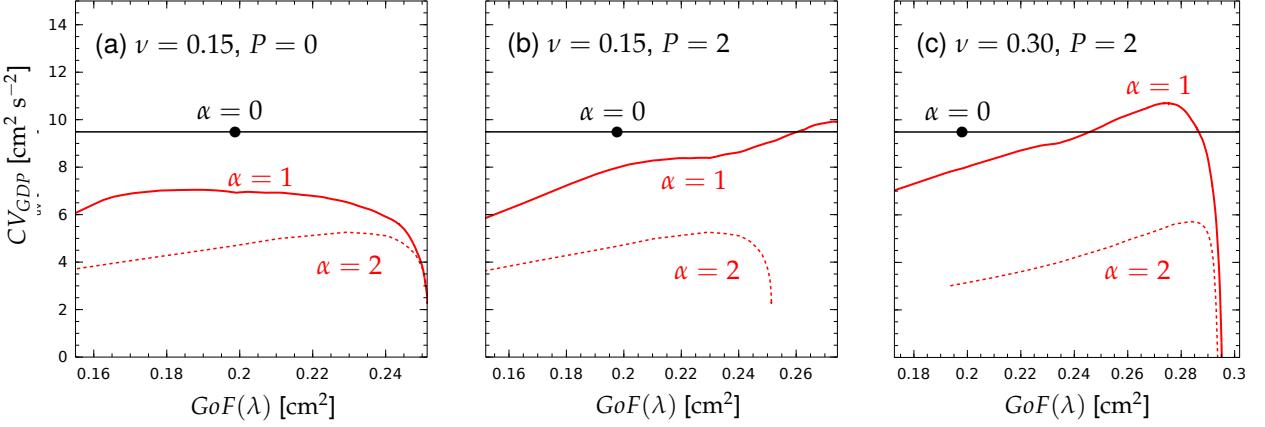
294 Previous work has assumed either that the component waves are exactly described by the disper-
295 sion relation for mode- n linear internal waves (e.g., Zhao et al. 2014),

$$296 |\mathbf{k}_n|^2 = \frac{\omega_j^2 - f^2}{c_n^2}, \quad (10)$$

296 where f is the latitude-dependent Coriolis frequency, and c_n is the non-rotating eigenspeed of mode-
297 n waves (Kelly 2016), or that the waves fall within a prescribed bandwidth around the dispersion
298 relation (Dushaw 2015; Zaron 2019). There are several rationales for allowing wavenumbers which
299 fall off the dispersion relation: (1) the waves are locally-defined with respect to particular values
300 of f and c_n which vary spatially within the data windows, (2) there may be a directly-forced
301 component of the tidal SLA which does not fall on the dispersion relation, and (3) time-variability
302 of the propagation medium can lead to a distribution of waves around the mean dispersion relation.
303 To allow for wavenumbers that fall off the dispersion relation, the nonzero elements of \mathbf{B} are
304 required to correspond to wavenumbers within a prescribed fractional bandwidth, ν , such that
305 $(1 - \nu)|\mathbf{k}_n| \leq |\mathbf{k}| \leq (1 + \nu)^{-1}|\mathbf{k}_n|$, following Dushaw (2015). Recall, following equation (9), that for
306 $\alpha = 2$ the matrix \mathbf{B} may be regarded as the background error covariance of the generalized Fourier
307 coefficient vector, \mathbf{a} ; hence, more generally, the diagonal of $\mathbf{B}^{1/2}$ is taken as an a priori estimate of the
308 magnitude of the elements of \mathbf{a} . Here, \mathbf{B} is assumed to be diagonal, and the wavenumber components
309 are a priori uncorrelated. Experiments were conducted (not shown) in which bandwidth parameters
310 of $\nu \in \{0.45, 0.30, 0.23, 0.11\}$ were used to estimate modes $n = 1, \dots, 3$. Through trial and error,
311 it was found that the 0.23 and 0.11 bandwidths were best for modes 1 and 2, respectively, values
312 used to generate the results reported, below. Experiments found that mode-3 could not be stably
313 estimated from ERM altimetry.

314 The matrix \mathbf{C} is taken as the identity, which is equivalent to assuming the data errors are
315 uncorrelated and homogeneous within the domain D_m when equation (9) is regarded as a Bayesian
316 estimator. As already mentioned, the assignment of different error levels to the different data types
317 did not lead to notably better estimators, and, likewise, the weighting of data from different ERM
318 missions did not improve the results either.

319 The choices for α and λ are related. For $\alpha = 0$, λ may be varied to yield sparse least-squares
320 estimates of \mathbf{a} . This type of estimator is closely related to the stepwise least-squares algorithms
321 of Zhao et al. (2014) and Zaron (2019). In contrast, the choice $\alpha = 2$ is the prototype of estimators
322 used in variational data assimilation where the full gamut of possible waves are used, and λ controls
323 the goodness-of-fit to the data and provides protection against overfitting (Dushaw 2015). The new
324 approach used here, $\alpha = 1$, combines the sparsity-favoring properties of the $\alpha = 0$ estimator with
325 control on overfitting similar to the $\alpha = 2$ estimator.



326 FIG. 4. An example of the performance of three different forms of the estimator (9) for $\alpha = 0, 1, 2$, for mapping
 327 the M_2 baroclinic tide from harmonically analyzed ERM altimetry near the Hawaiian Ridge. The influence of λ
 328 is represented by the goodness-of-fit metric on the x -axis, $GoF(\lambda) = (|\mathbf{d}_{ERM}|^2 - |\mathbf{d}_{ERM} - \mathbf{H}_{ERM}\mathbf{F}\mathbf{a}|^2)/N_{ERM}$.
 329 The performance of the estimators is shown by the cross-validation metric on the y -axis, $CV_{GDP} = (|\mathbf{d}_{GDP}|^2 -$
 330 $|\mathbf{d}_{GDP} - \mathbf{H}_{GDP}\mathbf{F}\mathbf{a}|^2)/N_{GDP}$. The line for the $\alpha = 0$ case depicts the performance of the HRET8.1 model (Zaron
 331 2019); it is shown as a line for comparison of CV_{GDP} with the other estimators, but it represents a single estimate
 332 of \mathbf{a} with GoF indicated by the solid dot. Performance for three cases: (a) a narrow-bandwidth B , $\nu = 0.15$,
 333 using the simplest plane-wave basis, $P = 0$, (b) a narrow-bandwidth, $\nu = 0.15$, but with a quadratically-modulated
 334 plane-wave basis, $P = 2$, (c) a wide-bandwidth, $\nu = 0.3$, and a quadratically-modulated plane-wave basis, $P = 2$.

335 Figure 4 illustrates the influence of different choices of α , λ , and ν on the performance of the
 336 estimator (9). The x -axis represents variations in λ as measured by a goodness-of-fit (GoF) metric,
 337 $(|\mathbf{d}_{ERM}|^2 - |\mathbf{d}_{ERM} - \mathbf{H}_{ERM}\mathbf{F}\mathbf{a}|^2)/N_{ERM}$, which measures the explained variance of the estimate
 338 with respect to the data used, \mathbf{d}_{ERM} . In this example, \mathbf{d}_{ERM} consists of the same ERM data as used
 339 in the HRET8.1 model (Zaron 2019). On the y -axis, the performance of the estimator is measured
 340 using cross-validation (CV_{GDP}) with respect to an independent dataset, \mathbf{d}_{GDP} , by the explained
 341 variance $(|\mathbf{d}_{GDP}|^2 - |\mathbf{d}_{GDP} - \mathbf{H}_{GDP}\mathbf{F}\mathbf{a}|^2)/N_{GDP}$, where \mathbf{d}_{GDP} represents GDP surface current
 342 observations, and \mathbf{H}_{GDP} is the measurement operator corresponding to \mathbf{d}_{GDP} , an $N_{GDP} \times 1$ vector.

343 The $\alpha = 0$ estimator is taken from HRET8.1, which utilizes exactly 6 quadratically-modulated
 344 ($P = 2$) component waves; this estimate is the reference against which the others are evaluated, and
 345 it is identical in each panel (indicated with the dot labelled $\alpha = 0$ on the line of constant CV_{GDP}).
 346 The $\alpha = 1$ and $\alpha = 2$ estimates are parameterized by λ within each panel, for different choices of
 347 \mathbf{B} (bandwidth) and P (polynomial modulation). The three different cases as are as follows: (a) A

348 narrow bandwidth, $\nu = 0.15$, is used, and no polynomial amplitude modulation is used, $P = 0$. In
349 this case, the $\alpha = 0$ estimate performs better than either of the $\alpha = 1$ or $\alpha = 2$ alternatives. The
350 $\alpha = 1$ estimate consistently explains more variance than the $\alpha = 2$ estimate, the conventional L_2
351 estimator, and it is more efficient, in the sense that it achieves its maximum CV_{GDP} statistic for
352 a smaller value of the GOF statistic. (b) A narrow bandwidth, $\nu = 0.15$, is used, and a quadratic
353 amplitude modulation is used, $P = 2$. In this case, the $\alpha = 1$ estimate exceeds the performance
354 of both the $\alpha = 0$ and $\alpha = 2$ estimates. (c) A wider bandwidth, $\nu = 0.30$, is used, and a quadratic
355 amplitude modulation is used, $P = 2$. The added bandwidth allows for further improvements in the
356 CV_{GDP} metric and conclusively shows that the $\alpha = 0$ and $\alpha = 2$ solutions are sub-optimal.

357 Reasons for the differences among the estimators are not completely understood. If (9) is
358 interpreted in a Bayesian context, then the better performance of the $\alpha = 1$ estimator compared
359 to the $\alpha = 2$ estimator may be related to the non-Gaussian distribution of the component wave
360 coefficients. Whereas both the $\alpha = 0$ and $\alpha = 1$ estimators are inherently sparsity-selecting (Candès
361 et al. 2006), only the $\alpha = 1$ estimator allows for controlling the goodness-of-fit (avoiding overfitting)
362 among the non-zero elements of \mathbf{a} .

363 This study was partly motivated by the desire to implement a non-arbitrary stopping criterion in
364 the estimator of Zaron (2019). Experiments using stopping criteria based on the F -test, Mallows
365 C_p (Mallows 1973), and Aikake's Information Criterion (Akaike 1974) yielded sub-optimal results
366 when evaluated using cross-validation. For a modern review of these, and other, approaches to
367 stopping criteria and their sensitivity to unmodeled signals or non-Gaussian noise, the dissertation
368 by Lysen (2009) is recommended. For these reasons, the estimators used below exclusively use a
369 cross-validation metric (i.e., comparison against withheld or independent data) to determine the
370 optimal value of the regularization parameter, λ .

371 *b. Numerical methods and implementation details*

372 The generalized Fourier coefficient vector, \mathbf{a} , consists of the coefficients of the generalized
373 Fourier components on D_m . Many of these coefficients are zero, though, due to the a priori
374 bandwidth selection, as defined by \mathbf{B} , which is taken as a diagonal matrix consisting either of 0's or
375 1's. Let the vector \mathbf{b} denote the elements of \mathbf{a} corresponding to the gamut of possible generalized
376 wavenumbers. Let \mathbf{b} be such that $\mathbf{a} = \mathbf{B}_b^{1/2} \mathbf{b}$, where $\mathbf{B}_b^{1/2}$ is the rectangular matrix containing only

377 those of columns of $\mathbf{B}^{1/2}$ with non-zero elements. With this transformation, equation (9) fits the
 378 canonical form,

$$\mathcal{J}(\mathbf{b}; \lambda, \alpha, \mathbf{B}, \mathbf{C}) = \lambda \|\mathbf{b}\|_\alpha + (\mathbf{d} - \mathbf{Ab})^T \mathbf{C}^{-1} (\mathbf{d} - \mathbf{Ab}), \quad (11)$$

379 where $\mathbf{A} = \mathbf{HFB}_b^{1/2}$.

380 Different methods were used to compute the minimizer of (11), depending on the value of α . For
 381 the case, $\alpha = 2$, given λ , equation (11) is minimized using the conjugate gradient algorithm (Shanno
 382 1985). Alternately, when the gamut of non-zero wavenumbers is small enough, equation (11) may
 383 be minimized using direct methods by solving,

$$(\lambda \mathbf{I} + \mathbf{A}^T \mathbf{C}^{-1} \mathbf{A}) \mathbf{b} = \mathbf{A}^T \mathbf{C}^{-1} \mathbf{d}, \quad (12)$$

384 which was used as a check on the conjugate gradient solver.

385 For the case $\alpha = 1$, a generalization of the least-angle regression algorithm is used (Efron et al.
 386 2004). In its original form, this elegant algorithm produces a sequence of scalar regularization
 387 parameters $\lambda = \lambda_k$ and vectors $b = \mathbf{b}_k$ which minimize \mathcal{J} , where $k = 1, \dots, N_b$, with N_b being
 388 the dimension of the vector \mathbf{b} . At each step, the rank of the linear system to be solved is k and
 389 corresponds to the k -dimensional subspace of \mathbf{A} which is most correlated with the residual from
 390 the previous step, $\mathbf{r}_{k-1} = \mathbf{d} - \mathbf{Ab}_{k-1}$. In this way, the algorithm proceeds to build the minimizer of
 391 \mathcal{J} which has the sparsity property that $\|\mathbf{b}\|_0 = k$ and which would terminate after $k = N_b$ steps at
 392 the least-squares solution of $\mathbf{Ab} = \mathbf{d}$ (when $\lambda = 0$). The generalization of the algorithm used here
 393 is one which expands the subspace at each step with pairs of variables corresponding to the real
 394 and imaginary parts of the generalized Fourier coefficients (Yuan and Lin 2006). The algorithm
 395 is computationally and memory efficient since it is based on forming rank-2 updates of the QR-
 396 decomposition of \mathbf{A} . In practice it is not run to completion at step $k = N_b$; instead, the algorithm
 397 is terminated when the optimal agreement with the cross-validation dataset is obtained.

398 The $\alpha = 0$ case for minimizing (11) proceeds similar to the $\alpha = 1$ case, except that the least-
 399 squares solution of $\mathbf{Ab}_k = \mathbf{d}$ is computed at each step, where the nonzero entries of \mathbf{b}_k comprise the
 400 same set of variables as used in the $\alpha = 1$ solver (described above). By construction, the solution
 401 sequence achieves a smaller residual (better goodness-of-fit) compared to the corresponding $\alpha = 1$
 402 case; however, in practice, the cross-validation metric is worse than the $\alpha = 1$ case (cf., Figure 4).

403 TABLE 4. Estimators. Seven estimators for each of the tides are computed, and these are labelled according to
 404 the dataset employed for computing generalized Fourier coefficients, and the dataset employed for cross-validation
 405 (optimization of λ). The notation Eab is used, where a indicates the data used to build the model, and b indicates
 406 the data used for cross-validation (1=ERM, 2=GM, 3=GDP). The estimate E^* is the linear combination of the
 407 E12 and E32 estimates which optimizes the explained variance with respect to the GM data (Appendix A). (Note
 408 that the E21 and E23 estimates are not shown, but are available from the authors.)

Estimate	\mathbf{d}	\mathbf{d}_{CV}	description
E12	ERM	GM	fit to ERM, optimize w.r.t. GM
E13	ERM	GDP	fit to ERM, optimize w.r.t. GDP
E21	GM	ERM	fit to GM, optimize w.r.t. ERM
E23	GM	GDP	fit to GM, optimize w.r.t. GDP
E31	GDP	ERM	fit to GDP, optimize w.r.t. ERM
E32	GDP	GM	fit to GDP, optimize w.r.t. GM
E^*	ERM, GDP	GM	optimal linear combination of E13 and E31 w.r.t. GM

409 **5. Results**

410 The above-described methodology has been applied to estimate the baroclinic SLA and surface
 411 currents associated with the tides listed in Table 1. In every case the $\alpha = 1$ estimator with $P = 2$
 412 (quadratic) amplitude modulation is used. A data window (disk radius) of $L_d = 250$ km is used
 413 for the M_2 tide, while a $L_d = 500$ km data window is used for the other tides, justified as follows:
 414 (1) for the diurnal tides, K_1 and O_1 , because of their longer wavelengths, (2) for S_2 , because of the
 415 sparse ground track sampling by ERM altimetry, and (3) for N_2 , MA_2 , and MB_2 , because of their
 416 small signal-to-noise ratio in the data.

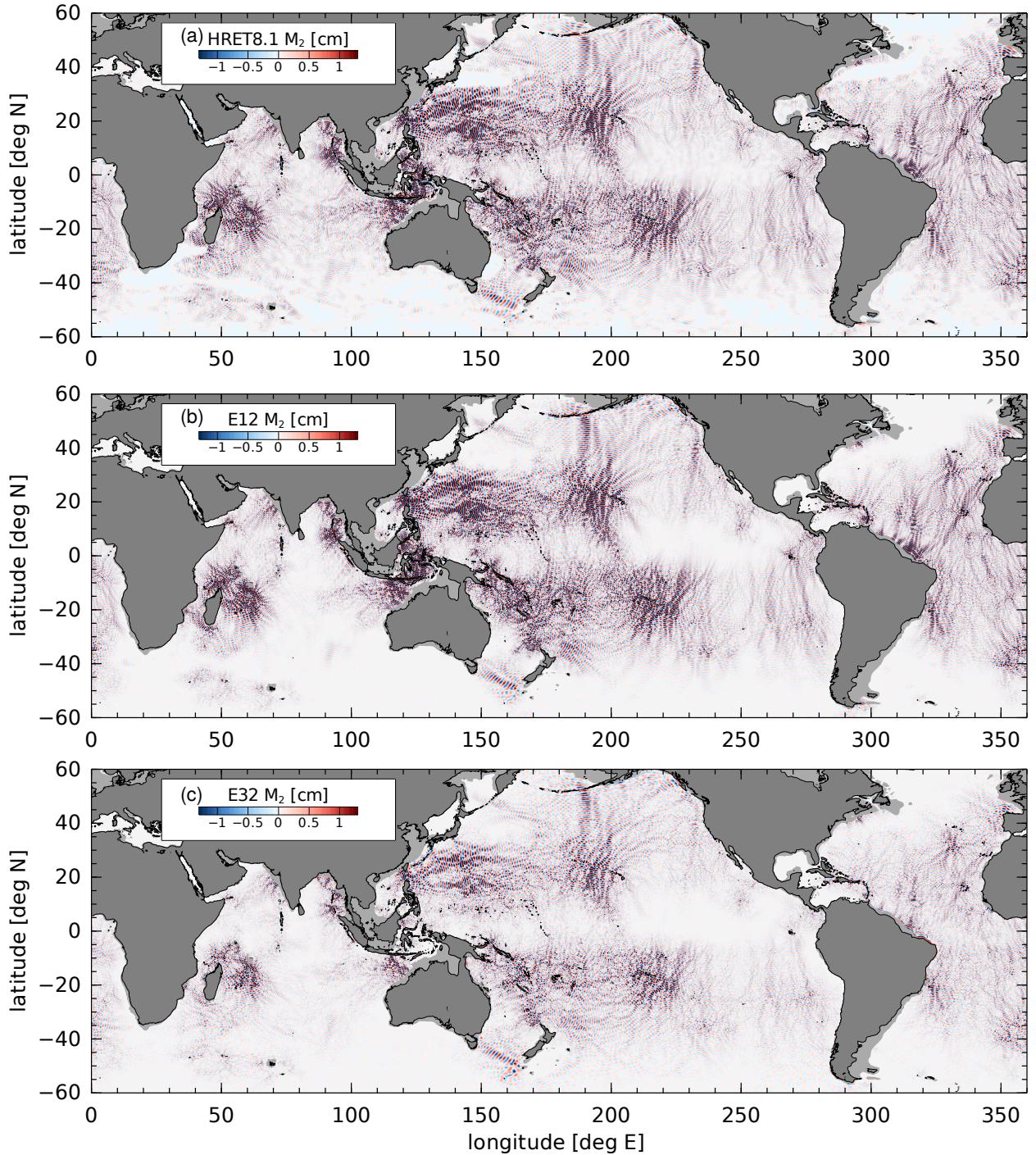
417 The three data sources described in Section 3 are used in pairs to create different estimates, as
 418 enumerated in Table 4. Rather than fitting a wave model to all the data sources simultaneously,
 419 each data source is used, in turn, and the λ parameter (which controls the goodness-of-fit to the
 420 data) is selected to optimize the estimate with respect to another of the datasets. For example, E12
 421 involves building the wave model from ERM data, but using the GM data to select the optimal λ .
 422 In other words, the E12 estimate minimizes the prediction error with respect to the GM data, while

423 fitting the ERM data. In addition to the pairwise fit-and-predict pairs, an estimate E^* is computed
424 which is the optimal linear combination of the E12 and E32 solutions with respect to the GM data
425 (see Appendix A).

426 Two aspects of this work are novel. First, the estimator defined by equation (9) involves the
427 absolute value (the first term on the right-hand-side; $\alpha = 1$, an L_1 -norm) as well as the sum-
428 of-squares (the second term on the right-hand-side; an L_2 -norm), so it is a mixed L_1/L_2 -norm
429 estimator. And, second, the use of different data types for building and cross-validating the models
430 is another novel aspect of this work. While the GM data have been used previously for evaluating
431 and comparing models (Zaron and Ray 2017; Carrere et al. 2021), it is not clear if these are the
432 best data for this task, considering how non-tidal signals and various sources of noise overlap with
433 the tidal alias frequencies (e.g., see Zaron 2018 for a detailed analysis of aliasing for the Cryosat-2
434 mission). Experiments were conducted to compare SLA versus along-track SLA differences for
435 cross-validation, which revealed minor differences between the estimates (examples shown, below).
436 Ultimately, along-track SLA differences were favored for cross-validation under the presumption
437 that the errors are less correlated in the along-track direction than in the original SLA data.

438 a. M_2 tide

439 Figure 5 compares the M_2 baroclinic sea level anomaly estimate from Zaron (2019), HRET8.1,
440 with the new estimates based on ERM data and GDP data, E12 and E32, respectively. Perhaps the
441 most noteworthy aspect of the estimates is the remarkable visual similitude of the E12 and E32
442 estimates, which are based on completely independent data, and the similitude of these estimates
443 with HRET8.1. Careful study of the panels does reveal subtle differences, though. For example,
444 the HRET8.1 solution was masked to zero in much of the Southern Ocean and in the western
445 boundary currents, while the E12 and E32 estimates smoothly go to zero in these regions. Also,
446 the background noise in the E12 and E32 estimates appears smaller than in the HRET8.1 solution.
447 While this is most visually evident in the southern Indian Ocean, explained variance metrics, shown
448 below, confirm that the noise is in fact smaller throughout most of the global oceans. The same
449 internal wave sources and large-scale beams are apparent in all three estimates. One difference
450 among the estimates is the low-amplitude of the E32 solution in the Banda Sea ($5^\circ S, 130^\circ E$) and
451



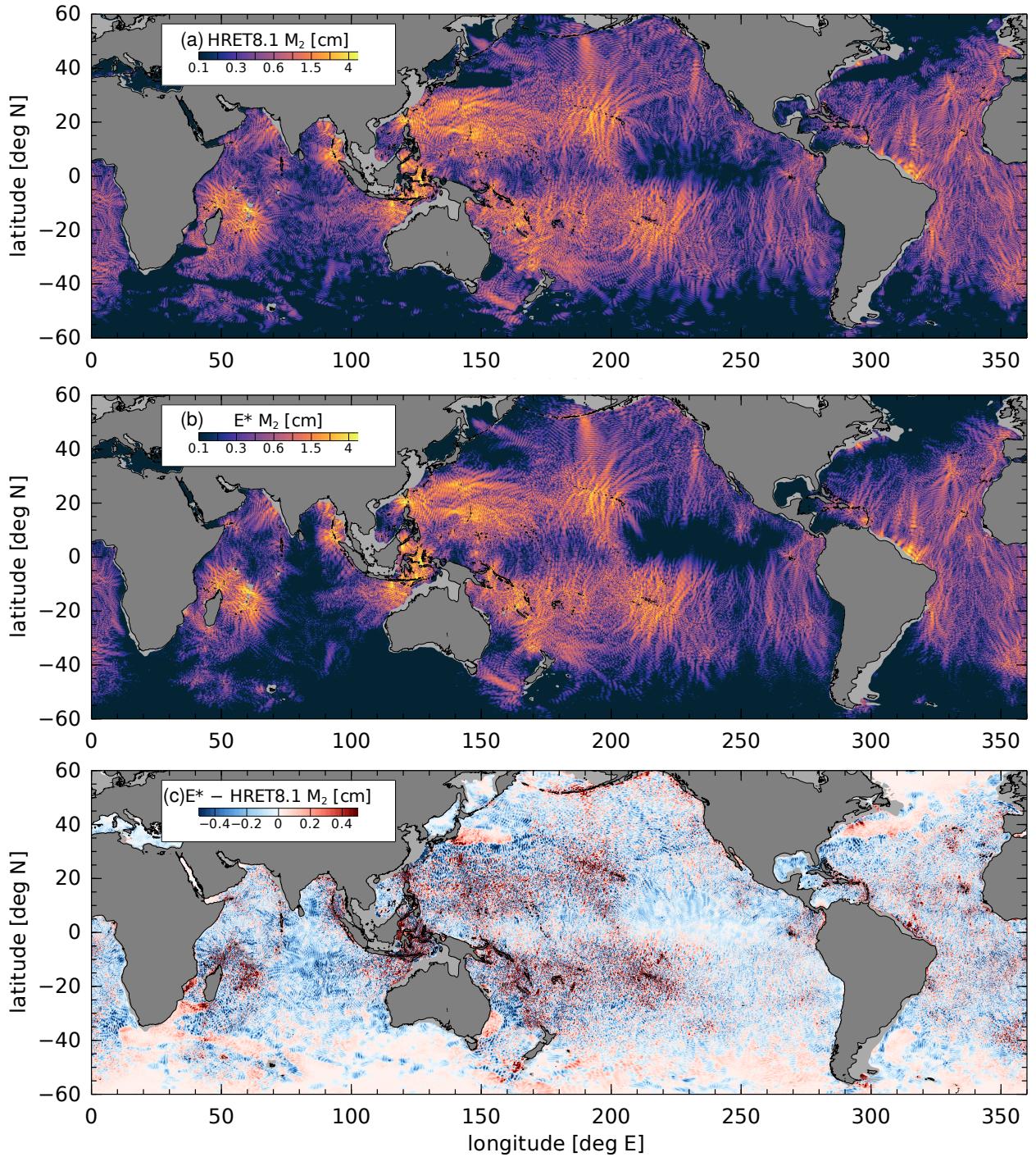
439 FIG. 5. Three estimates of the M₂ baroclinic sea level anomaly (real part, in-phase with the astronomical tidal
 440 potential): (a) HRET8.1, based on ERM data; (b) E12, based on ERM data using the estimator described in
 441 Section 2 with λ optimized by comparison to GM along-track sea surface slope data; (c) E32, based on GDP
 442 data, but otherwise as in (b).

455 and generally throughout the equatorial oceans. In addition, there are differences in clarity of the
456 beam-like features in the South Atlantic, for example.

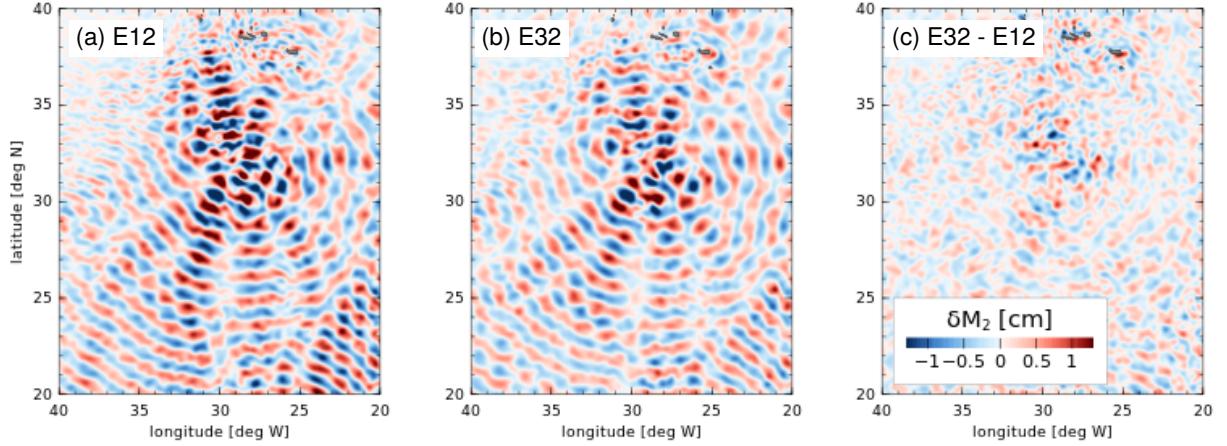
457 In order to develop the best possible estimate using both the ERM and GDP data, another estimate
458 is formed, denoted E^* , which is the optimal linear combination of E12 and E32 as cross-validated
459 by the GM data. This estimate is computed as described in Appendix A. The generalized Fourier
460 coefficients for the E12 and E32 estimates are computed using the independent ERM and GDP
461 data; however, the optimal goodness-of-fit parameter λ , is determined by GM data in both cases.
462 Thus, the E^* estimate is not adding any new data to the estimate, it simply forms a weighted average
463 which better agrees with the GM data used for validation.

464 The visual difference between E^* and the other solutions is subtle. Figure 6 illustrates the amplitude
465 of the complex baroclinic sea level, η . It is apparent from comparison of panels (a) and (b) that the
466 E^* amplitude is smaller than the HRET8.1 amplitude in many regions where the amplitude of η is
467 itself small (e.g., in the mid-Indian Ocean, and in the Eastern Equatorial Pacific). The difference
468 in amplitudes, panel (c), illustrates the same point, but also shows that the E^* estimate is larger
469 than HRET8.1 in many of the generation sites. The E^* estimate thus appears to be less noisy than
470 HRET8.1, and more detailed near the generation sites.

471 Detailed comparisons of the E12 and E32 estimates, from which E^* is constructed, show many
472 small-scale differences, in spite of the large-scale similarity. Figure 7 illustrates the real part of E12
473 and E32 in the region around the Azores, a significant generation site in the North Atlantic, and a
474 region with a high density of GDP data ($N_{GDP} \approx 4 \times 10^5$ within each D_m). The pattern of wave
475 radiation, and the location of maxima and minima are reproduced in both estimates. However,
476 the difference field, denoted δM_2 , contains both small-scale noise and features which are coherent
477 across multiple data windows, D_m . The difference field is a measure of the combined effects of
478 random measurement error, mapping error, and systematic error possibly reflecting changes in the
479 tides between the time periods over which the measurements were obtained (1993-2022 for the
480 ERM data, and predominantly 2008-2020 for the GDP data). The difference between the E12 and
481 E32 fields is assumed to be a measure of the uncertainty in E^* . For this region, the root-mean-
482 square amplitude differences are about 20% of the amplitude, and phase differences are about
483 15°. Phase differences are, of course, larger in regions with smaller amplitude signals. When the
484 difference estimates are evaluated globally, differences in relative amplitude are directly related to
485



464 FIG. 6. Amplitude of the complex-valued baroclinic M_2 SLA for (a) the HRET8.1 estimate, and (b) the new
465 E^* estimate, which is the optimal linear combination of the E12 and E32 estimates. The difference between the
466 amplitudes, (b) minus (a), is shown in panel (c).



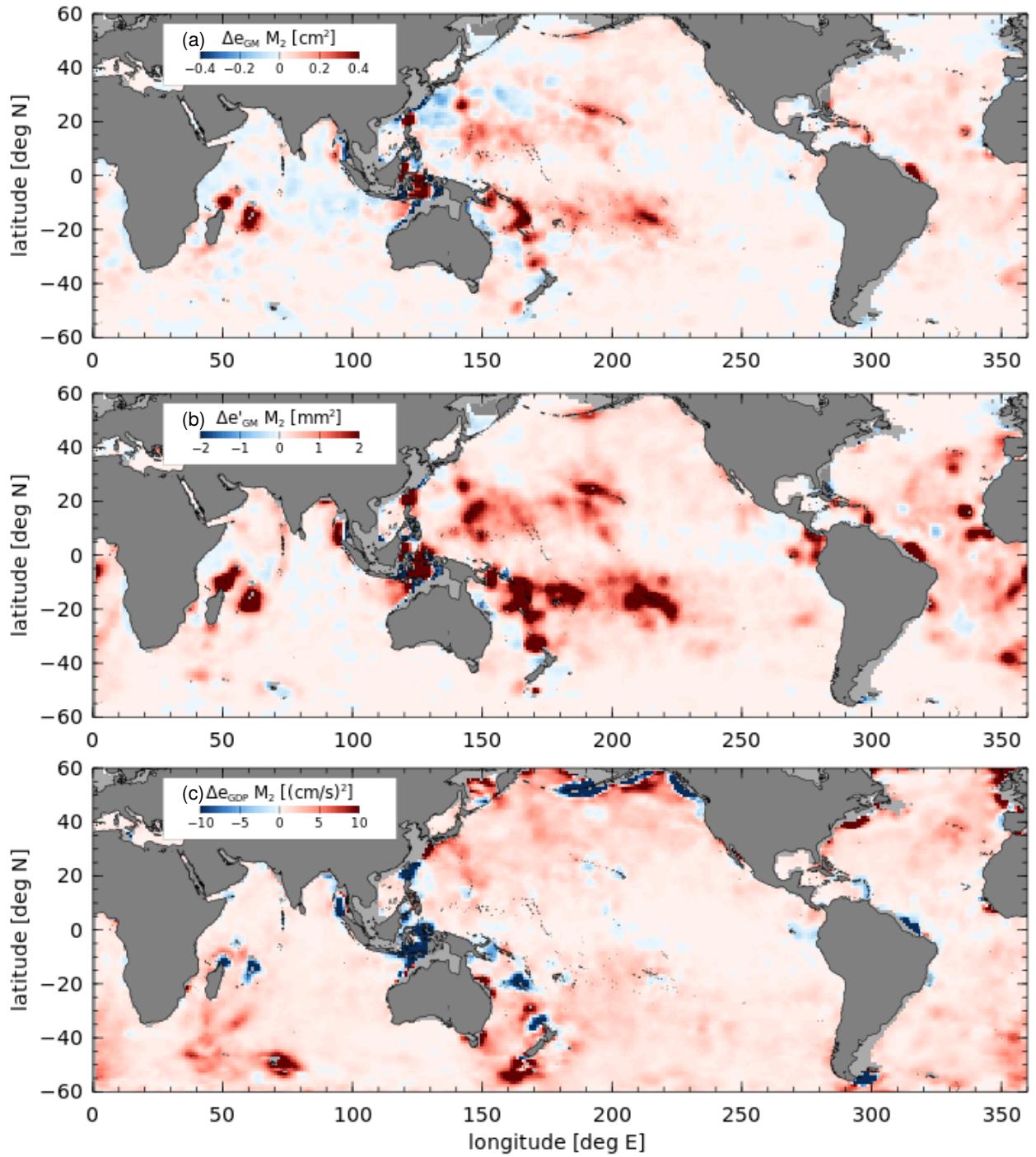
474 FIG. 7. The real part of the M_2 SLA for (a) E12, (b) E32, and (c) their difference, E32 minus E12, for a region
475 around the Azores in the North Atlantic. The same colorscale is used in each panel, which is identical to that
476 used in Figure 5 .

494 the number-density of GDP measurements (see Figure 3c) and increase to about 35% where N_{GDP}
495 drops to 10^5 per D_m .

496 For practical purposes, one useful metric of the difference between the E^* and HRET8.1 estimates
497 is the prediction error, as measured by the explained variance with respect to different datasets.
498 The explained variance (more-precisely, the reduction in mean-square residual from the model
499 prediction; however, the mean values are negligible here and are expected to be zero), is defined
500 as,

$$e_x = (|\mathbf{d}_x|^2 - |\mathbf{d}_x - \mathbf{H}_x \mathbf{F} \mathbf{a}|^2) / N_x, \quad (13)$$

501 where the x subscript indicates the data source, ERM, GM, or GDP. Figure 8 shows differences in
502 the quantity, $\Delta e_x = e_x(E^*) - e_x(\text{HRET8.1})$, for the GM mission SLA (denoted Δe_{GM}), GM mission
503 along-track SLA differences (denoted $\Delta e'_{GM}$), and GDP velocity data (denoted Δe_{GDP}). In most
504 regions, particularly near the main internal tide generation sites, the E^* estimate explains more
505 variance than the older HRET8.1 estimate. Note that the magnitude of the change in explained
506 variance is small for the GM data, and not likely to be of practical significance in most parts of the
507 world Ocean; however, the difference is more substantial for the GDP dataset. Generally speaking,
508 the small-magnitude and small-scale changes in baroclinic SLA (cf., Figure 5 and Figure 6c) alter



477 FIG. 8. Differences of explained variance, E^* minus HRET8.1. Positive values indicate that the E^* estimate
 478 explains more variance (e.g., it has smaller prediction error) than HRET8.1, based on the following datasets: (a)
 479 GM altimeter SLA, (b) GM altimeter along-track SLA differences, and (c) GDP surface velocity data.

509 the estimated sea surface slope in a manner which brings it in to better agreement with the observed
510 velocity field.

515 *b. MA_2 , and MB_2 tides*

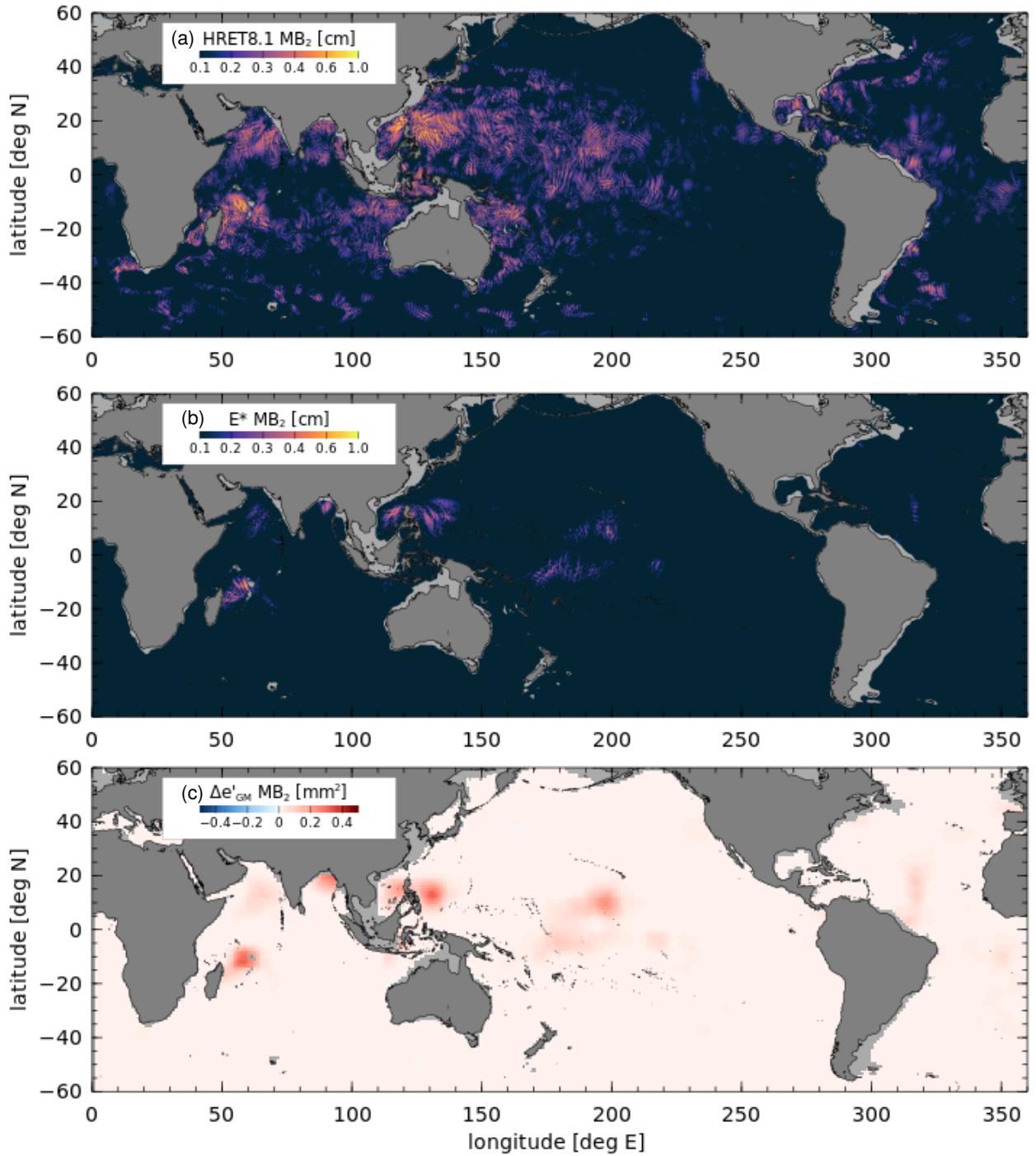
516 The seasonal modulations of the M_2 tide, denoted with the Darwin symbols MA_2 and MB_2 , were
517 estimated in Zaron (2019) and included in HRET8.1. Figure 9 illustrates the amplitudes of these
518 tides in the HRET8.1 and E^* estimates. The new estimates of the seasonal modulates are much
519 smaller than the HRET8.1 estimates. Simultaneously, the E^* estimate explains more variance than
520 the HRET8.1 estimate. Thus, it appears that the HRET8.1 estimates for these quantities were
521 largely spurious.

522 There are two plausible reasons for the differences in the new estimates, compared to the old.
523 First, MA_2 and MB_2 are dominated by the non-tidal environmental processes (Ray 2022), rather
524 than the variability of the astronomical tidal potential. The E^* estimate is based on optimizing λ by
525 comparison with GM data which were collected only within the latter half of the ERM record on
526 which $E12$ is based, and the non-tidal processes responsible for MA_2 and MB_2 might decorrelate
527 over these time periods. A similar argument applies to the GDP data used to form the $E32$ estimate.
528 Another explanation for the difference involves the use of the $\alpha = 1$ estimator in the new approach;
529 it may simply provide better protection against over-fitting, and result in less-noisy estimates. In
530 any case, it is clear that the MA_2 and MB_2 estimates provided in HRET8.1 are not accurate.

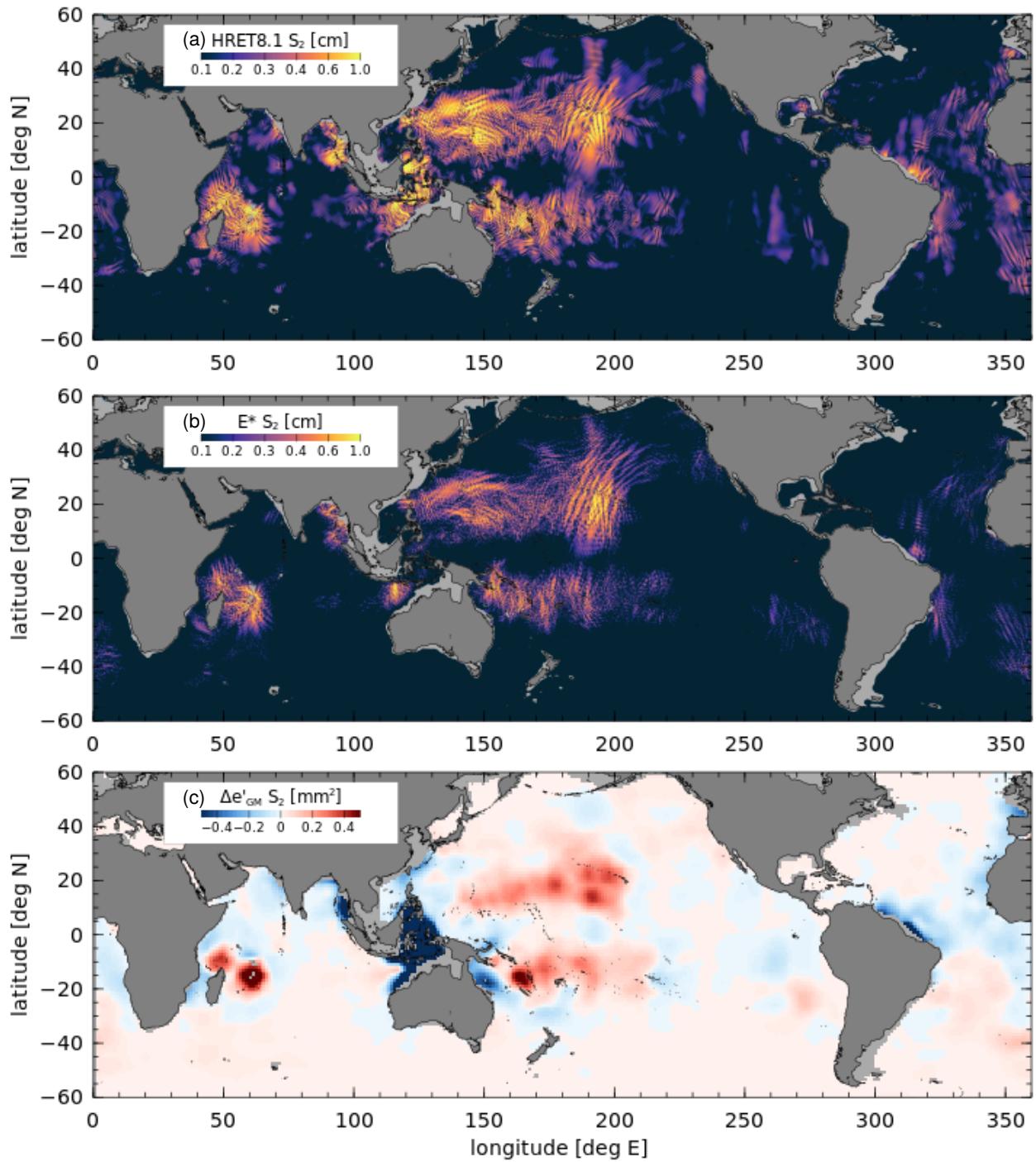
531 *c. S_2 and N_2 tides*

532 The S_2 and N_2 tides represent the second and third largest astronomical tides in the semidiurnal
533 group, with astronomical potential about 1/2 and 1/5 as large as M_2 , respectively. The data
534 available to estimate these two tides differ, though, because there are fewer (non-sun-synchronous
535 orbit) satellite missions capable of observing S_2 . Due to the sparse ERM sampling of S_2 and the
536 small amplitude of N_2 , both tides are estimated using a data window twice as large as used for M_2
537 (Table 1).

540 A comparison of the HRET8.1 and E^* estimates of S_2 identifies most of the same large-scale
541 generation sites in both estimates (Figure 10). The newer estimate achieves better prediction
542 error in mid-ocean regions associated with the main generation sites, but notable deficits occur



511 FIG. 9. Amplitude of the MB_2 tide, an annual modulate of M_2 : (a) MB_2 from HRET8.1, and (b) MB_2 from E^* .
 512 (c) Difference of explained variance, E^* minus HRET8.1. The new estimates of MB_2 and MA_2 (not shown) are
 513 much smaller than in HRET8.1, and the explained variance is larger, which suggests that the HRET8.1 estimates
 514 for these frequencies was dominated by error.



538 FIG. 10. S_2 tide comparison: (a) HRET8.1 amplitude, (b) E^* amplitude, and (c) $\Delta e'_{GM}$, the difference in
 539 explained variance compared to along-track GM SLA differences.

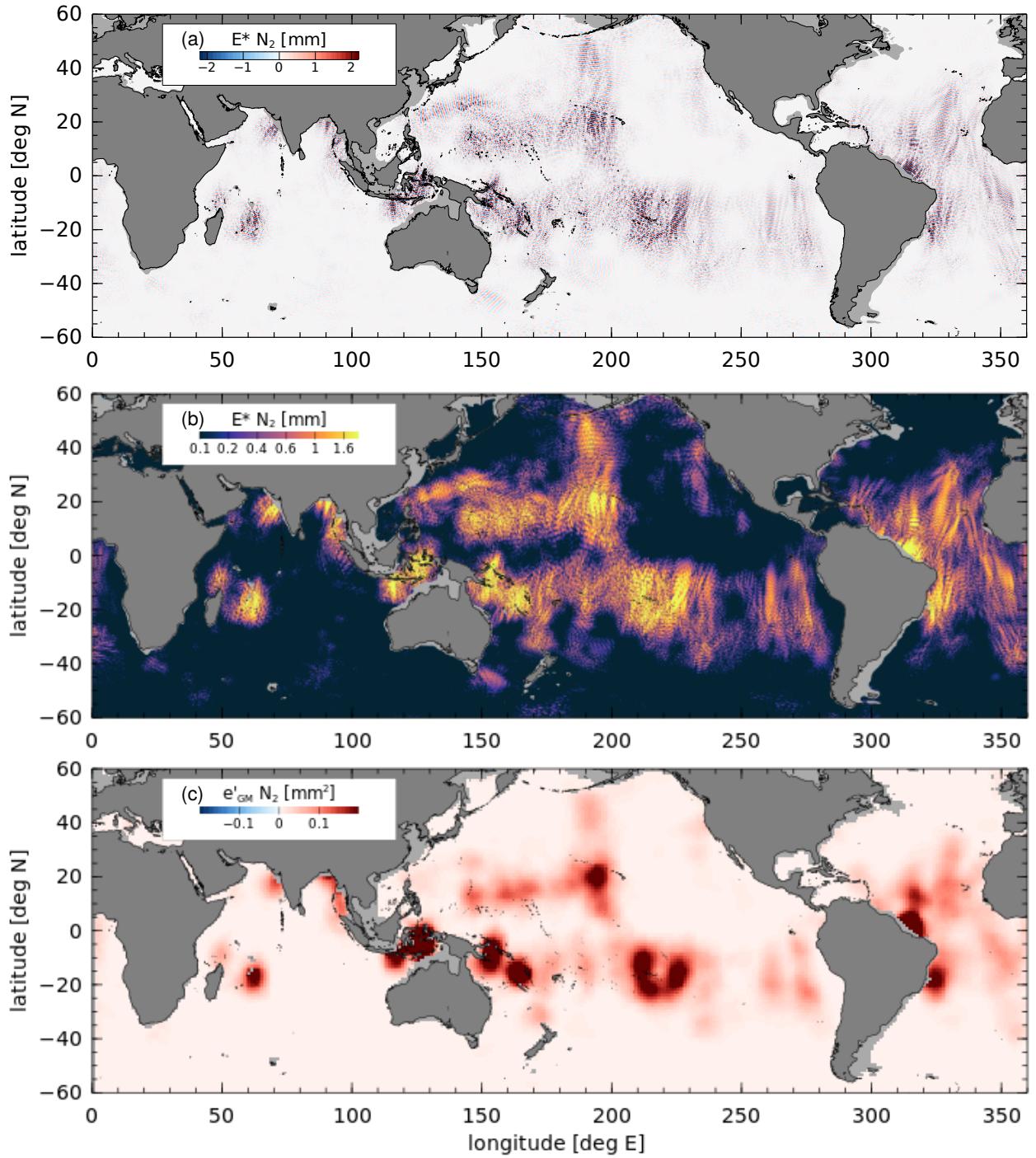
543 in regions such as the Indonesian Seas, near the Amazon plume, and near the Andamans on the
544 eastern boundary of the Indian Ocean. It is hypothesized that the $\alpha = 0$ -like approach of HRET8.1
545 is better in these regions, which are all close to land boundaries, where the inhomogeneities in
546 the observations and larger non-tidal signals (due to lower accuracy of the mesoscale corrections
547 near land) obscure the distinction between “active” and “non-active” degrees of freedom in $\alpha = 1$
548 algorithm. In other word, attempts to balance the active modes (a priori assumed to be signal)
549 and in-active modes (a priori assumed to be a mix of signals and noise) are not useful when the
550 in-active modes are dominated by noise. Although more systematic parameter tuning could lead
551 to more accurate estimates of S_2 in these regions, this has not been attempted.

555 The N_2 tide was not estimated in HRET8.1, so there are no alternatives available for comparison
556 of the E^* estimate (Figure 11). Overall, the maps of the N_2 tide are similar to M_2 , as expected
557 from the identical spatial pattern of forcing and nearby frequencies of the constituents, but the N_2
558 fields are notably sparser, consistent with their smaller signal-to-noise ratio and the use of the $\alpha = 1$
559 estimator. Incorporation of N_2 in predictions of baroclinic sea level should be expected to explain
560 a few millimeters of root-mean-square sea level near the main generation sites.

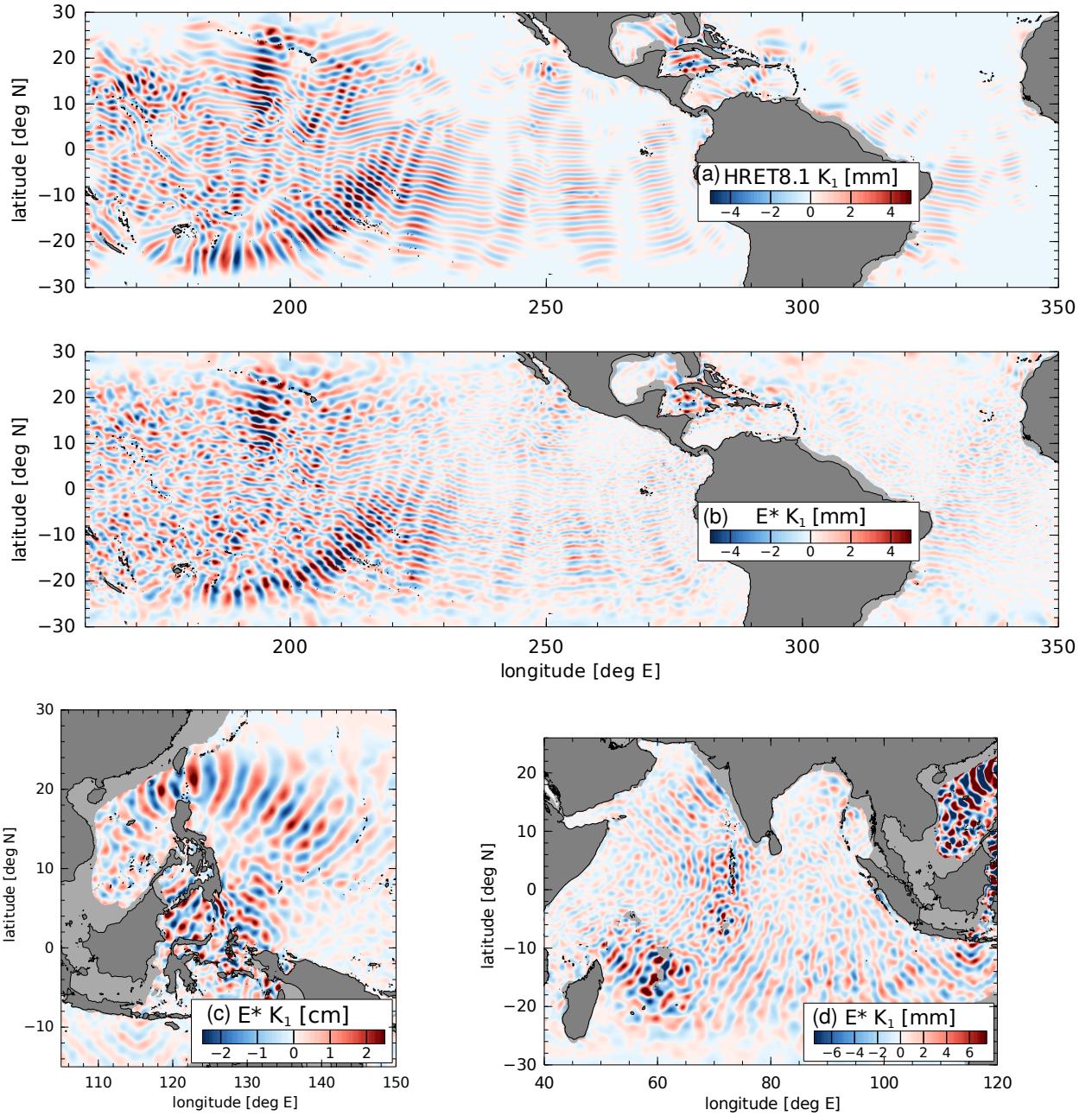
561 *d. K_1 and O_1 tides*

566 The diurnal K_1 and O_1 tides were estimated previously in Zaron (2019), and it is interesting to
567 see the extent to which that estimate can be improved with the new estimator and the addition of
568 GDP data. Compared to HRET8.1, the new estimates are remarkably similar. The amplitudes
569 of the new estimates are slightly larger and exhibit more detail than in HRET8.1, as shown in
570 the Eastern Pacific and Atlantic for K_1 in Figures 12a and 12b. Waves emanating from Luzon
571 and Halmahera Sea (Figure 12c) and southward from the Lombok Strait (Figure 12d) are resolved
572 better than previously (not shown). Although the K_1 waves are smaller amplitude than M_2 , it is
573 evident that they propagate long distances within their waveguide between $\pm 30^\circ$ latitude. Similar
574 features are found in the new O_1 solution.

580 The increased detail of the new diurnal tide estimates is associated with better explained variance
581 statistics, shown for K_1 in the far western Pacific and Indonesian Seas (Figure 13). The extent
582 of improvement for K_1 depends more on the specific data source used for comparison than M_2 ,
583 though (cf., Figure 8). Considerable area now shows essentially the same or even slightly worse

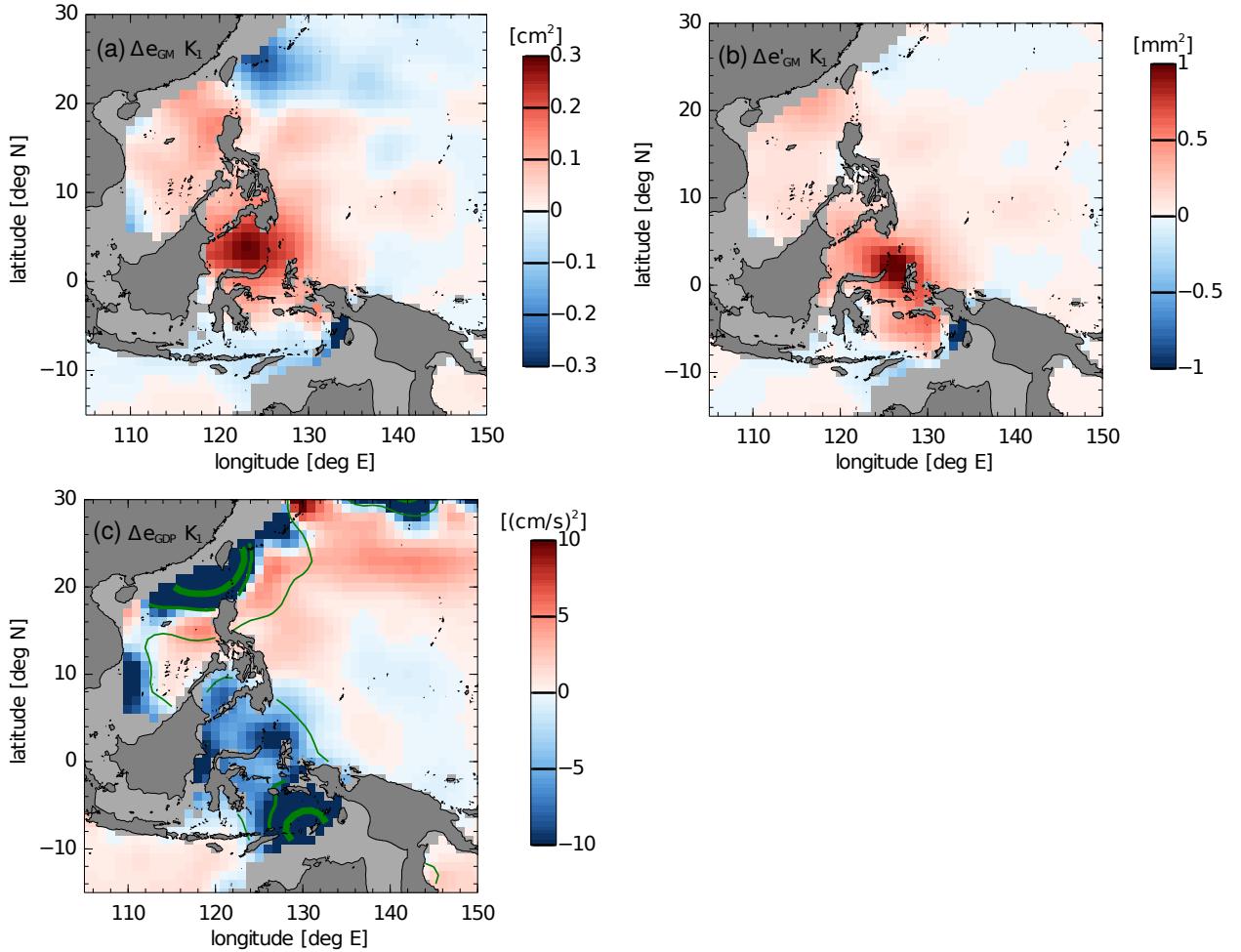


552 FIG. 11. N_2 tide metrics for the E^* estimate: (a) the real part of SLA, (b) amplitude, and (c) explained variance
 553 with respect to along-track GM altimetry SLA differences. Note that the colorscale is scaled by a factor of 1/5
 554 compared to plots for M_2 in Figures 5-8, corresponding to the magnitude of the astronomical potential.



562 FIG. 12. K_1 baroclinic sea level anomaly (real part, in-phase with the astronomical tidal potential): (a)
 563 HRET8.1, based on ERM data; (b-d) E^* , based on combined ERM and GDP data using the estimator described
 564 in Section 2 with λ optimized by comparison to GM along-track sea surface slope. Note the different colorscales
 565 used in panels (b-d).

584 explained variance for the comparison with GM SLA data (Figure 13a); although, the comparison
 585 with GM along-track SLA difference is more uniformly favorable, which is expected since these



575 FIG. 13. Differences of explained variance, E^* minus HRET8.1, within the same domain pictured in Figure 12c.
 576 Positive values indicate that the E^* estimates explains more variance than HRET8.1. (a) GM altimeter SLA,
 577 (b) GM altimeter along-track SLA differences, and (c) GDP surface velocity data. The green contours in panel
 578 (c) indicate the estimated standard error of Δe_{GDP} at three levels: $1 \text{ cm}^2 \text{ s}^{-2}$ (thin), $3 \text{ cm}^2 \text{ s}^{-2}$ (medium), and
 579 $9 \text{ cm}^2 \text{ s}^{-2}$ (thick).

586 data are used to optimize the λ regularization parameter. The comparisons with GDP-derived
 587 currents shows the limitations of these data, caused in part by non-uniform spatial density and
 588 contamination by near-inertial currents near the K_1 inertial latitude, $\pm 30^\circ$. The explained variance
 589 metric, Δe_{GDP} in Figure 13c, is overlaid with contours of its expected errors as estimated by a
 590 modification of bootstrap resampling which accounts for correlations in the data errors (data are
 591 resampled in 100-hr segments). Regions which explain less variance than HRET8.1 (shaded with
 592 blue) generally coincide with regions where the standard error is larger than $3 \text{ cm}^2 \text{ s}^{-2}$.

593 One interesting feature of K_1 is the apparent decay of the waves within about 3° of the inertial
594 latitude (apparent near $190^\circ E$ in Figure 12b and between $60^\circ E$ and $80^\circ E$ in Figure 12d). The struc-
595 ture of diurnal waves near their inertial latitude depends strongly on the direction of propagation,
596 with an Airy-function structure for the meridional component (Hendershott 1981; Dushaw and
597 Worcester 1998). But we should also expect the waves to be particularly sensitive to modulations
598 of relative vorticity which will change the effective value of the inertial frequency in the propaga-
599 tion environment (Kunze 1985). Thus, the apparent decay of the waves near $\pm 30^\circ$ could be due
600 to wave structures which cannot be represented by the present kinematic wave model, or due to
601 time-dependent modulations which reduce the phase-locked signal. In either case, the interesting
602 features of the diurnal waves deserve further investigation.

603 The O_1 tide is largely similar to the above description of K_1 . It contains no striking new qualitative
604 features, and is therefore not shown.

605 *e. Summary of Results*

606 Table 5 summarizes the main differences in the new E^* estimates compared to HRET8.1. It is
607 noteworthy that the best-resolved M_2 tide is essentially the same amplitude in both estimates, but
608 the new model explains nearly a factor of 5 more GDP velocity variance than HRET8.1. The use
609 of the new $\alpha = 1$ estimator seems to reduce the noise level and problems with the MA_2 and MB_2
610 estimates from HRET8.1. In every case except S_2 , the measures of explained variance are either
611 the same or improved. There is no reason to think the dynamics of S_2 are fundamentally different
612 from those of M_2 or N_2 , so the larger difference between E^* and HRET8.1 for this frequency likely
613 reflect its larger uncertainty, a consequence of the relatively poor sampling by altimetry.

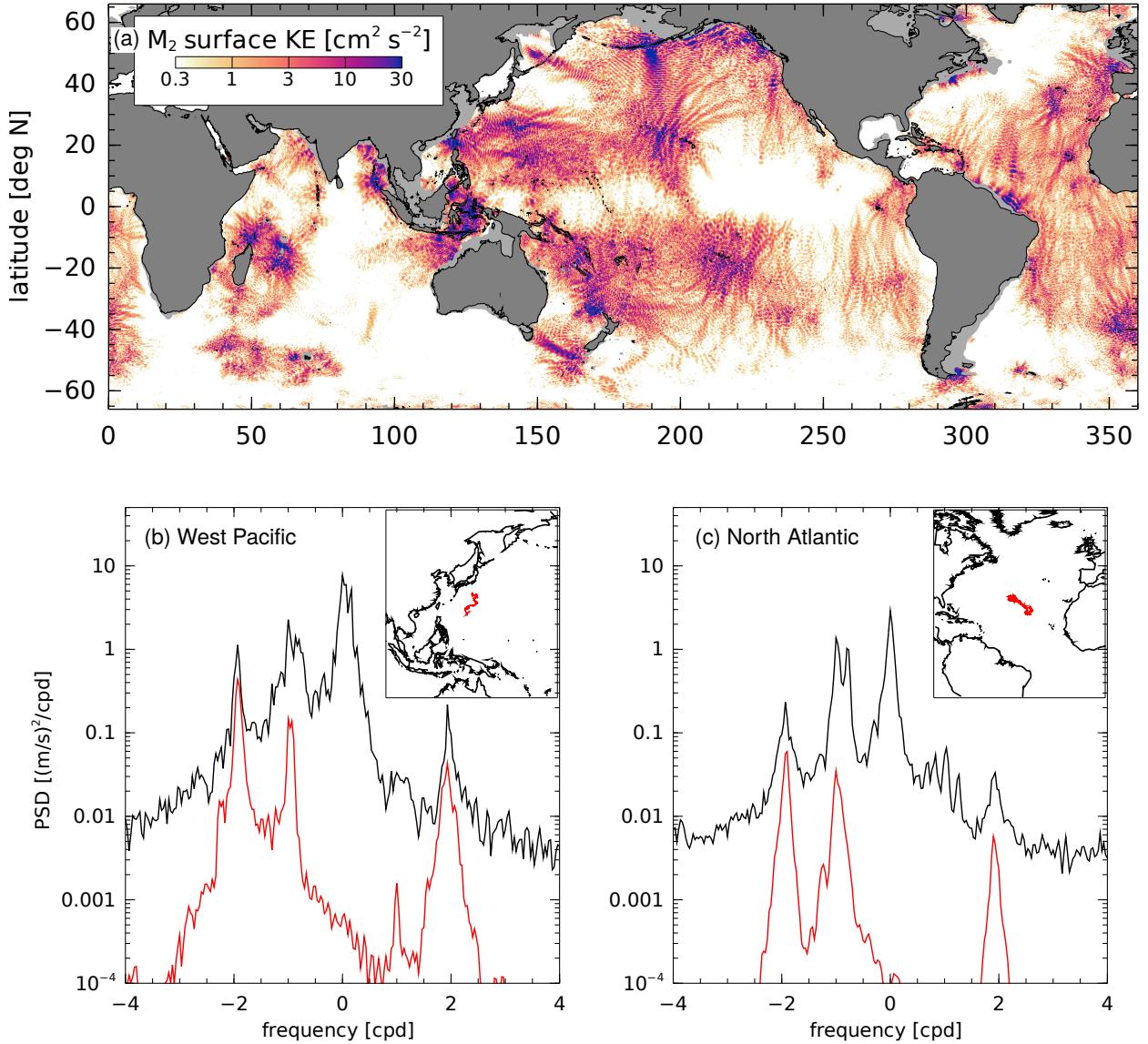
632 **6. Discussion**

633 The new estimates of baroclinic tides, above, are useful for the prediction and description of the
634 baroclinic waves. An illustrative example is shown in Figure 14a, which maps the surface kinetic
635 energy associated with the baroclinic M_2 tide. The surface kinetic energy (Figure 14a) is computed
636 from η using surface velocities computed with equation (8); it provides an estimate which may be
637 useful in planning future ocean surface current measurement satellite mission concepts, for example
638 (Rodríguez et al. 2019; Du et al. 2021). Figures 14b and 14c compare the rotary kinetic energy

614 TABLE 5. Summary statistics for E^* compared to HRET8.1. $\langle|\eta|^2\rangle^{1/2}$ is the area-weighted root-mean-square
 615 of the estimated tidal SLA amplitude. Other columns indicate the square root of the area-weighted mean of the
 616 explained variance with respect to ERM data (e_{ERM}), GM data (e_{GM}), along-track-differenced GM data (e'_{GM}),
 617 and GDP data (e_{GDP}). HRET8.1 did not include an estimate of N_2 , which is indicated with an “-”.

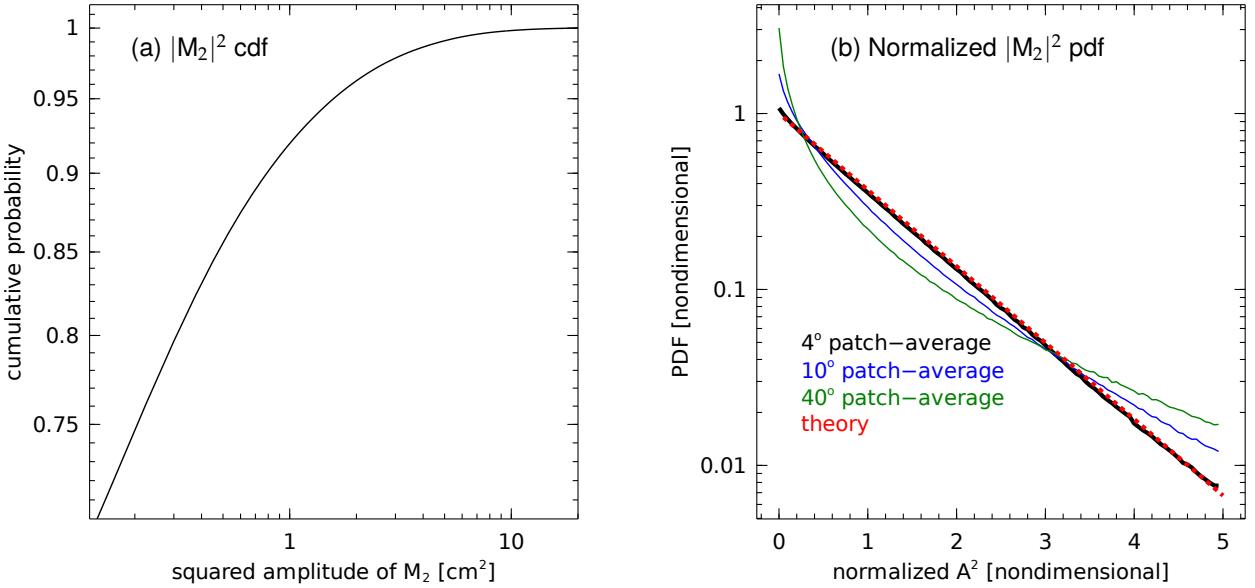
Tide	Model	$\langle \eta ^2\rangle^{1/2}$ [cm]	e_{ERM} [cm]	e_{GM} [cm]	e'_{GM} [cm]	e_{GDP} [cm s ⁻¹]
O ₁	E [*]	0.24	0.18	0.18	0.02	0.67
	HRET8.1	0.22	0.17	0.18	0.02	0.36
K ₁	E [*]	0.32	0.24	0.26	0.03	0.72
	HRET8.1	0.27	0.23	0.24	0.03	0.45
N ₂	E [*]	0.05	0.06	0.05	0.02	0.37
	HRET8.1	-	-	-	-	-
MA ₂	E [*]	0.03	0.02	0.03	0.01	0.35
	HRET8.1	0.11	0.00	0.00	0.00	0.00
M ₂	E [*]	0.60	0.41	0.51	0.14	1.13
	HRET8.1	0.61	0.40	0.48	0.12	0.52
MB ₂	E [*]	0.03	0.03	0.04	0.01	0.38
	HRET8.1	0.11	0.00	0.00	0.00	0.00
S ₂	E [*]	0.15	0.16	0.14	0.04	0.62
	HRET8.1	0.19	0.15	0.15	0.04	0.13

639 of the observed Lagrangian currents (Eliot et al. 2016) with the predicted tidal currents. The
 640 examples show that the predicted currents exhibit considerable spreading in the frequency domain
 641 solely due to the Lagrangian character of the observations, independent of any non-phase-locked
 642 tidal variability. It is also interesting to note that the predicted tides in the semidiurnal band are a
 643 factor of 2 to 3 weaker than the observed currents. This difference in energy level likely reflects the
 644 presence of non-phase-locked tidal variability in the observations. In contrast, the kinetic energy
 645 near -1 cycle-per-day (cpd) consists of a mixture of tidal and inertial energy, and it is impossible
 646 to assess any bias in the predicted diurnal tidal currents.



618 FIG. 14. (a) Kinetic energy of the baroclinic M_2 tide from the E^* estimate at the ocean surface. Note that
 619 the latitude range shown is expanded slightly compared to Figure 5 in order to show some small features at high
 620 latitude, such in the Labrador Sea. The rotary kinetic energy spectra of the observed Lagrangian currents (black)
 621 and predicted tidal currents (red) are shown for representative drifter trajectories in (b) the West Pacific and (c)
 622 the North Atlantic. Due to the drifters' proximity to 30° latitude, the kinetic energy near -1-cycle-per-day (cpd)
 623 consists of a mixture of tidal and inertial energy.

647 The new tidal estimates may also stimulate new approaches to oceanographic data analysis. For
 648 example, Figure 15 illustrates the probability distribution function of the squared baroclinic M_2
 649 amplitude in two forms. The first, Figure 15a, quantifies the spatial inhomogeneity of the beams



624 FIG. 15. The probability density function (pdf) of squared baroclinic M_2 amplitude. The pdf is computed by
 625 sampling the E^* gridpoints, weighted by the cosine of latitude, so it represents the density of oceanic area (from
 626 66°S to 66°N, and depth greater than 250 m) with given squared amplitude. (a) The cumulative probability
 627 density (cdf) quantifies the spatial heterogeneity of the internal tides, showing, for example, that baroclinic tides
 628 with amplitude exceeding 1 cm amplitude only occupy about 7.5% of the oceanic area. (b) For scales less than
 629 400 km, the pdf of the normalized amplitude, $A^2 = |M_2|^2 / \langle |M_2|^2 \rangle$ (black line), agrees with the χ^2_2 -distribution
 630 (red dashed line), consistent with strong multi-wave interference. Over larger scales the pdf is influenced by
 631 spatial heterogeneity of the wave field (blue and green lines).

650 of tidal energy; over 90% of the area of the deep ocean is associated with an M_2 amplitude of 1 cm
 651 or less. The second, Figure 15b, shows the probability density function and compares it with the
 652 exponential distribution, a model for squared wave amplitude in the presence of strong interference;
 653 it shows that within patches of the ocean in which the the wave field may be considered spatially
 654 homogeneous, its statistics are well-characterized by the exponential distribution.

655 It is important to recall that the E^* estimate describes the phase-locked component of the baro-
 656 clinic tides. The instantaneous tide, i.e., the sum of the phase-locked and modulated components,
 657 could be significantly different (Zaron 2022). It is also useful to note that the presence of diffraction
 658 patterns in the baroclinic tides is not necessarily an indication of the phase-stability of the instan-
 659 taneous tides, as has been asserted (Dushaw et al. 2011). A time-mean diffraction pattern could
 660 arise solely because of time-dependent modulations. For example, if two separate point sources

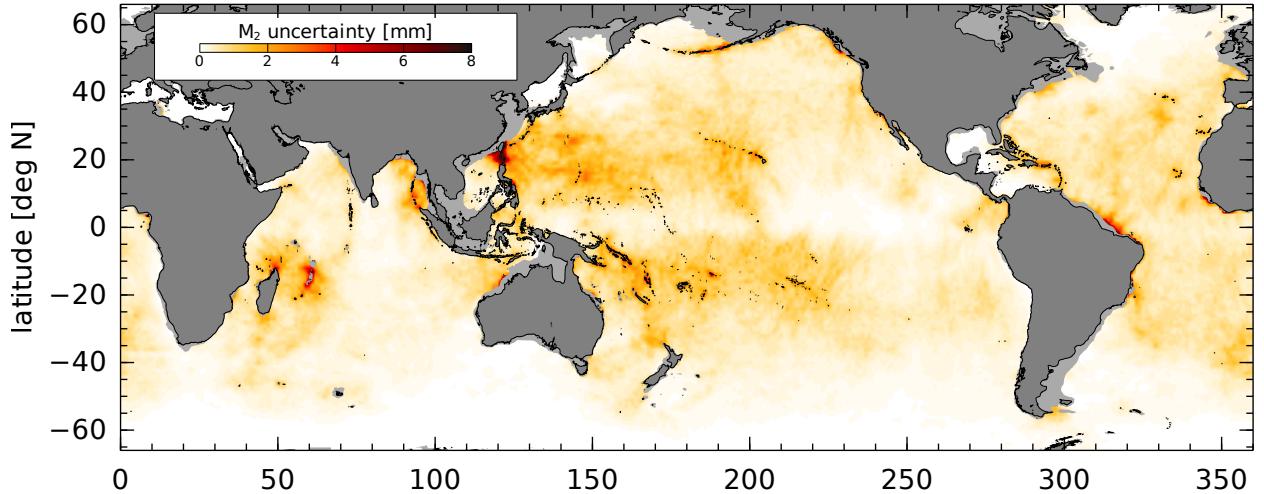
661 turned on and off alternately, the mean wave field would exhibit an interference pattern even though
662 none exists at any instant. Whether such a mechanism could explain any of the observed features
663 of the wave field is speculative, but it is an interesting contrast to the interference of steady wave
664 sources (Rainville et al. 2010).

665 The small amplitudes of the MA_2 and MB_2 tides found here is hypothesized to be related to
666 non-phase-locked variability of the processes which modulate the M_2 tides. A better approach to
667 capturing the baroclinic tidal variability at annual periods might use non-harmonic or year-by-year
668 estimates, as implemented recently by Zhao (2022).

669 There are additional questions related to the form of the estimator used here. The mixed L_1/L_2 -
670 norm estimator is well known from the compressive-sampling literature (Candès et al. 2006), but
671 it is not clear why it performs better than an L_2 estimator in the present application. There are
672 other arbitrary choices, too, such as the size of the data-window and the wavenumber bandwidth.
673 Given the heterogeneous nature of the fields to be mapped, the non-tidal noise, and the character
674 of the observing arrays, it is unlikely that a single set of parameters are optimal for all of the local
675 domains, D_m .

676 One particularly vexing issue concerns the appropriate estimators near the coastline or topo-
677 graphic features where barotropic tidal corrections may contain errors and where the barotropic
678 and baroclinic dynamics may be coupled. This is a serious limitation of the kinematic wave
679 approach, since the separation of barotropic and baroclinic sea level anomalies depends on the
680 utility of the dispersion relation which, for all estimates made so far, has been derived in the limit
681 of flat-bottom topography. It is not clear how the existing approaches to mapping or assimilation
682 based on dynamical models (e.g., Egbert and Erofeeva 2014) could be modified to exceed the
683 accuracy of the kinematic models, though. The mixed L_1/L_2 approach could be adapted for use in
684 assimilative models to allow better control of model complexity; although, this would not address
685 the approximations inherent in models based on a truncated modal decomposition (Lahaye and
686 Llewellyn Smith 2020).

690 The presentation of results in Section 5, above, used explained variance to assess the tidal
691 estimates; however, an alternative approach to assessment could be provided by estimates of
692 standard errors. Users of HRET concerned with tidal prediction are generally interested in the
693 accuracy of the prediction relative to the instantaneous tide, so the standard error of only the



687 FIG. 16. An error estimate for the M₂ harmonic constants based on the assumption that the E12 and E32
 688 estimates are affected by the same (non-instrumental) noise sources, namely, non-phase-locked tides and model
 689 structural error.

694 phase-locked tide may be of little practical use. Nonetheless, standard errors for the phase-locked
 695 tide could help assess differences among models, and a brief discussion of these errors follows.

696 Errors in the tidal estimates provided here arise from a combination of systematic and random
 697 errors in the observational data, model structural error (uncertainty in the form of the functions
 698 used to describe the data, equation 2), and noise due to non-phase-locked tides. If it is assumed
 699 that the latter two factors are dominant and affect the altimeter- and GDP-derived estimates equally,
 700 then the errors in these estimates should depend only on the number of data used for each estimate.
 701 In other words, assume that the E12 and E32 estimates are independent but affected by noise with
 702 same variance, σ^2 . The errors of the estimates should be, $\sigma_{E12}^2 = \sigma^2/N_{E12}$ and $\sigma_{E32}^2 = \sigma^2/N_{E32}$,
 703 respectively, where N_e is the number of data minus the number of parameters estimated in estimate
 704 $e \in \{E12, E32\}$. With these assumptions, the difference field $\Delta = E12 - E32$ may be used to
 705 estimate σ^2 ,

$$\sigma^2 = \langle \Delta^2 \rangle \left(\frac{1}{N_{E12}} + \frac{1}{N_{E32}} \right), \quad (14)$$

706 where the angle-brackets denote spatial averaging over 1-degree cells. This error estimate for M₂
 707 is shown in Figure 16.

708 **7. Conclusions**

709 The estimates for the baroclinic tides derived herein will be useful for the prediction of baroclinic
710 tidal variability in the open ocean. The new methodology for estimating and mapping the wave
711 fields is a definite improvement compared to prior methods. It is hoped that these estimators may
712 be useful for analysis of temporal and spatial subsets of data, to identify non-phase-locked tidal
713 variability, or to estimate the dispersion-relation parameters from the mapped fields.

714 Considering the small quantitative improvement of the present estimates compared to the older
715 HRET8.1 estimates for mapping or predicting SLA, further efforts to map the time-mean phase-
716 locked baroclinic tides with kinematic waves appear to be of questionable value. It seems that the
717 greatest gains in baroclinic tide prediction will result from mapping or predicting the “instanta-
718 neous” tides, for which new methods need to be developed. The approaches in Egbert and Erofeeva
719 (2021), Le Guillou et al. (2021), Ubelmann et al. (2022), and Zhao (2022) appear promising.

720 Nonetheless, the tidal estimates presented here are useful for predicting the baroclinic tidal SLA
721 and ocean surface currents. The harmonic constants on a regular $(1/20)^\circ$ grid between the latitudes
722 of $\pm 66^\circ$, and associated tidal prediction software, are publicly available¹ for the M_2 , S_2 , N_2 , K_1 ,
723 and O_1 tides. The netcdf-formatted files contain the E12 (altimeter-only) and E31 (drifter-only)
724 tidal estimates, in addition to the optimal E^* estimate, and harmonic constants are provided for the
725 vector surface currents as well as the SLA. Sub-surface tidal currents and other baroclinic tidal
726 fields may be predicted using the generalized Fourier coefficient representation of each tide; these
727 coefficients comprise roughly 60 GB of data for each constituent and are available from the authors
728 upon request.

729 *Acknowledgments.* Computations were performed using the Portland Institute for Computational
730 Science cluster computer, *Coeus*, acquired with support from NSF award #DMS1624776 and ARO
731 award #W911NF-16-1-0307. Zaron was supported by NSF award #1850961 and NASA award
732 #80NSSC21K0346, and Elipot was supported by NSF award #1851166. We appreciate the efforts
733 of funding agencies, scientists, and technicians who have created the datasets used here, which are
734 publically-disseminated as described in the Data Availability Statement, below.

¹See the files at <https://ingria.ceoas.oregonstate.edu/fossil/SMCE/dir?ci=tip&name=HRET14>. The following are direct links to download the netcdf files: **HRET14 SSH file** **HRET14 surface velocity file**. [Note that the direct links will be removed and a permanent archival DOI or URL will be provided for the final draft].

735 **Data Availability Statement**

736 All of the data used in this research are publically available. The along-track altimetry data
737 were extracted from the Radar Altimeter Database System (RADS), <http://rads.tudelft.nl/rads/rads.shtml>, which is an effort of the Department of Earth Observation and Space Systems
738 at TU Delft and the NOAA Laboratory for Satellite Altimetry. The surface drifter data were obtained
739 from the NOAA Global Drifter Program web page, https://www.aoml.noaa.gov/phod/gdp/hourly_data.php. The DT-2021 version of the SSALTO/DUACS multi-satellite gridded sea
740 level anomaly maps were obtained from the Copernicus Marine Environmental Monitoring Service,
741 <http://marine.copernicus.eu>. The HRET8.1 tidal estimates are available at the lead author's
742 website, <https://ingria.ceoas.oregonstate.edu>.
743

744 The authors have submitted the data files containing the tidal SLA and surface current harmonic
745 constants to the NASA PO.DAAC and Zenodo for data archiving; it is anticipated that a DOI
746 for these datasets will be included in the published version of this manuscript. The reviewers
747 may access the data files and related software at the following url: <https://ingria.ceoas.oregonstate.edu/fossil/SMCE/dir?ci=tip>.
748
749

APPENDIX A

Definition of the E^* estimator

752 As stated in the text, the E^* estimate is an optimal linear combination of the E12 and E32
 753 estimators. Let \mathbf{a}^* , $\mathbf{a}^{(12)}$, and $\mathbf{a}^{(32)}$ denote the generalized Fourier coefficients for these estimates,
 754 respectively, with $\mathbf{a}^* = a\mathbf{a}^{(12)} + (1-a)\mathbf{a}^{(32)}$ for scalar, a , to be determined. Within each data patch,
 755 a is chosen to maximize the explained variance with respect to the along-track-differenced GM
 756 data, the quantity,

$$J(a) = \mathbf{d}_{GM}^T \mathbf{d}_{GM} - (\mathbf{d}_{GM} - \mathbf{H}_{GM} \mathbf{F} \mathbf{a}^*)^T (\mathbf{d}_{GM} - \mathbf{H}_{GM} \mathbf{F} \mathbf{a}^*). \quad (A1)$$

757 The coefficient a is obtained by solving conditions where the quadratic function $J(a)$ is maximum,

$$\frac{1}{2} \frac{dJ(a)}{da} = [\mathbf{H}_{GM} \mathbf{F} (\mathbf{a}^{(12)} - \mathbf{a}^{(32)})]^T [\mathbf{d}_{GM} - \mathbf{H}_{GM} \mathbf{F} (a\mathbf{a}^{(12)} + (1-a)\mathbf{a}^{(32)})] = 0. \quad (A2)$$

758 Using the notation $\mathbf{d}_{GM}^{(12)} = \mathbf{H}_{GM} \mathbf{F} \mathbf{a}^{(12)}$ for $\mathbf{a}^{(12)}$ sampled at the GM data sites, and likewise for $\mathbf{d}_{GM}^{(32)}$,
 759 the optimal value of a is derived as follows:

$$0 = (\mathbf{d}_{GM}^{(12)} - \mathbf{d}_{GM}^{(32)})^T (\mathbf{d}_{GM} - a\mathbf{d}_{GM}^{(12)} - (1-a)\mathbf{d}_{GM}^{(32)}) \quad (A3)$$

$$0 = (\mathbf{d}_{GM}^{(12)} - \mathbf{d}_{GM}^{(32)})^T (\mathbf{d}_{GM} - \mathbf{d}_{GM}^{(32)} - a(\mathbf{d}_{GM}^{(12)} - \mathbf{d}_{GM}^{(32)})) \quad (A4)$$

$$0 = (\Delta \mathbf{d}_{GM})^T (\mathbf{d}_{GM} - \mathbf{d}_{GM}^{(32)} - a(\Delta \mathbf{d}_{GM})) \quad (A5)$$

$$0 = (\Delta \mathbf{d}_{GM})^T (\mathbf{d}_{GM} - \mathbf{d}_{GM}^{(32)}) - a(\Delta \mathbf{d}_{GM})^T (\Delta \mathbf{d}_{GM}) \quad (A6)$$

$$a = \frac{(\Delta \mathbf{d}_{GM})^T (\mathbf{d}_{GM} - \mathbf{d}_{GM}^{(32)})}{(\Delta \mathbf{d}_{GM})^T (\Delta \mathbf{d}_{GM})}. \quad (A7)$$

760 The E^* estimate is computed independently on each domain, D_m , and these solutions are blended
 761 together, following Section 2b, to obtain the maps of global fields which are shown in the main
 762 text.

763 **References**

764 Akaike, H., 1974: A new look at the statistical model identification. *IEEE Trans. on Automat.*
765 *Cont.*, **19**, 716–723.

766 Arbic, B. K., and Coauthors, 2022: Near-surface ocean kinetic energy distributions from drifter
767 observations and numerical models. *J. Geophys. Res.*, **127** (10), e2022JC018551, <https://doi.org/10.1029/2022JC018551>.

769 Candès, E., J. Romberg, and T. Tao, 2006: Stable signal recovery from incomplete and inaccurate
770 measurements. *Comm. on Pure and Applied Math.*, **59** (8), 1207–1223.

771 Carrere, L., and Coauthors, 2021: Accuracy assessment of global internal tide models using
772 satellite altimetry. *Ocean Sci.*, **17**, 147–180.

773 Dong, W., O. Buhler, and K. S. Smith, 2020: Frequency diffusion of waves by unsteady flows. *J.*
774 *Fluid Mech.*, **905**, R3.

775 Du, Y., and Coauthors, 2021: Ocean surface current multiscale observation mission (oscom):
776 Simultaneous measurement of ocean surface current, vector wind, and temperature. *Prog.*
777 *Oceanogr.*, **193**, 102531.

778 Dushaw, B., 2015: An empirical model for mode-1 internal tides derived from satellite altimetry:
779 Computing accurate tidal predictions at arbitrary points over the world oceans. Tech. Rep.
780 APL-UW TM 1-15, University of Washington Applied Physics Laboratory, 114 pp.

781 Dushaw, B. D., and P. F. Worcester, 1998: Resonant diurnal internal tides in the North Atlantic.
782 *Geophys. Res. Lett.*, **25** (12), 2189–2192.

783 Dushaw, B. D., P. F. Worcester, and M. A. Dzieciuch, 2011: On the predictability of mode-1
784 internal tides. *Deep Sea Res.*, **58**, 677–698.

785 Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani, 2004: Least angle regression. *The Annals of*
786 *Statistics*, **32** (2), 407–499.

787 Egbert, G. D., and S. Y. Erofeeva, 2014: Mapping M2 internal tides using a data-assimilative
788 reduced gravity mode. American Geophysical Union, AGU Fall Meeting 2014AGUFMOS43F.

789 Egbert, G. D., and S. Y. Erofeeva, 2021: An approach to empirical mapping of incoherent
790 internal tides with altimetry data. *Geophys. Res. Lett.*, **48**, e2021GL095863, <https://doi.org/10.1029/2021GL095863>.

792 Eliot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. *Geophys.*
793 *Res. Lett.*, **35**, L05 606.

794 Eliot, S., R. Lumpkin, R. C. Perez, J. M. Lilly, J. J. Early, and A. M. Sykulski, 2016: A global
795 surface drifter data set at hourly resolution. *J. Geophys. Res.*, **65** (1), 29–50, <https://doi.org/10.1002/2016JC011716>.

797 Eliot, S., A. Sykulski, R. Lumpkin, L. Centurioni, and M. Pazos, 2022a: A dataset of
798 hourly sea surface temperature from drifting buoys. *Sci. Data*, **9**, 567, <https://doi.org/10.1038/s41597-022-01670-2>.

800 Eliot, S., A. Sykulski, R. Lumpkin, L. Centurioni, and M. Pazos, 2022b: Hourly location,
801 current velocity, and temperature collected from global drifter program drifters world-wide,
802 <https://doi.org/10.25921/x46c-3620>, dataset, accessed 5/30/2023.

803 Foreman, M. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal analysis:
804 Improvements and applications. *J. Atm. and Ocean. Tech.*, **26**, 806–817.

805 Hendershott, M. C., 1981: Long waves and ocean tides. *Evolution of Physical Oceanography*,
806 B. A. Warren, and C. Wunsch, Eds., MIT Press, 293–341.

807 Kafiabad, H., M. Savva, and J. Vanneste, 2019: Diffusion of inertia-gravity waves by geostrophic
808 turbulence. *J. Fluid Mech.*, **869**, R7.

809 Kelly, S. M., 2016: The vertical mode decomposition of tides in the presence of a free surface and
810 arbitrary topography. *J. Phys. Oceanogr.*, **46**, 3777–3788.

811 Kelly, S. M., A. F. Waterhouse, and A. C. Savage, 2021: Global dynamics of the stationary M_2
812 mode-1 internal tide. *Geophys. Res. Lett.*, **48**, e2020GL091692.

813 Kodaira, T., K. R. Thompson, and N. B. Bernier, 2016: Prediction of M_2 tidal surface currents by
814 a global baroclinic ocean model and evaluation using observed drifter trajectories. *J. Geophys.*
815 *Res.*, **121** (8), 6159–6183.

816 Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. *J. Phys. Oceanogr.*, **15**,
817 544–565.

818 Lahaye, N., and S. G. Llewellyn Smith, 2020: Modal analysis of internal wave propagation and
819 scattering over large-amplitude topography. *J. Phys. Oceanogr.*, **50** (2), 305–321.

820 Le Guillou, F., and Coauthors, 2021: Joint estimation of balanced motions and internal tides from
821 future wide-swath altimetry. *J. Adv. Model. Earth Sys.*, **13**, e2021MS002 613.

822 Lysen, S., 2009: Permuted inclusion criterion: a variable selection technique, URL <https://repository.upenn.edu/edissertations/28>, publicly Accessible Penn Dissertations, accessed
823 5/30/2023.

825 Mallows, C. L., 1973: Some comments on c_p . *Technometrika*, **15**, 661–675.

826 Matte, P., D. A. Jay, and E. D. Zaron, 2013: Adaptation of classical tidal harmonic analysis to
827 non-stationary tides, with application to river tides. *J. Atm. and Ocean. Tech.*, **30**, 569–589.

828 Poulain, P.-M., and L. Centurioni, 2015: Direct measurements of world ocean tidal currents with
829 surface drifters. *J. Geophys. Res.*, **120**, 6986–7003.

830 Rainville, L., T. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D.
831 Dushaw, 2010: Interference pattern and propagation of the M_2 internal tide south of the Hawaiian
832 Ridge. *J. Phys. Oceanogr.*, **40**, 311–325.

833 Ray, R. D., 2022: Technical note: On seasonal variability of the M_2 tide. *Ocean Sci.*, **18** (4),
834 1073–1079.

835 Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from
836 TOPEX/POSEIDON altimetry: Central North Pacific. *Geophys. Res. Lett.*, **28**, 1259–1262.

837 Ray, R. D., and E. D. Zaron, 2016: M_2 internal tides and their observed wavenumber spectra from
838 satellite altimetry. *J. Phys. Oceanogr.*, **46**, 3–22.

839 Rodríguez, E., M. Bourassa, D. Chelton, J. T. Farrar, D. Long, D. Perkovic-Martin, and R. Samel-
840 son, 2019: The winds and currents mission concept. *Front. Mar. Sci.*, **6**, <https://doi.org/10.3389/fmars.2019.00438>.

842 Savva, M., and J. Vanneste, 2018: Scattering of internal tides by barotropic quasigeostrophic flows.
843 *J. Fluid Mech.*, **856**, 504–530.

844 Scharroo, R., E. W. Leuliette, J. L. Lillibridge, D. Byrne, M. C. Naeije, and G. T. Mitchum, 2013:
845 RADS: Consistent multi-mission products. *Proc. of the Symposium on 20 Years of Progress in*
846 *Radar Altimetry, Eur. Space Agency Spec. Publ., ESA SP-710*, Venice, 20-28 September 2012,
847 4, URL <http://rads.tudelft.nl/rads/rads.shtml>.

848 Shanno, D., 1985: Globally convergent conjugate-gradient algorithms. *Math. Program.*, **33**, 61–67.

849 Shriner, J. F., J. G. Richman, and B. K. Arbic, 2014: How stationary are the internal tides in a
850 high-resolution global ocean circulation model? *J. Geophys. Res.*, **119**, 2769–2787.

851 Ubelmann, C., L. Carrere, C. Durand, G. Dibarboure, Y. Faugère, M. Ballarotta, F. Briol, and
852 F. Lyard, 2022: Simultaneous estimation of ocean mesoscale and coherent internal tide sea
853 surface height signatures from the global altimetry record. *Ocean Science*, **18** (2), 469–481,
854 <https://doi.org/10.5194/os-18-469-2022>.

855 Wendland, H., 1995: Piecewise polynomial, positive definite and compactly supported radial
856 functions of minimal degree. *Adv. Comput. Math.*, **4**, 389–396.

857 Yuan, M., and Y. Lin, 2006: Model selection and estimation in regression with grouped variables.
858 *Journal of the Royal Statistical Society, Series B*, **68** (1), 49–67.

859 Zaron, E. D., 2018: Ocean and ice shelf tides from CryoSat-2 altimetry. *J. Phys. Oceanogr.*, **48**,
860 975–993.

861 Zaron, E. D., 2019: Baroclinic tidal sea level from exact-repeat mission altimetry. *J. Phys.*
862 *Oceanogr.*, **49** (1), 193–210.

863 Zaron, E. D., 2022: Baroclinic tidal cusps from satellite altimetry. *J. Phys. Oceanogr.*, **52** (12),
864 3123–3137.

865 Zaron, E. D., and S. Eliot, 2021: An assessment of global ocean barotropic tide models using
866 geodetic mission altimetry and surface drifters. *J. Phys. Oceanogr.*, **51** (1), 63–82, <https://doi.org/10.1175/JPO-D-20-0089.1>.

868 Zaron, E. D., and R. D. Ray, 2017: Using an altimeter-derived internal tide model to remove tides
869 from in situ data. *Geophys. Res. Lett.*, **44**, 4241–4245.

870 Zaron, E. D., and R. D. Ray, 2018: Aliased tidal variability in mesoscale sea level anomaly maps.
871 *J. Atm. and Ocean. Tech.*, **35** (12), 2421–2435.

872 Zhao, Z., 2022: Development of the yearly mode-1 M_2 internal tide model in 2019. *J. Atm. and*
873 *Ocean. Tech.*, **39** (4), 463–478.

874 Zhao, Z., 2023: Satellite evidence for strengthened m_2 internal tides in the past 30 years. *Geophys.*
875 *Res. Lett.*, **50**, e2023GL105 764.

876 Zhao, Z., M. H. Alford, and J. B. Girton, 2012: Mapping low-mode internal tides from multisatellite
877 altimetry. *Oceanography*, **25** (2), 42–51.

878 Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations
879 of open-ocean mode-1 M_2 internal tides. *J. Phys. Oceanogr.*, **46**, 1657–1684.

880 Zhao, Z., M. H. Alford, R. C. Lien, M. C. Gregg, and G. S. Carter, 2014: Internal tides and mixing
881 in a submarine canyon with time-varying stratification. *J. Phys. Oceanogr.*, **42** (12), 2121–2142.