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Abstract—Soft robots offer a unique combination of flexibility,
adaptability, and safety, making them well-suited for a diverse
range of applications. However, the inherent complexity of soft
robots poses great challenges in their modeling and control. In this
letter, we present the mechanical design and data-driven control
of a pneumatic-driven soft planar robot. Specifically, we employ a
data-enabled predictive control (DeePC) strategy that directly uti-
lizes system input/output data to achieve safe and optimal control,
eliminating the need for tedious system identification or modeling.
In addition, a dimension reduction technique is introduced into
the DeePC framework, resulting in significantly enhanced com-
putational efficiency with minimal to no degradation in control
performance. Comparative experiments are conducted to validate
the efficacy of DeePC in the control of the fabricated soft robot.

Index Terms—Modeling, control, and learning for soft robots,
soft sensors and actuators, data-driven control, predictive control.

I. INTRODUCTION

S
OFT robots have gathered significant attention in recent

years due to their appealing features such as flexibility,

adaptability, and versatility [1]. Such robots are fabricated using

soft materials like fabrics, elastic polymers, among others [1],

[2], while their actuation can be achieved through pneumatic, flu-

ids, cables, or magnetics [3]. Therefore, the inherent flexibility

and adaptability render them better candidates, as compared to

rigid robots, for operation in complex environments with human

interaction or fragile objects.

However, due to the intrinsic high complexity and nonlinearity

of soft robots, their modeling and control have presented signif-

icant challenges. Numerical approaches, such as finite element

analysis [4], are accurate but not suitable for real-time control
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due to complex coupled dynamics and high computational over-

head. Approximated models of soft robots, on the other hand, of-

ten rely on the piecewise constant curvature (PCC) assumption.

The PCC-based model [5] can streamline the system depiction

with manageable computational complexity. This model finds

extensive application in soft continuum robots, where its margin

of error remains acceptable under conditions of relatively small

payloads. Additionally, when the robot operates in a horizontal

plane, gravitational effects can be neglected. Under the constant

curvature assumption, both static and dynamic models can be

derived. The PCC technique is well-established in quasi-static

modeling and control [6]; however, it only considers kinematic

relationships, making it suitable for scenarios characterized by

slow dynamics or static environments. A dynamic model is

required for dynamic tasks and interactions with the environ-

ment. Dynamic modeling approaches for soft robots include aug-

mented rigid links [7] and Lagrangian approaches [8], with the

majority requiring extensive experiments for the identification

of model parameters. Nevertheless, it is empirically challenging

and time-/cost- intensive to identify the model parameters of soft

robots.

To address the complex nature of modeling and control of

highly nonlinear systems like soft robots, there is a growing

interest in data-driven control. Some researchers have focused

on reinforcement learning for continuum robot control [9].

Meanwhile, Koopman-based methods have also been investi-

gated [10], [11], which employs the Koopman operator to lift the

lower-dimensional nonlinear states to a high-dimensional lin-

ear space, yielding control-oriented linear models of nonlinear

systems. Compared to Koopman-based approaches that require

empirical selection of observable functions and full state infor-

mation, another emerging technique is data-enabled predictive

control (DeePC) [12] which only needs input and output data.

DeePC leverages the fundamental lemma [13] to describe system

trajectories in a non-parametric manner. DeePC has demon-

strated its efficacy in predicting system behavior without relying

on explicit system models, and it has been successfully applied

in domains such as power systems [14], quadcopters [15], and

vehicle platooning [16], [17]. However, despite its appealing

features, the application of DeePC to soft robots remains un-

explored. The ability to obtain a non-parametric representation

from data trajectories makes DeePC an ideal candidate for soft

robot systems with highly nonlinear and stochastic dynamics.

Therefore, the paper focuses on the application of the DeePC

approach to a soft robot. The main contributions are threefold.
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First, we present the synergistic design of a cost-effective soft

robot, and investigate the use of DeePC on this soft arm. While

working on the specific soft arm, the approach is general and can

be readily extended to other soft robots. Second, building upon

our recent theoretical advancements in dimension reduction

for DeePC [18], a singular value decomposition (SVD) based

scheme is introduced to improve the computation efficiency

when deploying DeePC on soft robots, which bridges the gap

from theory to application. Third, comprehensive experiments

are conducted to evaluate the performance of DeePC. The results

show that the DeePC approach achieves better control perfor-

mance compared to a model-based control scheme and another

data-driven control method, and the SVD based scheme can

significantly enhance the computation efficiency of DeePC with

no to little performance degradation, making it computationally

tractable and suitable for real-time control of soft robots.

The remainder of this paper is structured as follows. Section II

provides an overview of the hardware design of the planar soft

robot and pneumatic control board. Section III introduces the

control objective and the DeePC approach for dynamic control

of the soft robot. Section IV presents the experimental setup

and results. Finally, Section V draws conclusions based on the

findings.

II. HARDWARE DESIGN

This section introduces the hardware modules of the soft

robot, including the design and fabrication, along with an

overview of the components constituting the pneumatic control

board.

A. Planar Soft Robot Design and Fabrication

The design of the soft robot encompasses two planar bending

chambers, and each chamber consists of three core components:

a fabric sleeve, a pneumatic bladder, and two end caps. This

design strategy ensures that the soft robot is both low-cost and

easy to fabricate, utilizing off-the-shelf materials alongside 3D

printed parts. The fabric sleeve is crafted from two specific types

of fabrics: an anisotropic fabric (White Heavy Stretch High Elas-

ticity Knit Elastic Band, Cisone), which permits stretching in the

wale direction while restricting expansion in the course direc-

tion, and a strain-limiting fabric (1050 Denier Coated Ballistic

Nylon Fabric, Magna Fabrics), designed to prevent stretching in

all directions. The directions are indicated in Fig. 1(a).

During assembly, the anisotropic fabric is oriented to enable

stretching along its length. Both fabrics are centrally over-

laid and joined together using a straight stitch, employing a

polyester string (UV Resistant High Strength Polyester Thread

69 T70 Size 210D/3, Selric). The excess material from the

strain-limiting fabric is then folded over the edges and stitched

along the existing stitch line, repeating this process thrice for

added durability. This edge reinforcement is crucial to prevent

delamination under higher pressures. Two such fabric sleeves

are assembled in total.

Detailed illustrations of this fabrication process are depicted

in Fig. 1. Each sleeve houses a latex bladder inside. Subse-

quently, a customized collar, manufactured using a 3D printer

(Ender-3 Pro 3D Printer, Creality), connected to a pneumatic

Fig. 1. Design of soft robot: (a) Exploded view of the components; (b) Robot
in unpressurized state; and (c) Bending movement of robot when pressurized.

Fig. 2. Illustration of the pneumatic control board.

tube (4 mm OD × 2 mm ID, Uxcell) is inserted into both ends

of the bladder. These collars are enclosed within customized,

3D-printed end caps which are further secured with zip-ties to

guarantee stability during pressurization [19], [20]. To ensure a

more consistent bending motion, the sleeves are oriented such

that the anisotropic fabric faces outward from the center. The

completed assembly is shown in Fig. 1(b). When one chamber

is pressurized by compressed air, the chamber will bend due to

a strain difference caused by the anisotropic fabric stretching

while the strain-limiting fabric remains unchanged, leading to a

bending motion. The planar bending capability of the soft robot

is illustrated in Fig. 1(c).

B. Pneumatic Control Board

The soft robot used is pneumatically driven, requiring an air

source and an air control scheme. The air source is a portable

pressure tank with a regulator output. The pneumatic control is

referenced from the open soft robot toolkit [21], and the setup

of the pneumatic control board is shown in Fig. 2. The Arduino
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Fig. 3. (a) The three spaces of constant-curvature robots. (b) Configuration
space parameters of PCC representation for a single segment.

acts as the low-level microcontroller to control the fast-switching

solenoid valves (SMC VQ110U-5 M) through MOSFET drivers

powered by 24 V. The air supply is from an air compressor and

is directed to the manifold. Then, the electronic solenoid runs

at a high frequency and adjusts the amount of air by regulating

its duty cycle. The chamber pressure is measured by a pressure

sensor (Honeywell SSCDANN100PGAA5) and fed back into

the Arduino. The pneumatic control board can act as the low-

level controller that receives pressure commands from the high-

level controller and generates the necessary output to actuate the

soft robot.

III. CONTROL OBJECTIVE AND DEEPC FORMULATION

In the following, we first state the control objectives for the

soft robot in Section III-A. Section III-B presents the DeePC

approach, illustrating its application to address the consid-

ered control problem. To enhance computational efficiency,

Section III-C further incorporates a dimension reduction tech-

nique into the DeePC framework.

A. Soft Robot Control Problem

The widely embraced modeling approach for soft robots is

based on the piecewise constant curvature (PCC) assumption.

In this approach, the robot’s configuration is considered as con-

sisting of a certain number of segments, each characterized by a

constant curvature. As illustrated in Fig. 3(a), the kinematics of

a soft robot can be decomposed into two mappings among three

spaces under the PCC assumption [6]. The first mapping is from

actuator space to configuration space and the second one is from

configuration space to task space. Specifically, actuator variables

are often characterized by robot-specific properties such as cable

length and air pressure. Configuration spaces consist of arc pa-

rameters that describe the configuration of the soft robot, which

determines the task space position by geometric relationship.

As shown in Fig. 3(b), the configuration space of a segment

can be described by parameters (θ, �), where θ is the bending

angle, and � is the arc length. The task space is generally defined

with Cartesian coordinates, with the tip position of the segment

being denoted by (px, pz). The relationship between (θ, �) and

(px, pz) can be described by px = � · 1−cos(θ)
θ

, pz = � · sin(θ)
θ

.

The homogeneous transformation matrix between the robot tip

and the robot base can be written as follows [22]:

H =

⎡

⎢
⎣

cos(θ) sin(θ) �
1−cos(θ)

θ

− sin(θ) cos(θ) �
sin(θ)

θ

0 0 1

⎤

⎥
⎦ . (1)

In the PCC approach, the kinematics of each segment can be

formulated by (1). By aggregating all segments, the kinematics

of the whole soft robot can be obtained. Subsequently, the

dynamic model can be further developed through various tech-

niques based on the kinematic relationship [8], [23]. However,

the PCC model exhibits certain inherent limitations or flaws. The

constant curvature assumption may not adapt well to real-world

robotic scenarios, considering factors such as gravity effects, tip

payload, or material characteristics. Additionally, imperfections

in the manufacturing process could also cause non-homogeneity,

making the accuracy of the constant curvature assumption suffer.

Therefore, in this paper, we aim to leverage recent advancements

in data-enabled predictive control (DeePC) [12] to achieve

optimal control of the soft robot without relying on an explicit

system model. Different from PCC approaches, DeePC directly

uses input/output measurements to learn the system behavior,

eliminating the need for the intricate transformation between the

configuration space and task space required by PCC approaches.

B. Data-Enabled Predictive Control

We now provide an overview of DeePC. For more details,

please refer to [12]. Through linearization around the operating

point, the dynamic model of the soft robot can be approximated

by the following discrete-time linear time-invariant (LTI) system

(we will handle the inherent nonlineariy in the sequel):

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m are sys-

tem matrices, and x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are,

respectively, the state, control input, and output at time t ∈ Z.

We purposefully abstract notation above to highlight the fact that

the problem statement can be applied to different soft robotic

systems with nonlinear dynamics whose linearization about the

operating point is a controllable and observable LTI system.

The DeePC algorithm utilizes pre-collected input/output data to

describe the system behavior based on Willems’s fundamental

lemma [13], and the following definition of persistent excitation

is needed.

Definition 1: Let L, T ∈ Z and L ≤ T . The Hankel matrix

of depth L for the signal sequence ω[0,T−1] := [ωT(0), ωT(1),

. . . , ωT(T − 1)]T is defined as

HL(ω[0,T−1]) :=

⎡

⎢
⎢
⎢
⎢
⎣

ω(0) ω(1) · · · ω(T − L)

ω(1) ω(2) · · · ω(T − L+ 1)
...

...
. . .

...

ω(L− 1) ω(L) · · · ω(T − 1)

⎤

⎥
⎥
⎥
⎥
⎦

.

(3)

The sequence ω[0,T−1] is said to be persistently exciting of order

L if HL(ω[0,T−1]) has full row rank.
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The DeePC algorithm begins by collecting an input/output

data sequence of length T from the system:

ud
[0,T−1] :=

[

ud(0)T, ud(1)T, . . . , ud(T − 1)T
]T

,

yd[0,T−1] :=
[

yd(0)T, yd(1)T, . . . , yd(T − 1)T
]T

. (4)

Then, the Hankel matrices HL(u
d
[0,T−1]) and HL(y

d
[0,T−1])

are given by

[

HL(u
d
[0,T−1])

HL(y
d
[0,T−1])

]

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ud(0) ud(1) . . . ud(T − L)
...

...
. . .

...

ud(L− 1) ud(L) . . . ud(T − 1)

yd(0) yd(1) . . . yd(T − L)
...

...
. . .

...

yd(L− 1) yd(L) . . . yd(T − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(5)

The Willems’ fundamental lemma aims to represent (2) via the

input/output data ud
[0,T−1] and yd[0,T−1].

Lemma 1 (Fundamental Lemma [13]): Consider a control-

lable LTI system (2) and assume that the input sequence ud
[0,T−1]

is persistently exciting of order n+ L. Then, any length-L

sequence (u[0,L−1], y[0,L−1]) is an input/output trajectory of (2)

if and only if we have

[

u[0,L−1]

y[0,L−1]

]

=

[

HL(u
d
[0,T−1])

HL(y
d
[0,T−1])

]

g (6)

for some real vector g ∈ R
(T−L+1).

Lemma 1 reveals that if the pre-collected input/output data

is sufficiently long and rich, then all valid length-L trajectories

of (2) can be generated via its corresponding Hankel matrices.

This lemma demonstrates a non-parametric representation of

system behavior, which is the key to formulate DeePC. We now

introduce the DeePC formulation. Let Tini, N ∈ Z be the time

length of “past data” and “future data”, respectively, and Tini +
N = L. The Hankel matrices HL(u

d
[0,T−1]) and HL(y

d
[0,T−1])

are divided into two parts:

[

Up

Uf

]

:= HL(u
d
[0,T−1]),

[

Yp

Yf

]

= HL(y
d
[0,T−1]), (7)

where Up and Uf consist of the first Tini block rows (i.e., the

“past” data section) and the last N block rows (i.e., the “future”

data section) ofHL(u
d
[0,T−1]), respectively (similarly for Yp and

Yf ). Let uini = u[t−Tini,t−1] be the control input sequence within

a past time horizon of length Tini, and u = u[t,t+N−1] be the

control input sequence within a prediction horizon of length

N (similarly for yini and y). At each time step t, the DeePC

employs Lemma 1 to predict future system behavior and solves

the following constrained optimization problem:

min
g,u,y

‖y − yr‖
2
Q + ‖u‖2R

subject to

⎡

⎢
⎢
⎢
⎣

Up

Uf

Yp

Yf

⎤

⎥
⎥
⎥
⎦
g =

⎡

⎢
⎢
⎢
⎣

uini

u

yini

y

⎤

⎥
⎥
⎥
⎦
, u ∈ U , y ∈ Y, (8)

where yr =
[

yTr (t), y
T

r (t+ 1), . . . , yTr (t+N − 1)
]T

is a de-

sired trajectory, Q,R are weighting matrices, ‖y − yr‖
2
Q :=

(y − yr)
�Q(y − yr), ‖u‖

2
R := u�Ru, and U , Y represent the

input and output constraints.

Note that the formulation (8) can achieve satisfactory perfor-

mance if noise-free data is collected from the deterministic LTI

system (2). As discussed in [12], [24], in the presence of output

measurement noise or system nonlinearities, slack variables and

regularization design can be introduced to extend the DeePC

algorithm. Motivated by this, a slack variable, denoted as σy,

is introduced to ensure the feasibility of the equality constraint,

and the regularized version of DeePC can be formulated as

min
g,u,y,σy

‖y − yr‖
2
Q + ‖u‖2R + λy‖σy‖

2
2 + λg‖g‖

2
2

subject to

⎡

⎢
⎢
⎢
⎣

Up

Uf

Yp

Yf

⎤

⎥
⎥
⎥
⎦
g =

⎡

⎢
⎢
⎢
⎣

uini

u

yini

y

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

0

0

σy

0

⎤

⎥
⎥
⎥
⎦
, u ∈ U , y ∈ Y. (9)

In (9), the slack variable σy is subjected to a weighted quadratic

norm penalty function. The weight coefficient λy > 0 can be

chosen sufficiently large to ensure that σy �= 0 only when the

equality constraint is infeasible [12], [15]. Moreover, a quadratic

norm penalty is applied to g with a weight coefficient λg > 0.

Different choices of regularization for g can be incorporated

into the DeePC framework, each with unique characteristics. For

instance, the one-norm regularizer [12] can serve as a surrogate

for low-rank pre-processing, while the projection-based regular-

izer [25] is consistent without biasing the solution obtained for

perfect data. In this paper, quadratic regularization, i.e., λg‖g‖
2
2,

is implemented as it leads to robust and optimal solutions with

regards to bounded disturbance on the input/output data [26],

and it renders the cost function quadratic. For a more detailed

discussion about regularizers in DeePC, interested readers can

refer to [27].

The formulation (9) is applicable to nonlinear and nondeter-

ministic soft robotic systems. The application of DeePC for the

soft robot is detailed in Algorithm 1. Initially, when the algorithm

starts, uini and yini are empty. uini is then set as 0, while yini is

filled with real-time position data. As the algorithm progresses,

when k > Tini, DeePC optimization begins. The optimal g is

solved based on the formulation in (9), and the iteration window

moves until the end.

C. Dimension Reduction for DeePC

Note that in Lemma 1, ensuring the persistent excitation of the

sequence ud
[0,T−1] requires that column number of the Hankel
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Algorithm 1: DeePC Algorithm for Soft Robot.

1: Input: iteration number tend, pre-collected pressure

input ud
[0,T−1] and soft robot position output yd[0,T−1].

2: Construct Hankel matrices Up, Uf , Yp, Yf .

3: For t < Tini, initialize uini with 0 and yini with

real-time position measurements.

4: while Tini ≤ t ≤ tend do

5: Solve the optimization problem(9) for g and obtain

optimal pressure control u = Ufg.

6: Send the first step optimal pressure control u(1) to

low-level pneumatic controller.

7: Measure the soft robot position, and update uini and

yini to the Tini most recent input/output

measurements.

8: Set t to t+ 1.

9: end while

matrix Hn+L(u
d
[0,T−1]) to be no less than its row number. This

condition implies that the number of data points T must satisfy

T − (n+ L) + 1 ≥ m(n+ L), i.e.,T ≥ (m+ 1)(n+ L)− 1.

Thus, the dimension of g in (9) is lower bounded as

T − L+ 1 ≥ mL+ (m+ 1)n. (10)

This inequality indicates that a large T results in a high dimen-

sion for the optimization variable g in (9). In practical scenarios,

it becomes necessary to collect a sufficiently extensive dataset

to satisfy T ≥ (m+ 1)(n+ L)− 1. However, this choice often

leads to a very large value ofT , making the optimization problem

(9) large-scale and nontrivial to solve efficiently.

Considering the aforementioned issues, we leverage our re-

cently proposed singular value decomposition (SVD) based

approach [18] to reduce the dimension of optimization variables

in DeePC, thereby enhancing the computation efficiency. Note

that SVD techniques are widely used in system identification

methods but for different purposes. In system identification,

SVD is applied to identify an explicit parametric model, which

can then be incorporated into model-based control frameworks.

In contrast, our SVD-based approach focuses on extracting the

core features from the original Hankel matrix (i.e., the collected

data) to create a new data matrix with a reduced column dimen-

sion. This downsized data matrix is then introduced into DeePC,

leading to a substantial reduction in the dimension of optimiza-

tion variables without compromising control performance.

After collecting the input/output data sequences ud
[0,T−1],

yd[0,T−1] and constructing the Hankel matrices in (5), we apply

the SVD technique to compute a new data library. Specifically,

the SVD of the Hankel matrix (5) has the following form:
[

HL(u
d
[0,T−1])

HL(y
d
[0,T−1])

]

=
[

W1 W2

]

︸ ︷︷ ︸

W

[

Σ1 0

0 Σ2

]

︸ ︷︷ ︸

Σ

[

V1 V2

]T

︸ ︷︷ ︸

V T

.

(11)

In (11), W ∈ R
q1×q1 and V ∈ R

q2×q2 are orthogonal matrices,

where q1 = (m+ p)L and q2 = T − L+ 1. Σ ∈ R
q1×q2 is a

rectangular diagonal matrix with non-negative singular values

on the diagonal. The singular values in Σ are arranged in de-

scending order. Let Σ1 ∈ R
r×r (r ≤ min{q1, q2}) contain the

top r non-zero singular values. Then, Σ2, W1, W2, V1, and V2

are defined with appropriate dimensions. The new data matrix

H̄L ∈ R
q1×r is constructed via

H̄L = HLV1 = W1Σ1. (12)

Given H̄L, the DeePC problem in (9) can be replaced by

min
ḡ,u,y,σy

‖y − yr‖
2
Q + ‖u‖2R + λy‖σy‖

2
2 + λg‖ḡ‖

2
2

subject to H̄Lḡ =

⎡

⎢
⎢
⎢
⎣

uini

u

yini

y

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

0

0

σy

0

⎤

⎥
⎥
⎥
⎦
, u ∈ U , y ∈ Y. (13)

If Σ1 contains all non-zero singular values (i.e., r is equal to

the rank of the Hankel matrix (5)), then the new data matrix H̄L

has the same range space as the Hankel matrix (5). For systems

beyond deterministic LTI with noises, the Hankel matrix (5) is

typically full rank, and selecting r equal to the rank of the Hankel

matrix (5) is unnecessary. In such cases, r can be selected based

on the distribution of singular values. An appropriate selection

of r can be guided by identifying the turning point in the singular

value distribution, which indicates the transition from singular

vectors representing the principal patterns to those that are

insignificant [18]. If the turning point is not clear or applicable,

the minimum dimension can be determined experimentally by

gradually reducing the size of r until the control performance

becomes unsatisfactory.

In (9), the optimization variable g has a dimension ofT − L+
1, whereas in (13), the dimension of the optimization variable ḡ

has been reduced to r. In practical applications, T needs to be

sufficiently large to ensure that the collected data is rich enough

for the non-parametric representation. The dimension reduction

scheme leads to a much condensed data matrix H̄L, which can

significantly improve the computation efficiency of DeePC.

IV. EXPERIMENTS

In this section, the experimental study evaluating the perfor-

mance of DeePC on the soft robot system is presented. A video

demonstration of the experimental test for DeePC is available at

https://youtu.be/yTN6vKkndDg.

A. Setup and Data Collection

The experimental setup is shown in Fig. 4. Specifically, the

soft robot hangs upside down within the workspace of the Qual-

isys motion capture system. The Qualisys motion capture system

consists of eight cameras, which can provide accurate positions

of the soft robot. The position information is transmitted from

the Qualysis server to the DeePC host PC through an Ethernet in-

terface. The DeePC algorithm, implemented in Matlab, operates

in real-time on the host PC, and the optimal pressure command

is sent to a lower-level controller via the publisher-subscriber

communication protocol of the robotic operating system. The

low-level pneumatic control board employs a PID controller
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Fig. 4. The experimental setup for the soft robot control.

Fig. 5. The tracking results comparison between DeePC, KMPC, and the
model-based control method.

to achieve the desired pressure by regulating the duty cycle of

the fast-switching values. The air from the portable tank passes

through the control board and finally enters the soft robot. For

this experiment, only one chamber of the soft robot is actuated.

In order to construct the non-parametric representation of

the soft robot, input/output data, i.e., ud and yd, needs to be

collected. For the considered soft robot, the control input ud

is defined as the pressure in the air chamber, and the output

yd is defined as the robot’s coordinates (px, pz) in task space.

During data collection, random and open-loop step inputs are

commanded to the low-level pressure controller. The soft robot

is then actuated, and the corresponding coordinates are continu-

ously recorded. Subsequently, the collected data set is organized

into the Hankel matrix shown in (5). If the collected input/output

data is sufficiently rich, then the constructed Hankel matrix can

be used to achieve accurate predictions of system behavior,

thereby mitigating biased results in DeePC. To evaluate the

performance of the controller, sinusoidal trajectory tracking

is performed, where the reference is given in both Z and X

directions. The reference trajectories for the Z and X directions

are shown as follows:
{
Zref = 25 sin(0.02πt) + 280,
Xref = f(Zref).

(14)

Since the soft robot is an underactuated system, its movements

along the Z and X directions are coupled, preventing the in-

dependent selection of Zref and Xref. In (14), the interpolation

function f is introduced to approximate the coupling dynamics

between the Z and X directions, ensuring that the reference

trajectories are feasible for the soft robot. We use pre-collected

system output trajectories and MATLAB function interp1 to

determine the interpolation function f . Then, for a given Zref,

Xref can be computed with f(Zref).

B. Benchmark Approaches

In this section, we present two benchmark approaches for

comparison with our method.

The first one is a model-based control approach that relies

on the PCC assumption. After obtaining the kinematic rela-

tionship between θ and the end-effector position from (1), the

dynamic equation of the soft manipulator can be derived using

the Euler-Lagrange formula [8], [23]. After the derivation of the

Lagrangian formulation, the equation of motion can be put into

the following form:

M(q)q̈ + V (q, q̇) +D(q)q̇ +G(q) +Kq = A(q)τ. (15)

The definitions of the parameters in (15) can be found in [7],

[23]. Experimental data is recorded, and then system identi-

fication is performed to estimate best model parameters [7],

[28]. A model-based control with feedback linearization is

used for this application, and the control law is designed as

follows:

τ = M(q)

(

q̈d + kd(q̇d − q̇) + kp(qd − q)

+ki

∫

(qd − q̇) dt

)

+ h. (16)

The term h is the sum of all the nonlinear terms from the

Lagrange formulation, the details of the rest of the term can

be found in [29].

The second benchmark approach is data-driven and relies

on the Koopman operator. This approach builds a linear model

using the Koopman operator, which is subsequently integrated

into the MPC framework. Extended dynamic mode decompo-

sition is exploited to approximate the Koopman operator and

thereby determining a linear model in a lifted state space that

approximates the nonlinear system. For more details on this

approach, please refer to Algorithms 1 and 3 in [30]. In the

following, we refer to this approach as KMPC. The prediction

horizon for KMPC is selected to be the same as the value of

N = 45 in DeePC.

C. Proposed Approach: DeePC

The DeePC algorithm is implemented on our test setup. The

task space limits for the end effector of the soft robot are
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Fig. 6. The tracking results for full-size DeePC, truncated DeePC, and dimension-reduced DeePC.

pz ∈ [240, 330] mm and px ∈ [140, 270] mm. The constraint

for control input is u ∈ [0, 90] PSI. The parameters for DeePC

formulation in (9) and the dimension-reduced DeePC in (13)

are chosen to be the same: Tini = 30, N = 45, Q = 0.1 · I2×2,

R = 1× 10−5, λg = 300, λy = 1000. We summarize our gen-

eral approach for parameter selection. For a detailed tuning

procedure and analysis, please refer to [15]. The parameters N

and Tini directly affect the Hankel matrix size and thus influence

computational time. Therefore, they are selected with a balance

in mind between speed and performance. The matrices Q and

R, representing state cost and control cost respectively, can be

chosen similarly to how they are in the LQR/MPC controllers.

The parameter λy , which weights the softened initial condition

constraint, should be selected as large as possible without caus-

ing numerical issues. λg introduces robustness to the system

in the presence of noisy data. If λg is too small, it can impact

the tracking performance, due to prediction errors introduced

by the system’s nonlinearity. Conversely, if λg is too large, it

increases robustness but also introduces conservativeness, which

can degrade performance [26].

The tracking performance of DeePC, KMPC, and the model-

based control method is illustrated in Fig. 5. The DeePC method

consistently maintains commendable tracking performance. Ad-

ditionally, the optimal pressure input commands exhibit smooth

transitions, effectively reducing jittering behaviors in the pneu-

matic soft robot. The KMPC also tracks the trajectory relatively

well, but its control input fluctuates more than DeePC, caus-

ing vibrations in the system output. The model-based control

method shows more tracking errors and oscillations, as the

derived model (15) cannot fully capture the actual system dy-

namics.

To demonstrate the effectiveness of the SVD based dimension

reduction method introduced in Section III-C, we run the DeePC

algorithm with three different data matrices: the full-size Hankel

matrix (5) (denoted byHL), its direct truncation matrixHL,[1:tr]

(i.e., the first tr columns of HL are extracted to construct the

truncation matrix), and the new data matrix H̄L constructed

Fig. 7. DeePC size r presents a nearly linear relationship with computational
time.

with the SVD based method. The truncation matrix HL,[1:tr] is

evaluated at tr = 400, 200, and the data matrix H̄L is evaluated

at r = 400, 200, 150. The results, shown in Fig. 6, indicate

that the full-size Hankel matrix HL and the data matrix H̄L

with r = 400, 200 can be well incorporated into the DeePC

algorithm to exhibit similar and satisfactory tracking perfor-

mance. In comparison, DeePC with truncated Hankel matrix

(tr = 400, 200) fails to track the reference. These results reveal

that with an appropriate selection of r, the data matrix H̄L retains

the essential range space of the original Hankel matrix, ensuring

that DeePC performance is not compromised. At r = 150, as

indicated by the light orange line, DeePC fails to maintain

tracking accuracy, leading us to experimentally establish the

minimum dimension at r = 200. In addition, the computation

time of DeePC for different values of r is illustrated in Fig. 7,

showing a nearly linear trend concerning the size of r. For

real-time implementation, the computational time of DeePC

must be shorter than the communication interval between the

DeePC host PC and the low-level pneumatic control board.

In our experiment, the communication frequency is 8 Hz, and

we observe that a matrix size of 800 results in a computation

time just below 0.12 seconds per iteration. Thus, the maximum

column size is set as 800.
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TABLE I
AVERAGE EUCLIDEAN DISTANCE ERROR(MM) COMPARISON BETWEEN

DIFFERENT METHODS

Finally, the average Euclidean distance errors of different

approaches are calculated, and the results are summarized in

Table I. Both KMPC and DeePC achieve much better tracking

accuracy compared to the model-based control method. Differ-

ent from KMPC that involves the approximating the Koopman

operator, DeePC can conveniently obtain the non-parametric

model through direct data collection. In addition, Table I shows

that the SVD based method can effectively improve the compu-

tation efficiency of DeePC, while retaining satisfactory tracking

accuracy.

V. CONCLUSION

This letter introduced a DeePC approach for dynamic control

of planar soft robots. We first presented the system setup and then

formulated the DeePC approach for addressing the soft robot

control problem. Additionally, we incorporated a dimension

reduction scheme into the DeePC framework to achieve faster

computational times. The experimental study focused on dy-

namic tracking, where performance metrics were thoroughly an-

alyzed. Furthermore, we compared the DeePC approach with a

model-based approach and another data-driven control method.

The experimental study demonstrated the validity and effective-

ness of the DeePC approach for planar soft robots. Notably,

this experiment focuses solely on the planar robot. In our future

work, we plan to explore robots with more degrees of freedom

and present real-world application cases.
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