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Abstract—Soft robots offer a unique combination of flexibility,
adaptability, and safety, making them well-suited for a diverse
range of applications. However, the inherent complexity of soft
robots poses great challenges in their modeling and control. In this
letter, we present the mechanical design and data-driven control
of a pneumatic-driven soft planar robot. Specifically, we employ a
data-enabled predictive control (DeePC) strategy that directly uti-
lizes system input/output data to achieve safe and optimal control,
eliminating the need for tedious system identification or modeling.
In addition, a dimension reduction technique is introduced into
the DeePC framework, resulting in significantly enhanced com-
putational efficiency with minimal to no degradation in control
performance. Comparative experiments are conducted to validate
the efficacy of DeePC in the control of the fabricated soft robot.

Index Terms—Modeling, control, and learning for soft robots,
soft sensors and actuators, data-driven control, predictive control.

1. INTRODUCTION

OFT robots have gathered significant attention in recent
S years due to their appealing features such as flexibility,
adaptability, and versatility [1]. Such robots are fabricated using
soft materials like fabrics, elastic polymers, among others [1],
[2], while their actuation can be achieved through pneumatic, flu-
ids, cables, or magnetics [3]. Therefore, the inherent flexibility
and adaptability render them better candidates, as compared to
rigid robots, for operation in complex environments with human
interaction or fragile objects.

However, due to the intrinsic high complexity and nonlinearity
of soft robots, their modeling and control have presented signif-
icant challenges. Numerical approaches, such as finite element
analysis [4], are accurate but not suitable for real-time control
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due to complex coupled dynamics and high computational over-
head. Approximated models of soft robots, on the other hand, of-
ten rely on the piecewise constant curvature (PCC) assumption.
The PCC-based model [5] can streamline the system depiction
with manageable computational complexity. This model finds
extensive application in soft continuum robots, where its margin
of error remains acceptable under conditions of relatively small
payloads. Additionally, when the robot operates in a horizontal
plane, gravitational effects can be neglected. Under the constant
curvature assumption, both static and dynamic models can be
derived. The PCC technique is well-established in quasi-static
modeling and control [6]; however, it only considers kinematic
relationships, making it suitable for scenarios characterized by
slow dynamics or static environments. A dynamic model is
required for dynamic tasks and interactions with the environ-
ment. Dynamic modeling approaches for soft robots include aug-
mented rigid links [7] and Lagrangian approaches [8], with the
majority requiring extensive experiments for the identification
of model parameters. Nevertheless, it is empirically challenging
and time-/cost- intensive to identify the model parameters of soft
robots.

To address the complex nature of modeling and control of
highly nonlinear systems like soft robots, there is a growing
interest in data-driven control. Some researchers have focused
on reinforcement learning for continuum robot control [9].
Meanwhile, Koopman-based methods have also been investi-
gated [10], [11], which employs the Koopman operator to lift the
lower-dimensional nonlinear states to a high-dimensional lin-
ear space, yielding control-oriented linear models of nonlinear
systems. Compared to Koopman-based approaches that require
empirical selection of observable functions and full state infor-
mation, another emerging technique is data-enabled predictive
control (DeePC) [12] which only needs input and output data.
DeePC leverages the fundamental lemma [13] to describe system
trajectories in a non-parametric manner. DeePC has demon-
strated its efficacy in predicting system behavior without relying
on explicit system models, and it has been successfully applied
in domains such as power systems [14], quadcopters [15], and
vehicle platooning [16], [17]. However, despite its appealing
features, the application of DeePC to soft robots remains un-
explored. The ability to obtain a non-parametric representation
from data trajectories makes DeePC an ideal candidate for soft
robot systems with highly nonlinear and stochastic dynamics.

Therefore, the paper focuses on the application of the DeePC
approach to a soft robot. The main contributions are threefold.
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First, we present the synergistic design of a cost-effective soft
robot, and investigate the use of DeePC on this soft arm. While
working on the specific soft arm, the approach is general and can
be readily extended to other soft robots. Second, building upon
our recent theoretical advancements in dimension reduction
for DeePC [18], a singular value decomposition (SVD) based
scheme is introduced to improve the computation efficiency
when deploying DeePC on soft robots, which bridges the gap
from theory to application. Third, comprehensive experiments
are conducted to evaluate the performance of DeePC. The results
show that the DeePC approach achieves better control perfor-
mance compared to a model-based control scheme and another
data-driven control method, and the SVD based scheme can
significantly enhance the computation efficiency of DeePC with
no to little performance degradation, making it computationally
tractable and suitable for real-time control of soft robots.

The remainder of this paper is structured as follows. Section II
provides an overview of the hardware design of the planar soft
robot and pneumatic control board. Section III introduces the
control objective and the DeePC approach for dynamic control
of the soft robot. Section IV presents the experimental setup
and results. Finally, Section V draws conclusions based on the
findings.

II. HARDWARE DESIGN

This section introduces the hardware modules of the soft
robot, including the design and fabrication, along with an
overview of the components constituting the pneumatic control
board.

A. Planar Soft Robot Design and Fabrication

The design of the soft robot encompasses two planar bending
chambers, and each chamber consists of three core components:
a fabric sleeve, a pneumatic bladder, and two end caps. This
design strategy ensures that the soft robot is both low-cost and
easy to fabricate, utilizing off-the-shelf materials alongside 3D
printed parts. The fabric sleeve is crafted from two specific types
of fabrics: an anisotropic fabric (White Heavy Stretch High Elas-
ticity Knit Elastic Band, Cisone), which permits stretching in the
wale direction while restricting expansion in the course direc-
tion, and a strain-limiting fabric (1050 Denier Coated Ballistic
Nylon Fabric, Magna Fabrics), designed to prevent stretching in
all directions. The directions are indicated in Fig. 1(a).

During assembly, the anisotropic fabric is oriented to enable
stretching along its length. Both fabrics are centrally over-
laid and joined together using a straight stitch, employing a
polyester string (UV Resistant High Strength Polyester Thread
69 T70 Size 210D/3, Selric). The excess material from the
strain-limiting fabric is then folded over the edges and stitched
along the existing stitch line, repeating this process thrice for
added durability. This edge reinforcement is crucial to prevent
delamination under higher pressures. Two such fabric sleeves
are assembled in total.

Detailed illustrations of this fabrication process are depicted
in Fig. 1. Each sleeve houses a latex bladder inside. Subse-
quently, a customized collar, manufactured using a 3D printer
(Ender-3 Pro 3D Printer, Creality), connected to a pneumatic
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Fig. 1. Design of soft robot: (a) Exploded view of the components; (b) Robot
in unpressurized state; and (c) Bending movement of robot when pressurized.
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Fig. 2. Illustration of the pneumatic control board.

tube (4 mm OD x 2 mm ID, Uxcell) is inserted into both ends
of the bladder. These collars are enclosed within customized,
3D-printed end caps which are further secured with zip-ties to
guarantee stability during pressurization [19], [20]. To ensure a
more consistent bending motion, the sleeves are oriented such
that the anisotropic fabric faces outward from the center. The
completed assembly is shown in Fig. 1(b). When one chamber
is pressurized by compressed air, the chamber will bend due to
a strain difference caused by the anisotropic fabric stretching
while the strain-limiting fabric remains unchanged, leading to a
bending motion. The planar bending capability of the soft robot
is illustrated in Fig. 1(c).

B. Pneumatic Control Board

The soft robot used is pneumatically driven, requiring an air
source and an air control scheme. The air source is a portable
pressure tank with a regulator output. The pneumatic control is
referenced from the open soft robot toolkit [21], and the setup
of the pneumatic control board is shown in Fig. 2. The Arduino
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Fig. 3. (a) The three spaces of constant-curvature robots. (b) Configuration
space parameters of PCC representation for a single segment.

acts as the low-level microcontroller to control the fast-switching
solenoid valves (SMC VQ110U-5 M) through MOSFET drivers
powered by 24 V. The air supply is from an air compressor and
is directed to the manifold. Then, the electronic solenoid runs
at a high frequency and adjusts the amount of air by regulating
its duty cycle. The chamber pressure is measured by a pressure
sensor (Honeywell SSCDANNI100PGAAS) and fed back into
the Arduino. The pneumatic control board can act as the low-
level controller that receives pressure commands from the high-
level controller and generates the necessary output to actuate the
soft robot.

III. CONTROL OBJECTIVE AND DEEPC FORMULATION

In the following, we first state the control objectives for the
soft robot in Section III-A. Section III-B presents the DeePC
approach, illustrating its application to address the consid-
ered control problem. To enhance computational efficiency,
Section ITI-C further incorporates a dimension reduction tech-
nique into the DeePC framework.

A. Soft Robot Control Problem

The widely embraced modeling approach for soft robots is
based on the piecewise constant curvature (PCC) assumption.
In this approach, the robot’s configuration is considered as con-
sisting of a certain number of segments, each characterized by a
constant curvature. As illustrated in Fig. 3(a), the kinematics of
a soft robot can be decomposed into two mappings among three
spaces under the PCC assumption [6]. The first mapping is from
actuator space to configuration space and the second one is from
configuration space to task space. Specifically, actuator variables
are often characterized by robot-specific properties such as cable
length and air pressure. Configuration spaces consist of arc pa-
rameters that describe the configuration of the soft robot, which
determines the task space position by geometric relationship.
As shown in Fig. 3(b), the configuration space of a segment
can be described by parameters (6, (), where 6 is the bending
angle, and ¢ is the arc length. The task space is generally defined
with Cartesian coordinates, with the tip position of the segment
being denoted by (p,, p.). The relationship between (6, ¢) and

(pz, p~) can be described by p, = £ - 1_%5(0), D, =L %.

The homogeneous transformation matrix between the robot tip
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and the robot base can be written as follows [22]:
cos(f)  sin(h) élf%f(e)
H = |—sin(f) cos(9) E% . (1)
0 0 1

In the PCC approach, the kinematics of each segment can be
formulated by (1). By aggregating all segments, the kinematics
of the whole soft robot can be obtained. Subsequently, the
dynamic model can be further developed through various tech-
niques based on the kinematic relationship [8], [23]. However,
the PCC model exhibits certain inherent limitations or flaws. The
constant curvature assumption may not adapt well to real-world
robotic scenarios, considering factors such as gravity effects, tip
payload, or material characteristics. Additionally, imperfections
in the manufacturing process could also cause non-homogeneity,
making the accuracy of the constant curvature assumption suffer.
Therefore, in this paper, we aim to leverage recent advancements
in data-enabled predictive control (DeePC) [12] to achieve
optimal control of the soft robot without relying on an explicit
system model. Different from PCC approaches, DeePC directly
uses input/output measurements to learn the system behavior,
eliminating the need for the intricate transformation between the
configuration space and task space required by PCC approaches.

B. Data-Enabled Predictive Control

We now provide an overview of DeePC. For more details,
please refer to [12]. Through linearization around the operating
point, the dynamic model of the soft robot can be approximated
by the following discrete-time linear time-invariant (LTT) system
(we will handle the inherent nonlineariy in the sequel):

z(t+1) = Az(t) + Bu(t),
y(t) = Cx(t) + Du(t), )

where A € R™", B € R™™, C' € RP*™, D € RP*™ are sys-
tem matrices, and x(t) € R”, u(t) € R™, and y(t) € R? are,
respectively, the state, control input, and output at time ¢ € Z.
We purposefully abstract notation above to highlight the fact that
the problem statement can be applied to different soft robotic
systems with nonlinear dynamics whose linearization about the
operating point is a controllable and observable LTI system.
The DeePC algorithm utilizes pre-collected input/output data to
describe the system behavior based on Willems’s fundamental
lemma [13], and the following definition of persistent excitation
is needed.

Definition 1: Let L, T € Z and L <T'. The Hankel matrix
of depth L for the signal sequence wyo 1] := [w' (0),wT (1),

. wT(T = 1)]T is defined as
w(0)  w(1) w(T - L)
Moo= | 0 S R
WI—1) w(L) W(T—1)

(3)
The sequence w71 is said to be persistently exciting of order
L if Hp (wjo,r—17) has full row rank.
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The DeePC algorithm begins by collecting an input/output
data sequence of length 7" from the system:

Then, the Hankel matrices Hr, (u ufo p_qy) and Hp (y 0.7-1))
are given by

ul(0)  wi(1) T -1L)
Ho(up )| _ |ul(L—1) (L) u (T — 1)
He (Yo 1)) y'(0)  yi(1) y{(T - L)
y(L—1) yU(L) y (T - 1)
)

The Willems’ fundamental lemma aims to represent (2) via the
input/output data u([iO,T—l] and yﬁ),T&]'

Lemma 1 (Fundamental Lemma [13]): Consider a control—
lable LTI system (2) and assume that the input sequence u¢ f0,7—
is persistently exciting of order n + L. Then, any length i
sequence (w[o,7,—1], Y[o,z—1]) iS an input/output trajectory of (2)
if and only if we have

Ulo,L-1]
Ylo,L-1]

for some real vector g € R

Lemma 1 reveals that if the pre-collected input/output data
is sufficiently long and rich, then all valid length-L trajectories
of (2) can be generated via its corresponding Hankel matrices.
This lemma demonstrates a non-parametric representation of
system behavior, which is the key to formulate DeePC. We now
introduce the DeePC formulation. Let T},;, N € Z be the time
length of “past data” and “future data”, respectively, and Tini +
N = L. The Hankel matrices HL(u[O r-1)) and H (v Yio.r-1))
are divided into two parts:

(6)

_ ”HL(UFO, ;
HL(?/E%), 1])

(T—-L+1)

Yy

= ’HL(U([iO,T—l])’ Vi

= HL(yﬁ),Tfl]% @)

where U}, and Uy consist of the first Ti,; block rows (i.e., the
“past” data section) and the last IV block rows (i.e., the “future”
data section) of H, (U([io,:rq] ), respectively (similarly for Y}, and
Yr). Let iy = Ut T t—1] be the control input sequence within
a past time horizon of length Tjy;, and u = Ul i+ N-1] be the
control input sequence within a prediction horizon of length
N (similarly for yi, and y). At each time step ¢, the DeePC
employs Lemma 1 to predict future system behavior and solves
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the following constrained optimization problem:

min |y -y |3 + [Jul%
g,y
U, Uini
: Ut
subject to g = s uel,y e, ®)
p Yini
Ye Yy
-
where y, = [y] (), yT(t+1),...,yf(t + N — 1)} is a de-
sired trajectory, ), R are weighting matrices, H?Q =

(v — )" Q(y — yr), |ull% :=u" Ru, and U, Y represent the
input and output constraints.

Note that the formulation (8) can achieve satisfactory perfor-
mance if noise-free data is collected from the deterministic LTI
system (2). As discussed in [12], [24], in the presence of output
measurement noise or system nonlinearities, slack variables and
regularization design can be introduced to extend the DeePC
algorithm. Motivated by this, a slack variable, denoted as o,
is introduced to ensure the feasibility of the equality constraint,
and the regularized version of DeePC can be formulated as

. 2 2 2 2
iy = 9+l 2y oy 13+ 2
Up Uini 0
. Ut u
subject to g = + aweld,ye Y. 9)
Yp Yini Oy
Ye Yy 0

In (9), the slack variable o, is subjected to a weighted quadratic
norm penalty function. The weight coefficient A, > 0 can be
chosen sufficiently large to ensure that o,, 7 0 only when the
equality constraint is infeasible [12], [15]. Moreover, a quadratic
norm penalty is applied to g with a weight coefficient A, > 0.
Different choices of regularization for g can be incorporated
into the DeePC framework, each with unique characteristics. For
instance, the one-norm regularizer [12] can serve as a surrogate
for low-rank pre-processing, while the projection-based regular-
izer [25] is consistent without biasing the solution obtained for
perfect data. In this paper, quadratic regularization, i.e., A4 ||g|3,
is implemented as it leads to robust and optimal solutions with
regards to bounded disturbance on the input/output data [26],
and it renders the cost function quadratic. For a more detailed
discussion about regularizers in DeePC, interested readers can
refer to [27].

The formulation (9) is applicable to nonlinear and nondeter-
ministic soft robotic systems. The application of DeePC for the
softrobotis detailed in Algorithm 1. Initially, when the algorithm
starts, wip; and y;p; are empty. wiy; is then set as 0, while ;i is
filled with real-time position data. As the algorithm progresses,
when k > T, DeePC optimization begins. The optimal g is
solved based on the formulation in (9), and the iteration window
moves until the end.

C. Dimension Reduction for DeePC

Note that in Lemma 1, ensuring the persistent excitation of the
sequence uﬁ) 1] requires that column number of the Hankel
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Algorithm 1: DeePC Algorithm for Soft Robot.

1: Input: iteration number t.,q, pre-collected pressure
input “([10,T71] and soft robot position output yﬁ)’Tfl].

2:  Construct Hankel matrices Uy, Uy, Y}, Y.

3: Fort < Tjy, initialize ui,; with 0 and y;,; with
real-time position measurements.

4: while Ty <t < tepg do

5: Solve the optimization problem(9) for g and obtain
optimal pressure control v = Ugg.

6: Send the first step optimal pressure control u(1) to
low-level pneumatic controller.

7: Measure the soft robot position, and update u;,; and
Yini to the Ti,; most recent input/output
measurements.

8: Setttot+ 1.

9: end while

matrix H,, 4 L(u([jOAT—l]) to be no less than its row number. This
condition implies that the number of data points 7" must satisfy
T—(n+L)+1>m(n+L),ie.,T>(m+1)(n+L)—1.
Thus, the dimension of g in (9) is lower bounded as

T—L+1>mL+ (m+1)n. (10)

This inequality indicates that a large 7' results in a high dimen-
sion for the optimization variable g in (9). In practical scenarios,
it becomes necessary to collect a sufficiently extensive dataset
to satisfy 7' > (m + 1)(n + L) — 1. However, this choice often
leads to a very large value of 7', making the optimization problem
(9) large-scale and nontrivial to solve efficiently.

Considering the aforementioned issues, we leverage our re-
cently proposed singular value decomposition (SVD) based
approach [18] to reduce the dimension of optimization variables
in DeePC, thereby enhancing the computation efficiency. Note
that SVD techniques are widely used in system identification
methods but for different purposes. In system identification,
SVD is applied to identify an explicit parametric model, which
can then be incorporated into model-based control frameworks.
In contrast, our SVD-based approach focuses on extracting the
core features from the original Hankel matrix (i.e., the collected
data) to create a new data matrix with a reduced column dimen-
sion. This downsized data matrix is then introduced into DeePC,
leading to a substantial reduction in the dimension of optimiza-
tion variables without compromising control performance.

After collecting the input/output data sequences u‘[107T71],
yﬁ))Tfl] and constructing the Hankel matrices in (5), we apply

the SVD technique to compute a new data library. Specifically,
the SVD of the Hankel matrix (5) has the following form:

Ho(ud ¥ 0 T
[ L( ([10,T1])‘| _ {W1 W2} 1 [Vl Vg] .
,HL(y[O,Tfl]) ——— 0 22 —_——
w N vT
(11)

In(11), W € R&**% and V' € R%*% are orthogonal matrices,
where 1 = (m+p)L and go =T — L+ 1. ¥ € R1**% jg a
rectangular diagonal matrix with non-negative singular values
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on the diagonal. The singular values in ¥ are arranged in de-
scending order. Let ¥y € R™" (r < min{qi, g2}) contain the
top r non-zero singular values. Then, Y5, W1, W, Vi, and V5
are defined with appropriate dimensions. The new data matrix
H; € R1*7 is constructed via

Hp =HL Vi = W5, (12)
Given H,, the DeePC problem in (9) can be replaced by
min |y =y, |G + ullF + rylloy 13 + Agll713
Gu,y,0y
Uini 0
subjectto Hpg = “ + s uel,ye ). (13)
Yini Oy
Y 0

If 3, contains all non-zero singular values (i.e., r is equal to
the rank of the Hankel matrix (5)), then the new data matrix #,
has the same range space as the Hankel matrix (5). For systems
beyond deterministic LTI with noises, the Hankel matrix (5) is
typically full rank, and selecting  equal to the rank of the Hankel
matrix (5) is unnecessary. In such cases, r can be selected based
on the distribution of singular values. An appropriate selection
of r can be guided by identifying the turning point in the singular
value distribution, which indicates the transition from singular
vectors representing the principal patterns to those that are
insignificant [18]. If the turning point is not clear or applicable,
the minimum dimension can be determined experimentally by
gradually reducing the size of r until the control performance
becomes unsatisfactory.

In (9), the optimization variable g has adimensionof 7' — L +
1, whereas in (13), the dimension of the optimization variable g
has been reduced to 7. In practical applications, 7" needs to be
sufficiently large to ensure that the collected data is rich enough
for the non-parametric representation. The dimension reduction
scheme leads to a much condensed data matrix 7, which can
significantly improve the computation efficiency of DeePC.

IV. EXPERIMENTS

In this section, the experimental study evaluating the perfor-
mance of DeePC on the soft robot system is presented. A video
demonstration of the experimental test for DeePC is available at
https://youtu.be/yTN6vKkndDg.

A. Setup and Data Collection

The experimental setup is shown in Fig. 4. Specifically, the
soft robot hangs upside down within the workspace of the Qual-
isys motion capture system. The Qualisys motion capture system
consists of eight cameras, which can provide accurate positions
of the soft robot. The position information is transmitted from
the Qualysis server to the DeePC host PC through an Ethernet in-
terface. The DeePC algorithm, implemented in Matlab, operates
in real-time on the host PC, and the optimal pressure command
is sent to a lower-level controller via the publisher-subscriber
communication protocol of the robotic operating system. The
low-level pneumatic control board employs a PID controller
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Fig. 5. The tracking results comparison between DeePC, KMPC, and the
model-based control method.

to achieve the desired pressure by regulating the duty cycle of
the fast-switching values. The air from the portable tank passes
through the control board and finally enters the soft robot. For
this experiment, only one chamber of the soft robot is actuated.

In order to construct the non-parametric representation of
the soft robot, input/output data, i.e., ud and yd, needs to be
collected. For the considered soft robot, the control input ud
is defined as the pressure in the air chamber, and the output
y9 is defined as the robot’s coordinates (ps, p-) in task space.
During data collection, random and open-loop step inputs are
commanded to the low-level pressure controller. The soft robot
is then actuated, and the corresponding coordinates are continu-
ously recorded. Subsequently, the collected data set is organized
into the Hankel matrix shown in (5). If the collected input/output
data is sufficiently rich, then the constructed Hankel matrix can
be used to achieve accurate predictions of system behavior,
thereby mitigating biased results in DeePC. To evaluate the
performance of the controller, sinusoidal trajectory tracking
is performed, where the reference is given in both Z and X

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 9, SEPTEMBER 2024

directions. The reference trajectories for the Z and X directions
are shown as follows:

{Zref = 25sin(0.027t) + 280,
Xref - f(Zref)-

Since the soft robot is an underactuated system, its movements
along the Z and X directions are coupled, preventing the in-
dependent selection of Z.r and Xier. In (14), the interpolation
function f is introduced to approximate the coupling dynamics
between the Z and X directions, ensuring that the reference
trajectories are feasible for the soft robot. We use pre-collected
system output trajectories and MATLAB function interpl to
determine the interpolation function f. Then, for a given Z.,
Xer can be computed with f(Zr).

(14)

B. Benchmark Approaches

In this section, we present two benchmark approaches for
comparison with our method.

The first one is a model-based control approach that relies
on the PCC assumption. After obtaining the kinematic rela-
tionship between 6 and the end-effector position from (1), the
dynamic equation of the soft manipulator can be derived using
the Euler-Lagrange formula [8], [23]. After the derivation of the
Lagrangian formulation, the equation of motion can be put into
the following form:

M(q)i+V(q,q) + D(q)q+ G(q) + Kq = A(q)T.

The definitions of the parameters in (15) can be found in [7],
[23]. Experimental data is recorded, and then system identi-
fication is performed to estimate best model parameters [7],
[28]. A model-based control with feedback linearization is
used for this application, and the control law is designed as
follows:

s)

T =M(q) (qd + ka(da — 4) + kp(aa — q)

+k; /(qd —q) dt) + h. (16)
The term h is the sum of all the nonlinear terms from the
Lagrange formulation, the details of the rest of the term can
be found in [29].

The second benchmark approach is data-driven and relies
on the Koopman operator. This approach builds a linear model
using the Koopman operator, which is subsequently integrated
into the MPC framework. Extended dynamic mode decompo-
sition is exploited to approximate the Koopman operator and
thereby determining a linear model in a lifted state space that
approximates the nonlinear system. For more details on this
approach, please refer to Algorithms 1 and 3 in [30]. In the
following, we refer to this approach as KMPC. The prediction
horizon for KMPC is selected to be the same as the value of
N =45 in DeePC.

C. Proposed Approach: DeePC

The DeePC algorithm is implemented on our test setup. The
task space limits for the end effector of the soft robot are
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Fig. 6.

p. € [240,330] mm and p, € [140,270] mm. The constraint
for control input is u € [0,90] PSI. The parameters for DeePC
formulation in (9) and the dimension-reduced DeePC in (13)
are chosen to be the same: T;,; = 30, N =45, Q = 0.1 - I54o,
R=1x107°%, Ag = 300, A, = 1000. We summarize our gen-
eral approach for parameter selection. For a detailed tuning
procedure and analysis, please refer to [15]. The parameters N
and T;y; directly affect the Hankel matrix size and thus influence
computational time. Therefore, they are selected with a balance
in mind between speed and performance. The matrices ) and
R, representing state cost and control cost respectively, can be
chosen similarly to how they are in the LQR/MPC controllers.
The parameter A,,, which weights the softened initial condition
constraint, should be selected as large as possible without caus-
ing numerical issues. A, introduces robustness to the system
in the presence of noisy data. If A, is too small, it can impact
the tracking performance, due to prediction errors introduced
by the system’s nonlinearity. Conversely, if A, is too large, it
increases robustness but also introduces conservativeness, which
can degrade performance [26].

The tracking performance of DeePC, KMPC, and the model-
based control method is illustrated in Fig. 5. The DeePC method
consistently maintains commendable tracking performance. Ad-
ditionally, the optimal pressure input commands exhibit smooth
transitions, effectively reducing jittering behaviors in the pneu-
matic soft robot. The KMPC also tracks the trajectory relatively
well, but its control input fluctuates more than DeePC, caus-
ing vibrations in the system output. The model-based control
method shows more tracking errors and oscillations, as the
derived model (15) cannot fully capture the actual system dy-
namics.

To demonstrate the effectiveness of the SVD based dimension
reduction method introduced in Section III-C, we run the DeePC
algorithm with three different data matrices: the full-size Hankel
matrix (5) (denoted by H 1), its direct truncation matrix Hp, [1.¢r)
(i.e., the first ¢r columns of Hj are extracted to construct the
truncation matrix), and the new data matrix 7 constructed

The tracking results for full-size DeePC, truncated DeePC, and dimension-reduced DeePC.

DeePC Size r vs Computational Time (s)
0.12 T T T T T

200 300 400 500 600 700 800
Size r

Fig. 7.
time.

DeePC size r presents a nearly linear relationship with computational

with the SVD based method. The truncation matrix Hp, (1.4, is
evaluated at tr = 400, 200, and the data matrix Hy, is evaluated
at r = 400, 200, 150. The results, shown in Fig. 6, indicate
that the full-size Hankel matrix 7{;, and the data matrix 7,
with r = 400,200 can be well incorporated into the DeePC
algorithm to exhibit similar and satisfactory tracking perfor-
mance. In comparison, DeePC with truncated Hankel matrix
(tr = 400, 200) fails to track the reference. These results reveal
that with an appropriate selection of r, the data matrix # y, retains
the essential range space of the original Hankel matrix, ensuring
that DeePC performance is not compromised. At r» = 150, as
indicated by the light orange line, DeePC fails to maintain
tracking accuracy, leading us to experimentally establish the
minimum dimension at » = 200. In addition, the computation
time of DeePC for different values of 7 is illustrated in Fig. 7,
showing a nearly linear trend concerning the size of r. For
real-time implementation, the computational time of DeePC
must be shorter than the communication interval between the
DeePC host PC and the low-level pneumatic control board.
In our experiment, the communication frequency is 8 Hz, and
we observe that a matrix size of 800 results in a computation
time just below 0.12 seconds per iteration. Thus, the maximum
column size is set as 800.
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TABLE I
AVERAGE EUCLIDEAN DISTANCE ERROR(MM) COMPARISON BETWEEN
DIFFERENT METHODS
Euclidean Distance
Dimension of Hr/Hr, Error (mm)

Model-Based Control (16) / 10.75
KMPC / 4.77
Full-Size DeePC 225x800 4.29
225x600 4.49
. . 225x400 4.38
Dimension-Reduced DeePC 225300 447
225%200 4.20

Finally, the average Euclidean distance errors of different
approaches are calculated, and the results are summarized in
Table I. Both KMPC and DeePC achieve much better tracking
accuracy compared to the model-based control method. Differ-
ent from KMPC that involves the approximating the Koopman
operator, DeePC can conveniently obtain the non-parametric
model through direct data collection. In addition, Table I shows
that the SVD based method can effectively improve the compu-
tation efficiency of DeePC, while retaining satisfactory tracking
accuracy.

V. CONCLUSION

This letter introduced a DeePC approach for dynamic control
of planar soft robots. We first presented the system setup and then
formulated the DeePC approach for addressing the soft robot
control problem. Additionally, we incorporated a dimension
reduction scheme into the DeePC framework to achieve faster
computational times. The experimental study focused on dy-
namic tracking, where performance metrics were thoroughly an-
alyzed. Furthermore, we compared the DeePC approach with a
model-based approach and another data-driven control method.
The experimental study demonstrated the validity and effective-
ness of the DeePC approach for planar soft robots. Notably,
this experiment focuses solely on the planar robot. In our future
work, we plan to explore robots with more degrees of freedom
and present real-world application cases.
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