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Biomimetic learning of hand
gestures in a humanoid robot
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Hand gestures are a natural and intuitive form of communication, and integrating
this communication method into robotic systems presents significant potential
to improve human-robot collaboration. Recent advances in motor neuroscience
have focused on replicating human hand movements from synergies also
known as movement primitives. Synergies, fundamental building blocks of
movement, serve as a potential strategy adapted by the central nervous system
to generate and control movements. Identifying how synergies contribute to
movement can help in dexterous control of robotics, exoskeletons, prosthetics
and extend its applications to rehabilitation. In this paper, 33 static hand gestures
were recorded through a single RGB camera and identified in real-time through
the MediaPipe framework as participants made various postures with their
dominant hand. Assuming an open palm as initial posture, uniform joint angular
velocities were obtained from all these gestures. By applying a dimensionality
reduction method, kinematic synergies were obtained from these joint angular
velocities. Kinematic synergies that explain 98% of variance of movements
were utilized to reconstruct new hand gestures using convex optimization.
Reconstructed hand gestures and selected kinematic synergies were translated
onto a humanoid robot, Mitra, in real-time, as the participants demonstrated
various hand gestures. The results showed that by using only few kinematic
synergies it is possible to generate various hand gestures, with 95.7% accuracy.
Furthermore, utilizing low-dimensional synergies in control of high dimensional
end effectors holds promise to enable near-natural human-robot collaboration.

KEYWORDS

MediaPipe, hand kinematics, kinematic synergies, biomimetic robots, human robot
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1 Introduction

The marvel of evolution is evident in the versatility of human hands. Years of bipedal life
and opposable thumb have promoted the extensive usage of hands for grasping, reaching and
dexterous manipulation. These appendages can delicately cradle a butterfly, skillfully handle
the brush for creating a masterpiece and firmly grip a hammer. Within the human hand lies a
complex arrangement of joints, tendons, muscles, all connected meticulously by the nerves.
The coordination of these elements allows for dexterity and precision enabling us to express a
wide spectrum of gestures and manipulate objects with complex surface. A simple kinematic
model of the human hand has more than 20 degrees of freedom (DoF) making it an extremely
difficult problem to be replicated in robots. Despite its simplicity, the study of human hand
movements has been a significant area of research for more than three decades and both
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researchers and roboticist have been actively trying to address the
challenge of replicating the prowess of human hand dexterity in
arobot.

With the advancement of technology, traditional devices for
interaction with computers are replaced with more natural
communication approaches such as oral communication and body
language. Among these two methods, the functional means of natural
communication is body language interaction, with hands being the
most effective non-verbal means of communication. During
interpersonal communication, the impact of our messages is often
enhanced by following hand gestures. For instance, certain gesture
requires the synchronous movement of all four fingers and thumb
whereas others require individual finger movements. Consequently,
the range of hand gestures for communication extends from simple to
complex hand movements. By integrating hand gestures as an
interactive tool and the ability to classify them into meaningful
symbols or values, there is a potential to develop more intuitive
human-robot interaction (HRI) and human-computer interaction
(HCI) interfaces that can potentially assist individuals with motor
impairments. Hand gesture-based interaction systems have thus
become a magnetic area of research since its introduction in 1970s. A
diverse array of human computer interactive systems have been
developed using hand gesture control such as sign language
recognition (Rastgoo et al., 2020), improving motor skills (Cai et al.,
2018) and user guide interactive applications (Indriani Harris and
Agoes, 2021).

The human hand, with its 27 bones, 29 muscles and over 20 DoFs,
is a marvel of engineering. Because of this intricate anatomy, there is
a huge possibility to execute one movement such as picking up a bottle
of water, through various coordinated combinations of muscles and
joints. Moreover, there are multiple ways to accomplish the same
movement, underscoring the remarkable flexibility and adaptability
of the hand’s complex structure. But how does the human brain
navigate through the vast possibilities of movement to control the
human hand? Modularity hypothesis introduced by Bernstein (1967)
was able to address most of the challenges of the large DoFs and
thereby the large number of redundant choices for performing a
simple task. The neuroscientific reasoning for this strategy is the
finding that, despite the complexity of the human hand, fewer
variables can adequately account for most of the variation in patterns
of human hand configurations and movements. For instance, consider
the act of picking up a bottle of water. While there are countless
combinations of muscle contractions and joint rotations that could
accomplish this task, the central nervous system (CNS) does not
default to a brute force strategy. Instead, it chooses an approach that
activates specific groups of muscles and joints in a coordinated
pattern. Bernstein in his modularity hypothesis called these variables
as synergies. Synergies, thus, act as building blocks, simplifying the
control of the vast DoFs of the human hand. Understanding these
synergies can provide insights to decoding brain-hand
communication, understanding motor disorders, and potentially
incorporating them into robotic control algorithms. Inspired from
modularity hypothesis, several researchers have investigated synergies
obtained from different parts of the body such as kinematic synergies
(Grinyagin et al., 2005; Freitas et al., 2006), muscle synergies (Weiss
and Flanders, 2004; Muceli et al., 2010; Santello et al., 2013; Tagliabue
et al., 2015), force synergies (Santello and Soechting, 2000), and
dynamical synergies (Pei et al., 2022). Kinematic synergies obtained
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from finger joint kinematics and muscle synergies extracted from
muscle movements have gained much popularity among the others.
Here, in this study, we would be focusing on kinematic synergies
obtained from joint kinematics while executing hand movements.

How are synergies established in humans, and can we apply these
synergy learning techniques to robot to mimic human learning? To
explore such questions, in this study, we employed American Sign
Language (ASL) as a common ground to bridge the gap between
human and robot learning. ASLs complex hand movements require
motor planning and synergy formation. This approach allows us to
investigate the neural mechanisms during the formation of new hand
gestures. In the process of learning a new motor activity, there are two
distinct stages — (a) the identification and reinforcement of motor
synergies necessary for performing the new task, and (b) weakening
of synergies, as explained in Latash (2010). By utilizing ASL as a test
bed, attempts to execute complex hand gestures can potentially reveal
identifiable motor synergies. Our goal is to replicate this motor
learning in a robot, providing insights into the neural mechanisms of
motor planning and execution along with their limitations. Building
on the evidence from previous studies (Vinjamuri et al., 2010; Patel
et al,, 2018; Pei et al., 2019; Olikkal et al., 2022a), which leverage
electroencephalography (EEG), electromyography (EMG), and hand
joint kinematics to identify neural mechanisms of motor planning and
motor execution, we aim to understand and replicate these synergies
in a robotic system. Burns et al. (2017) contributed to this
understanding by developing a soft hand exoskeleton - a form of
human-machine teaming - embedding motor synergies for assisting
or rehabilitating individuals with hand disabilities.

Research study by Jarque-Bou et al. (2019b) adopted a phase-
based approach, decomposing the movement profile into distinct
stages: reaching, grasping/manipulation and release (Figure 1) in an
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FIGURE 1
Movement decomposition phases of reaching, grasping and release
is illustrated. The angular joint profile and angular velocity profiles of
one joint at different phases can be observed here.
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attempt to understand how the CNS controls and coordinates the
hand when aiming to execute a targeted movement. The joint angular
velocity profiles of these three phases collected from joint recording
devices such as CyberGlove are well represented and investigated in
Vinjamuri et al. (2010), Jarque-Bou et al. (2019a,b), and Olikkal et al.
(2022a,b). These studies reinforce that when a subject attempts to
reach a target from initial reference position, a progressive increase in
angular velocity profile can be observed in the reaching phase. This
reflects the rapid movement of the hand towards the target. During
the grasping phase the velocity transitions to a steady state highlighting
the smooth and controlled adjustment of finger position to securely
grasp the object. Finally, the release phase exhibits a gradual decline
in velocity, reaching back to the initial reference state as elaborated in
Jarque-Bou et al. (2019b). Upon close observation, as indicated in
Jarque-Bou et al. (2019b), joint angular velocity profile was collected
that
interphalangeal and proximal interphalangeal joints of each finger

from sensors corresponds to metacarpophalangeal,
from the CyberGlove.

Focusing on a single joint, it becomes evident that the angular
velocity profile for any movement can be effectively split similarly into
a start, target and return phases where the target phase represents the
flexion or extension of the joint to achieve a desired state along its DoF
and the start and return phases represents the initial state of that joint
(shown in Figure 1). During the execution of hand gestures, the joint
angular velocity profiles for these joints consistently exhibits a
Gaussian curve as the target state is reached. Therefore, we draw
inspiration from the above studies that incorporate this observation
of a Gaussian curve made by each joint during any sort of
hand movements.

Breakthrough in technology have encouraged the development of
numerous robotic devices aiming to mimic human arm and finger
movements by observing the kinematic patterns. These coordinated
kinematic patterns are usually extracted and embedded into these
devices to aid in performing activities of daily living. Several promising
rehabilitative exoskeletons using kinematic synergies are detailed in
Jarrassé et al. (2014). However, there have been a limited exploration
to understand the efficiency of kinematic synergies in humanoids.
Hauser et al., in their study (Hauser et al., 2011) was able to use few
non-linear kinematic synergies from lower body to transform the
balance control challenge into a linear problem for a humanoid robot
during slow movements. Alexandrov et al. (2017) validates the human
inspired kinematic synergy as a potential candidate for balance control
among the group of control concepts. To the best of our knowledge,
apart from our previous study (Olikkal et al., 2023), there has been a
notable absence of exploration into humanoid robots performing
upper limb movements using kinematic synergies. Unlike the
humanoid, Pepper (Pandey and Gelin, 2018), through this study
we attempt to provide an analysis of using biologically inspired human
kinematic synergies on a humanoid robot for dexterity.

The field of hand gesture recognition has undergone significant
development. Hand gesture recognition based on the extracted feature
and different recognition approaches are described in Indriani Harris
and Agoes (2021). Traditional motion capturing sensors and devices
are now replaced with more intuitive frameworks that simplify gesture
recognition applications. An example of this shift is seen in Google’s
open-source framework, MediaPipe, which offers multiple machine-
learning solutions, replacing conventional methods. Among the
several solutions provided by MediaPipe for vision tasks such as object
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detection, face detection and gesture recognition, we opted for hand
landmark detector in this paper. MediaPipe hand landmark detector
enables to identify the hand landmarks in an image. This model thus
allows one to apply graphic effects over the hand image and localize
key hand regions. Employing such a framework for gesture recognition
not only helps identify hand landmarks in challenging environments
and backgrounds, but also enables adequate focus and attention in
deriving joint movement kinematics and postures.
The following is a synopsis of this paper’s key contributions.

1 Compared to the research study that uses RGB and depth
camera for capturing hand grasps (Ficuciello et al., 2013;
Devineau et al., 2018), our research advances the existing
pipeline (Olikkal et al., 2023) by applying the proposed
framework to specifically recognize 33 hand gestures in
American Sign Language. Not only does this study increases
the complexity of our preliminary hand gesture database but
also highlights the practical applicability and robustness of the
framework in real-world scenarios.

2 Utilizing a limited number of synergies, our pipeline
successfully reconstructs all 33 hand gestures in the dataset.
This work extends our preliminary results (Olikkal et al., 2023),
by exploring the role of kinematic synergies in reconstructing
hand gestures on a humanoid robot on a broader hand gesture
database, thus demonstrating the versatility and efficiency of
our approach.

3 Furthermore, we propose an online model that demonstrates
real-time translation of identified hand gestures to a humanoid
robot, enabled by kinematic synergies. This contribution serves
as a foundational step towards achieving seamless interaction
between humans and robots through gesture-based

communication, highlighting the potential for more intuitive

and natural HRI.

2 Methods and analysis
2.1 MediaPipe Framework

As outlined by Zhang et al. (2020), a real-time hand gesture
recognition system has been developed using a single RGB camera
which can predict the skeleton of a human hand. MediaPipe hand
landmark detector leverages two modes - a palm detector model and
a hand landmark model. The palm detector model focuses on
identifying the palm by analyzing the entire image and produces an
image with an oriented binding frame of the hand. The hand landmark
model takes in the cropped binding box image as input and through
regression returns 3D hand key points on the image. The model
outputs 21 key points on the 3D hand-knuckle skeletal image on the
hand. Each of the identified landmark is composed of distinct relative
X, ; and z coordinates where x and y are normalized by image width
and height whereas z represents the depth of the landmark. In
Figure 2, these points are illustrated with dots representing joint and
lines indicating Euclidean distances between them. The Euclidean
distance measure is calculated between each landmark, serving as a
condition for identifying various hand gestures based on the
arrangement of these points.
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FIGURE 2

Twenty-one hand-knuckle landmarks obtained from MediaPipe, and
their corresponding anatomical areas are illustrated here. Each dot
represents the joints and line represents the Euclidean distance from
each joint. Corresponding labels in the illustration are 0. Wrist, 1.
CMC-Thumb, 2. MCP-Thumb, 3. IP-Thumb, 4. TIP-Thumb, 5. MCP-
Index Finger, 6. PIP-Index Finger, 7. DIP-Index Finger, 8. TIP-Index
Finger, 9. MCP-Middle Finger, 10. PIP-Middle Finger, 11. DIP-Middle
Finger, 12. TIP-Middle Finger, 13. MCP-Ring Finger, 14. PIP-Ring
Finger, 15. DIP-Ring Finger, 16. TIP-Ring Finger, 17. MCP-Pinky, 18.
PIP-Pinky, 19. DIP-Pinky, 20. TIP-Pinky.

2.2 The humanoid robot — Mitra

This study incorporated a humanoid robot, Mitra (Invento
Research Inc., Plano TX). Mitra is a custom-built robot equipped with
21 DoFs, distributed among its various components. The configuration
includes 5 DoFs for each finger, 1 DoF for the wrist, 1 DoF for the
elbow, 2 DoFs for each shoulder, along with 1 DoF for the head and 2
DoFs for the base. Mounted on the top of the head is an RGB camera
with a resolution of 1,280 x 720 pixels, enabling real-time image and
video capture. To facilitate the grasping of heavy objects, additional
support is provided for the digits on the right hand. Mitra is also
equipped with a LiDAR system for mapping its surroundings. The
robot offers multiple connectivity options, including voice commands,
web interfaces, touch screen, joysticks, and scripts. In this study, a
scripting method was adopted for hand gesture modeling and
communication with Mitra.

2.2.1 Hardware architecture of Mitra hands

Mitra employs three distinct types of motors, each providing
varying degrees of torque, strategically placed at different joints to
facilitate movement. The primary motor, which generates the
maximum torque, is located at the shoulder joint, responsible for
shoulder flexion and extension. A second motor with moderate torque
is positioned at the elbow joint, facilitating elbow flexion and
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extension. The third type comprises servo motors, which are dedicated
to controlling finger movements.

For precise control of the hand digits, each hand is equipped with
five servo motors, corresponding to the five digits of each hand. Each
servo motor operates through three lines: a ground, power, and
control. These motors are governed by hierarchical network of
microcontrollers. The control line, influenced by the voltage supplied
from the parent microcontroller, dictates the degree of rotation of the
servo motor. This rotation mechanism retracts a cable that loops
through digit of Mitra, thereby controlling the flexion and extension.
A higher voltage from the microcontroller results in a greater rotation
of the servo motor, causing significant retraction of the cable and
consequently, more pronounced digit flexion. Conversely, a lower
voltage results in lesser rotation and causes minimal digit movement,
either in terms of flexion or extension from a flexed position.

2.2.2 Software architecture of Mitra hands

The software component of Mitra’s control system is based on an
asynchronous socket communication between Mitra and a commanding
system. This setup allows the commanding system to act as a controller
transmitter and Mitra as a receiver. Commands specifying the required
joint movements are transmitted from the transmitter system to Mitra.

An internal processor within Mitra is responsible for interpreting
these commands. This internal system parses the incoming messages
and dispatches the appropriate instructions to various microcontrollers
that control the different motors in Mitra. Each microcontroller, upon
receiving its command, adjusts the voltage supplied to its associated
motor to achieve the desired degree of flexion or extension.

2.3 Experiment

For this study, two models were developed - an offline model and
online model. The offline model involves the creation of a database
containing ASL hand gestures using MediaPipe. The online model
involves subjects posing ASL hand gestures to Mitra and Mitra
mimicking the same gestures in real-time using kinematic synergies.
The development of the offline model utilized MATLAB and Python,
while the online model was exclusively created using Python.

2.3.1 Offline model

A database of ASL hand gestures was created which included 24
static alphabets and 9 static numbers as shown in Figure 3. The hand
gestures were detected using the MediaPipe hand landmark detection
model from an RGB camera mounted on Mitra when gestures were
presented. After identifying the landmarks, based on the Euclidean
distance of the x and y coordinates from the wrist, the open and closed
state of the thumb and the open, half-open, and closed state of the
index, middle, ring and pinky fingers were determined. Based on the
open, half-open and closed state of the digits, different hand gestures
were identified. Alphabet “J” and “Z” were not included in this study
because of their dynamic nature. All 33 static ASL hand gestures were
shown to Mitra from an initial reference posture of a relaxed idle open
palm hand posture.

2.3.2 Online model

In this model, five subjects (4 male and 1 female) with mean age
of 27 + 4.4years and no prior upper limb movement disorders, were
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FIGURE 3

The dataset consists of 9 static ASL number gestures and 24 static ASL alphabet gesture recognized through MediaPipe is shown here.

recruited to perform hand gestures. The experiment, along with the
data collection, conformed to an approved protocol by the Institutional
Review Board (IRB) at the University of Maryland Baltimore County.
Written informed consent to participate in this study was provided by
the subjects following university guidelines.

The experimental setup involved subjects sitting comfortably in
front of a screen displaying various ASL hand gestures. Each subject
was instructed to choose any ten hand gestures from the screen and
show the gestures using their dominant hand in front of the RGB
camera mounted on Mitra. During the experiment, the MediaPipe
hand landmark model was employed to detect and annotate the hand
gestures posed by the subjects, with the results of the recognized
gesture displayed on a separate screen. Once all ten selected hand
gestures were demonstrated, Mitra autonomously selected the

Frontiers in Human Neuroscience

appropriate hand gesture from a pool of kinematic synergies
developed in the offline model and mimicked the hand gestures posed
by the subjects.

3 Derivation of synergies in the offline
model
3.1 Synthetic joint angular velocities

From the hand gestures presented to Mitra, the end postures of
each gesture were transformed into joint angular velocities using a

Gaussian function, as expressed in the Eq. (1) with respect to the
initial reference posture:
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p=—F——=e 2 (1)

Here, ¢ is the generated Gaussian curve, o is the standard
deviation and g is the mean of x formed from a sample of 100,000
randomly generated data points. A total of 11 such velocity profiles
were created corresponding to ten joints of the hand and one joint
of the wrist - metacarpophalangeal (MCP) and interphalangeal (IP)
joints of the thumb and MCP and proximal interphalangeal (PIP)
joints of the other four digits. An additional carpometacarpal
(CMC) joint of the wrist was included to indicate those movements
which included wrist. Thus, for each ASL static hand gestures
considered, the corresponding joint angular velocities for the 11
joints were computed. This process involved transforming the
observed hand gestures into sets of angular velocities of the
specified joints. For each joint that was involved in forming the end
posture of the hand gesture, its corresponding joint was represented
with the Gaussian function expressed in Eq. (1). Joints that made
partial contributions towards the end postures were represented
with lower amplitude of the Gaussian function (e.g., hand gesture
X in Figures 3, 4).

In the context of ASL alphabet and numbers, gestures with similar
representation were excluded from the ASL number gestures.
Specifically, the removal included gestures for two, four, six, and nine,
as their corresponding representation in ASL alphabet gestures are V,
B, W and F, respectively. Given that only the x and y coordinates of the
hand landmark were considered in this study, gestures with similar
representations but differing in z-axis orientation were adjusted by
modifying the velocity profile of CMC. This adjustment pertained to
gestures such as U and H, G and Q, K and P. Two exceptions were
made - for gesture 4, instead of thumb flexion, pinkie was flexed, and
H gesture was represented as V with CMC profile. Analysis of Figure 4
reveals that certain representation of the hand vector appear similar,
specifically in the cases of C and O, as well as D and One gestures.
However, a closer examination of the joint angular velocity profiles
indicate variations in amplitude, distinguishing these gestures from
each other. Despite the visual similarities in the hand vector
representations, the unique patterns in the joint angular velocities
provide a more detailed and distinctive characterization of
each gesture.

3.2 Synthetic kinematic synergies

Joint angular velocities corresponding to the end postures of 10
hand gestures were synthetically generated using the Gaussian
function. For gestures involving specific joint flexion, the relevant
joint out of 11 were represented with Gaussian function. Once the
joint angular velocities were generated for the selected 28 hand
gestures, the dataset was split into training set consisting of 20 gesture
tasks and testing set with 8 gesture tasks. Following the methodology
in Vinjamuri et al. (2010), an angular velocity matrix was constructed
using the gestures in the training set such that each of the 11 joints
were cascaded one after the other. Thus, each row of the angular
velocity matrix represents one gesture.

Leveraging the insights from our previous works (Olikkal et al.,
2022a,b) it was observed that time-variant synergy models yielded
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best results, hence for this study, we opted for the time-variant synergy
model. In case of time-variant models, a time-varying pattern is
produced by combining synergies with time-varying scaling
coefficients. A time-varying synergy signifies the synchronized
activation of a group of joints at a particular time for each joint.
Diverse patterns can be generated by adjusting the coeflicients and
temporally shifting different synergies. Mathematically, this can
be expressed as shown in Eq. (2)

N
M(I)ZZAi.Si(l—fi) 2)
i=1

Here, M (t) represents the generated time-varying pattern, N is
the total number of synergies, 4; is the scaling coeflicient for the ith
synergy, Sj (1 —t;) denotes the ith synergy shifted in time by #;.

Principal component analysis (PCA) was applied on the cascaded
velocity matrix to derive PCs that capture the maximum variance.
Following our prior works (Olikkal et al., 2022a,b), to identify the
optimal number of PCs, we selected those PCs the accounted for 0.98
(98%) of total variance using the Eq. (3) expressed as

M+ +..+ A

>0.98 3)
M+ +...+ A,

Where A represents the magnitude of the corresponding PCs and
m represents the optimal number of synergies out of n available
synergies. When this fraction reaches to 0.98 the corresponding m
identifies as the optimal number to be chosen. These chosen m PCs
were termed as synthetic kinematic synergies. It was observed that
combining six synthetic kinematic synergies contributed to around
98% of the total variance.

3.3 Reconstruction of hand gestures using,
l,-minimization

The joint angular velocities of the 8 gesture tasks grouped under
the testing set were reconstructed using the derived synthetic
kinematic synergies. These synergies obtained can serve as
templates for decomposing hand movements. Investigations from
Vinjamuri et al. (2010) implies that the CNS strategically utilizes a
small number of synergies to generate movement. Following the
methodology in Vinjamuri et al. (2010), a matrix was formed,
termed as bank, which contains the row vectors of the synthetic
kinematic synergies and their five possible shifts. Consequently, for
any given hand gesture and an existing bank of template synergies,
multiple coefficients can be found to represent the gesture. Given
that the CNS utilizes only a limited set of kinematic synergies and
a small number of coefficients for executing hand gestures, this
current problem of identifying limited coefficients can
be conceptualized as an /,-minimization problem as described in
Vinjamuri et al. (2010). It can be formulated as an optimization
problem aimed at identifying the sparsest coefficients for hand

movement generation expressed in Eq. (4) as
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FIGURE 4
Conversion of 28 hand gestures to joint velocities are illustrated here. Each pie represents one hand gesture with 11 joints and each sector represent
one sensor. Those joints that are activated are shaded in blue and their corresponding finger representation is shown in the top right posture.

o 1 ) with the kinematic synergies from the bank. Figure 5 illustrates three
Minimize || ¢ ”1 +7 ll¢B — gesture |y 4) different randomly selected hand gestures - E, X, and three.
Upon identification of the coefficients, gestures grouped under the
testing sets were reconstructed. Reconstruction error between the
Here, ll¢ll; represents the /j norm, B is the synthetic kinematic ~ synthetic angular velocities (M;) and the reconstructed patterns (X)
synergy bank and / is the regularization parameter. Solving this  using time-variant synergies were determined as followed in Eq. (5).

optimization problem results in a set of coefficients that efficiently

reconstruct the hand gesture using the provided template kinematic Z (M; - X)z
synergies. Hand gestures grouped under the testing data can thus err = ’—2 (5)
be reconstructed by combining the coefficients found through Eq. (4) ZzMi

Frontiers in Human Neuroscience 07 frontiersin.org



Olikkal et al.

10.3389/fnhum.2024.1391531

Gesture E Gesture X Gesture Three
obt Jo3k Jo3E ] 7-mcp
moéF JoiE Jo3E 1 1-mee
Boif o3k o Jo}E 1 m-mcp
=
Eoélﬁ Jo3E Jo3E 1 r-mcp
Qo}f oL Jo}E 1 p-mcp
:‘E‘oHLF Jo3E Jo}E 11e
Loif 104k Jo4E e
-
'_;oa%F Jo3E e —— Jo3E ] mpip
o3E o3k JoE 1 row
Lo3f 104k Jo3E 1 p-pip
obf Jo}E 1ok 1 w-cmc
0 50 100 1% 200 250 300 350 400 0 50 100 150 2% 300 350 400 0 50 100 150 200 250 300 350 400
Samples
FIGURE 5
Joint angular velocities of the hand gesture E, X and three are illustrated here. Blue line represents the joint angular velocities of the test hand gesture
generated through the Gaussian function and red line represents the reconstructed joint angular velocities using the kinematic synergies and
coefficients.

3.4 Translating hand gestures to Mitra

The reconstructed patterns of gestures, along with the six synthetic
kinematic synergies and the test hand gestures were further translated
to Mitra. To facilitate this translation, a moving average function and
a scaling coefficient were applied to map these patterns to the joints of
Mitra. Continuous input from the reconstructed patterns and test data
was provided to Mitra during the gesture execution. This process
ensured that Mitra mimicked and executed the hand movements
based on the reconstructed patterns obtained from synthetic
kinematic synergies.

4 Real-time hand gesture using online
model

In the offline model, synthetic kinematic synergies were extracted
from a pool of 28 ASL gestures. When a subject pose any of the
selected hand gestures from the available ASL hand gestures, the
MediaPipe hand landmark detection model is employed to recognize
the hand gestures using Euclidean distance measures. Based on the
hand gesture identified, an joint angular velocity profile is generated.
Six synthetic kinematic synergies are selected from the offline model
such that the training set excludes the current hand gesture. Time-
shifted versions of these six synthetic kinematic synergies were
obtained from the offline model. Using convex optimization, limited
coefficients are determined to accurately reconstruct the hand gesture
with the chosen six synthetic kinematic synergies. The reconstructed
gesture is then mapped to Mitra’s hands through a mapping function
effectively mimicking the hand gesture posed by the subject. The
entire process occurs in real-time, facilitated by the integration of
MATLAB Engine and Python to convert the offline model to an
online framework.

5 Results
5.1 Offline model

From the 11 synthetic joint angular velocities generated
through the Gaussian function, the end postures of the 28 hand
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gestures were derived. Six synthetic kinematic synergies were then
extracted from these hand gestures, which were grouped under the
training set using PCA. A 28-fold cross-validation was performed
to reduce the variance in the performance of time-variant synergy
model. On average, across all the 28-fold cross-validation trials in
the training set, the first synergy accounted for approximately
65.6% of the total variance, the second synergy contributed to 80%
of the variance and the first six synergies together captured about
98.5% of the variance on an average. This aligns with observations
in Patel et al. (2015), where the first synergy accounted for 50% of
the variance and incorporating additional synergies increased the
variance. This indicates that from the synthetic joint angular
velocities for 28 hand gestures, a relatively small set of synergies
could effectively represent the joint movements associated with the
hand gestures.

Reconstruction of the end posture of the test hand gestures were
performed using synthetic kinematic synergies. By employing 28-fold
cross-validation, each hand gesture appeared in the testing set eight
times. As mentioned previously, the reconstruction of the test hand
gesture patterns was compared with the synthetically generated joint
angular velocities for that hand gesture using the least squared error.
Figure 5 represents the trajectories of the joint angular velocities for
three distinct hand gestures - E, X, and three. Remarkably, the
optimization algorithm successfully identified coefficients that, when
combined with kinematic synergies, resulted patterns exhibiting
minimal difference across the 11 joint movements for hand gestures
under the test data. Figure 6 represents the reconstruction error of 28
hand gestures reconstructed using synthetic kinematic synergies
across all 28-fold cross-validation runs. It can be noted that the
angular velocity reconstruction error of the gestures Seven is notably
higher followed by Eight and Q gestures. In contrast, all the other
hand gestures were reconstructed with more than 90% accuracy.
Thus, on an average, 28 hand gestures were reconstructed with an
accuracy of 95.7%. Synthetic kinematic synergies extracted from the
training set as shown in Figure 7 were also mapped to Mitra. In the
process of mapping these synergies, Mitra hands were initially flexed
to 50%, serving as an initial reference posture. The movements were
then mapped such that any value above 50% was interpreted as
flexion, while any value below 50% was considered as extension. This
mapping strategy ensured that synergies were accurately translated
and applied to Mitra’s joints during execution. The reconstructed
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FIGURE 6
Mean reconstruction error obtained while reconstructing the 28 hand gestures using synthetic kinematic synergies is illustrated here.
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FIGURE 7

Joint angular velocities of first three synthetic kinematic synergies of the 11 joints extracted from the training data is illustrated here. Here, T-Thumb,
I-Index, M-Middle, R-Ring, P-Pinky, MCP-Metacarpophalangeal, PIP- Proximal Interphalangeal, IP-Interphalangeal, CMC-Carpometacarpal joints.

patterns of the 28 hand gestures were mapped to Mitra as shown in ~ mentioned in Patel et al. (2015) and our previous studies that the
Figure 8. synergy with the maximum variance may potentially account for the

In Figure 7, it is evident that the joint angular velocity profile of =~ majority of the movement profile followed by the next synergy with
the first synergy primarily involves flexion with varying amplitudes,  the second maximum variance. By combining these synergies as a
while the profiles of the other synergies contain both flexion and  weighted linear combination, the end postures of the hand gestures
extensions with smaller amplitudes. This reinforces the results  were successfully reconstructed.
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Reconstructed hand gestures represented in Mitra using first six synthetic kinematic synergies for all the ASL hand gestures used in this study.

5.2 Online model

In this model, five subjects were asked to perform ten different
ASL hand gestures from the screen which displays all the static 33
hand gestures. Each hand gesture was posed by the subject using
their dominant hand in front of the RGB camera on Mitra.
MediaPipe hand landmark model allowed for the accommodation
of hand size variability, ensuring that individuals with diverse hand
dimensions can effectively interact with Mitra. The developed
model was able to detect various hand gestures in complex
background with diverse illuminations, objects, and patterns as
seen in Figure 9. From the hand gestures captured by the RGB
camera, the end posture of each gesture was converted to joint
angular velocities utilizing the Gaussian function for each of the 11
joints. Synthetic kinematic synergies extracted from training set,
excluding the posed hand gesture, were selected. As mentioned
before, a bank of shifted synthetic kinematic synergies was created
from the extracted six kinematic synergies. Using the convex
optimization, a limited set of coefficients were determined. The
shown hand gestures were reconstructed using these coefficients
and the bank of kinematic synergies. Subsequently, these
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reconstructed hand gestures were translated into Mitra’s joints to
mimic the posed hand gesture. Figure 9 represents the different
hand gesture posed by 5 subjects during the real-time gesture
recognition process.

6 Discussion

Numerous investigations (Tresch et al., 2006; Steele et al., 2013;
Santuz et al., 2017; Taborri et al., 2017) have been done to show that
synergies are not merely a mathematical representation but rather an
efficient tool for comprehending how the CNS organizes motor
control and coordination. As a result of such studies, promising results
(Artemiadis and Kyriakopoulos, 2006; Artemiadis et al., 2010;
Hocaoglu and Patoglu, 2012; Cunha et al., 2016; Lunardini et al., 2016)
have led to the use of synergies in several applications
including robotics.

This paper presents the exploration of synthetic kinematic
synergies derived from human-inspired joint angular velocities
generated through a Gaussian function. This approach involves
capturing end postures of 24 static ASL alphabet and 9 static ASL
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FIGURE 9

5 subjects performing real-time ASL hand gesture detection using MediaPipe from Mitra's RGB camera is shown here. These gestures are translated to
Mitra instantly. It can be noted that under complex background with various illumination, the model was able to detect the hand gestures.

number gestures. Five hand gestures that were similar in the alphabet
and number gestures were excluded from ASL number gestures. An
exception was made for the number gesture ‘4. Rather than flexing the
thumb, pinkie finger was flexed to indicate the gesture ‘4’ Since this
study involved only flexion and extension of the fingers, ‘U’ and ‘R’
were excluded. The reason for this is because of the adduction and
abduction of the index and middle finger to represent them which is
out of the scope of this study. But to accommodate more information
for CMC flexion, we made another exception to represent gesture “H”
as gesture “V” with CMC flexion.

Thus, these synthetic joint angular velocities are used to derive
synthetic kinematic synergies, which were later used to reconstruct
new hand gestures. To the best of our knowledge, this is one of the
first attempts to extract synthetic kinematic synergies from
Gaussian-function generated joint angular velocities apart from
our previous study (Olikkal et al., 2023). The choice of using
Gaussian functions to represent finger flexion is motivated by the
observation that the joint angular velocity profile of a simple finger
flexion tends to exhibit a bell-shaped, Gaussian-like velocity
profile, effectively capturing the three phases of movements as
indicated in Figure 1. By applying this Gaussian function to express
flexion of fingers, end postures of 28 hand gestures were generated.
By using only a few synergies, hand gestures grouped under the
testing tasks were reconstructed in the offline model. The
reconstructed and the recorded patterns of the hand gestures
under the test data were then mapped into Mitra.
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Of the different mapping approaches such as joint-joint mapping,
cartesian space mapping (Gioioso et al., 2013; Rosell and Suarez, 2015),
joint-cartesian mapping (Meattini et al, 2020) and object-based
mapping (Gioioso et al.,, 2019) as elaborated in Salvietti (2018), in this
study we adopt the joint-joint mapping approach which has shown
promising results (Ciocarlie and Allen, 2009; Rosell and Sudrez, 2015)
for a direct relationship between the corresponding joints of the human
hand and Mitra’s hand. Such joint-joint mapping approaches allows for
high mapping capabilities for the hand gesture data used for this study.

Although a simple mapping of the 21 landmarks found from
MediaPipe Hand landmark detector (Zhang et al., 2020) or learning
from human demonstrations such as behavioral cloning (Torabi
et al.,, 2018; De Coninck et al., 2020) to a robot can essentially
perform the hand gestures. But in this study, we attempt to show
that using only six synergies to control the 21 landmarks, 33 hand
gestures can be executed. In approaches that involve learning from
human demonstrations, one of the key challenges is to convert the
human hand motion into robot hand motion. Assuming a
humanoid with 21 joints, the 21 hand landmarks need to
be translated to the robot to obtain a single hand gesture. Similarly,
through behavioral cloning, motion retargeting of the 21 joints
from human demonstration to robot needs to be performed to
achieve the same hand gesture. Moreover, multiple demonstrations
of the same hand gesture need to be recorded and provided to the
robot to learn that gesture. To collect these demonstrations of the
same gesture requires long hours of intense human effort from
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setting the angle of multiple cameras to verifying and eliminating
outlier data manually.

Approaches like deep learning and transfer learning have shown
remarkable prowess in various applications, including hand gesture
recognition and robotic control. For example, Zhan (2019) utilized
deep 2D convolutional neural networks to classify 9 different hand
gestures in real-time using data augmentation strategies. Oyedotun and
Khashman (2017) employed stacked denoising autoencoders and
convolutional neural networks to classify and recognize 24 static ASL
hand gestures. Wu et al. (2021) collected images of 10 hand gestures
using RGB and the 21 joint points of hand using Leap Motion,
implementing an effective transfer learning method to classify these
gestures. Using MediaPipe hand landmark detection, Peral et al. (2022)
was able to develop an efficient and reliable deep learning approach for
hand gesture recognition real-time that was translated to a robot. Safavi
etal. (2024) provides a comprehensive overview of the various methods
in human robot interaction, control, and coordination.

Despite these advancements, our study presents a novel approach
using a synergy-based model to control hand gestures with increased
efficiency. By utilizing only six synergies to manage the 21 landmarks,
our method can execute 33 distinct hand gestures. This approach
significantly reduces the complexity and human effort involved in
gesture replication. Unlike traditional methods, which requires multiple
demonstrations and extensive data collection, our model can achieve
accurate gesture execution with only one demonstration. This minimizes
the need for extensive human intervention and data collection, thereby
increasing overall efficiency. By leveraging a subset of the 21 landmarks,
our approach proves a practical and efficient alternative to deep learning
and transfer learning methods. Thus, this study extends the application
of synergies in hand gesture control, highlighting their potential to
simplify and improve robotic hand gesture replication.

In this study, Mitra has only one DoF for each digit, totaling 5
DoF for the 5 digits. The MCPs of these 5 digits can be controlled and
based on the flexion, the MCPs move in a gradient fashion accounting
for the flexion of PIPs and Distal Interphalangeal joints (DIPs). Each
of the 10 hand gestures were demonstrated only once at the RGB
camera of Mitra for the offline model and the end postures are
generated from the MediaPipe framework. Kinematic synergies
extracted from the training data (in Figure 7) of the generated joint
angular velocities were then translated to the humanoid using the
mapping function. However, since kinematic synergies are bipolar in
nature, meaning they have both positive and negative activation
potential accounting for flexion and extension, the initial reference
state of Mitra hands were adjusted to accommodate for this property.
Thus, the MCPs of Mitra were set to 50% flexed as the initial reference
state. Upon mapping the selected six synergies to Mitra, joints below
this reference were indicated as negative activation potential while
those above the reference state were indicated as positive activation
potential. These mapped values were fed continuously to the MCPs of
the humanoid. Similarly, reconstructed hand gestures using the
synthetic kinematic synergies were translated in a continuous manner
to the MCPs. As the MCPs moved, they brought together the PIPs and
DIPs to the target position from the reference posture. Each of the
achieved targeted positions of the 28-hand gesture are shown in
Figure 8.

One of the key limitations in this study was observed when using
the MediaPipe hand landmark detection model. MediaPipe hand
landmark detection model had difficulty to identify the different hand
gestures when all the digits were close. Specifically, such difficulties
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were observed when identifying ‘M, ‘N, ‘O’ and ‘S’ hand gestures. It
can be noted that in all these gestures, digits are extremely close to one
another. This implies that the dots and lines of the hand landmark
model were unable to clearly identify the overlaps especially with the
usage of thumb flexion and extension. This might be because of the
confidence parameter of the detection model kept to 0.5.

In Figure 6, it is evident that the reconstruction errors of gesture
Seven and Eight are notably higher than the other hand gestures. This
may potentially be attributed to the optimization algorithm attempting
to accommodate all the different gestures using only six synthetic
kinematic synergies. The complexity and variability of the gestures
might pose challenges for the algorithm in finding an optimal fit
within the limited set of synergies, thereby leading to higher
reconstruction error.

Thus, the integration of Mitra with the synergy-based model not
only enables the robot to learn the hand gestures from the test data but
also facilitates the formation of a library of new synergies. This library
is generated based on the new hand gestures demonstrated to Mitra
apart from the selected hand gestures.

7 Conclusion

Improving the dexterity of humanoid robot hands enables
robots excel in performing intricate tasks with precision, including
surgical assistance and patient care, as well as aiding individuals
with disabilities or elderly person in their daily activities. These
humanoid robots, equipped with refined hand dexterity can play
pivotal role across industries that involve the manipulation of
objects and materials.

In this paper, we introduced a novel human-robot teaming
approach for extracting synthetic kinematic synergies from end
postures of hand gestures using a single RGB camera, MediaPipe
framework, Gaussian functions and PCA. To the best of our
knowledge, this study represents one of the first study in teaching a
humanoid robot ASL hand gesture movements using kinematic
synergies. Both offline and online models were developed in this study
that incorporates 33 preconfigured ASL hand gestures covering a
comprehensive range of finger joints. The current mapping of the
synergies and reconstructed patterns to the robot may not be ideal,
we aim to widen the scope by including more efficient mapping
methods in the future. Enabling such synergy-based humanoid and
robots have the potential to simplify the complexities associated with
motion retargeting, offering promising applications in industrial
robots and assistive robots.
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