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Hand gestures are a natural and intuitive form of communication, and integrating 

this communication method into robotic systems presents significant potential 

to improve human-robot collaboration. Recent advances in motor neuroscience 

have focused on replicating human hand movements from synergies also 

known as movement primitives. Synergies, fundamental building blocks of 

movement, serve as a potential strategy adapted by the central nervous system 

to generate and control movements. Identifying how synergies contribute to 

movement can help in dexterous control of robotics, exoskeletons, prosthetics 

and extend its applications to rehabilitation. In this paper, 33 static hand gestures 

were recorded through a single RGB camera and identified in real-time through 

the MediaPipe framework as participants made various postures with their 

dominant hand. Assuming an open palm as initial posture, uniform joint angular 

velocities were obtained from all these gestures. By applying a dimensionality 

reduction method, kinematic synergies were obtained from these joint angular 

velocities. Kinematic synergies that explain 98% of variance of movements 

were utilized to reconstruct new hand gestures using convex optimization. 

Reconstructed hand gestures and selected kinematic synergies were translated 

onto a humanoid robot, Mitra, in real-time, as the participants demonstrated 

various hand gestures. The results showed that by using only few kinematic 

synergies it is possible to generate various hand gestures, with 95.7% accuracy. 

Furthermore, utilizing low-dimensional synergies in control of high dimensional 

end e�ectors holds promise to enable near-natural human-robot collaboration.
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1 Introduction

�e marvel of evolution is evident in the versatility of human hands. Years of bipedal life 

and opposable thumb have promoted the extensive usage of hands for grasping, reaching and 

dexterous manipulation. �ese appendages can delicately cradle a butter�y, skillfully handle 

the brush for creating a masterpiece and �rmly grip a hammer. Within the human hand lies a 

complex arrangement of joints, tendons, muscles, all connected meticulously by the nerves. 

�e coordination of these elements allows for dexterity and precision enabling us to express a 

wide spectrum of gestures and manipulate objects with complex surface. A simple kinematic 

model of the human hand has more than 20 degrees of freedom (DoF) making it an extremely 

di�cult problem to be replicated in robots. Despite its simplicity, the study of human hand 

movements has been a signi�cant area of research for more than three decades and both 
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researchers and roboticist have been actively trying to address the 

challenge of replicating the prowess of human hand dexterity in 

a robot.

With the advancement of technology, traditional devices for 

interaction with computers are replaced with more natural 

communication approaches such as oral communication and body 

language. Among these two methods, the functional means of natural 

communication is body language interaction, with hands being the 

most e�ective non-verbal means of communication. During 

interpersonal communication, the impact of our messages is o�en 

enhanced by following hand gestures. For instance, certain gesture 

requires the synchronous movement of all four �ngers and thumb 

whereas others require individual �nger movements. Consequently, 

the range of hand gestures for communication extends from simple to 

complex hand movements. By integrating hand gestures as an 

interactive tool and the ability to classify them into meaningful 

symbols or values, there is a potential to develop more intuitive 

human-robot interaction (HRI) and human-computer interaction 

(HCI) interfaces that can potentially assist individuals with motor 

impairments. Hand gesture-based interaction systems have thus 

become a magnetic area of research since its introduction in 1970s. A 

diverse array of human computer interactive systems have been 

developed using hand gesture control such as sign language 

recognition (Rastgoo et al., 2020), improving motor skills (Cai et al., 

2018) and user guide interactive applications (Indriani Harris and 

Agoes, 2021).

�e human hand, with its 27 bones, 29 muscles and over 20 DoFs, 

is a marvel of engineering. Because of this intricate anatomy, there is 

a huge possibility to execute one movement such as picking up a bottle 

of water, through various coordinated combinations of muscles and 

joints. Moreover, there are multiple ways to accomplish the same 

movement, underscoring the remarkable �exibility and adaptability 

of the hand’s complex structure. But how does the human brain 

navigate through the vast possibilities of movement to control the 

human hand? Modularity hypothesis introduced by Bernstein (1967) 

was able to address most of the challenges of the large DoFs and 

thereby the large number of redundant choices for performing a 

simple task. �e neuroscienti�c reasoning for this strategy is the 

�nding that, despite the complexity of the human hand, fewer 

variables can adequately account for most of the variation in patterns 

of human hand con�gurations and movements. For instance, consider 

the act of picking up a bottle of water. While there are countless 

combinations of muscle contractions and joint rotations that could 

accomplish this task, the central nervous system (CNS) does not 

default to a brute force strategy. Instead, it chooses an approach that 

activates speci�c groups of muscles and joints in a coordinated 

pattern. Bernstein in his modularity hypothesis called these variables 

as synergies. Synergies, thus, act as building blocks, simplifying the 

control of the vast DoFs of the human hand. Understanding these 

synergies can provide insights to decoding brain-hand 

communication, understanding motor disorders, and potentially 

incorporating them into robotic control algorithms. Inspired from 

modularity hypothesis, several researchers have investigated synergies 

obtained from di�erent parts of the body such as kinematic synergies 

(Grinyagin et al., 2005; Freitas et al., 2006), muscle synergies (Weiss 

and Flanders, 2004; Muceli et al., 2010; Santello et al., 2013; Tagliabue 

et  al., 2015), force synergies (Santello and Soechting, 2000), and 

dynamical synergies (Pei et al., 2022). Kinematic synergies obtained 

from �nger joint kinematics and muscle synergies extracted from 

muscle movements have gained much popularity among the others. 

Here, in this study, we would be  focusing on kinematic synergies 

obtained from joint kinematics while executing hand movements.

How are synergies established in humans, and can we apply these 

synergy learning techniques to robot to mimic human learning? To 

explore such questions, in this study, we employed American Sign 

Language (ASL) as a common ground to bridge the gap between 

human and robot learning. ASL’s complex hand movements require 

motor planning and synergy formation. �is approach allows us to 

investigate the neural mechanisms during the formation of new hand 

gestures. In the process of learning a new motor activity, there are two 

distinct stages – (a) the identi�cation and reinforcement of motor 

synergies necessary for performing the new task, and (b) weakening 

of synergies, as explained in Latash (2010). By utilizing ASL as a test 

bed, attempts to execute complex hand gestures can potentially reveal 

identi�able motor synergies. Our goal is to replicate this motor 

learning in a robot, providing insights into the neural mechanisms of 

motor planning and execution along with their limitations. Building 

on the evidence from previous studies (Vinjamuri et al., 2010; Patel 

et  al., 2018; Pei et  al., 2019; Olikkal et  al., 2022a), which leverage 

electroencephalography (EEG), electromyography (EMG), and hand 

joint kinematics to identify neural mechanisms of motor planning and 

motor execution, we aim to understand and replicate these synergies 

in a robotic system. Burns et  al. (2017) contributed to this 

understanding by developing a so� hand exoskeleton – a form of 

human-machine teaming – embedding motor synergies for assisting 

or rehabilitating individuals with hand disabilities.

Research study by Jarque-Bou et al. (2019b) adopted a phase-

based approach, decomposing the movement pro�le into distinct 

stages: reaching, grasping/manipulation and release (Figure 1) in an 

FIGURE 1

Movement decomposition phases of reaching, grasping and release 

is illustrated. The angular joint profile and angular velocity profiles of 

one joint at di�erent phases can be observed here.
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attempt to understand how the CNS controls and coordinates the 

hand when aiming to execute a targeted movement. �e joint angular 

velocity pro�les of these three phases collected from joint recording 

devices such as CyberGlove are well represented and investigated in 

Vinjamuri et al. (2010), Jarque-Bou et al. (2019a,b), and Olikkal et al. 

(2022a,b). �ese studies reinforce that when a subject attempts to 

reach a target from initial reference position, a progressive increase in 

angular velocity pro�le can be observed in the reaching phase. �is 

re�ects the rapid movement of the hand towards the target. During 

the grasping phase the velocity transitions to a steady state highlighting 

the smooth and controlled adjustment of �nger position to securely 

grasp the object. Finally, the release phase exhibits a gradual decline 

in velocity, reaching back to the initial reference state as elaborated in 

Jarque-Bou et al. (2019b). Upon close observation, as indicated in 

Jarque-Bou et al. (2019b), joint angular velocity pro�le was collected 

from sensors that corresponds to metacarpophalangeal, 

interphalangeal and proximal interphalangeal joints of each �nger 

from the CyberGlove.

Focusing on a single joint, it becomes evident that the angular 

velocity pro�le for any movement can be e�ectively split similarly into 

a start, target and return phases where the target phase represents the 

�exion or extension of the joint to achieve a desired state along its DoF 

and the start and return phases represents the initial state of that joint 

(shown in Figure 1). During the execution of hand gestures, the joint 

angular velocity pro�les for these joints consistently exhibits a 

Gaussian curve as the target state is reached. �erefore, we  draw 

inspiration from the above studies that incorporate this observation 

of a Gaussian curve made by each joint during any sort of 

hand movements.

Breakthrough in technology have encouraged the development of 

numerous robotic devices aiming to mimic human arm and �nger 

movements by observing the kinematic patterns. �ese coordinated 

kinematic patterns are usually extracted and embedded into these 

devices to aid in performing activities of daily living. Several promising 

rehabilitative exoskeletons using kinematic synergies are detailed in 

Jarrassé et al. (2014). However, there have been a limited exploration 

to understand the e�ciency of kinematic synergies in humanoids. 

Hauser et al., in their study (Hauser et al., 2011) was able to use few 

non-linear kinematic synergies from lower body to transform the 

balance control challenge into a linear problem for a humanoid robot 

during slow movements. Alexandrov et al. (2017) validates the human 

inspired kinematic synergy as a potential candidate for balance control 

among the group of control concepts. To the best of our knowledge, 

apart from our previous study (Olikkal et al., 2023), there has been a 

notable absence of exploration into humanoid robots performing 

upper limb movements using kinematic synergies. Unlike the 

humanoid, Pepper (Pandey and Gelin, 2018), through this study 

we attempt to provide an analysis of using biologically inspired human 

kinematic synergies on a humanoid robot for dexterity.

�e �eld of hand gesture recognition has undergone signi�cant 

development. Hand gesture recognition based on the extracted feature 

and di�erent recognition approaches are described in Indriani Harris 

and Agoes (2021). Traditional motion capturing sensors and devices 

are now replaced with more intuitive frameworks that simplify gesture 

recognition applications. An example of this shi� is seen in Google’s 

open-source framework, MediaPipe, which o�ers multiple machine-

learning solutions, replacing conventional methods. Among the 

several solutions provided by MediaPipe for vision tasks such as object 

detection, face detection and gesture recognition, we opted for hand 

landmark detector in this paper. MediaPipe hand landmark detector 

enables to identify the hand landmarks in an image. �is model thus 

allows one to apply graphic e�ects over the hand image and localize 

key hand regions. Employing such a framework for gesture recognition 

not only helps identify hand landmarks in challenging environments 

and backgrounds, but also enables adequate focus and attention in 

deriving joint movement kinematics and postures.

�e following is a synopsis of this paper’s key contributions.

 1 Compared to the research study that uses RGB and depth 

camera for capturing hand grasps (Ficuciello et  al., 2013; 

Devineau et  al., 2018), our research advances the existing 

pipeline (Olikkal et  al., 2023) by applying the proposed 

framework to speci�cally recognize 33 hand gestures in 

American Sign Language. Not only does this study increases 

the complexity of our preliminary hand gesture database but 

also highlights the practical applicability and robustness of the 

framework in real-world scenarios.

 2 Utilizing a limited number of synergies, our pipeline 

successfully reconstructs all 33 hand gestures in the dataset. 

�is work extends our preliminary results (Olikkal et al., 2023), 

by exploring the role of kinematic synergies in reconstructing 

hand gestures on a humanoid robot on a broader hand gesture 

database, thus demonstrating the versatility and e�ciency of 

our approach.

 3 Furthermore, we propose an online model that demonstrates 

real-time translation of identi�ed hand gestures to a humanoid 

robot, enabled by kinematic synergies. �is contribution serves 

as a foundational step towards achieving seamless interaction 

between humans and robots through gesture-based 

communication, highlighting the potential for more intuitive 

and natural HRI.

2 Methods and analysis

2.1 MediaPipe Framework

As outlined by Zhang et  al. (2020), a real-time hand gesture 

recognition system has been developed using a single RGB camera 

which can predict the skeleton of a human hand. MediaPipe hand 

landmark detector leverages two modes – a palm detector model and 

a hand landmark model. �e palm detector model focuses on 

identifying the palm by analyzing the entire image and produces an 

image with an oriented binding frame of the hand. �e hand landmark 

model takes in the cropped binding box image as input and through 

regression returns 3D hand key points on the image. �e model 

outputs 21 key points on the 3D hand-knuckle skeletal image on the 

hand. Each of the identi�ed landmark is composed of distinct relative 

x, y, and z coordinates where x and y are normalized by image width 

and height whereas z represents the depth of the landmark. In 

Figure 2, these points are illustrated with dots representing joint and 

lines indicating Euclidean distances between them. �e Euclidean 

distance measure is calculated between each landmark, serving as a 

condition for identifying various hand gestures based on the 

arrangement of these points.
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2.2 The humanoid robot – Mitra

�is study incorporated a humanoid robot, Mitra (Invento 

Research Inc., Plano TX). Mitra is a custom-built robot equipped with 

21 DoFs, distributed among its various components. �e con�guration 

includes 5 DoFs for each �nger, 1 DoF for the wrist, 1 DoF for the 

elbow, 2 DoFs for each shoulder, along with 1 DoF for the head and 2 

DoFs for the base. Mounted on the top of the head is an RGB camera 

with a resolution of 1,280 × 720 pixels, enabling real-time image and 

video capture. To facilitate the grasping of heavy objects, additional 

support is provided for the digits on the right hand. Mitra is also 

equipped with a LiDAR system for mapping its surroundings. �e 

robot o�ers multiple connectivity options, including voice commands, 

web interfaces, touch screen, joysticks, and scripts. In this study, a 

scripting method was adopted for hand gesture modeling and 

communication with Mitra.

2.2.1 Hardware architecture of Mitra hands
Mitra employs three distinct types of motors, each providing 

varying degrees of torque, strategically placed at di�erent joints to 

facilitate movement. �e primary motor, which generates the 

maximum torque, is located at the shoulder joint, responsible for 

shoulder �exion and extension. A second motor with moderate torque 

is positioned at the elbow joint, facilitating elbow �exion and 

extension. �e third type comprises servo motors, which are dedicated 

to controlling �nger movements.

For precise control of the hand digits, each hand is equipped with 

�ve servo motors, corresponding to the �ve digits of each hand. Each 

servo motor operates through three lines: a ground, power, and 

control. �ese motors are governed by hierarchical network of 

microcontrollers. �e control line, in�uenced by the voltage supplied 

from the parent microcontroller, dictates the degree of rotation of the 

servo motor. �is rotation mechanism retracts a cable that loops 

through digit of Mitra, thereby controlling the �exion and extension. 

A higher voltage from the microcontroller results in a greater rotation 

of the servo motor, causing signi�cant retraction of the cable and 

consequently, more pronounced digit �exion. Conversely, a lower 

voltage results in lesser rotation and causes minimal digit movement, 

either in terms of �exion or extension from a �exed position.

2.2.2 Software architecture of Mitra hands
�e so�ware component of Mitra’s control system is based on an 

asynchronous socket communication between Mitra and a commanding 

system. �is setup allows the commanding system to act as a controller 

transmitter and Mitra as a receiver. Commands specifying the required 

joint movements are transmitted from the transmitter system to Mitra.

An internal processor within Mitra is responsible for interpreting 

these commands. �is internal system parses the incoming messages 

and dispatches the appropriate instructions to various microcontrollers 

that control the di�erent motors in Mitra. Each microcontroller, upon 

receiving its command, adjusts the voltage supplied to its associated 

motor to achieve the desired degree of �exion or extension.

2.3 Experiment

For this study, two models were developed – an o�ine model and 

online model. �e o�ine model involves the creation of a database 

containing ASL hand gestures using MediaPipe. �e online model 

involves subjects posing ASL hand gestures to Mitra and Mitra 

mimicking the same gestures in real-time using kinematic synergies. 

�e development of the o�ine model utilized MATLAB and Python, 

while the online model was exclusively created using Python.

2.3.1 O�ine model
A database of ASL hand gestures was created which included 24 

static alphabets and 9 static numbers as shown in Figure 3. �e hand 

gestures were detected using the MediaPipe hand landmark detection 

model from an RGB camera mounted on Mitra when gestures were 

presented. A�er identifying the landmarks, based on the Euclidean 

distance of the x and y coordinates from the wrist, the open and closed 

state of the thumb and the open, half-open, and closed state of the 

index, middle, ring and pinky �ngers were determined. Based on the 

open, half-open and closed state of the digits, di�erent hand gestures 

were identi�ed. Alphabet “J” and “Z” were not included in this study 

because of their dynamic nature. All 33 static ASL hand gestures were 

shown to Mitra from an initial reference posture of a relaxed idle open 

palm hand posture.

2.3.2 Online model
In this model, �ve subjects (4 male and 1 female) with mean age 

of 27 ± 4.4 years and no prior upper limb movement disorders, were 

FIGURE 2

Twenty-one hand-knuckle landmarks obtained from MediaPipe, and 

their corresponding anatomical areas are illustrated here. Each dot 

represents the joints and line represents the Euclidean distance from 

each joint. Corresponding labels in the illustration are 0. Wrist, 1. 

CMC-Thumb, 2. MCP-Thumb, 3. IP-Thumb, 4. TIP-Thumb, 5. MCP-

Index Finger, 6. PIP-Index Finger, 7. DIP-Index Finger, 8. TIP-Index 

Finger, 9. MCP-Middle Finger, 10. PIP-Middle Finger, 11. DIP-Middle 

Finger, 12. TIP-Middle Finger, 13. MCP-Ring Finger, 14. PIP-Ring 

Finger, 15. DIP-Ring Finger, 16. TIP-Ring Finger, 17. MCP-Pinky, 18. 

PIP-Pinky, 19. DIP-Pinky, 20. TIP-Pinky.
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recruited to perform hand gestures. �e experiment, along with the 

data collection, conformed to an approved protocol by the Institutional 

Review Board (IRB) at the University of Maryland Baltimore County. 

Written informed consent to participate in this study was provided by 

the subjects following university guidelines.

�e experimental setup involved subjects sitting comfortably in 

front of a screen displaying various ASL hand gestures. Each subject 

was instructed to choose any ten hand gestures from the screen and 

show the gestures using their dominant hand in front of the RGB 

camera mounted on Mitra. During the experiment, the MediaPipe 

hand landmark model was employed to detect and annotate the hand 

gestures posed by the subjects, with the results of the recognized 

gesture displayed on a separate screen. Once all ten selected hand 

gestures were demonstrated, Mitra autonomously selected the 

appropriate hand gesture from a pool of kinematic synergies 

developed in the o�ine model and mimicked the hand gestures posed 

by the subjects.

3 Derivation of synergies in the o�ine 
model

3.1 Synthetic joint angular velocities

From the hand gestures presented to Mitra, the end postures of 

each gesture were transformed into joint angular velocities using a 

Gaussian function, as expressed in the Eq. (1) with respect to the 

initial reference posture:

FIGURE 3

The dataset consists of 9 static ASL number gestures and 24 static ASL alphabet gesture recognized through MediaPipe is shown here.
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Here, ϕ  is the generated Gaussian curve, σ  is the standard 

deviation and µ  is the mean of  formed from a sample of 100,000 

randomly generated data points. A total of 11 such velocity pro�les 

were created corresponding to ten joints of the hand and one joint 

of the wrist – metacarpophalangeal (MCP) and interphalangeal (IP) 

joints of the thumb and MCP and proximal interphalangeal (PIP) 

joints of the other four digits. An additional carpometacarpal 

(CMC) joint of the wrist was included to indicate those movements 

which included wrist. �us, for each ASL static hand gestures 

considered, the corresponding joint angular velocities for the 11 

joints were computed. �is process involved transforming the 

observed hand gestures into sets of angular velocities of the 

speci�ed joints. For each joint that was involved in forming the end 

posture of the hand gesture, its corresponding joint was represented 

with the Gaussian function expressed in Eq. (1). Joints that made 

partial contributions towards the end postures were represented 

with lower amplitude of the Gaussian function (e.g., hand gesture 

X in Figures 3, 4).

In the context of ASL alphabet and numbers, gestures with similar 

representation were excluded from the ASL number gestures. 

Speci�cally, the removal included gestures for two, four, six, and nine, 

as their corresponding representation in ASL alphabet gestures are V, 

B, W and F, respectively. Given that only the x and y coordinates of the 

hand landmark were considered in this study, gestures with similar 

representations but di�ering in z-axis orientation were adjusted by 

modifying the velocity pro�le of CMC. �is adjustment pertained to 

gestures such as U and H, G and Q, K and P. Two exceptions were 

made – for gesture 4, instead of thumb �exion, pinkie was �exed, and 

H gesture was represented as V with CMC pro�le. Analysis of Figure 4 

reveals that certain representation of the hand vector appear similar, 

speci�cally in the cases of C and O, as well as D and One gestures. 

However, a closer examination of the joint angular velocity pro�les 

indicate variations in amplitude, distinguishing these gestures from 

each other. Despite the visual similarities in the hand vector 

representations, the unique patterns in the joint angular velocities 

provide a more detailed and distinctive characterization of 

each gesture.

3.2 Synthetic kinematic synergies

Joint angular velocities corresponding to the end postures of 10 

hand gestures were synthetically generated using the Gaussian 

function. For gestures involving speci�c joint �exion, the relevant 

joint out of 11 were represented with Gaussian function. Once the 

joint angular velocities were generated for the selected 28 hand 

gestures, the dataset was split into training set consisting of 20 gesture 

tasks and testing set with 8 gesture tasks. Following the methodology 

in Vinjamuri et al. (2010), an angular velocity matrix was constructed 

using the gestures in the training set such that each of the 11 joints 

were cascaded one a�er the other. �us, each row of the angular 

velocity matrix represents one gesture.

Leveraging the insights from our previous works (Olikkal et al., 

2022a,b) it was observed that time-variant synergy models yielded 

best results, hence for this study, we opted for the time-variant synergy 

model. In case of time-variant models, a time-varying pattern is 

produced by combining synergies with time-varying scaling 

coe�cients. A time-varying synergy signi�es the synchronized 

activation of a group of joints at a particular time for each joint. 

Diverse patterns can be generated by adjusting the coe�cients and 

temporally shi�ing di�erent synergies. Mathematically, this can 

be expressed as shown in Eq. (2)
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Here, ( ) represents the generated time-varying pattern,  is 

the total number of synergies, Ai is the scaling coe�cient for the th 

synergy, S t ti i−( ) denotes the ith synergy shi�ed in time by ti.

Principal component analysis (PCA) was applied on the cascaded 

velocity matrix to derive PCs that capture the maximum variance. 

Following our prior works (Olikkal et al., 2022a,b), to identify the 

optimal number of PCs, we selected those PCs the accounted for 0.98 

(98%) of total variance using the Eq. (3) expressed as
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Where λ represents the magnitude of the corresponding PCs and 

 represents the optimal number of synergies out of  available 

synergies. When this fraction reaches to 0.98 the corresponding  

identi�es as the optimal number to be chosen. �ese chosen  PCs 

were termed as synthetic kinematic synergies. It was observed that 

combining six synthetic kinematic synergies contributed to around 

98% of the total variance.

3.3 Reconstruction of hand gestures using, 
l1-minimization

�e joint angular velocities of the 8 gesture tasks grouped under 

the testing set were reconstructed using the derived synthetic 

kinematic synergies. �ese synergies obtained can serve as 

templates for decomposing hand movements. Investigations from 

Vinjamuri et al. (2010) implies that the CNS strategically utilizes a 

small number of synergies to generate movement. Following the 

methodology in Vinjamuri et  al. (2010), a matrix was formed, 

termed as bank, which contains the row vectors of the synthetic 

kinematic synergies and their �ve possible shi�s. Consequently, for 

any given hand gesture and an existing bank of template synergies, 

multiple coe�cients can be found to represent the gesture. Given 

that the CNS utilizes only a limited set of kinematic synergies and 

a small number of coe�cients for executing hand gestures, this 

current problem of identifying limited coe�cients can 

be conceptualized as an l1-minimization problem as described in 

Vinjamuri et al. (2010). It can be formulated as an optimization 

problem aimed at identifying the sparsest coe�cients for hand 

movement generation expressed in Eq. (4) as
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Here,    represents the  norm,  is the synthetic kinematic 

synergy bank and  is the regularization parameter. Solving this 

optimization problem results in a set of coe�cients that e�ciently 

reconstruct the hand gesture using the provided template kinematic 

synergies. Hand gestures grouped under the testing data can thus 

be reconstructed by combining the coe�cients found through Eq. (4) 

with the kinematic synergies from the bank. Figure 5 illustrates three 

di�erent randomly selected hand gestures – E, X, and three.

Upon identi�cation of the coe�cients, gestures grouped under the 

testing sets were reconstructed. Reconstruction error between the 

synthetic angular velocities (M i) and the reconstructed patterns ( ) 

using time-variant synergies were determined as followed in Eq. (5).

 

err

M X

M

i
i

i
i

=
−( )∑

∑  

(5)

FIGURE 4

Conversion of 28 hand gestures to joint velocities are illustrated here. Each pie represents one hand gesture with 11 joints and each sector represent 

one sensor. Those joints that are activated are shaded in blue and their corresponding finger representation is shown in the top right posture.
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3.4 Translating hand gestures to Mitra

�e reconstructed patterns of gestures, along with the six synthetic 

kinematic synergies and the test hand gestures were further translated 

to Mitra. To facilitate this translation, a moving average function and 

a scaling coe�cient were applied to map these patterns to the joints of 

Mitra. Continuous input from the reconstructed patterns and test data 

was provided to Mitra during the gesture execution. �is process 

ensured that Mitra mimicked and executed the hand movements 

based on the reconstructed patterns obtained from synthetic 

kinematic synergies.

4 Real-time hand gesture using online 
model

In the o�ine model, synthetic kinematic synergies were extracted 

from a pool of 28 ASL gestures. When a subject pose any of the 

selected hand gestures from the available ASL hand gestures, the 

MediaPipe hand landmark detection model is employed to recognize 

the hand gestures using Euclidean distance measures. Based on the 

hand gesture identi�ed, an joint angular velocity pro�le is generated. 

Six synthetic kinematic synergies are selected from the o�ine model 

such that the training set excludes the current hand gesture. Time-

shi�ed versions of these six synthetic kinematic synergies were 

obtained from the o�ine model. Using convex optimization, limited 

coe�cients are determined to accurately reconstruct the hand gesture 

with the chosen six synthetic kinematic synergies. �e reconstructed 

gesture is then mapped to Mitra’s hands through a mapping function 

e�ectively mimicking the hand gesture posed by the subject. �e 

entire process occurs in real-time, facilitated by the integration of 

MATLAB Engine and Python to convert the o�ine model to an 

online framework.

5 Results

5.1 O�ine model

From the 11 synthetic joint angular velocities generated 

through the Gaussian function, the end postures of the 28 hand 

gestures were derived. Six synthetic kinematic synergies were then 

extracted from these hand gestures, which were grouped under the 

training set using PCA. A 28-fold cross-validation was performed 

to reduce the variance in the performance of time-variant synergy 

model. On average, across all the 28-fold cross-validation trials in 

the training set, the �rst synergy accounted for approximately 

65.6% of the total variance, the second synergy contributed to 80% 

of the variance and the �rst six synergies together captured about 

98.5% of the variance on an average. �is aligns with observations 

in Patel et al. (2015), where the �rst synergy accounted for 50% of 

the variance and incorporating additional synergies increased the 

variance. �is indicates that from the synthetic joint angular 

velocities for 28 hand gestures, a relatively small set of synergies 

could e�ectively represent the joint movements associated with the 

hand gestures.

Reconstruction of the end posture of the test hand gestures were 

performed using synthetic kinematic synergies. By employing 28-fold 

cross-validation, each hand gesture appeared in the testing set eight 

times. As mentioned previously, the reconstruction of the test hand 

gesture patterns was compared with the synthetically generated joint 

angular velocities for that hand gesture using the least squared error. 

Figure 5 represents the trajectories of the joint angular velocities for 

three distinct hand gestures – E, X, and three. Remarkably, the 

optimization algorithm successfully identi�ed coe�cients that, when 

combined with kinematic synergies, resulted patterns exhibiting 

minimal di�erence across the 11 joint movements for hand gestures 

under the test data. Figure 6 represents the reconstruction error of 28 

hand gestures reconstructed using synthetic kinematic synergies 

across all 28-fold cross-validation runs. It can be  noted that the 

angular velocity reconstruction error of the gestures Seven is notably 

higher followed by Eight and Q gestures. In contrast, all the other 

hand gestures were reconstructed with more than 90% accuracy. 

�us, on an average, 28 hand gestures were reconstructed with an 

accuracy of 95.7%. Synthetic kinematic synergies extracted from the 

training set as shown in Figure 7 were also mapped to Mitra. In the 

process of mapping these synergies, Mitra hands were initially �exed 

to 50%, serving as an initial reference posture. �e movements were 

then mapped such that any value above 50% was interpreted as 

�exion, while any value below 50% was considered as extension. �is 

mapping strategy ensured that synergies were accurately translated 

and applied to Mitra’s joints during execution. �e reconstructed 

FIGURE 5

Joint angular velocities of the hand gesture E, X and three are illustrated here. Blue line represents the joint angular velocities of the test hand gesture 

generated through the Gaussian function and red line represents the reconstructed joint angular velocities using the kinematic synergies and 

coe�cients.
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patterns of the 28 hand gestures were mapped to Mitra as shown in 

Figure 8.

In Figure 7, it is evident that the joint angular velocity pro�le of 

the �rst synergy primarily involves �exion with varying amplitudes, 

while the pro�les of the other synergies contain both �exion and 

extensions with smaller amplitudes. �is reinforces the results 

mentioned in Patel et al. (2015) and our previous studies that the 

synergy with the maximum variance may potentially account for the 

majority of the movement pro�le followed by the next synergy with 

the second maximum variance. By combining these synergies as a 

weighted linear combination, the end postures of the hand gestures 

were successfully reconstructed.

FIGURE 6

Mean reconstruction error obtained while reconstructing the 28 hand gestures using synthetic kinematic synergies is illustrated here.

FIGURE 7

Joint angular velocities of first three synthetic kinematic synergies of the 11 joints extracted from the training data is illustrated here. Here, T-Thumb, 

I-Index, M-Middle, R-Ring, P-Pinky, MCP-Metacarpophalangeal, PIP- Proximal Interphalangeal, IP-Interphalangeal, CMC-Carpometacarpal joints.
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5.2 Online model

In this model, �ve subjects were asked to perform ten di�erent 

ASL hand gestures from the screen which displays all the static 33 

hand gestures. Each hand gesture was posed by the subject using 

their dominant hand in front of the RGB camera on Mitra. 

MediaPipe hand landmark model allowed for the accommodation 

of hand size variability, ensuring that individuals with diverse hand 

dimensions can e�ectively interact with Mitra. �e developed 

model was able to detect various hand gestures in complex 

background with diverse illuminations, objects, and patterns as 

seen in Figure  9. From the hand gestures captured by the RGB 

camera, the end posture of each gesture was converted to joint 

angular velocities utilizing the Gaussian function for each of the 11 

joints. Synthetic kinematic synergies extracted from training set, 

excluding the posed hand gesture, were selected. As mentioned 

before, a bank of shi�ed synthetic kinematic synergies was created 

from the extracted six kinematic synergies. Using the convex 

optimization, a limited set of coe�cients were determined. �e 

shown hand gestures were reconstructed using these coe�cients 

and the bank of kinematic synergies. Subsequently, these 

reconstructed hand gestures were translated into Mitra’s joints to 

mimic the posed hand gesture. Figure 9 represents the di�erent 

hand gesture posed by 5 subjects during the real-time gesture 

recognition process.

6 Discussion

Numerous investigations (Tresch et al., 2006; Steele et al., 2013; 

Santuz et al., 2017; Taborri et al., 2017) have been done to show that 

synergies are not merely a mathematical representation but rather an 

e�cient tool for comprehending how the CNS organizes motor 

control and coordination. As a result of such studies, promising results 

(Artemiadis and Kyriakopoulos, 2006; Artemiadis et  al., 2010; 

Hocaoglu and Patoglu, 2012; Cunha et al., 2016; Lunardini et al., 2016) 

have led to the use of synergies in several applications 

including robotics.

�is paper presents the exploration of synthetic kinematic 

synergies derived from human-inspired joint angular velocities 

generated through a Gaussian function. �is approach involves 

capturing end postures of 24 static ASL alphabet and 9 static ASL 

FIGURE 8

Reconstructed hand gestures represented in Mitra using first six synthetic kinematic synergies for all the ASL hand gestures used in this study.
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number gestures. Five hand gestures that were similar in the alphabet 

and number gestures were excluded from ASL number gestures. An 

exception was made for the number gesture ‘4’. Rather than �exing the 

thumb, pinkie �nger was �exed to indicate the gesture ‘4’. Since this 

study involved only �exion and extension of the �ngers, ‘U’ and ‘R’ 

were excluded. �e reason for this is because of the adduction and 

abduction of the index and middle �nger to represent them which is 

out of the scope of this study. But to accommodate more information 

for CMC �exion, we made another exception to represent gesture “H” 

as gesture “V” with CMC �exion.

�us, these synthetic joint angular velocities are used to derive 

synthetic kinematic synergies, which were later used to reconstruct 

new hand gestures. To the best of our knowledge, this is one of the 

�rst attempts to extract synthetic kinematic synergies from 

Gaussian-function generated joint angular velocities apart from 

our previous study (Olikkal et  al., 2023). �e choice of using 

Gaussian functions to represent �nger �exion is motivated by the 

observation that the joint angular velocity pro�le of a simple �nger 

�exion tends to exhibit a bell-shaped, Gaussian-like velocity 

pro�le, e�ectively capturing the three phases of movements as 

indicated in Figure 1. By applying this Gaussian function to express 

�exion of �ngers, end postures of 28 hand gestures were generated. 

By using only a few synergies, hand gestures grouped under the 

testing tasks were reconstructed in the o�ine model. �e 

reconstructed and the recorded patterns of the hand gestures 

under the test data were then mapped into Mitra.

Of the di�erent mapping approaches such as joint-joint mapping, 

cartesian space mapping (Gioioso et al., 2013; Rosell and Suárez, 2015), 

joint-cartesian mapping (Meattini et  al., 2020) and object-based 

mapping (Gioioso et al., 2019) as elaborated in Salvietti (2018), in this 

study we adopt the joint-joint mapping approach which has shown 

promising results (Ciocarlie and Allen, 2009; Rosell and Suárez, 2015) 

for a direct relationship between the corresponding joints of the human 

hand and Mitra’s hand. Such joint-joint mapping approaches allows for 

high mapping capabilities for the hand gesture data used for this study.

Although a simple mapping of the 21 landmarks found from 

MediaPipe Hand landmark detector (Zhang et al., 2020) or learning 

from human demonstrations such as behavioral cloning (Torabi 

et  al., 2018; De Coninck et  al., 2020) to a robot can essentially 

perform the hand gestures. But in this study, we attempt to show 

that using only six synergies to control the 21 landmarks, 33 hand 

gestures can be executed. In approaches that involve learning from 

human demonstrations, one of the key challenges is to convert the 

human hand motion into robot hand motion. Assuming a 

humanoid with 21 joints, the 21 hand landmarks need to 

be translated to the robot to obtain a single hand gesture. Similarly, 

through behavioral cloning, motion retargeting of the 21 joints 

from human demonstration to robot needs to be  performed to 

achieve the same hand gesture. Moreover, multiple demonstrations 

of the same hand gesture need to be recorded and provided to the 

robot to learn that gesture. To collect these demonstrations of the 

same gesture requires long hours of intense human e�ort from 

FIGURE 9

5 subjects performing real-time ASL hand gesture detection using MediaPipe from Mitra’s RGB camera is shown here. These gestures are translated to 

Mitra instantly. It can be noted that under complex background with various illumination, the model was able to detect the hand gestures.
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setting the angle of multiple cameras to verifying and eliminating 

outlier data manually.

Approaches like deep learning and transfer learning have shown 

remarkable prowess in various applications, including hand gesture 

recognition and robotic control. For example, Zhan (2019) utilized 

deep 2D convolutional neural networks to classify 9 di�erent hand 

gestures in real-time using data augmentation strategies. Oyedotun and 

Khashman (2017) employed stacked denoising autoencoders and 

convolutional neural networks to classify and recognize 24 static ASL 

hand gestures. Wu et al. (2021) collected images of 10 hand gestures 

using RGB and the 21 joint points of hand using Leap Motion, 

implementing an e�ective transfer learning method to classify these 

gestures. Using MediaPipe hand landmark detection, Peral et al. (2022) 

was able to develop an e�cient and reliable deep learning approach for 

hand gesture recognition real-time that was translated to a robot. Safavi 

et al. (2024) provides a comprehensive overview of the various methods 

in human robot interaction, control, and coordination.

Despite these advancements, our study presents a novel approach 

using a synergy-based model to control hand gestures with increased 

e�ciency. By utilizing only six synergies to manage the 21 landmarks, 

our method can execute 33 distinct hand gestures. �is approach 

signi�cantly reduces the complexity and human e�ort involved in 

gesture replication. Unlike traditional methods, which requires multiple 

demonstrations and extensive data collection, our model can achieve 

accurate gesture execution with only one demonstration. �is minimizes 

the need for extensive human intervention and data collection, thereby 

increasing overall e�ciency. By leveraging a subset of the 21 landmarks, 

our approach proves a practical and e�cient alternative to deep learning 

and transfer learning methods. �us, this study extends the application 

of synergies in hand gesture control, highlighting their potential to 

simplify and improve robotic hand gesture replication.

In this study, Mitra has only one DoF for each digit, totaling 5 

DoF for the 5 digits. �e MCPs of these 5 digits can be controlled and 

based on the �exion, the MCPs move in a gradient fashion accounting 

for the �exion of PIPs and Distal Interphalangeal joints (DIPs). Each 

of the 10 hand gestures were demonstrated only once at the RGB 

camera of Mitra for the o�ine model and the end postures are 

generated from the MediaPipe framework. Kinematic synergies 

extracted from the training data (in Figure 7) of the generated joint 

angular velocities were then translated to the humanoid using the 

mapping function. However, since kinematic synergies are bipolar in 

nature, meaning they have both positive and negative activation 

potential accounting for �exion and extension, the initial reference 

state of Mitra hands were adjusted to accommodate for this property. 

�us, the MCPs of Mitra were set to 50% �exed as the initial reference 

state. Upon mapping the selected six synergies to Mitra, joints below 

this reference were indicated as negative activation potential while 

those above the reference state were indicated as positive activation 

potential. �ese mapped values were fed continuously to the MCPs of 

the humanoid. Similarly, reconstructed hand gestures using the 

synthetic kinematic synergies were translated in a continuous manner 

to the MCPs. As the MCPs moved, they brought together the PIPs and 

DIPs to the target position from the reference posture. Each of the 

achieved targeted positions of the 28-hand gesture are shown in 

Figure 8.

One of the key limitations in this study was observed when using 

the MediaPipe hand landmark detection model. MediaPipe hand 

landmark detection model had di�culty to identify the di�erent hand 

gestures when all the digits were close. Speci�cally, such di�culties 

were observed when identifying ‘M’, ‘N’, ‘O’ and ‘S’ hand gestures. It 

can be noted that in all these gestures, digits are extremely close to one 

another. �is implies that the dots and lines of the hand landmark 

model were unable to clearly identify the overlaps especially with the 

usage of thumb �exion and extension. �is might be because of the 

con�dence parameter of the detection model kept to 0.5.

In Figure 6, it is evident that the reconstruction errors of gesture 

Seven and Eight are notably higher than the other hand gestures. �is 

may potentially be attributed to the optimization algorithm attempting 

to accommodate all the di�erent gestures using only six synthetic 

kinematic synergies. �e complexity and variability of the gestures 

might pose challenges for the algorithm in �nding an optimal �t 

within the limited set of synergies, thereby leading to higher 

reconstruction error.

�us, the integration of Mitra with the synergy-based model not 

only enables the robot to learn the hand gestures from the test data but 

also facilitates the formation of a library of new synergies. �is library 

is generated based on the new hand gestures demonstrated to Mitra 

apart from the selected hand gestures.

7 Conclusion

Improving the dexterity of humanoid robot hands enables 

robots excel in performing intricate tasks with precision, including 

surgical assistance and patient care, as well as aiding individuals 

with disabilities or elderly person in their daily activities. �ese 

humanoid robots, equipped with re�ned hand dexterity can play 

pivotal role across industries that involve the manipulation of 

objects and materials.

In this paper, we  introduced a novel human-robot teaming 

approach for extracting synthetic kinematic synergies from end 

postures of hand gestures using a single RGB camera, MediaPipe 

framework, Gaussian functions and PCA. To the best of our 

knowledge, this study represents one of the �rst study in teaching a 

humanoid robot ASL hand gesture movements using kinematic 

synergies. Both o�ine and online models were developed in this study 

that incorporates 33 precon�gured ASL hand gestures covering a 

comprehensive range of �nger joints. �e current mapping of the 

synergies and reconstructed patterns to the robot may not be ideal, 

we  aim to widen the scope by including more e�cient mapping 

methods in the future. Enabling such synergy-based humanoid and 

robots have the potential to simplify the complexities associated with 

motion retargeting, o�ering promising applications in industrial 

robots and assistive robots.
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