
  

  

Abstract— Hand gestures are a natural way of communication 

and integrating them into robots could allow for more efficient 

human-robot collaboration. In recent years, researchers and 

roboticists have attempted to replicate human hand motor 

control using the concept of synergies. In this paper, we present 

a new approach to obtaining kinematic synergies from hand 

gestures using a single RGB camera. We capture real-time hand 

gestures using the MediaPipe framework and convert them to 

joint angular velocities. We then use dimensionality reduction to 

obtain kinematic synergies from the joint angular velocities. 

These synergies can be used to reconstruct new hand gestures. 

We translate these reconstructed hand movement patterns into 

a humanoid robot, Mitra. Our results show that it is possible to 

control most of the joints of the robot for performing hand 

gestures using only a few synergies. This is more efficient than 

other contemporary methods. Furthermore, robots and 

prosthetics that use synergy models could enable near-natural 

human-robot collaboration. 

 
Keywords—MediaPipe, hand kinematics, kinematic synergies, 

biomimetic robots, human robot interaction, bioinspired robots   

I. INTRODUCTION 

Bipedal locomotion in humans along with opposable 
thumb have promoted the extensive usage of hands for 
grasping, reaching, and dexterous manipulation. The human 
hand comprising of joints, tendons, muscles, and nerves 
coordinate together to achieve gestures, and activities that we 
perform in our daily life with ease. A simple kinematic model 
of human hand has more than 20 degrees of freedom (DoF) 
making it an extremely challenging problem to be replicated 
in robots. The study of human hand movements thus, has been 
a significant area of research for three decades and both 
researchers and roboticists have been actively trying to address 
this challenge of replicating human hand dexterity.  

With the advancement in technology, conventional devices 
for interaction with computers are replaced with more natural 
communication approaches such as oral communication and 
body language. Of these two methods, the most efficient 
means of natural communication is body language interaction. 
Of the different parts of the body, hands are the most effective 
non-verbal means for interaction. When we communicate with 
others, our hand movements tend to give more impact to 
messages. For example, for some gestures the coordinated 
movement of all four fingers and thumb are needed whereas 
for other gestures, individual finger movements are required. 
Thus, our range of hand gestures for communication extends 
from simple hand movements to complex hand movements. 
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By combining hand gestures as an interaction tool and the 
ability to classify hand gestures into meaningful 
symbols/values, more intuitive human-robot interaction (HRI) 
and human-computer interaction (HCI) interfaces can be 
developed that can potentially assist individuals with motor 
impairments. Hand gesture-based interaction systems have 
thus become a magnetic area of research since its introduction 
in 1970s. A myriad applications of human computer 
interactive systems have been developed using hand gesture 
control such as sign language recognition [1], improving 
motor skills [2] and user guide interactive applications [3]. 

Because of the complex anatomy of the human hand, and 

the underlying joints and muscles, there is a huge possibility 

to perform one movement task such as picking up a bottle of 

water, using several different coordinated combinations of 

muscles and joints and there are multiple ways to perform the 

same movement. But how does the human brain choose which 

combination of muscles and joints to be recruited to perform 

such tasks? Modularity hypothesis introduced by Bernstein [4] 

was able to address most of the challenges of the large DoFs 

and thereby the large number of redundant choices for 

performing a simple task. The neuroscientific reasoning for 

this strategy is the finding that, despite the complexity of the 

University of Maryland Baltimore County, Baltimore, MD, 21220, USA (e-

mail: rvinjam1@umbc.edu). A. Satyanarayana is with City Tech at CUNY. 
N. M. Kakoty is with Tezpur University, Assam, India.  

 

Learning Hand Gestures using Synergies in a Humanoid Robot 

Parthan Olikkal, Student Member, IEEE, Dingyi Pei, Student Member, IEEE, Bharat Kashyap Karri, 

Ashwin Satyanarayana, Nayan M. Kakoty, Senior Member, IEEE, and                                    

Ramana Vinjamuri, Senior Member, IEEE 

 
Fig. 1. Twenty-one hand-knuckle landmarks obtained from MediaPipe and 
their corresponding anatomical areas are illustrated here. Each dot 

represents the joints and line represents the Euclidean distance from each 

joint. Corresponding labels in the illustration are 0. Wrist, 1. CMC-Thumb, 
2. MCP-Thumb, 3. IP-Thumb, 4. TIP-Thumb, 5. MCP-Index Finger, 6. 

PIP-Index Finger, 7. DIP-Index Finger, 8. TIP-Index Finger, 9. MCP-

Middle Finger, 10. PIP-Middle Finger, 11. DIP-Middle Finger, 12. TIP-
Middle Finger, 13. MCP-Ring Finger, 14. PIP-Ring Finger, 15. DIP-Ring 

Finger, 16. TIP-Ring Finger, 17. MCP-Pinky, 18. PIP-Pinky, 19. DIP-

Pinky, 20. TIP-Pinky 
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human hand, fewer variables can adequately account for most 

of the variation in patterns of human hand configurations and 

movements. Bernstein in his modularity hypothesis called 

these variables as synergies. Kinematic and muscle synergies 

obtained from joint kinematics and muscle movements have 

gained much popularity among the other investigated 

synergies. Here, in this study, we would be focusing on 

kinematic synergies obtained from joint kinematics while 

performing hand movements. 
 The attempt to execute a targeted motor action such as 
picking up a bottle of water can be divided into reaching, 
grasping/manipulation and release phases as noted in [5]. The 
angular joint velocity profiles of these three phases collected 
from joint recording devices such as CyberGlove are well 
represented and investigated in [5]–[9]. These studies 
reinforce that when the subject attempts to reach a target from 
an initial reference position, a rise in angular velocity profile 
can be observed in the reaching phase. During the grasping 
phase, a steady angular velocity profile is noted and finally 
during the release phase, the angular velocity falls to the initial 
reference state as elaborated in [5]. Upon close observation, as 
indicated in [5], it can be noticed that for each gesture, angular 
joint velocity profile was collected from sensors that 
correspond to each of the finger joints.  

 Emphasizing on only one joint, it can be observed that the 
angular velocity profile for any movement can be split 
similarly into a start, target, and return phases where the target 
phase represents the flexion or extension of the joint to achieve 
a desired state along its DoF and the start and return phases 
represents the initial state of that joint. When performing any 
hand gestures, the angular joint velocity profiles of these joints 
tend to form a gaussian curve as the target state is achieved. 
Thus, we take inspiration from the above studies that 
substantiates this observation of a gaussian curve made by 
each joint during any sort of hand movements.             

Technological breakthroughs have encouraged numerous 
robotic devices to mimic human arm and finger movements by 
observing the kinematic patterns. These coordinated kinematic 
patterns are usually extracted and embedded in these devices 
to assist in performing activities of daily living tasks. Several 
promising rehabilitative exoskeletons using kinematic 
synergies are detailed in [10]. However, not many studies have 
been conducted to understand the efficiency of kinematic 
synergies in humanoids. Hauser et al., in their study [11] was 
able to use few non-linear kinematic synergies from lower 
body to reduce the balance control problem to linear in a 
humanoid robot during slow movements. [12] validates the 
human inspired kinematic synergy as a potential candidate for 
balance control among the group of control concepts. To the 
best of our knowledge, humanoid robots that perform upper 
limb movements using kinematic synergies have not yet been 
explored. Unlike the humanoid, Pepper [13], through this 
study we attempt to provide a preliminary analysis on using 
biologically inspired human kinematic synergies on a 
humanoid robot for hand movements. 

Hand gesture recognition based on the extracted features 
and different recognition approaches are described in [3]. 
Conventional motion capturing sensors and devices are now 
replaced with intuitive frameworks which simplify gesture 
recognition applications. MediaPipe presented by Google is 

one of the open-source frameworks replacing conventional 
methods that offers several machine learning solutions. From 
the several solutions provided for vision tasks such as object 
detection, face detection, gesture recognition, hand landmark 
detection, for this paper, we chose hand landmark detector. 
MediaPipe hand landmark detector enables to identify the 
hand landmarks in an image. Thus, this model allows one to 
apply graphic effects over the hand image and pinpoint key 
hand regions. Using such a framework for gesture recognition 
helps not only identify hand landmarks in complex 
environments with different illumination, backgrounds but 
also enable adequate focus and attention in deriving joint 
movement kinematics and postures.  

Although hand gesture recognition has been a compelling 
field of research, to our understanding only a few studies have 
used kinematic synergies for hand gesture classification and 
recognition. In this paper, we aim to use kinematic synergies 
obtained from end postures of hand gestures to predict end 
postures of new hand gestures. These kinematic synergies thus 
found, and the new hand gestures predicted will all be 
transferred to a humanoid robot to observe and compared the 
reconstruction patterns. Results from this paper may provide 
new insights to understanding hand kinematic synergies which 
may potentially help improve the design of humanoid robots 
and rehabilitative robotic devices, prosthetics, and 
exoskeletons.  

II. METHODS AND ANALYSIS 

A. MediaPipe Framework 

As described by Zhang [14], using a single RGB camera, a 
real-time hand gesture recognition system has been designed 
that can predict the skeleton of a human hand. MediaPipe hand 
landmark detector makes use of two modes – a palm detector 
model and a hand landmark model. The palm detector model 
works on detecting the palm by analyzing the entire image and 
produces the image with an oriented binding frame of the 
hand. The hand landmark takes in the cropped binding box 
image as input and through regression returns 3D hand key 
points on the image. The model returns 21 key points on the 
3D hand-knuckle skeletal image on the hand. Each of the 
identified landmark is composed of distinct relative x, y, and z 
coordinates where x and y are normalized by image width and 
height whereas z represents the depth of the landmark. These 
were illustrated in Fig. 1 with dots as joints and lines represent 

 
Fig. 2. Ten hand gestures are illustrated here. Each pie represents one hand 

gesture with 11 sensors and each sector represents one sensor. Those 

sensors that are activated are shaded in blue and their corresponding finger 
representation is shown in the top right posture.  
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Euclidean distance. Euclidean distance measure is calculated 
between each landmark that act as a condition on each of the 
dots for identifying any hand gesture. 

B. The Humanoid Robot – Mitra 

For this study, a humanoid robot, Mitra (Invento Research 
Inc, Plano TX) was included. Mitra is a custom build robot 
with 21 DoFs – Fingers (5), Wrist (1), Elbow (1), Shoulders 
(2) per arm with Head (1) and Base (2) as shown in Fig. 5. 
Fitted on top of the head is an RGB camera with a resolution 
of 1280 × 720 pixels for capturing real-time images and 
videos. The right-hand digits are provided with additional 
support to allow for grasping heavy objects. It also includes a 
LiDAR system to map the surroundings and provides several 
ways to connect such as voice commands, web interfaces, 
touch screen, joystick, and scripts. For hand gesture modeling, 
scripting method was used to communicate with Mitra. 

C. Experiment 

In this study, hand gestures were identified using 
MediaPipe hand landmark detection model from an RGB 
camera mounted on Mitra when shown. Once the landmarks 
were identified, based on the Euclidean distance from the 
wrist, the open state or closed state of thumb, index, middle, 
ring, and pinky fingers were found. Based on the open and 
closed state of the digits, hand gestures are identified. 10 active 
hand gestures – okay, open palm, three, peace, up, rock on, 
hang loose, four, pinch middle, pinch ring (where the thumb 
meets the middle/ring finger) were included in this study. 
These hand gestures were shown to Mitra from an initial 
reference posture of a relaxed idle hand posture. 

D. Derivation of Synergies 

 

Synthetic Angular Joint Velocities 
From the hand gestures shown to Mitra, the end postures 

of each of the gesture was converted to angular joint velocities 
using a gaussian function as shown in the equation below from 
the reference posture. 끫欲 =

1√2 끫欖끫欜2 끫殤− 12끫欜2(끫毊−끫欎)2
 

Here, 끫欲 is the generated gaussian curve, 끫欜 is the standard 
deviation and 끫欎 is the mean of 끫毊 formed from a sample of 
10000 randomly generated data points. A total of 11 such 
velocity profiles were created corresponding to ten joints of 
the hand and one carpometacarpal joint of wrist – 
metacarpophalangeal (MCP) and interphalangeal (IP) joints of 
the thumb and MCP and proximal interphalangeal (PIP) joints 
of the other four digits along with an additional sensor to 
indicate the carpometacarpal (CMC) joint of the wrist as 
shown in Fig. 2. 

Synthetic Kinematic Synergies 

Joint angular velocities from the end postures of 10 hand 
gestures are synthetically generated using the gaussian 
equation. For those gestures that involve certain joint flexion, 
corresponding sensors out of 11 were applied with gaussian 
function. Once the angular joint velocities were generated for 
the selected 10 hand gestures, the dataset was split into training 
set consisting of 7 gesture tasks and testing set with 3 gesture 
tasks. Following [7], an angular velocity matrix was created 

using the gestures under the training set such that each of the 
11 sensors were cascaded one after the other. Thus, each row 
of the angular velocity matrix represents one gesture.  

From the several models available, we used both time-
invariant and time-variant synergy models. Similar to our 
previous works [8], [15], it was noted here also that time-
variant synergy model provided the best results, hence for this 
paper we make use of time-variant synergy model. Principal 
component analysis (PCA) was applied on the above cascaded 
matrix to obtain PCs that accounted for maximum variance. 
To find the optimal number of PCs, based on our prior works 
[8], [15], we chose those PCs that accommodated to 0.9 (90%) 
of total variance using the equation expressed as  끫欌1 + 끫欌2 +⋯+ 끫欌끫殴끫欌1 + 끫欌2 + ⋯+  끫欌끫殶  ≥ 0.9 

Where 끫欌 represents the magnitude of the corresponding 
PCs and 끫殴 represents the optimal number of synergies out of 끫殶 available synergies. When this fraction reaches to 0.9, the 
corresponding 끫殴 identifies as the optimal number to be 
chosen. These chosen optimal 끫殴 PCs were termed as synthetic 
kinematic synergies.  

E. Reconstruction of Hand Gestures 

The angular joint velocities of 3 gesture tasks grouped 
under the testing set were reconstructed using the derived 
synthetic kinematic synergies. Reconstruction of the angular 
joint velocities were performed by using 끫殲1-norm 
minimization detailed in [7]. Reconstruction error between the 
synthetic angular velocities (끫殀끫殬) and the reconstructed patterns 
(끫殖) using time-variant synergies were determined as follows. 끫殤끫殤끫殤 =  

∑ (끫殀끫殬  −  끫殖)2끫殬 ∑ 끫殀끫殬2끫殬  

F. Translating Hand Gestures to Mitra 

The reconstructed pattern of gestures, the obtained three 
synthetic kinematic synergies, and the test hand gestures were 
further translated into Mitra. A moving average function and a 

 
Fig. 3. Mean reconstruction error obtained while reconstructing the 10 

hand gestures using synthetic kinematic synergies is illustrated here. 
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scaling coefficient was applied to map to the joints of Mitra. 
Continuous input from the reconstructed patterns and test data 
were given to Mitra during the execution. 

III. RESULTS  

From the 10 synthetic joint angular velocities generated 
through the gaussian function the end postures of the 10 hand 
gestures were obtained; three synthetic kinematic synergies 
were extracted from those hand gestures grouped under the 
training set using PCA. 10-fold cross validation was 
performed, reducing the variance of the performance of the 
time-variant synergy model. On an average, for all the 10-fold 
cross validation in training set, the first synergy accounted for 
about 57% of the total variance, the second synergy accounted 
for 20% of the variance while first three synergies together 
accounted to 90%. It can be noted that, similar to [16] the first 
synergy was able to account for 50% of the variance and 
recruiting additional synergies increased the variance. This 
indicates that from the synthetic joint angular velocities for 7 
hand gestures, a relatively small set of synergies could 
adequately represent the joint movements behind the hand 
gestures.      

Reconstruction of the end posture of the test hand gestures 
were performed using synthetic kinematic synergies. By 
implementing 10-fold cross validation, each hand gesture 
appeared in the testing set thrice. As mentioned previously, 
reconstruction of the test hand gesture patterns was compared 
with the synthetically generated joint angular velocities for 
that hand gesture using least squared error. Fig. 3 represents 
the reconstruction error of 10 hand gestures reconstructed 
using synthetic kinematic synergies across all 10-fold cross 
validation. The reconstructed patterns of the 10 hand gestures 
were then mapped to Mitra as shown in Fig. 5. As the 
reconstruction error is significantly smaller and of the 
magnitude of 10−4, no significant differences were found 
between the reconstructed hand gestures and generated 
angular joint velocities for that particular gesture. Synthetic 

kinematic synergies extracted from the training set, as shown 
in Fig. 4, were also mapped to Mitra. During the mapping of 
the synergies, Mitra hands were flexed to 50% which acted an 
initial reference posture. The movements were mapped such 
that any value above 50% were considered as flexion and any 
value below 50% would be considered as extension.  

It can be observed from Fig. 4 that the wrist CMC does not 
have any movements compared to other joints for the three 
extracted synthetic kinematic synergies through PCA. This is 
potentially because the hand gestures selected for the 
experiment does not involve any wrist flexion or extension. 
Additionally, from Fig. 4 it can be noted that the angular joint 
velocity profile of the first synergy involves only flexion of 
varying amplitude, whereas the other two synergy profiles 
contains both flexion and extension but of smaller amplitudes. 
This reinforces the results mentioned in [16] and our previous 
studies that the synergy with the maximum variance may 
potentially account for the majority of the movement profile 
followed by the next synergy with the second maximum 
variance. Combining these synergies as a weighted linear 
combination, the end postures of the hand gestures were 
reconstructed with mean reconstruction error as shown in Fig. 
3.  

IV. DISCUSSION 

Numerous investigations [17]–[20] have been done to 
show that synergies are not a mathematical representation but 
rather an efficient tool for comprehending how the central 
nervous system (CNS) organizes motor control and 
coordination. As a result of such studies, promising results 
[21]–[25] have led to the use of synergies in several 
applications including robotics. 

This paper presents an approach to generate synthetic joint 
angular velocities from end postures of 10 hand gestures from 
a single RGB camera and then derives synthetic kinematic 
synergies which were later used to reconstruct new hand 
gestures. To the best of our knowledge, this is one of the first 

 
Fig. 4. Angular joint velocities of first three synthetic kinematic synergies of the 11 joints extracted from the training data is illustrated here.  

Here, T-Thumb, I-Index, M-Middle, R-Ring, P-Pinky, MCP-Metacarpophalangeal, PIP- Proximal Interphalangeal, IP-Interphalangeal, CMC-

Carpometacarpal joints  
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attempts to extract synthetic kinematic synergies from human 
inspired gaussian function generated angular joint velocities. 
When a simple finger flexion is performed, we can notice that 
the angular joint velocity profile of that flexion tends to 
represent a gaussian function, a bell-shaped velocity profile 
that well accounts for the three phases of movement profile. 
By employing such gaussian functions to represent flexion of 
fingers, end postures of 10 hand gestures were generated. By 
using only a few synergies, hand gestures under the testing task 
were reconstructed. This reconstruction and the recorded 
patterns for the hand gestures under test data were then 
mapped into Mitra.  

Of the different mapping approaches such as joint-joint 
mapping, cartesian space mapping [26], [27], joint-cartesian 
mapping [28] and object-based mapping [29] as elaborated in 
[30], in this study we adopted joint-joint mapping approach 
which has shown promising results [26], [31] for a direct 
relationship between the corresponding joints of the human 
hand and Mitra’s hand. Such joint-joint mapping approach 
allows for high mapping capabilities for the hand gesture data 
used for this study.  

Through a simple mapping of the 21 landmarks found from 
MediaPipe Hand landmark detector [14] or learning from 
human demonstrations such as behavioral cloning [32], [33] to 
a robot can essentially perform the 10 hand gestures. This 
study attempts to show that using synergies, a subset of the 21 
landmarks can be used to execute the selected hand gestures. 
In learning human demonstration, one of the key challenges is 
to convert the human hand motion into robot hand motion. 
Assuming a humanoid with 21 joints, the 21 hand landmarks 
need to be translated the robot to get a single hand gesture. 
Similarly, through behavioral cloning, motion retargeting of 
the 21 joints from human demonstration to robot should be 
performed to achieve the same hand gesture. Moreover, 
multiple demonstrations of the same gesture need to be 
recorded and provided to the robot to learn that gesture. To 
collect these demonstrations of the same gesture requires long 
hours of intense human effort from setting the angle of the 
camera to verifying and eliminating outlier data manually. But, 

through a synergy-based model, by using only a subset of the 
21 landmarks, similar hand gestures can be executed by the 
robot with only one demonstration of the same hand gesture.  

In this study, Mitra has only one DoF for each of the digit 
thus a total of 5 DoF for the 5 digits. MCPs of these 5 digits 
can be controlled and based on the flexion, the MCPs move in 
a gradient fashion accounting for the flexion of PIPs and DIPs. 
Each of the 10 hand gestures were demonstrated only once at 
the RGB camera of Mitra and the end postures are generated 
from the MediaPipe framework. Kinematic synergies 
extracted from the training data (in Fig. 5) of the generated 
joint angular velocities were also translated to the humanoid 
using a mapping function. But as kinematic synergies are 
bipolar in nature, meaning it has both positive and negative 
activation potential accounting for flexion and extension, we 
changed the initial reference state to accommodate this 
property of kinematic synergies. Thus, the MCPs of Mitra 
were set to 50% flexed as the initial reference state. Upon 
mapping the selected three synergies to Mitra, those joints that 
were below this reference were able to indicate the negative 
activation potential whereas those joints that were above the 
reference state were able to indicate the positive activation 
potential. These mapped values were fed continuously to the 
MCPs of the humanoid. Similarly, reconstructed hand gestures 
using the synthetic kinematic synergies were translated in a 
continuous fashion to the MCPs. As the MCPs moved, it 
brought together PIPs and DIPs to the target position from the 
initial reference posture. Each of the achieved targeted position 
of the 10 hand gestures are shown in Fig. 5.       

Thus, by integrating Mitra with the synergy-based model, 
not only can the robot learn the hand gestures from the test 
data, but also a library of new synergies can be formed based 
on the new hand gestures shown to Mitra apart from the 
selected hand gestures.  

V. CONCLUSION 

In this paper, we propose a new method to extract synthetic 
kinematic synergies from end postures of hand gestures from 
a single RGB camera using MediaPipe, gaussian function and 

 
Fig. 5. Reconstructed hand gestures represented in Mitra using first three synthetic kinematic synergies for all the 10-hand gestures. 
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PCA. To the best of our knowledge, this is one of the first study 
to translate kinematic synergies into a humanoid robot to 
perform hand gesture movements. Currently, an offline model 
is implemented that takes 10 preconfigured hand gestures that 
includes most of the finger joints. In the near future, we will 
extend these results to an online model which imitates the hand 
gestures in real-time and include flexion and extension of the 
wrist joint as well. Moreover, we widen the scope to include 
capturing continuous hand gesture movements and real-time 
mapping into the humanoid. Enabling such synergy-based 
humanoid and robots can reduce the complexity involved in 
motion retargeting and potentially enable improvements in 
industrial robots and assistive robots. 
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