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Abstract— Hand gestures are a natural way of communication
and integrating them into robots could allow for more efficient
human-robot collaboration. In recent years, researchers and
roboticists have attempted to replicate human hand motor
control using the concept of synergies. In this paper, we present
a new approach to obtaining kinematic synergies from hand
gestures using a single RGB camera. We capture real-time hand
gestures using the MediaPipe framework and convert them to
joint angular velocities. We then use dimensionality reduction to
obtain kinematic synergies from the joint angular velocities.
These synergies can be used to reconstruct new hand gestures.
We translate these reconstructed hand movement patterns into
a humanoid robot, Mitra. Our results show that it is possible to
control most of the joints of the robot for performing hand
gestures using only a few synergies. This is more efficient than
other contemporary methods. Furthermore, robots and
prosthetics that use synergy models could enable near-natural
human-robot collaboration.

Keywords—MediaPipe, hand kinematics, kinematic synergies,
biomimetic robots, human robot interaction, bioinspired robots

I. INTRODUCTION

Bipedal locomotion in humans along with opposable
thumb have promoted the extensive usage of hands for
grasping, reaching, and dexterous manipulation. The human
hand comprising of joints, tendons, muscles, and nerves
coordinate together to achieve gestures, and activities that we
perform in our daily life with ease. A simple kinematic model
of human hand has more than 20 degrees of freedom (DoF)
making it an extremely challenging problem to be replicated
in robots. The study of human hand movements thus, has been
a significant area of research for three decades and both
researchers and roboticists have been actively trying to address
this challenge of replicating human hand dexterity.

With the advancement in technology, conventional devices
for interaction with computers are replaced with more natural
communication approaches such as oral communication and
body language. Of these two methods, the most efficient
means of natural communication is body language interaction.
Of the different parts of the body, hands are the most effective
non-verbal means for interaction. When we communicate with
others, our hand movements tend to give more impact to
messages. For example, for some gestures the coordinated
movement of all four fingers and thumb are needed whereas
for other gestures, individual finger movements are required.
Thus, our range of hand gestures for communication extends
from simple hand movements to complex hand movements.
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Fig. 1. Twenty-one hand-knuckle landmarks obtained from MediaPipe and
their corresponding anatomical areas are illustrated here. Each dot
represents the joints and line represents the Euclidean distance from each
joint. Corresponding labels in the illustration are 0. Wrist, 1. CMC-Thumb,
2. MCP-Thumb, 3. IP-Thumb, 4. TIP-Thumb, 5. MCP-Index Finger, 6.
PIP-Index Finger, 7. DIP-Index Finger, 8. TIP-Index Finger, 9. MCP-
Middle Finger, 10. PIP-Middle Finger, 11. DIP-Middle Finger, 12. TIP-
Middle Finger, 13. MCP-Ring Finger, 14. PIP-Ring Finger, 15. DIP-Ring
Finger, 16. TIP-Ring Finger, 17. MCP-Pinky, 18. PIP-Pinky, 19. DIP-
Pinky, 20. TIP-Pinky

By combining hand gestures as an interaction tool and the
ability to classify hand gestures into meaningful
symbols/values, more intuitive human-robot interaction (HRI)
and human-computer interaction (HCI) interfaces can be
developed that can potentially assist individuals with motor
impairments. Hand gesture-based interaction systems have
thus become a magnetic area of research since its introduction
in 1970s. A myriad applications of human computer
interactive systems have been developed using hand gesture
control such as sign language recognition [1], improving
motor skills [2] and user guide interactive applications [3].

Because of the complex anatomy of the human hand, and
the underlying joints and muscles, there is a huge possibility
to perform one movement task such as picking up a bottle of
water, using several different coordinated combinations of
muscles and joints and there are multiple ways to perform the
same movement. But how does the human brain choose which
combination of muscles and joints to be recruited to perform
such tasks? Modularity hypothesis introduced by Bernstein [4]
was able to address most of the challenges of the large DoFs
and thereby the large number of redundant choices for
performing a simple task. The neuroscientific reasoning for
this strategy is the finding that, despite the complexity of the
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human hand, fewer variables can adequately account for most
of the variation in patterns of human hand configurations and
movements. Bernstein in his modularity hypothesis called
these variables as synergies. Kinematic and muscle synergies
obtained from joint kinematics and muscle movements have
gained much popularity among the other investigated
synergies. Here, in this study, we would be focusing on
kinematic synergies obtained from joint kinematics while
performing hand movements.

The attempt to execute a targeted motor action such as
picking up a bottle of water can be divided into reaching,
grasping/manipulation and release phases as noted in [5]. The
angular joint velocity profiles of these three phases collected
from joint recording devices such as CyberGlove are well
represented and investigated in [5]-[9]. These studies
reinforce that when the subject attempts to reach a target from
an initial reference position, a rise in angular velocity profile
can be observed in the reaching phase. During the grasping
phase, a steady angular velocity profile is noted and finally
during the release phase, the angular velocity falls to the initial
reference state as elaborated in [5]. Upon close observation, as
indicated in [5], it can be noticed that for each gesture, angular
joint velocity profile was collected from sensors that
correspond to each of the finger joints.

Emphasizing on only one joint, it can be observed that the
angular velocity profile for any movement can be split
similarly into a start, target, and return phases where the target
phase represents the flexion or extension of the joint to achieve
a desired state along its DoF and the start and return phases
represents the initial state of that joint. When performing any
hand gestures, the angular joint velocity profiles of these joints
tend to form a gaussian curve as the target state is achieved.
Thus, we take inspiration from the above studies that
substantiates this observation of a gaussian curve made by
each joint during any sort of hand movements.

Technological breakthroughs have encouraged numerous
robotic devices to mimic human arm and finger movements by
observing the kinematic patterns. These coordinated kinematic
patterns are usually extracted and embedded in these devices
to assist in performing activities of daily living tasks. Several
promising rehabilitative exoskeletons using kinematic
synergies are detailed in [10]. However, not many studies have
been conducted to understand the efficiency of kinematic
synergies in humanoids. Hauser et al., in their study [11] was
able to use few non-linear kinematic synergies from lower
body to reduce the balance control problem to linear in a
humanoid robot during slow movements. [12] validates the
human inspired kinematic synergy as a potential candidate for
balance control among the group of control concepts. To the
best of our knowledge, humanoid robots that perform upper
limb movements using kinematic synergies have not yet been
explored. Unlike the humanoid, Pepper [13], through this
study we attempt to provide a preliminary analysis on using
biologically inspired human kinematic synergies on a
humanoid robot for hand movements.

Hand gesture recognition based on the extracted features
and different recognition approaches are described in [3].
Conventional motion capturing sensors and devices are now
replaced with intuitive frameworks which simplify gesture
recognition applications. MediaPipe presented by Google is

one of the open-source frameworks replacing conventional
methods that offers several machine learning solutions. From
the several solutions provided for vision tasks such as object
detection, face detection, gesture recognition, hand landmark
detection, for this paper, we chose hand landmark detector.
MediaPipe hand landmark detector enables to identify the
hand landmarks in an image. Thus, this model allows one to
apply graphic effects over the hand image and pinpoint key
hand regions. Using such a framework for gesture recognition
helps not only identify hand landmarks in complex
environments with different illumination, backgrounds but
also enable adequate focus and attention in deriving joint
movement kinematics and postures.

Although hand gesture recognition has been a compelling
field of research, to our understanding only a few studies have
used kinematic synergies for hand gesture classification and
recognition. In this paper, we aim to use kinematic synergies
obtained from end postures of hand gestures to predict end
postures of new hand gestures. These kinematic synergies thus
found, and the new hand gestures predicted will all be
transferred to a humanoid robot to observe and compared the
reconstruction patterns. Results from this paper may provide
new insights to understanding hand kinematic synergies which
may potentially help improve the design of humanoid robots
and rehabilitative robotic devices, prosthetics, and
exoskeletons.

II. METHODS AND ANALYSIS

A. MediaPipe Framework

As described by Zhang [14], using a single RGB camera, a
real-time hand gesture recognition system has been designed
that can predict the skeleton of a human hand. MediaPipe hand
landmark detector makes use of two modes — a palm detector
model and a hand landmark model. The palm detector model
works on detecting the palm by analyzing the entire image and
produces the image with an oriented binding frame of the
hand. The hand landmark takes in the cropped binding box
image as input and through regression returns 3D hand key
points on the image. The model returns 21 key points on the
3D hand-knuckle skeletal image on the hand. Each of the
identified landmark is composed of distinct relative X, y, and z
coordinates where x and y are normalized by image width and
height whereas z represents the depth of the landmark. These
were illustrated in Fig. 1 with dots as joints and lines represent
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Fig. 2. Ten hand gestures are illustrated here. Each pie represents one hand
gesture with 11 sensors and each sector represents one sensor. Those
sensors that are activated are shaded in blue and their corresponding finger
representation is shown in the top right posture.
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Euclidean distance. Euclidean distance measure is calculated
between each landmark that act as a condition on each of the
dots for identifying any hand gesture.

B. The Humanoid Robot — Mitra

For this study, a humanoid robot, Mitra (Invento Research
Inc, Plano TX) was included. Mitra is a custom build robot
with 21 DoFs — Fingers (5), Wrist (1), Elbow (1), Shoulders
(2) per arm with Head (1) and Base (2) as shown in Fig. 5.
Fitted on top of the head is an RGB camera with a resolution
of 1280 x 720 pixels for capturing real-time images and
videos. The right-hand digits are provided with additional
support to allow for grasping heavy objects. It also includes a
LiDAR system to map the surroundings and provides several
ways to connect such as voice commands, web interfaces,
touch screen, joystick, and scripts. For hand gesture modeling,
scripting method was used to communicate with Mitra.

C. Experiment

In this study, hand gestures were identified using
MediaPipe hand landmark detection model from an RGB
camera mounted on Mitra when shown. Once the landmarks
were identified, based on the Euclidean distance from the
wrist, the open state or closed state of thumb, index, middle,
ring, and pinky fingers were found. Based on the open and
closed state of the digits, hand gestures are identified. 10 active
hand gestures — okay, open palm, three, peace, up, rock on,
hang loose, four, pinch middle, pinch ring (where the thumb
meets the middle/ring finger) were included in this study.
These hand gestures were shown to Mitra from an initial
reference posture of a relaxed idle hand posture.

D. Derivation of Synergies

Synthetic Angular Joint Velocities

From the hand gestures shown to Mitra, the end postures
of each of the gesture was converted to angular joint velocities
using a gaussian function as shown in the equation below from
the reference posture.

1
V2 mo?

Here, ¢ is the generated gaussian curve, o is the standard
deviation and p is the mean of x formed from a sample of
10000 randomly generated data points. A total of 11 such
velocity profiles were created corresponding to ten joints of
the hand and one carpometacarpal joint of wrist —
metacarpophalangeal (MCP) and interphalangeal (IP) joints of
the thumb and MCP and proximal interphalangeal (PIP) joints
of the other four digits along with an additional sensor to
indicate the carpometacarpal (CMC) joint of the wrist as
shown in Fig. 2.
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Synthetic Kinematic Synergies

Joint angular velocities from the end postures of 10 hand
gestures are synthetically generated using the gaussian
equation. For those gestures that involve certain joint flexion,
corresponding sensors out of 11 were applied with gaussian
function. Once the angular joint velocities were generated for
the selected 10 hand gestures, the dataset was split into training
set consisting of 7 gesture tasks and testing set with 3 gesture
tasks. Following [7], an angular velocity matrix was created
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Fig. 3. Mean reconstruction error obtained while reconstructing the 10
hand gestures using synthetic kinematic synergies is illustrated here.

using the gestures under the training set such that each of the
11 sensors were cascaded one after the other. Thus, each row
of the angular velocity matrix represents one gesture.

From the several models available, we used both time-
invariant and time-variant synergy models. Similar to our
previous works [8], [15], it was noted here also that time-
variant synergy model provided the best results, hence for this
paper we make use of time-variant synergy model. Principal
component analysis (PCA) was applied on the above cascaded
matrix to obtain PCs that accounted for maximum variance.
To find the optimal number of PCs, based on our prior works
[81, [15], we chose those PCs that accommodated to 0.9 (90%)
of total variance using the equation expressed as

/‘11+ )12+"'+ /1771

=09
)11+ )12+"'+ /177.

Where A represents the magnitude of the corresponding
PCs and m represents the optimal number of synergies out of
n available synergies. When this fraction reaches to 0.9, the
corresponding m identifies as the optimal number to be
chosen. These chosen optimal m PCs were termed as synthetic
kinematic synergies.

E. Reconstruction of Hand Gestures

The angular joint velocities of 3 gesture tasks grouped
under the testing set were reconstructed using the derived
synthetic kinematic synergies. Reconstruction of the angular
joint velocities were performed by wusing [;-norm
minimization detailed in [7]. Reconstruction error between the
synthetic angular velocities (M;) and the reconstructed patterns
(X) using time-variant synergies were determined as follows.

XM — X)?
o LiM?

F. Translating Hand Gestures to Mitra

err

The reconstructed pattern of gestures, the obtained three
synthetic kinematic synergies, and the test hand gestures were
further translated into Mitra. A moving average function and a
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Fig. 4. Angular joint velocities of first three synthetic kinematic synergies of the 11 joints extracted from the training data is illustrated here.
Here, T-Thumb, I-Index, M-Middle, R-Ring, P-Pinky, MCP-Metacarpophalangeal, PIP- Proximal Interphalangeal, IP-Interphalangeal, CMC-

Carpometacarpal joints

scaling coefficient was applied to map to the joints of Mitra.
Continuous input from the reconstructed patterns and test data
were given to Mitra during the execution.

III. RESULTS

From the 10 synthetic joint angular velocities generated
through the gaussian function the end postures of the 10 hand
gestures were obtained; three synthetic kinematic synergies
were extracted from those hand gestures grouped under the
training set using PCA. 10-fold cross validation was
performed, reducing the variance of the performance of the
time-variant synergy model. On an average, for all the 10-fold
cross validation in training set, the first synergy accounted for
about 57% of the total variance, the second synergy accounted
for 20% of the variance while first three synergies together
accounted to 90%. It can be noted that, similar to [16] the first
synergy was able to account for 50% of the variance and
recruiting additional synergies increased the variance. This
indicates that from the synthetic joint angular velocities for 7
hand gestures, a relatively small set of synergies could
adequately represent the joint movements behind the hand
gestures.

Reconstruction of the end posture of the test hand gestures
were performed using synthetic kinematic synergies. By
implementing 10-fold cross validation, each hand gesture
appeared in the testing set thrice. As mentioned previously,
reconstruction of the test hand gesture patterns was compared
with the synthetically generated joint angular velocities for
that hand gesture using least squared error. Fig. 3 represents
the reconstruction error of 10 hand gestures reconstructed
using synthetic kinematic synergies across all 10-fold cross
validation. The reconstructed patterns of the 10 hand gestures
were then mapped to Mitra as shown in Fig. 5. As the
reconstruction error is significantly smaller and of the
magnitude of 107%, no significant differences were found
between the reconstructed hand gestures and generated
angular joint velocities for that particular gesture. Synthetic

kinematic synergies extracted from the training set, as shown
in Fig. 4, were also mapped to Mitra. During the mapping of
the synergies, Mitra hands were flexed to 50% which acted an
initial reference posture. The movements were mapped such
that any value above 50% were considered as flexion and any
value below 50% would be considered as extension.

It can be observed from Fig. 4 that the wrist CMC does not
have any movements compared to other joints for the three
extracted synthetic kinematic synergies through PCA. This is
potentially because the hand gestures selected for the
experiment does not involve any wrist flexion or extension.
Additionally, from Fig. 4 it can be noted that the angular joint
velocity profile of the first synergy involves only flexion of
varying amplitude, whereas the other two synergy profiles
contains both flexion and extension but of smaller amplitudes.
This reinforces the results mentioned in [16] and our previous
studies that the synergy with the maximum variance may
potentially account for the majority of the movement profile
followed by the next synergy with the second maximum
variance. Combining these synergies as a weighted linear
combination, the end postures of the hand gestures were
reconstructed with mean reconstruction error as shown in Fig.
3.

IV. DISCUSSION

Numerous investigations [17]-[20] have been done to
show that synergies are not a mathematical representation but
rather an efficient tool for comprehending how the central
nervous system (CNS) organizes motor control and
coordination. As a result of such studies, promising results
[21]-[25] have led to the use of synergies in several
applications including robotics.

This paper presents an approach to generate synthetic joint
angular velocities from end postures of 10 hand gestures from
a single RGB camera and then derives synthetic kinematic
synergies which were later used to reconstruct new hand
gestures. To the best of our knowledge, this is one of the first
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Fig. 5. Reconstructed hand gestures represented in Mitra using first three synthetic kinematic synergies for all the 10-hand gestures.

attempts to extract synthetic kinematic synergies from human
inspired gaussian function generated angular joint velocities.
When a simple finger flexion is performed, we can notice that
the angular joint velocity profile of that flexion tends to
represent a gaussian function, a bell-shaped velocity profile
that well accounts for the three phases of movement profile.
By employing such gaussian functions to represent flexion of
fingers, end postures of 10 hand gestures were generated. By
using only a few synergies, hand gestures under the testing task
were reconstructed. This reconstruction and the recorded
patterns for the hand gestures under test data were then
mapped into Mitra.

Of the different mapping approaches such as joint-joint
mapping, cartesian space mapping [26], [27], joint-cartesian
mapping [28] and object-based mapping [29] as elaborated in
[30], in this study we adopted joint-joint mapping approach
which has shown promising results [26], [31] for a direct
relationship between the corresponding joints of the human
hand and Mitra’s hand. Such joint-joint mapping approach
allows for high mapping capabilities for the hand gesture data
used for this study.

Through a simple mapping of the 21 landmarks found from
MediaPipe Hand landmark detector [14] or learning from
human demonstrations such as behavioral cloning [32], [33] to
a robot can essentially perform the 10 hand gestures. This
study attempts to show that using synergies, a subset of the 21
landmarks can be used to execute the selected hand gestures.
In learning human demonstration, one of the key challenges is
to convert the human hand motion into robot hand motion.
Assuming a humanoid with 21 joints, the 21 hand landmarks
need to be translated the robot to get a single hand gesture.
Similarly, through behavioral cloning, motion retargeting of
the 21 joints from human demonstration to robot should be
performed to achieve the same hand gesture. Moreover,
multiple demonstrations of the same gesture need to be
recorded and provided to the robot to learn that gesture. To
collect these demonstrations of the same gesture requires long
hours of intense human effort from setting the angle of the
camera to verifying and eliminating outlier data manually. But,

through a synergy-based model, by using only a subset of the
21 landmarks, similar hand gestures can be executed by the
robot with only one demonstration of the same hand gesture.

In this study, Mitra has only one DoF for each of the digit
thus a total of 5 DoF for the 5 digits. MCPs of these 5 digits
can be controlled and based on the flexion, the MCPs move in
a gradient fashion accounting for the flexion of PIPs and DIPs.
Each of the 10 hand gestures were demonstrated only once at
the RGB camera of Mitra and the end postures are generated
from the MediaPipe framework. Kinematic synergies
extracted from the training data (in Fig. 5) of the generated
joint angular velocities were also translated to the humanoid
using a mapping function. But as kinematic synergies are
bipolar in nature, meaning it has both positive and negative
activation potential accounting for flexion and extension, we
changed the initial reference state to accommodate this
property of kinematic synergies. Thus, the MCPs of Mitra
were set to 50% flexed as the initial reference state. Upon
mapping the selected three synergies to Mitra, those joints that
were below this reference were able to indicate the negative
activation potential whereas those joints that were above the
reference state were able to indicate the positive activation
potential. These mapped values were fed continuously to the
MCPs of the humanoid. Similarly, reconstructed hand gestures
using the synthetic kinematic synergies were translated in a
continuous fashion to the MCPs. As the MCPs moved, it
brought together PIPs and DIPs to the target position from the
initial reference posture. Each of the achieved targeted position
of the 10 hand gestures are shown in Fig. 5.

Thus, by integrating Mitra with the synergy-based model,
not only can the robot learn the hand gestures from the test
data, but also a library of new synergies can be formed based
on the new hand gestures shown to Mitra apart from the
selected hand gestures.

V. CONCLUSION

In this paper, we propose a new method to extract synthetic
kinematic synergies from end postures of hand gestures from
a single RGB camera using MediaPipe, gaussian function and

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 01,2024 at 17:01:55 UTC from IEEE Xplore. Restrictions apply.



PCA. To the best of our knowledge, this is one of the first study
to translate kinematic synergies into a humanoid robot to
perform hand gesture movements. Currently, an offline model
is implemented that takes 10 preconfigured hand gestures that
includes most of the finger joints. In the near future, we will
extend these results to an online model which imitates the hand
gestures in real-time and include flexion and extension of the
wrist joint as well. Moreover, we widen the scope to include
capturing continuous hand gesture movements and real-time
mapping into the humanoid. Enabling such synergy-based
humanoid and robots can reduce the complexity involved in
motion retargeting and potentially enable improvements in
industrial robots and assistive robots.
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