
Curve Parametric Modeling of Planar Soft Robots

Dulanjana M. Perera

Dept. of Multidisciplinary Engineering

Texas A&M University

College Station, Texas, USA

dperera@tamu.edu

Nathan Byrd

Dept. of Mechanical Engineering

Texas A&M University

College Station, Texas, USA

ncbyrd@tamu.edu

Dimuthu D. K. Arachchige

School of Computing

DePaul University

Chicago, Illinois, USA

darachch@depaul.edu

Bhaskar Vajipeyajula

Dept. of Eng. Tech. & Ind. Distribution

Texas A&M University

College Station, Texas, USA

vaji19@tamu.edu

Kevin C. Galloway

Dept. of Mechanical Engineering

Vanderbilt University

Nashville, Tennessee, USA

kevin.c.galloway@vanderbilt.edu

Isuru S. Godage

Dept. of Eng. Techn. & Ind. Distribution

Texas A&M University

College Station, Texas, USA

igodage@tamu.edu

AbstractÐSoft robots, due to their flexibility, adaptability, and
gentle handling over rigid robots, have shown better potential in
numerous applications requiring operating in constrained spaces.
Most of the soft robotic prototypes are of a linear form that can
be modeled as a curve in space and are found in manipulators and
limbs of locomoting robots. Planar soft robots have been proposed
recently that are modeled as a surface and deform in 3D. Research
on planar soft robots has been less extensive due to the chal-
lenges associated with modeling surface deformations efficiently.
We present a curve-parametric approach for the deformation
modeling of planar soft robot modules. Along with the Bezier
patch method to approximate the surface at 30 Hz. Experimental
evaluations on a prototype were developed and tested to validate
that the proposed model can reasonably approximate the planar
robot boundaries and the surface derived from it.

Index TermsÐsurface modeling, curve parametric, Bezier sur-
face, planar robots, soft robots.

I. INTRODUCTION

Soft robots, comprising compliant materials, exhibit a unique

ability to navigate constrained environments and interact deli-

cately with objects, making them well-suited for tasks requiring

dexterity and adaptability than their rigid counterparts [1].

Through the integration of advanced materials and innovative

actuation mechanisms, soft robots offer promising advance-

ments in various fields, including biomedical engineering, in-

dustrial automation, and human-robot interaction [2].

Soft robots, particularly those featuring a linear arrangement

of actuators inspired by the dexterity and versatility of tentacles

and elephant trunks, demonstrate remarkable capabilities in

navigating tight spaces and handling delicate objects, embody-

ing the potential for advancements in fields requiring fine

manipulative skills and adaptive interaction [3]. Examining

natural biological examples like the fins of Rajiformes, one can

observe deforming planar structures. In these systems, defor-

mation occurs from internal musculature and across the entire

surface. Surface structures, compared to tentacle-like structures,

can generate complex shapes. This prompts an inquiry into

employing soft surface robots to emulate these biological

Fig. 1. Planar soft module shapes. The number indicates the corresponding
joint. The robot coordinate frame is placed at Joint-1. The neutral plane is
the non-stretchable fabric. Pneumatic Muscle Actuators (PMAs) are used to
actuate the system. The pockets are striped to facilitate the bending of the
PMAs. Marker placement on the planar robot. The red marker is considered
to be the origin of the tracker system

structures for various tasks such as compliant manipulation and

locomotion, adaptable wing structures, and wearable systems.

Suzumori et al. utilized a pneumatic surface actuator for pro-

pelling an underwater soft robot [4]. Cai et al. powered a robotic

fish utilizing deforming fins but mathematical models were not

proposed [5]. Deng et al., inspired by a caterpillar, introduced

a soft machine table for object manipulation [6]. Therein, a

discrete piece-wise approach was employed to delineate the

curvature of each unit on the table. Authors in [7] presented

a structure operated by shape memory alloy wires where the

kinematics of the mechanism used a grid-based technique.

While these systems demonstrated considerable deformability,

they incorporated predominantly rigid/semi-rigid components

in the design, thereby lacking smooth and continuous defor-

mation. Addressing this, authors in [8] utilized finite element

analysis to study composite laminates in continuum robot

applications, though it is hampered by computational intensity.



Kirchhoff-Love and Cosserat plate theories can be utilized

to examine the deformation of soft surfaces [9]. Kano et al.

proposed a continuous model for a sheet-like robot, which was

verified only through simulation [10]. Merino et al. presented

an interpolation technique to model the curvature of edges

on a continuous surface [11]. Watanabe et al. applied wave

propagation theory to manipulate flexible sheet actuators [12].

These models focus solely on the surface geometry and do not

capture the actuator-surface inter-connectivity.

The lumped-mass approach, which involves discretely ap-

proximating the soft surface, has been proposed to model

planar surface soft robots [13]. The complexity of this model-

ing approach presents challenges when implementing efficient

modeling and control strategies. On the other hand, the curve

parametric approach for modeling soft robots is simple yet

offers increased efficiency due to its ability to capture the

geometrical complexities associated with large deformations of

continuum arms [14]±[16]. Moreover, it enables a more intu-

itive and flexible design process, facilitating the optimization

of soft robot geometries for specific tasks and applications.

The efficient nature of curve parametric modeling contributes

to enhancing the design, control, and overall functionality.

In this work, we introduce curve parametric modeling for a

planar surface robot, enhancing the design and functionality of

soft robots by allowing accurate control over complex surface

deformations. Our specific technical contributions include:

i. Design and fabricate a planar soft continuum module with

Pneumatic Muscle Actuators (PMA) and non-stretchable

fabric to obtain surface-like deformation.

ii. Apply curve parametric approach to obtain an efficient

kinematic model for bending planar soft module edge

actuators. By using curves to describe the movement of

the actuators, this approach captures the complex and

continuous deformations of the soft robot more effectively.

iii. Model the soft planar robot surface using Bezier patches

for efficient surface estimation. Bezier patches offer a flex-

ible and computationally efficient method for representing

complex surfaces, allowing for more accurate simulations.

iv. Experimentally validate the kinematic model that uses

novel surface curve parameters to model planar soft robots.

II. PROTOTYPE DESCRIPTION

A. Prototype Design

The proposed planar module in this study deforms like a

rubber sheet when unpowered, and has the structural rigid-

ity to actively deform when actuated. It is constructed from

strategically placed stiffer materials as well as soft materials

(see Fig. 1). It employs non-stretchable fabric (Neutral plane)

with PMAs at the edges [17]. The PMA and the joints provide

structural rigidity while the fabric facilitates flexibility as well

as provides mechanical constraints to the system needed to

generate controllable deformations. The PMAs are arranged in

a square configuration, as depicted in Fig. 1. They are placed

antagonistically to ensure planar bidirectional bending. The

pocket surrounding the PMA confines and mitigates buckling

Fig. 2. System Kinematics. (A) The colored-solid lines illustrate the neutral
axis at each edge. The α7 and α8 designate the twist around the y-axis of the
global coordinate frame. (B) An illustration of bending due to the extension of
PMA. The unbalanced moment at the anchor points causes the bending. The
fedge, j is the actuator frame, l j is the extension of the PMA j , r, and λ is offset

from the neutral plane and radius of the arc, respectively. The l̂ j = l j from (1).

to ensure smooth and continuous deformation. These pockets

are striped to emulate the stretching effect and facilitate the

extension required for the PMA.

PMAs, anchored at both ends, induces an unbalanced mo-

ment on the fabric surface (neutral plane), thereby resulting

in the desired planar bending (Fig. 2B). The pocket constrains

the PMA to a planar bending and ensures uniform curvature.

Bi-directional bending is achieved by affixing an additional

antagonistic PMA on the underside of the fabric. This PMA

pair arrangement is replicated at the four edges of the sqauare

pattern. A rubber joint (Fig. 1) interconnects each muscle pair,

adding an additional passive DoF to the system which allows

them to rotate about their longitudinal axes (i.e., α7,8 in Fig.

2A) and thereby bend out-of-plane when constrained. The 3D

printed anchor joints clamp around the quick-disconnect fittings

of PMAs and secure to the inextensible fabric via metal bolts.

During operation, the anchor joints and the fabric restrict PMA

extension that causes bending (Fig 2B). These anchor joints at

both ends of PMA pairs ensure co-planarity, thereby upholding

system balance.

B. System Characterization

We model the deformation of the neutral plane of the planar

soft robot shown in Fig. 2. The configuration C : {Φ,αi ∈R
4 :

−π ≤ φ ≤ π} where Φ = [φ1 φ2 φ3 φ4]
T is the bending angle

vector of four edges (Antagonistic Muscle Set (AMS)), and αi

i ∈ {1,2, ...,8} is the joint rotation. The task space is defined

as X : {R ∈ R
3} where R is the selected point on the robot’s

edge in Cartesian space. The unbalanced moment occurs due

to the 17 mm offset of the PMA center line from the neutral

plane as illustrated in Fig. 2B. By utilizing this, we can derive

a joint space-configuration space map as follows.



L± l j = (λ ± r)φi =

(

L

φ j

± r

)

φi

l j = rφ j (1)

where r ∈R is the offset and λ ∈R is the radius of the bending

arc with Note that even though AMS has two actuators, the

system exhibits a single DoF which is bi-directional bending.

The actuator-joint space relationship (i.e., pressure-length) is

obtained experimentally (see Fig. 3) and approximated by,

l j = (5.25p4
j −35.69p3

j +73.69p2
j −22.56p j +1.36)10−3 (2)

where p j ∈ [0,3] bar is the pressure of the PMA muscle. There-

fore by combining (1) and (2), we can derive the following

relationship for φ j,

φ j =
1

103r

(

5.25p4
j −35.69p3

j +73.69p2
j −22.56p j +1.36

)

(3)

Note that, in this article, we do not validate the configuration-

actuator space relation. However, we present the derivation for

completeness. The following section presents the experimental

validation of the kinematic model in task space.

III. SYSTEM MODEL

A. Modeling of Surface Boundary

The base coordinate frame is placed at the first joint on the

neutral plane, as illustrated in Fig. 1. The z-axis is pointed up-

ward and the x-axis is aligned with the edge-1. A single actuator

kinematic is derived as presented in (4). In the derivation, we

defined a convention such that, the actuator frame is rotated to

align the z-axis with the edge and the y-axis is perpendicular

to the neutral plane (see Fig. 2B). The kinematic model of a

j-th AMS is presented in (4).

TAMS, j = Ty (L/φ j) ·Rx (π/2−ξ jφ j) ·Tz (L/φ j) ·R
T
x (π/2) (4)

where ξ j = [0,1] is a selection factor of j-th AMS to select a

point along the AMS. Therefore, ξ j = 0 is for the base of the

j-th AMS, and ξ j = 1 is for the tip of the j-th AMS. The L/φ
denotes the radius, λ j of the circular arc.

The AMS and its arrangement in the proposed design make

it a closed-chain robot. Therefore, singularities and multiple

Fig. 3. A single PMA extension l j with pressure (average of 5 trials.)

Fig. 4. Boundary Control points and the interpolated control points

solutions for forward kinematics can be anticipated. In (4), a

singularity can be observed when φ j = 0. Thus the range of Φ

can be defined as φ j ∈ [−π,π] where φ j ̸= 0. The loop closure

constraints are employed to derive the close-loop kinematics of

the system and two forward kinematic equations are derived

for the joint-3. The first equation T123 for the loop is defined

through joint-1 → joint-2 → joint-3, and the second, T143 is

defined as joint-1 → joint-4 → joint-3. Utilizing the TAMS, j,

the homogeneous transformation, T123 and T143 are given in

(6), and (5).

T143 = RT
x (π/2) ·Rz (α8) ·TAMS,4 ·Rz (α7)

·Ry (π/2) ·Rz (α6) ·TAMS,3 ·Rz (α5) ·Rx (π/2) (5)

T123 = RT
z (π/2) ·RT

x (π/2) ·Rz (α1) ·TAMS,1 ·Rz (α2)

·RT
y (π/2) ·Rz (α3) ·TAMS,2 ·Rz (α4) ·Rx (π/2) (6)

Here, α = {αk ∈R | k = 1,2, ..7,8} represent the joint rotations.

In (5), initial Rx
(

−π
2

)

is applied to align the z-axis with the

AMS-4. In (6), the base frame has to be rotated around z-axis

and rotated around x-axis to align the z-axis with the AMS-1.

However, the αi is unknown, and Interior-point constraint

optimization is followed to obtain the solutions for the given

φ j. Since the position vectors of T123 and T143 refer to the

same position, the following cost function is defined for the

constrained minimization.

f (α) = [P123(α)−P143(α)]T [P123(α)−P143(α)] (7)

where P123 is the position vector of the T123 and P143 is that

of T143. Note that P123 is a function of Φ, ξ , and α . However,

for simplicity, we only state α due to the relevancy of the

optimization. Then, the optimization problem can be defined

as follows with constraints.

α∗
k =

{

min f (αk)
−π

2
≤ αk ≤

π
2

k = {1,2, ...,8}
(8)

where α∗
k is the optimum rotational angle for given Φ. The

forward kinematic of the tip of each muscle is given as

XAMS,1 = P123(Φ,α∗,ξ1 = 1,ξ2 = 0) (9a)

XAMS,2 = P123(Φ,α∗,ξ1 = 1,ξ2 = 1) (9b)

XAMS,3 = P143(Φ,α∗,ξ4 = 1,ξ3 = 1) (9c)

XAMS,4 = P143(Φ,α∗,ξ4 = 1,ξ3 = 0) (9d)



B. Modeling of the Surface

We use cubic Bezier surface approach to model the neutral

surface bounded by the 4 AMS due to efficiency and resulting

smooth surface [18]. A cubic Bezier curve is given by

qAMS, j(u) = (1−u)3
B

j
0 +3u(1−u)2

B
j
1 (10)

+3u2 (1−u)B
j
2 +u3B

j
4

where, qAMS, j(u) is the parametric curve function of the jth

AMS, and u = [0, 1] is the selection parameter along the curve.

The B
j
k is the kth control point of the jth curve. When u = 0,

the curve selects the B
j
0, the initial point, and when u = 1, it

selects, B
j
3.

One challenge in this approach is that the control points of

the surface have to be derived from the boundary curves. In

addition, the surface needs intermediate curves to define the

shape. To address this, we initially, approximate the Bezier

control points for the boundary curves. To that end, we use the

least-square curve fitting approach as it is an efficient method to

fit a curve [19]. The error function is defined with the boundary

curve data points for the least-square fitting as

E j =
100

∑
u=0

[

sAMS, j(u)−qAMS, j(u)
]2

(11)

where sAMS, j(u) is the discretized uth point of jth AMS. Here,

we discretize the boundary curve into 100 points. To minimize

the error between data points, the following condition denoted

by (12) has to be met.

B
j
0 = sAMS, j(0), B

j
3 = sAMS, j(100),

∂E

∂B
j
1

= 0,
∂E

∂B
j
2

= 0 (12)

By solving the (12), we can get the B
j
1, and B

j
2 that approx-

imate the the sAMS, j. Then, to obtain the intermediate control

points between two parallel boundary curves, interpolation is

considered i.e., the (13) defines the intermediate control points.

B1 = (2B1
1 +B2

1 +B3
2 +2B4

2)/6

B2 = (2B1
2 +2B2

1 +B3
1 +B4

2)/6

B3 = (B1
1 +B2

2 +2B3
2 +2B4

1)/6

B4 = (B1
2 +2B2

2 +2B3
1 +B4

1)/6

(13)

The 2/3 and 1/3 weights are given according to the closeness

of the new point ( ÅBk) to the boundary control points (B
j
∗) (see

Fig. 4). For example, a boundary point close to the new point is

given 2/3. These Control points are used to obtain the Bezier

Fig. 5. Experimental setup

surface. The control points are arranged in grid format to use

in the following mathematical definition.

Sur f ace =
3

∑
cx=0

3

∑
cy=0

BPcx(u)BPcy(v)P̂cx,cy (14)

where,

BPcx(u) =

(

3!

cx!(3− cx)!

)

ucx (1−u)3−cx

BPcy(v) =

(

3!

cy!(3− cy)!

)

vcy (1− v)3−cy

is the Bernstein polynomials. Here P̂cx,cy ∈ R
4×4 is the matrix

of all the control points, and cx, cy are the index of the matrix.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

A motion tracking system is used to measure the selected

points on the surface of the robot, whereas IMUs (MPU 9250)

are utilized to measure the bending angle (φ j) of each AMS.

The pneumatic air is controlled by 8 proportional control

solenoid values (1700 Series, Pneumax). To track the deflection

angle of the actuators, 3 IMUs were fitted to joints 2, 3, and 4

as depicted in Fig. 1. The x-orientation of IMU 1 measures the

angle of φ1 in addition to IMU 2 measures the angle of φ3. The

y-orientation of both IMU 1 and 2 captures the φ2 whereas IMU

3 measures the angle of φ4. Note that IMU only measures the

angle φ j/2. A visual demonstration of the robot can be found

here https://youtu.be/-E7g2KndsfI.

Camera tracking is implemented to measure the shape of the

AMS. After calibration, the origin is initialized at joint 1 (where

the red tracker is mounted). The robot was approximately

aligned to the camera coordinate frame, and minor corrections

were made by performing coordinate alignment. Following a

clockwise motion, a tracker is fitted to every joint and center

of each actuator equidistant to their respective joints as in Fig.

1. The trackers are mounted on top of the AMS, though the

simulation is derived for the neutral plane. Therefore, an offset

correction 17 mm, was performed to project the tracker to the

neutral plane. To obtain the projection direction, especially

when the bending occurs, IMU data is utilized to procure

the binomial direction towards the positive curvature. The

tracking points are aligned and compared with the simulation

results to validate the accuracy of the proposed model. The

bending angles obtained from the experiments were used in

the simulation.

B. Convex Bending

The experiments were conducted by applying 0.5 - 3 bars

of constant air pressure using MATLAB individually to the

actuators, causing the AMS to bend. Make note that in Fig.

3, it is evident the deadzone of the PMA is 0.5 bar. In

Fig. 6, a comparison is made between the actual robot as

deflection occurs and the simulation shape during the positive

bending. The experiment is conducted to show the accuracy

of the model’s estimation for single AMS actuation in positive

bending.



Fig. 6. Actual and simulation results of convex bending (Positive bending). The red dots in the simulation figures indicate the actual position of the robot (red
and green markers). The black dots indicates the Bezier curve’s control points. (A) AMS1 bending at φ1 = 0.785, (B) AMS2 bending at φ2 = 1.176 , (C) AMS3

bending at φ3 = 1.159, (D) AMS4 bending at φ4 = 1.299

Fig. 7. Actual and simulation results of concave bending (Negative bending). (A) AMS1 bending at φ1 =−0.778, (B) AMS2 bending at φ2 =−0.876, (C) AMS3

bending at φ3 =−0.611, (D) AMS4 bending at φ4 =−0.939

Fig. 8. Error percentage of each experiment with respect to the actuator length,
175 mm (error/Length).

C. Concave Bending

Figure 7 indicates negative bending experiments that have

a similar performance as the convex (positive) bending. This

indicates that model performance remains unchanged when

a single AMS is actuated and independent of the bending

direction. It is evident in the error plot presented in Fig. 8.

The error along the bending curve is presented wherein the

error percentage is computed for the AMS length (175 mm).

The model closely resembles the actual robot’s shape with a

maximum 12% error. This error is mainly observed in AMS 2

and 4. When the robot bends one AMS, it contracts the adjacent

AMS. This phenomenon is partially exhibited in the model.

However, the misrepresentation is minimal when a single AMS

is actuated.

D. Mixed bending shapes

Figure 9 shows how the model computes the shape when

multiple AMS are actuated simultaneously. The results show

that the model has a challenge when representing the kinemat-

ics. During the multiple actuations, module behavior is affected

by gravity resulting in orientation changes. The dynamic effects

are not accounted for in the kinematic model. However, the

overall representation of the surface is below 12%.

Compared to the existing planar soft module in [13], the

proposed system can bend all four edges bi-directionally (see

Fig. 10). The [13] only has two parallel actuators and the

shapes the module demonstrated only either convex or concave

shapes. The proposed system can perform mixed bending

shapes resulting in more complicated and smoother surfaces



Fig. 9. (A) Negative bending of all AMS. (B) Negative Bending of AMS-3
and AMS-4. (C) Error percentage along the edges.

Fig. 10. Different bending directions in a single planar soft module to obtain
the complex shapes

than [13]. Moreover, the shape estimation model runs at 30 Hz,

which is ideal for real-time control.

Furthermore, a major contributing factor to the deviation

can be identified as manufacturing and tracking errors. The

kinematic model has difficulty estimating the interaction of

the robot (especially the joints) with respect to the ground.

However, transformations were applied to compensate for the

module’s resting surface.

V. CONCLUSIONS

In this work, we proposed a curve parametric-based modeling

approach to estimate the shape of the soft planar module. The

module was developed by arranging PMAs in a square shape

on the non-stretchable fabric. The boundaries of the planar

module were then used to generate the approximate shape of the

surface. The proposed algorithm ran at 30 Hz and can estimate

the shape with less than 12% error. The model estimated the

shape of the robot with high accuracy when a single AMS

was actuated. However, the model experienced difficulty when

multiple AMS were actuated simultaneously. In the future,

modules will be arranged in a matrix and validate the model

performance.
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