Curve Parametric Modeling of Planar Soft Robots
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Abstract—Soft robots, due to their flexibility, adaptability, and
gentle handling over rigid robots, have shown better potential in
numerous applications requiring operating in constrained spaces.
Most of the soft robotic prototypes are of a linear form that can
be modeled as a curve in space and are found in manipulators and
limbs of locomoting robots. Planar soft robots have been proposed
recently that are modeled as a surface and deform in 3D. Research
on planar soft robots has been less extensive due to the chal-
lenges associated with modeling surface deformations efficiently.
We present a curve-parametric approach for the deformation
modeling of planar soft robot modules. Along with the Bezier
patch method to approximate the surface at 30 Hz. Experimental
evaluations on a prototype were developed and tested to validate
that the proposed model can reasonably approximate the planar
robot boundaries and the surface derived from it.

Index Terms—surface modeling, curve parametric, Bezier sur-
face, planar robots, soft robots.

I. INTRODUCTION

Soft robots, comprising compliant materials, exhibit a unique
ability to navigate constrained environments and interact deli-
cately with objects, making them well-suited for tasks requiring
dexterity and adaptability than their rigid counterparts [1].
Through the integration of advanced materials and innovative
actuation mechanisms, soft robots offer promising advance-
ments in various fields, including biomedical engineering, in-
dustrial automation, and human-robot interaction [2].

Soft robots, particularly those featuring a linear arrangement
of actuators inspired by the dexterity and versatility of tentacles
and elephant trunks, demonstrate remarkable capabilities in
navigating tight spaces and handling delicate objects, embody-
ing the potential for advancements in fields requiring fine
manipulative skills and adaptive interaction [3]. Examining
natural biological examples like the fins of Rajiformes, one can
observe deforming planar structures. In these systems, defor-
mation occurs from internal musculature and across the entire
surface. Surface structures, compared to tentacle-like structures,
can generate complex shapes. This prompts an inquiry into
employing soft surface robots to emulate these biological
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Fig. 1. Planar soft module shapes. The number indicates the corresponding
joint. The robot coordinate frame is placed at Joint-1. The neutral plane is
the non-stretchable fabric. Pneumatic Muscle Actuators (PMAs) are used to
actuate the system. The pockets are striped to facilitate the bending of the
PMAs. Marker placement on the planar robot. The red marker is considered
to be the origin of the tracker system

structures for various tasks such as compliant manipulation and
locomotion, adaptable wing structures, and wearable systems.

Suzumori et al. utilized a pneumatic surface actuator for pro-
pelling an underwater soft robot [4]. Cai et al. powered a robotic
fish utilizing deforming fins but mathematical models were not
proposed [5]. Deng et al., inspired by a caterpillar, introduced
a soft machine table for object manipulation [6]. Therein, a
discrete piece-wise approach was employed to delineate the
curvature of each unit on the table. Authors in [7] presented
a structure operated by shape memory alloy wires where the
kinematics of the mechanism used a grid-based technique.
While these systems demonstrated considerable deformability,
they incorporated predominantly rigid/semi-rigid components
in the design, thereby lacking smooth and continuous defor-
mation. Addressing this, authors in [8] utilized finite element
analysis to study composite laminates in continuum robot
applications, though it is hampered by computational intensity.



Kirchhoff-Love and Cosserat plate theories can be utilized
to examine the deformation of soft surfaces [9]. Kano et al.
proposed a continuous model for a sheet-like robot, which was
verified only through simulation [10]. Merino et al. presented
an interpolation technique to model the curvature of edges
on a continuous surface [11]. Watanabe et al. applied wave
propagation theory to manipulate flexible sheet actuators [12].
These models focus solely on the surface geometry and do not
capture the actuator-surface inter-connectivity.

The lumped-mass approach, which involves discretely ap-
proximating the soft surface, has been proposed to model
planar surface soft robots [13]. The complexity of this model-
ing approach presents challenges when implementing efficient
modeling and control strategies. On the other hand, the curve
parametric approach for modeling soft robots is simple yet
offers increased efficiency due to its ability to capture the
geometrical complexities associated with large deformations of
continuum arms [14]-[16]. Moreover, it enables a more intu-
itive and flexible design process, facilitating the optimization
of soft robot geometries for specific tasks and applications.
The efficient nature of curve parametric modeling contributes
to enhancing the design, control, and overall functionality.

In this work, we introduce curve parametric modeling for a
planar surface robot, enhancing the design and functionality of
soft robots by allowing accurate control over complex surface
deformations. Our specific technical contributions include:

i. Design and fabricate a planar soft continuum module with
Pneumatic Muscle Actuators (PMA) and non-stretchable
fabric to obtain surface-like deformation.

ii. Apply curve parametric approach to obtain an efficient
kinematic model for bending planar soft module edge
actuators. By using curves to describe the movement of
the actuators, this approach captures the complex and
continuous deformations of the soft robot more effectively.

iii. Model the soft planar robot surface using Bezier patches
for efficient surface estimation. Bezier patches offer a flex-
ible and computationally efficient method for representing
complex surfaces, allowing for more accurate simulations.

iv. Experimentally validate the kinematic model that uses
novel surface curve parameters to model planar soft robots.

II. PROTOTYPE DESCRIPTION
A. Prototype Design

The proposed planar module in this study deforms like a
rubber sheet when unpowered, and has the structural rigid-
ity to actively deform when actuated. It is constructed from
strategically placed stiffer materials as well as soft materials
(see Fig. 1). It employs non-stretchable fabric (Neutral plane)
with PMAs at the edges [17]. The PMA and the joints provide
structural rigidity while the fabric facilitates flexibility as well
as provides mechanical constraints to the system needed to
generate controllable deformations. The PMAs are arranged in
a square configuration, as depicted in Fig. 1. They are placed
antagonistically to ensure planar bidirectional bending. The
pocket surrounding the PMA confines and mitigates buckling
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Fig. 2. System Kinematics. (A) The colored-solid lines illustrate the neutral
axis at each edge. The o7 and og designate the twist around the y-axis of the
global coordinate frame. (B) An illustration of bending due to the extension of
PMA. The unbalanced moment at the anchor points causes the bending. The
fedge,j 1s the actuator frame, /; is the extension of the PMA;, r, and A is offset
from the neutral plane and radius of the arc, respectively. The f j = L; from (1).

to ensure smooth and continuous deformation. These pockets
are striped to emulate the stretching effect and facilitate the
extension required for the PMA.

PMAs, anchored at both ends, induces an unbalanced mo-
ment on the fabric surface (neutral plane), thereby resulting
in the desired planar bending (Fig. 2B). The pocket constrains
the PMA to a planar bending and ensures uniform curvature.
Bi-directional bending is achieved by affixing an additional
antagonistic PMA on the underside of the fabric. This PMA
pair arrangement is replicated at the four edges of the sqauare
pattern. A rubber joint (Fig. 1) interconnects each muscle pair,
adding an additional passive DoF to the system which allows
them to rotate about their longitudinal axes (i.e., &7 g in Fig.
2A) and thereby bend out-of-plane when constrained. The 3D
printed anchor joints clamp around the quick-disconnect fittings
of PMAs and secure to the inextensible fabric via metal bolts.
During operation, the anchor joints and the fabric restrict PMA
extension that causes bending (Fig 2B). These anchor joints at
both ends of PMA pairs ensure co-planarity, thereby upholding
system balance.

B. System Characterization

We model the deformation of the neutral plane of the planar
soft robot shown in Fig. 2. The configuration C : {®, o; € R*:
~m < ¢ < 7w} where ® = [¢; ¢ ¢3 ¢4]7 is the bending angle
vector of four edges (Antagonistic Muscle Set (AMS)), and o;
i€{1,2,...,8} is the joint rotation. The task space is defined
as X : {R € R*} where R is the selected point on the robot’s
edge in Cartesian space. The unbalanced moment occurs due
to the 17 mm offset of the PMA center line from the neutral
plane as illustrated in Fig. 2B. By utilizing this, we can derive
a joint space-configuration space map as follows.
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where r € R is the offset and A € R is the radius of the bending
arc with Note that even though AMS has two actuators, the
system exhibits a single DoF which is bi-directional bending.
The actuator-joint space relationship (i.e., pressure-length) is
obtained experimentally (see Fig. 3) and approximated by,

1j = (5.25p} —35.69p; +73.69p5 —22.56p; +1.36)10 > (2)

where p; € [0,3] bar is the pressure of the PMA muscle. There-
fore by combining (1) and (2), we can derive the following
relationship for ¢;,

0= 1o (5.25pj. —35.69p +73.69p% — 22.56p; + 1.36) 3)

Note that, in this article, we do not validate the configuration-
actuator space relation. However, we present the derivation for
completeness. The following section presents the experimental
validation of the kinematic model in task space.

III. SYSTEM MODEL
A. Modeling of Surface Boundary

The base coordinate frame is placed at the first joint on the
neutral plane, as illustrated in Fig. 1. The z-axis is pointed up-
ward and the x-axis is aligned with the edge-1. A single actuator
kinematic is derived as presented in (4). In the derivation, we
defined a convention such that, the actuator frame is rotated to
align the z-axis with the edge and the y-axis is perpendicular
to the neutral plane (see Fig. 2B). The kinematic model of a
Jj-th AMS is presented in (4).

Tams,j =Ty (L/9;) Re(m/2—&;9,) - T-(L/¢;)-RL (m/2) (4)

where §; = [0,1] is a selection factor of j-th AMS to select a
point along the AMS. Therefore, &; =0 is for the base of the
Jj-th AMS, and &; =1 is for the tip of the j-th AMS. The L/¢
denotes the radius, 7Lj of the circular arc.

The AMS and its arrangement in the proposed design make
it a closed-chain robot. Therefore, singularities and multiple
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Fig. 3. A single PMA extension /; with pressure (average of 5 trials.)

Fig. 4. Boundary Control points and the interpolated control points

solutions for forward kinematics can be anticipated. In (4), a
singularity can be observed when ¢; = 0. Thus the range of ®
can be defined as ¢; € [—m, ] where ¢; # 0. The loop closure
constraints are employed to derive the close-loop kinematics of
the system and two forward kinematic equations are derived
for the joint-3. The first equation Tj,3 for the loop is defined
through joint-1 — joint-2 — joint-3, and the second, 7143 is
defined as joint-1 — joint-4 — joint-3. Utilizing the Tyuys ;.
the homogeneous transformation, 7123 and Tj43 are given in
(6), and (5).

Tias = RY (n/2) R, (0%8) - Tapss.a - R: (Q7)
Ry (7/2) R, (0) - Tams3 - Rz (a5) - Ry (m/2) ®)

T123 = RZ (7'[.'/2) ~R£ (71'/2) 'RZ ((X]) . TAMS,I 'RZ ((Xz)
‘RyT (/2)-R.(03) - Tamsz - R (04) - Ry (m/2) (6)

Here, o = {og. € R | k=1,2,..7,8} represent the joint rotations.
In (5), initial Rx(—%) is applied to align the z-axis with the
AMS-4. In (6), the base frame has to be rotated around z-axis
and rotated around x-axis to align the z-axis with the AMS-1.

However, the o; is unknown, and Interior-point constraint
optimization is followed to obtain the solutions for the given
¢;. Since the position vectors of Tip3 and Ti43 refer to the
same position, the following cost function is defined for the
constrained minimization.

fla) = [Pi3(a) — Pus(@)]” [Pios(@) — Pz ()] (7)

where Pjp3 is the position vector of the 7123 and P43 is that
of Ti43. Note that Py»3 is a function of @, &, and o. However,
for simplicity, we only state o due to the relevancy of the
optimization. Then, the optimization problem can be defined
as follows with constraints.

K minf(ak)
O‘k—{—ggakgg k={1,2,...8) ®

where ¢ is the optimum rotational angle for given ®. The
forward kinematic of the tip of each muscle is given as

Xams,1 = Pi3(®, 07,8 = 1,6 =0) (9a)
Xamsp = Pi3(®, 0,81 =1, =1) (%9b)
Xams3 =Pz (@, 0", & =1,85=1) (9¢c)
Xamsa =Pz (P, a8 =1,83=0) 9d)



B. Modeling of the Surface

We use cubic Bezier surface approach to model the neutral
surface bounded by the 4 AMS due to efficiency and resulting
smooth surface [18]. A cubic Bezier curve is given by

_ 3 pi 2 nj
qams,j(u) = (1 —u)” By +3u(l —u)” By (10)
+3u2 (1 —u)Bé—i—u?’B’

where, gaus j(u) is the parametric curve function of the j
AMS, and u = [0, 1] is the selection parameter along the curve.
The Bi is the k" control point of the j curve. When u =0,
the curve 'selects the Bé, the initial point, and when u = 1, it
selects, Bj.

One challenge in this approach is that the control points of
the surface have to be derived from the boundary curves. In
addition, the surface needs intermediate curves to define the
shape. To address this, we initially, approximate the Bezier
control points for the boundary curves. To that end, we use the
least-square curve fitting approach as it is an efficient method to
fit a curve [19]. The error function is defined with the boundary

curve data points for the least-square fitting as
100

2
E;j =Y [sams.j(t) — qams,;(u)] (11)
u=0
where saps,j(u) is the discretized u' point of j'* AMS. Here,
we discretize the boundary curve into 100 points. To minimize
the error between data points, the following condition denoted
by (12) has to be met.

j j JE
By = saus,j(0), By = saus,j(100),

; —— =0 (12)
0B}

2 o
0B

By solving the (12), we can get the B/, and Bé that approx-
imate the the sqpys ;. Then, to obtain the intermediate control

points between two parallel boundary curves, interpolation is
considered i.e., the (13) defines the intermediate control points.

=(2B +2B4) /6
(2132 +2B B} +B3)/6 13
= (B} +B3+2B3+2B})/6

34 = (BY+2B3+2B} +B})/6

The 2/3 and 1/3 weights are given according to the closeness
of the new point (By) to the boundary control points (B}) (see
Fig. 4). For example, a boundary point close to the new point is
given 2/3. These Control points are used to obtain the Bezier
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surface. The control points are arranged in grid format to use
in the following mathematical definition.

Surface = Z Z BP. (u

cx=0¢y=0

)BP., (v )PcV o (14)

where,

L ) LA
BP, (v) = (y‘(i})) o (1o

is the Bernstein polynomials. Here ISCMC), € R™4 is the matrix
of all the control points, and cy, ¢y are the index of the matrix.

IV. EXPERIMENTAL VALIDATION
A. Experimental Setup

A motion tracking system is used to measure the selected
points on the surface of the robot, whereas IMUs (MPU 9250)
are utilized to measure the bending angle (¢;) of each AMS.
The pneumatic air is controlled by 8 proportional control
solenoid values (1700 Series, Pneumax). To track the deflection
angle of the actuators, 3 IMUs were fitted to joints 2, 3, and 4
as depicted in Fig. 1. The x-orientation of IMU 1 measures the
angle of ¢ in addition to IMU 2 measures the angle of ¢3. The
y-orientation of both IMU 1 and 2 captures the ¢, whereas IMU
3 measures the angle of ¢4. Note that IMU only measures the
angle ¢;/2. A visual demonstration of the robot can be found
here https://youtu.be/-E7g2KndsfI.

Camera tracking is implemented to measure the shape of the
AMS. After calibration, the origin is initialized at joint 1 (where
the red tracker is mounted). The robot was approximately
aligned to the camera coordinate frame, and minor corrections
were made by performing coordinate alignment. Following a
clockwise motion, a tracker is fitted to every joint and center
of each actuator equidistant to their respective joints as in Fig.
1. The trackers are mounted on top of the AMS, though the
simulation is derived for the neutral plane. Therefore, an offset
correction 17 mm, was performed to project the tracker to the
neutral plane. To obtain the projection direction, especially
when the bending occurs, IMU data is utilized to procure
the binomial direction towards the positive curvature. The
tracking points are aligned and compared with the simulation
results to validate the accuracy of the proposed model. The
bending angles obtained from the experiments were used in
the simulation.

B. Convex Bending

The experiments were conducted by applying 0.5 - 3 bars
of constant air pressure using MATLAB individually to the
actuators, causing the AMS to bend. Make note that in Fig.
3, it is evident the deadzone of the PMA is 0.5 bar. In
Fig. 6, a comparison is made between the actual robot as
deflection occurs and the simulation shape during the positive
bending. The experiment is conducted to show the accuracy
of the model’s estimation for single AMS actuation in positive
bending.



Fig. 6. Actual and simulation results of convex bending (Positive bending). The red dots in the simulation figures indicate the actual position of the robot (red
and green markers). The black dots indicates the Bezier curve’s control points. (A) AMS; bending at ¢; = 0.785, (B) AMS, bending at ¢, = 1.176 , (C) AMS3

bending at ¢3 = 1.159, (D) AMS4 bending at ¢4 = 1.299

Fig. 7. Actual and simulation results of concave bending (Negative bending). (A) AMS; bending at ¢; = —0.778, (B) AMS, bending at ¢, = —0.876, (C) AMS3

bending at ¢3 = —0.611, (D) AMS, bending at ¢4 = —0.939
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Fig. 8. Error percentage of each experiment with respect to the actuator length,
175 mm (error/Length).

C. Concave Bending

Figure 7 indicates negative bending experiments that have
a similar performance as the convex (positive) bending. This
indicates that model performance remains unchanged when
a single AMS is actuated and independent of the bending
direction. It is evident in the error plot presented in Fig. 8.
The error along the bending curve is presented wherein the

error percentage is computed for the AMS length (175 mm).
The model closely resembles the actual robot’s shape with a
maximum 12% error. This error is mainly observed in AMS 2
and 4. When the robot bends one AMS, it contracts the adjacent
AMS. This phenomenon is partially exhibited in the model.
However, the misrepresentation is minimal when a single AMS
is actuated.

D. Mixed bending shapes

Figure 9 shows how the model computes the shape when
multiple AMS are actuated simultaneously. The results show
that the model has a challenge when representing the kinemat-
ics. During the multiple actuations, module behavior is affected
by gravity resulting in orientation changes. The dynamic effects
are not accounted for in the kinematic model. However, the
overall representation of the surface is below 12%.

Compared to the existing planar soft module in [13], the
proposed system can bend all four edges bi-directionally (see
Fig. 10). The [13] only has two parallel actuators and the
shapes the module demonstrated only either convex or concave
shapes. The proposed system can perform mixed bending
shapes resulting in more complicated and smoother surfaces
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Fig. 10. Different bending directions in a single planar soft module to obtain
the complex shapes

than [13]. Moreover, the shape estimation model runs at 30 Hz,
which is ideal for real-time control.

Furthermore, a major contributing factor to the deviation
can be identified as manufacturing and tracking errors. The
kinematic model has difficulty estimating the interaction of
the robot (especially the joints) with respect to the ground.
However, transformations were applied to compensate for the
module’s resting surface.

V. CONCLUSIONS

In this work, we proposed a curve parametric-based modeling
approach to estimate the shape of the soft planar module. The
module was developed by arranging PMAs in a square shape
on the non-stretchable fabric. The boundaries of the planar
module were then used to generate the approximate shape of the
surface. The proposed algorithm ran at 30 Hz and can estimate
the shape with less than 12% error. The model estimated the
shape of the robot with high accuracy when a single AMS
was actuated. However, the model experienced difficulty when
multiple AMS were actuated simultaneously. In the future,
modules will be arranged in a matrix and validate the model
performance.
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