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Abstract—Facial expression recognition (FER) is crucial in 

various healthcare applications, including pain assessment, 

mental disorder diagnosis, and assistive robots that require close 

interaction with humans. While heavyweight deep learning 

models can achieve high accuracy for FER, their computational 

cost and memory consumption often need optimization for 

portable and mobile devices. Therefore, efficient deep learning 

models with high accuracy are essential to enable FER on 

resource-constrained platforms. This paper presents a new 

efficient deep-learning model for facial expression recognition. 

The model utilizes Mix Transformer (MiT) blocks, adopted 

from the SegFormer architecture, along with a supplemented 

fusion block. The efficient self-attention mechanism in the 

transformer focuses on relevant information for classifying 

different facial expressions while significantly improving 

efficiency. Furthermore, our supplemented fusion block 

integrates multiscale feature maps to capture both fine-grained 

and coarse features. Experimental results demonstrate that the 

proposed model significantly reduces the computational cost, 

latency, and the number of learnable parameters while 

achieving high accuracy compared with the previous state-of-

the-art (SOTA) on the FER2013 and AffectNet dataset. 

Keywords— Facial Expression Recognition, Deep learning, 

Classification, Emotion detection, Transformer 

I. INTRODUCTION 

Facial expression recognition (FER) systems offer 
potential for  numerous healthcare applications particularly in 
areas such as pain assessment, autism spectrum disorder 
diagnosis, and human-robot collaboration. Facial expressions 
are non-verbal cues that facilitate human communication and 
convey significant messages. While humans can experience 
complex and blended emotions, it is essential to accurately 
recognize fundamental expressions like anger, disgust, fear, 
happiness, and sadness. FER systems enable social robots to 
perceive and understand basic human emotions, allowing 
them to interact appropriately and effectively within the 
human space. Consequently, our study on automatic facial 
expression recognition (FER) systems directly applies to 
human-robot collaboration in medical facilities, enabling 
assistive robots to effectively aid patients. 

Despite the availability of conventional feature extraction 

methods such as Local Binary Patterns (LBP) [1] and Scale 

Invariant Feature Transform (SIFT) [2], deep learning-based 

approaches in Facial Expression Recognition (FER) have 

gained more popularity due to their ability to automatically 

learn complex features from raw image data. Facial 

expressions rely heavily on specific facial regions, such as the 

eyes and mouth, which are referred to as facial landmarks. In 

contrast, other areas, such as the hair and jawline, have little 

impact on emotional expressions[3]. Consequently, facial 

landmark detections can yield remarkable outcomes in 

controlled laboratory settings. Recent studies have 

demonstrated the efficacy of attention mechanisms in 

improving the performance of convolutional neural networks 

for classifying facial expressions. Local (multi) Head 

Channel (self-attention) for facial recognition proposed a 

novel self-attention module that can be integrated into 

Convolutional Neural Networks (CNNs) [4].   

Moreover, in the context of image segmentation some 

architectures have been shown to be effective in retaining 

useful pixel-level information. The Residual Masking 

Network [3] boost the performance of CNNs in facial 

expression tasks by generating segmentation masks that 

highlights the most informative part of the face. However, 

enhancing network performance through increased attention 

using segmentation blocks comes at a significant 

computational cost. These models can be inherently complex 

and computationally expensive, which often requires high 

computational and storage resources. 

After conducting a thorough analysis of various real-time 

semantic segmentation models[5], [6], we determined that 

Mix Transformer (MiT) [7] Blocks are an excellent choice 

for use in FER systems for two reasons. Firstly, MiT blocks 

exhibit enhanced efficiency through the implementation of 

efficient self-attention, as observed in SegFormer 

architectures[7]. Secondly, hierarchical structure of MiT 

blocks can effectively extract both fine-grained and coarse 

features, act as a pixel-level landmark detection of the 

system. MiT blocks are utilized for the first time in the FER 

system context in this research, resulting in improved 

accuracy and speed. 

Our main contribution in this research is the development 

of a novel lightweight deep learning architecture for facial 

expression recognition (Fig. 1). Our model leverages the 

power of a Mix Transformer (MiT) hierarchy along with a 

supplemented fusion block to achieve remarkable results. 

Furthermore, we conducted a thorough benchmarking 

analysis of our architecture against prior methods in terms of 

accuracy, computational complexity, latency, and number of 

learnable parameters on FER13 dataset[8]. To further 

corroborate the model's effectiveness and generalizability in 
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real-world scenarios, we trained our model on the AffectNet 

dataset[9]. Our results demonstrate that our approach 

outperforms heavyweight methods by a significant margin in 

terms of efficiency, while maintaining comparable levels of 

accuracy. These findings have important implications for 

applications where low latency and computational 

complexity are critical factors. 

II. Efficient Deep-Learning Architecture 

In this section, we describe the architecture of our proposed 

efficient deep learning model, which aims to achieve high 

efficiency while maintaining accuracy for FER predictions. 

As depicted in Figure 2, our efficient architecture consists of 

hierarchical Mix Transformer blocks (MiT) [7] adopted from 

Transformer encoder of SegFormer architecture and 

additional fusion mechanism to concatenated multiscale 

feature maps along the channel dimension. Our supplemented 

fusion mechanism integrates high-resolution coarse features 

and low-resolution fine features which increases the 

network's accuracy. 

An input image of size H × W × 3 initially is partitioned 

into patches of size 4 × 4. These patches go through Mix 

Transformer Blocks (MiT) which generate multi-level 

features. Feature maps resolutions are scaled down to 1/4, 

1/8, 1/16, and 1/32 of the original image size. Then we 

integrate feature maps of different spatial sizes using our 

fusion method. Finally, the network utilizes an average 

pooling layer followed by a fully connected layer with 

SoftMax activation. This final layer produces outputs that 

correspond to seven distinct facial expression states. In the 

remaining part of this section, we provide the description of 

various components and addition fusion method that we 

incorporate into MiT blocks.  

A. Mix Transformer Blocks 

In this design we adopted lightweight Mix Transformer 

(MiT) which is encoder block of semantic segmentation 

framework SegFormer[7]. As we can see in TABLE I, MiT 

model generates four hierarchical feature maps Fi contains 

both coarse features and fine-grained features that enhance 

the performance of the network, where i ∈ {1, 2, 3, 4}. As 

evident in TABLE I, given an input image with size 224 × 

224 × 3 produces hierarchical feature maps Fi with a 

resolution of Hi × Wi × Ci+1 , where  Hi , Wi  ∈ {56, 28, 14, 

7}, and Ci+1 ∈ {32, 64, 128, 256} which is larger than Ci. The 

Transformer Blocks are composed of Overlapped Patch 

Merging, Efficient Self-Attention, and Mix-FFN[7]. To 

explain, Overlapped Patch Merging shrinks feature maps 

while preserving their local continuity. In addition, it allows 

patch of size N × N × 3 to merge into a compact 1 × 1 × C 

vector. Efficient Self-Attention blocks reshape and transform 

k, which is similar to the original multi-head self-attention 

process, into k’, thereby compressing the computational 

complexity of the self-attention mechanism [7]. 

 끫歨끫歨끫歨끫歨끫歨끫歨끫歨끫歨끫歨(끫殈,끫歼′,끫殒) = 끫殌끫歨끫殌끫歨끫殌끫殌끫殌(끫殈끫殰′끫殎 �끫殢ℎ끫殤끫殤끫殤⁄ )끫殒       (1) 
 

Finally, Mix-FFN uses mix of MLP and a 3×3 Conv in the 

feed-forward network instead of positional embedding[7].  

In summary, The Mix Transformer Blocks (MiT) offer a 

smaller alternative to traditional vision transformers (ViT). 

Their efficient self-attention mechanism and exclusion of 

positional embedding make them highly suitable for 

enhancing the efficiency of Facial Expression Recognition 

(FER) classification without compromising accuracy. 

B. Fusion Block 

This block integrates the feature maps Fi to capture both 

low resolution fine features and high-resolution coarse 

features. As shown in Figure 2, we first apply max pooling 

operations with different kernel and stride sizes of 8, 4, and 2 

to downsample feature maps F1, F2, and F3. These 

downsampled feature maps, along with F4, are then 

concatenated together and the number of channels is reduced 

using a 1×1 convolutional layer to produce FR. we assume 

that FR would enhance the accuracy of the feature maps, 

consequently, we use the output of fusion block FR to score 

element-wisely the importance of the final output of 

Transformer blocks F4 using following operation: 

                               끫歲끫殂 =  끫歲4 + 끫歲4 ⊗ 끫歲끫殊                            (2)                        

 

Finally, FN passes through the average pooling and fully 

 

Fig. 1. The efficient architecture consists of hierarchical Mix Transformer blocks (MiT) and supplemented fusion mechanism integrating high-resolution 
coarse features and low-resolution fine features, which increases the network's accuracy. 
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connected layer with a dropout layer (dropout rate of 0.4) and 

a linear layer that maps the input to 7 output classes. The 

detailed kernel sizes, strides and paddings for all layers are 

provided in TABLE I. 

III. EXPERIMENT  

A. FER2013 Dataset 

In this research, we used FER2013 (Facial Expression 

Recognition)[8] as a benchmark dataset for comparing the 

accuracy of different FER models. The dataset comprises 

33,572 facial images with resolutions of 48x48 pixels in 

grayscale. The dataset was categorized into seven standard 

classes, with distributions of Angry (4,953), Disgust (547), 

Fear (5,121), Happy (8,989), Sad (6,077), Surprise (4,002), 

and Neutral (6,198). FER2013 achieves human-level 

accuracy of 65±5% and the top algorithm attains 76.82% 

accuracy in labeling facial expressions[3]. 

B. AffectNet  Dataset 

To validate the model's effectiveness and generalizability 

in real-world scenarios, we trained the proposed model on the 

AffectNet dataset, a large FER dataset in the wild which 

includes manually labeled images in eight emotional states 

(neutral, happy, angry, sad, fear, surprise, disgust, contempt). 

Our training set consisted of 287,657 images from AffectNet 

dataset, and testing was performed on the official test set of 

4,000 images (500 per emotional class).  

C. Experimental Setup 

The training images are resized to 224 × 224 and 

transformed to the RGB format to match the requirements of 

pre-trained models in ImageNet. Data augmentation 

techniques are employed during training to prevent 

overfitting. These techniques encompass left-right flipping 

and rotation within the range of [-30, 30] degrees. However, 

other data augmentation techniques did not improve the 

model’s performance. Each experiment is conducted for a 

maximum of 50 epochs and will terminate if the validation 

accuracy does not improve for more than eight consecutive 

steps. A batch size of 48 is employed with an initial learning 

rate of 0.0001, which is reduced by a factor of ten if the 

validation accuracy does not improve for two consecutive 

epochs. The momentum is set to 0.9 and weight decay to 

0.001. We train all models on a single system with NVIDIA 

GeForce RTX 3090 GPU with an Intel Core i9 processor. 

Experiments using different networks are conducted under 

the same settings.  

D. Evaluation Matrices 

In this section, we will outline the evaluation metrics 

employed to assess the accuracy and efficiency of the 

networks in this experiment. 

To evaluate the accuracy of classification models, we use 

following: 끫歨끫歨끫歨끫歨끫殌끫歨끫殌끫歨끫歨 = (끫殎끫殎 + 끫殎끫殎)/ (끫殎끫殎 + 끫殎끫殎 + 끫歲끫殎 + 끫歲끫殎)     (3)  

The correctly predicted pixels are referred to as true 

positives (TP), while those correctly identified as not 

belonging to a specific class are known as true negatives 

(TN). Pixels that belong to the category but are incorrectly 

predicted as a different type are called false negatives (FN). 

Lastly, the pixels mistakenly indicated as belonging to the 

class are referred to as false positives (FP). 

To measure the efficiency of our models, we used three 

metrics: the number of trainable parameters, computational 

complexity (Flops), and inference time (TABLE II). 

1) Learnable Parameters 

This metric quantifies the extent of model complexity by 

measuring the total number of learnable parameters in a feed-

forward neural network. 

2) Flops 

The Flops measures computational complexity based on 

the number of floating-point operations per second. 

3) Inference Time 

The inference time is calculated on a single RTX 3090 

GPU using CUDA 11.7, and PyTorch 1.13.0. After 

initializing the GPU with dummy examples, the network is 

run 300 times with an input resolution of 224 × 224 and a 

batch size of 48. The average time is then reported. For real-

time model consideration, the standard video streaming rate 

is 24 frames per second (fps), meaning that if a model 

processes an image in less than 41ms, it can be categorized as 

a real-time model. 

IV. RESULTS AND ANALYSIS  

To evaluate the method's performance on the FER2013 

public dataset, we categorized the network classifications 

into two distinct group. First, we focused on networks that 

yield high accuracy on FER2013, including ResmaskingNet 

[3], Resnet151 [10], Densenet121 [11], RessAttNet56 [12], 

Cbam_resnet50 [13]. Second, we analyzed recent efficient 

networks, namely MobileNetV3 [14], MobiExpressNet [15], 

Improved MobileNetV3(imp-MobileNetV3) [16] and RASN 

[17]. As depicted in TABLE II, among the assessed methods 

in the first group on the FER2013 dataset, our approach 

displays the highest efficiency across all efficiency metrics: 

Flops, the number of learnable parameters, and inference 

time. Furthermore, within the lightweight category located in 

the lower section of TABLE II, our model attains the highest 

accuracy among all models, while demonstrating comparable 

efficiency.  

Our approach achieves a low Flops value of 425 million 

through efficient transformer block utilization via compact 

hierarchical design and exclusion of positional embeddings 

from the original vision transformer structure. This yields 

high accuracy with minimal computational load, comparable 

to lightweight methods like MonileNetV3 [14]. Similarly, the 

proposed deep network excels the efficiency with only 3.45 

TABLE I 
EFFICIENT MIX TRANSFORMER WITH FUSION BLOCK   

Layer name  Output size Detail 

Transformer Block 1 

Transformer Block 2  

Transformer Block 3 
Transformer Block 4 

Fusion Block 

Average pooling 
FC, Softmax 

32   × 56 × 56 

64   × 28 × 28 

128 × 14 × 14 
256 ×   7 ×   7 

256 ×   7 ×   7 

256 ×   1 ×   1 
            7 

K = 7, S = 4, P = 3 

K = 3, S = 2, P = 1 

K = 3, S = 2, P = 1 
K = 3, S = 2, P = 1 

MaxPool2, Concat 

   

TABLE I 
EFFICIENT MIX TRANSFORMER WITH FUSION BLOCK   

Layer name  Output size Detail 

Transformer Block 1 

Transformer Block 2  

Transformer Block 3 
Transformer Block 4 

Fusion Block 

Average pooling 
FC, Softmax 

32   × 56 × 56 

64   × 28 × 28 

128 × 14 × 14 
256 ×   7 ×   7 

256 ×   7 ×   7 

256 ×   1 ×   1 
            7 

K = 7, S = 4, P = 3 

K = 3, S = 2, P = 1 

K = 3, S = 2, P = 1 
K = 3, S = 2, P = 1 

MaxPool2, Concat 

   

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 01,2024 at 17:04:02 UTC from IEEE Xplore.  Restrictions apply. 



  
million parameters which is 41 times lower than that of 

ResMaskingNet. This efficiency is exceeds lightweight 

models like RASN[17]. By employing a compact model with 

fewer parameters, our proposed method reduces memory 

requirements and computational overhead. Furthermore, our 

model showcases impressive speed in terms of inference, as 

evidenced by an average inference time of 7.74 nanoseconds 

(ns). This characteristic highlights its suitability for real-time 

applications, on par with lightweight approaches like 

MobileNetV3 and Imp- MobileNetV3[16]. 

In addition to its efficiency, the proposed network achieves 

a high accuracy of 73.47%, which is the second-best result 

obtained in the evaluation table (TABLE II). To further 

validate the model’s efficacy and its ability to generalize in  

real-world scenarios, we conducted training on AffectNet [9]. 

This yielded a 60.9% accuracy, which is comparable to 

63.05% accuracy achieved by the state-of-the-art (SOTA) 

performance [18] on the AffectNet dataset. The higher 

accuracy is due to our hierarchical Transformer Blocks with 

a larger effective receptive field (ERF) than traditional CNN 

layers, showcasing a balance between efficiency and 

accuracy. As seen in TABLE II, our model stands out for 

efficiency in terms of Flops, number of parameters, and 

inference, compared to networks in the first group that 

achieve high accuracy on FER2013. Furthermore, unlike the 

second group which compromises accuracy for efficiency, 

our model maintains a high level of accuracy on FER2013 

and AffectNet datasets. 

V. CONCLUSION 

This paper introduces a novel efficient deep learning 

model for facial expression recognition (FER) using a Mix 

Transformer (MiT) hierarchy and a supplemented fusion 

block. The model incorporates a self-attention mechanism to 

enhance attention at the pixel-level landmark segments. In 

addition, the fusion block combines high-resolution coarse 

features with low-resolution fine features to achieve 

improved accuracy. Experimental results demonstrate that 

the proposed method achieves high efficiency while 

maintaining competitive accuracy on the FER2013 and 

AffectNet dataset. Future work includes applying this method 

to develop a human-robot collaboration system, where facial 

emotion recognition, combined with bio-signals, collaborates 

with a robot. 
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TABLE II.  Evaluating the Efficiency and Accuracy of All Models. The 

results of the proposed method are emphasized in bold, presenting 
Floating-Point Operations per Second (Flops), Learnable Parameters 

(Parms), Inference Time (Time), and Accuracy (Acc). 

 

TABLE II 
PERFORMANCE EVALUATION OF NETWORKS ON FER2013 

Light Models Flops         Parm Time Acc 

ResAttNet56 

Densenet121 

Resnet152 
Cbam_resnet50 

ResMaskingNet 

6.33B 

2.89B 

11.60B 
4.14B 

26.76B 

29.77M 

6.96M 

58.16M 
26.05M 

142.9M 

17.69ns 

19.57ns 

23.66ns 
16.94ns 

17.63ns 

 72.63% 

73.16% 

73.22% 
73.39% 

74.14% 

  MobileNetV3 

MobiExpressNet 
Imp-MobileNetV3 

RASN 

Proposed Method 

0.23B 

1.09M 
0.19B 

1.83B 

0.425B 

5.48M 

75.08K 
1.29M 

14.4M 

3.45M 

7.48ns 

     - 
8.93ns 

- 

7.74 ns 

  64.78% 

67.96% 
68.14% 

71.44% 

73.47% 
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