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Abstract—Facial expression recognition (FER) is crucial in
various healthcare applications, including pain assessment,
mental disorder diagnosis, and assistive robots that require close
interaction with humans. While heavyweight deep learning
models can achieve high accuracy for FER, their computational
cost and memory consumption often need optimization for
portable and mobile devices. Therefore, efficient deep learning
models with high accuracy are essential to enable FER on
resource-constrained platforms. This paper presents a new
efficient deep-learning model for facial expression recognition.
The model utilizes Mix Transformer (MiT) blocks, adopted
from the SegFormer architecture, along with a supplemented
fusion block. The efficient self-attention mechanism in the
transformer focuses on relevant information for classifying
different facial expressions while significantly improving
efficiency. Furthermore, our supplemented fusion block
integrates multiscale feature maps to capture both fine-grained
and coarse features. Experimental results demonstrate that the
proposed model significantly reduces the computational cost,
latency, and the number of learnable parameters while
achieving high accuracy compared with the previous state-of-
the-art (SOTA) on the FER2013 and AffectNet dataset.

Keywords— Facial Expression Recognition, Deep learning,
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1. INTRODUCTION

Facial expression recognition (FER) systems offer
potential for numerous healthcare applications particularly in
areas such as pain assessment, autism spectrum disorder
diagnosis, and human-robot collaboration. Facial expressions
are non-verbal cues that facilitate human communication and
convey significant messages. While humans can experience
complex and blended emotions, it is essential to accurately
recognize fundamental expressions like anger, disgust, fear,
happiness, and sadness. FER systems enable social robots to
perceive and understand basic human emotions, allowing
them to interact appropriately and effectively within the
human space. Consequently, our study on automatic facial
expression recognition (FER) systems directly applies to
human-robot collaboration in medical facilities, enabling
assistive robots to effectively aid patients.

Despite the availability of conventional feature extraction
methods such as Local Binary Patterns (LBP) [1] and Scale
Invariant Feature Transform (SIFT) [2], deep learning-based
approaches in Facial Expression Recognition (FER) have
gained more popularity due to their ability to automatically
learn complex features from raw image data. Facial
expressions rely heavily on specific facial regions, such as the

eyes and mouth, which are referred to as facial landmarks. In
contrast, other areas, such as the hair and jawline, have little
impact on emotional expressions[3]. Consequently, facial
landmark detections can yield remarkable outcomes in
controlled laboratory settings. Recent studies have
demonstrated the efficacy of attention mechanisms in
improving the performance of convolutional neural networks
for classifying facial expressions. Local (multi) Head
Channel (self-attention) for facial recognition proposed a
novel self-attention module that can be integrated into
Convolutional Neural Networks (CNNs) [4].

Moreover, in the context of image segmentation some
architectures have been shown to be effective in retaining
useful pixel-level information. The Residual Masking
Network [3] boost the performance of CNNs in facial
expression tasks by generating segmentation masks that
highlights the most informative part of the face. However,
enhancing network performance through increased attention
using segmentation blocks comes at a significant
computational cost. These models can be inherently complex
and computationally expensive, which often requires high
computational and storage resources.

After conducting a thorough analysis of various real-time
semantic segmentation models[5], [6], we determined that
Mix Transformer (MiT) [7] Blocks are an excellent choice
for use in FER systems for two reasons. Firstly, MiT blocks
exhibit enhanced efficiency through the implementation of
efficient self-attention, as observed in SegFormer
architectures[7]. Secondly, hierarchical structure of MiT
blocks can effectively extract both fine-grained and coarse
features, act as a pixel-level landmark detection of the
system. MiT blocks are utilized for the first time in the FER
system context in this research, resulting in improved
accuracy and speed.

Our main contribution in this research is the development
of a novel lightweight deep learning architecture for facial
expression recognition (Fig. 1). Our model leverages the
power of a Mix Transformer (MiT) hierarchy along with a
supplemented fusion block to achieve remarkable results.
Furthermore, we conducted a thorough benchmarking
analysis of our architecture against prior methods in terms of
accuracy, computational complexity, latency, and number of
learnable parameters on FERI13 dataset[8]. To further
corroborate the model's effectiveness and generalizability in
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Fig. 1. The efficient architecture consists of hierarchical Mix Transformer blocks (MiT) and supplemented fusion mechanism integrating high-resolution
coarse features and low-resolution fine features, which increases the network's accuracy.

real-world scenarios, we trained our model on the AffectNet
dataset[9]. Our results demonstrate that our approach
outperforms heavyweight methods by a significant margin in
terms of efficiency, while maintaining comparable levels of
accuracy. These findings have important implications for
applications where low latency and computational
complexity are critical factors.

II. Efficient Deep-Learning Architecture

In this section, we describe the architecture of our proposed
efficient deep learning model, which aims to achieve high
efficiency while maintaining accuracy for FER predictions.
As depicted in Figure 2, our efficient architecture consists of
hierarchical Mix Transformer blocks (MiT) [7] adopted from
Transformer encoder of SegFormer architecture and
additional fusion mechanism to concatenated multiscale
feature maps along the channel dimension. Our supplemented
fusion mechanism integrates high-resolution coarse features
and low-resolution fine features which increases the
network's accuracy.

An input image of size H x W X 3 initially is partitioned
into patches of size 4 x 4. These patches go through Mix
Transformer Blocks (MiT) which generate multi-level
features. Feature maps resolutions are scaled down to 1/4,
1/8, 1/16, and 1/32 of the original image size. Then we
integrate feature maps of different spatial sizes using our
fusion method. Finally, the network utilizes an average
pooling layer followed by a fully connected layer with
SoftMax activation. This final layer produces outputs that
correspond to seven distinct facial expression states. In the
remaining part of this section, we provide the description of
various components and addition fusion method that we
incorporate into MiT blocks.

A. Mix Transformer Blocks

In this design we adopted lightweight Mix Transformer
(MiT) which is encoder block of semantic segmentation
framework SegFormer[7]. As we can see in TABLE I, MiT
model generates four hierarchical feature maps F; contains
both coarse features and fine-grained features that enhance
the performance of the network, where i € {1, 2, 3, 4}. As

evident in TABLE I, given an input image with size 224 x
224 x 3 produces hierarchical feature maps F; with a
resolution of H; x W; x Ci+; , where H;, W; € {56, 28, 14,
7}, and Ci+; € {32, 64, 128, 256} which is larger than Ci. The
Transformer Blocks are composed of Overlapped Patch
Merging, Efficient Self-Attention, and Mix-FFN[7]. To
explain, Overlapped Patch Merging shrinks feature maps
while preserving their local continuity. In addition, it allows
patch of size N X N x 3 to merge into a compact / x [ x C
vector. Efficient Self-Attention blocks reshape and transform
k, which is similar to the original multi-head self-attention
process, into k’, thereby compressing the computational
complexity of the self-attention mechanism [7].

Attention(Q,K',V) = Softmax(Qk'" /\/dpeat)V (1)

Finally, Mix-FFN uses mix of MLP and a 3%3 Conv in the
feed-forward network instead of positional embedding[7].

In summary, The Mix Transformer Blocks (MiT) offer a
smaller alternative to traditional vision transformers (ViT).
Their efficient self-attention mechanism and exclusion of
positional embedding make them highly suitable for
enhancing the efficiency of Facial Expression Recognition
(FER) classification without compromising accuracy.

B. Fusion Block

This block integrates the feature maps F;to capture both
low resolution fine features and high-resolution coarse
features. As shown in Figure 2, we first apply max pooling
operations with different kernel and stride sizes of 8, 4, and 2
to downsample feature maps F;, F> and F3 These
downsampled feature maps, along with F,, are then
concatenated together and the number of channels is reduced
using a 1x1 convolutional layer to produce F. we assume
that Fr would enhance the accuracy of the feature maps,
consequently, we use the output of fusion block F to score
element-wisely the importance of the final output of
Transformer blocks F4 using following operation:

Fy=F,+ F,®F, (2)

Finally, Fy passes through the average pooling and fully
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TABLEI

EFFICIENT MIX TRANSFORMER WITH FUSION BLOCK

Layer name Output size Detail
Transformer Block 1 32 x56x56 K=7,S=4,P=3
Transformer Block 2 64 x28 x28 K=3,S=2,P=1
Transformer Block 3 128 x 14 x 14 K=3,S=2,P=1
Transformer Block 4 256x 7x 7 K=3,S=2,P=1

Fusion Block 256 x 7x 7 MaxPool2, Concat

Average pooling 256 x 1x 1

FC, Softmax 7

connected layer with a dropout layer (dropout rate of 0.4) and
a linear layer that maps the input to 7 output classes. The
detailed kernel sizes, strides and paddings for all layers are
provided in TABLE 1.

III. EXPERIMENT

A. FER2013 Dataset

In this research, we used FER2013 (Facial Expression
Recognition)[8] as a benchmark dataset for comparing the
accuracy of different FER models. The dataset comprises
33,572 facial images with resolutions of 48x48 pixels in
grayscale. The dataset was categorized into seven standard
classes, with distributions of Angry (4,953), Disgust (547),
Fear (5,121), Happy (8,989), Sad (6,077), Surprise (4,002),
and Neutral (6,198). FER2013 achieves human-level
accuracy of 65+5% and the top algorithm attains 76.82%
accuracy in labeling facial expressions[3].

B. AffectNet Dataset

To validate the model's effectiveness and generalizability
in real-world scenarios, we trained the proposed model on the
AffectNet dataset, a large FER dataset in the wild which
includes manually labeled images in eight emotional states
(neutral, happy, angry, sad, fear, surprise, disgust, contempt).
Our training set consisted of 287,657 images from AffectNet
dataset, and testing was performed on the official test set of
4,000 images (500 per emotional class).

C. Experimental Setup

The training images are resized to 224 x 224 and
transformed to the RGB format to match the requirements of
pre-trained models in ImageNet. Data augmentation
techniques are employed during training to prevent
overfitting. These techniques encompass left-right flipping
and rotation within the range of [-30, 30] degrees. However,
other data augmentation techniques did not improve the
model’s performance. Each experiment is conducted for a
maximum of 50 epochs and will terminate if the validation
accuracy does not improve for more than eight consecutive
steps. A batch size of 48 is employed with an initial learning
rate of 0.0001, which is reduced by a factor of ten if the
validation accuracy does not improve for two consecutive
epochs. The momentum is set to 0.9 and weight decay to
0.001. We train all models on a single system with NVIDIA
GeForce RTX 3090 GPU with an Intel Core 19 processor.
Experiments using different networks are conducted under
the same settings.

D. Evaluation Matrices

In this section, we will outline the evaluation metrics

employed to assess the accuracy and efficiency of the
networks in this experiment.

To evaluate the accuracy of classification models, we use
following:

Accuaracy = (TP +TN)/ (TP +TN +FP+FN) (3)

The correctly predicted pixels are referred to as true
positives (TP), while those correctly identified as not
belonging to a specific class are known as true negatives
(TN). Pixels that belong to the category but are incorrectly
predicted as a different type are called false negatives (FN).
Lastly, the pixels mistakenly indicated as belonging to the
class are referred to as false positives (FP).

To measure the efficiency of our models, we used three
metrics: the number of trainable parameters, computational
complexity (Flops), and inference time (TABLE II).

1) Learnable Parameters

This metric quantifies the extent of model complexity by
measuring the total number of learnable parameters in a feed-
forward neural network.

2) Flops

The Flops measures computational complexity based on

the number of floating-point operations per second.
3) Inference Time

The inference time is calculated on a single RTX 3090
GPU wusing CUDA 11.7, and PyTorch 1.13.0. After
initializing the GPU with dummy examples, the network is
run 300 times with an input resolution of 224 x 224 and a
batch size of 48. The average time is then reported. For real-
time model consideration, the standard video streaming rate
is 24 frames per second (fps), meaning that if a model
processes an image in less than 41ms, it can be categorized as
a real-time model.

IV. RESULTS AND ANALYSIS

To evaluate the method's performance on the FER2013
public dataset, we categorized the network classifications
into two distinct group. First, we focused on networks that
yield high accuracy on FER2013, including ResmaskingNet
[3], Resnet151 [10], Densenet121 [11], RessAttNet56 [12],
Cbam_resnet50 [13]. Second, we analyzed recent efficient
networks, namely MobileNetV3 [14], MobiExpressNet [15],
Improved MobileNetV3(imp-MobileNetV3) [16] and RASN
[17]. As depicted in TABLE II, among the assessed methods
in the first group on the FER2013 dataset, our approach
displays the highest efficiency across all efficiency metrics:
Flops, the number of learnable parameters, and inference
time. Furthermore, within the lightweight category located in
the lower section of TABLE II, our model attains the highest
accuracy among all models, while demonstrating comparable
efficiency.

Our approach achieves a low Flops value of 425 million
through efficient transformer block utilization via compact
hierarchical design and exclusion of positional embeddings
from the original vision transformer structure. This yields
high accuracy with minimal computational load, comparable
to lightweight methods like MonileNetV3 [14]. Similarly, the
proposed deep network excels the efficiency with only 3.45
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TABLE II
PERFORMANCE EVALUATION OF NETWORKS ON FER2013

Light Models Flops Parm Time Ace

ResAttNet56 6.33B | 29.77M | 17.69ns | 72.63%
Densenet121 2.89B 6.96M | 19.57ns | 73.16%
Resnet152 11.60B | 58.16M | 23.66ns | 73.22%
Cbam_resnet50 4.14B | 26.05M | 16.94ns | 73.39%

ResMaskingNet 26.76B | 142.9M | 17.63ns | 74.14%
MobileNetV3 0.23B 5.48M | 7.48ns 64.78%
MobiExpressNet 1.09M | 75.08K - 67.96%
Imp-MobileNetV3 0.19B 1.29M | 8.93ns 68.14%
RASN 1.83B 14.4M - 71.44%
Proposed Method | 0.425B | 3.45M | 7.74 ns 73.47%

TABLE II. Evaluating the Efficiency and Accuracy of All Models. The
results of the proposed method are emphasized in bold, presenting
Floating-Point Operations per Second (Flops), Learnable Parameters
(Parms), Inference Time (Time), and Accuracy (Acc).

million parameters which is 41 times lower than that of
ResMaskingNet. This efficiency is exceeds lightweight
models like RASN[17]. By employing a compact model with
fewer parameters, our proposed method reduces memory
requirements and computational overhead. Furthermore, our
model showcases impressive speed in terms of inference, as
evidenced by an average inference time of 7.74 nanoseconds
(ns). This characteristic highlights its suitability for real-time
applications, on par with lightweight approaches like
MobileNetV3 and Imp- MobileNetV3[16].

In addition to its efficiency, the proposed network achieves
a high accuracy of 73.47%, which is the second-best result
obtained in the evaluation table (TABLE II). To further
validate the model’s efficacy and its ability to generalize in
real-world scenarios, we conducted training on AffectNet [9].
This yielded a 60.9% accuracy, which is comparable to
63.05% accuracy achieved by the state-of-the-art (SOTA)
performance [18] on the AffectNet dataset. The higher
accuracy is due to our hierarchical Transformer Blocks with
a larger effective receptive field (ERF) than traditional CNN
layers, showcasing a balance between efficiency and
accuracy. As seen in TABLE II, our model stands out for
efficiency in terms of Flops, number of parameters, and
inference, compared to networks in the first group that
achieve high accuracy on FER2013. Furthermore, unlike the
second group which compromises accuracy for efficiency,
our model maintains a high level of accuracy on FER2013
and AffectNet datasets.

V. CONCLUSION

This paper introduces a novel efficient deep learning
model for facial expression recognition (FER) using a Mix
Transformer (MiT) hierarchy and a supplemented fusion
block. The model incorporates a self-attention mechanism to
enhance attention at the pixel-level landmark segments. In
addition, the fusion block combines high-resolution coarse
features with low-resolution fine features to achieve
improved accuracy. Experimental results demonstrate that
the proposed method achieves high efficiency while
maintaining competitive accuracy on the FER2013 and
AffectNet dataset. Future work includes applying this method
to develop a human-robot collaboration system, where facial
emotion recognition, combined with bio-signals, collaborates
with a robot.
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