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A B S T R A C T   

An orientation distribution is a necessary input in any crystal plasticity simulation. The compu
tational time involved in crystal plasticity simulations scales linearly with the number of crystal 
orientations in the input distributions. Reducing the number of crystal orientations in repre
senting the input orientation distributions quantitatively is a critical and necessary requirement 
for performing computationally efficient crystal plasticity simulations of deformation processes. A 
procedure for the compaction of orientation distribution functions (ODFs) relying on a spectral 
representation using series of generalized spherical harmonics (GSH) basis functions was recently 
developed. Linear fitting of the spectral representation of an ODF containing a compact set of 
weighted orientations towards a full-size ODF containing many crystal orientations was in the 
core of the procedure. This paper advances the compaction procedure by replacing the linear with 
a nonlinear optimization in Matlab for which a suitably defined error, gradient, and Hessian 
matrix are derived to allow for more efficient, accurate, and greater compactions. The utility of 
the new procedure is to allow for not only fitting the weights of a compacted set of orientations 
but to allow for optimizing weighted orientations or a combination of optimizing weights and 
orientations. The new compaction procedure has been successfully applied to compactions of 
large ODFs of cubic, hexagonal, and orthorhombic polycrystalline metals. In doing so, the evo
lution of texture, twinning, and stress-strain are predicted at large plastic strains with compact 
ODFs to agree with the corresponding full size ODFs using crystal plasticity models. In closing, 
guidance for effective texture compaction trading off the accuracy and computational gains are 
provided.   

1. Introduction 

Orientation distribution functions (ODFs) are used to quantitatively describe crystallographic texture in polycrystalline metals 
(Bunge, 1993). Such distributions are the normalized probability densities describing the occurrence of a given crystal orientation in 
the metal. Modeling the anisotropy of material properties and the evolution of such propertied during thermo-mechanical processing 
requires the consideration of a crystal structure and ODFs (Kocks et al., 1998). A given crystal structure and an ODF determine 
elastic-plastic properties and the activation of the deformation mechanisms like glide, twinning, and strain induced transformations 
during processing (Feng et al., 2021; Proust et al., 2007; Taylor, 1938). Material models aimed at predicting mechanical properties and 
texture evolution must consider the crystal structure and ODF as inputs. Reducing the number of crystal orientations per ODF is a 
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critical and necessary step towards performing computationally efficient modeling of material properties and processes since the 
computational time involved in such simulations scales linearly with the number of crystal orientations. The scaling is because crystal 
plasticity equations for stress must be solved for every crystal orientation in every trial increment. Moreover, the memory requirements 
in simulations are greater for bigger ODFs. The present paper is concerned with developing a methodology for compact representation 
of ODFs. 

Modeling of mechanical properties and processes such as deformation, recrystallization, and phase transformations can be 
accomplished using crystal plasticity models (Beyerlein and Tóth, 2009; Riyad and Knezevic, 2023; Rollett, 1997). The kine
matics/kinetics of these deformation mechanisms in the models is physically based. The added benefit of the consideration of ODF 
makes these models vital in understanding and predicting the microstructure-property relationships and concomitant evolution of the 
microstructure. Such models have been developed based on discrete ODF inputs and their evolution. Standalone formulations of these 
models range from mean-field such as Taylor (Knezevic et al., 2008a; Taylor, 1938), elasto-plastic self consistent (EPSC) (Turner and 
Tomé, 1994; Zecevic and Knezevic, 2015; Zecevic et al., 2016c, 2019b), and visco-plastic self-consistent (VPSC) (Lebensohn and Tomé, 
1993; Lebensohn et al., 2016; Zecevic et al., 2018, 2019a) to the full-field formulations such as elasto-viscoplastic fast Fourier 
transforms (EVPFFT) (Eghtesad et al., 2017; Lebensohn et al., 2012, 2011). These models have been coupled with finite element (FE) 
frameworks to become Taylor-crystal plasticity finite element (T-CPFE) (Ardeljan et al., 2014, 2016, 2015; Ardeljan and Knezevic, 
2018; Feather et al., 2019, 2021; Kalidindi et al., 1992; Knezevic et al., 2014), FE-VPSC (Knezevic et al., 2013; Segurado et al., 2012; 
Zecevic et al., 2016a, 2016b, 2015), FE-EPSC (Zecevic et al., 2017; Zecevic and Knezevic, 2017, 2019), and FE-EVPFFT (Eghtesad et al., 
2022) models. The embedded crystal plasticity models as constructive laws within FE frameworks facilitate anisotropic modeling of 
structural components and metal forming processes (Balasubramanian, 1996; Barrett and Knezevic, 2019; Barrett et al., 2018; 
Beaudoin et al., 1994, 1993; Knezevic et al., 2016; Raabe and Roters, 2004; Savage et al., 2018). While these works demonstrated the 
benefits and utility of such modeling approaches, the works also showed that such simulations are a huge computational challenge. 
The crystal plasticity formulations coupled with FE frameworks are computationally very demanding because texture is a state variable 
at each FE integration point. Clearly, speedups are needed to make such simulation approaches practical and enable their wider use 
(Barton et al., 2011; Panchal et al., 2013; Savage et al., 2017). 

To achieve the speedups, efficient numerical implementations of crystal plasticity are being explored. Databases of precomputed 
solutions to basic equations of crystal plasticity are often used as an approach to circumvent solving sets of numerically stiff equations 
requiring a large number of iterations for every crystal orientation at every trial strain increment. One such approach involves an 
adaptive sampling algorithm to build a database of solutions that constantly updates itself during simulations (Barton et al., 2011, 
2008). The method was able to improve efficiency by about an order of magnitude. Similarly, several approached exist in literature 
where precompiled solutions are in the form of spectral coefficients of continuous generalized spherical harmonics (GSH) basis 
(Kalidindi et al., 2006; Knezevic et al., 2008b; Shaffer et al., 2010; Wu et al., 2007) or FFTs (Al-Harbi et al., 2010; Knezevic et al., 2009; 
Landry and Knezevic, 2015; Zecevic et al., 2015). These implementations improve efficiency by about two orders of magnitude. A 
process plane concept involving the proper orthogonal decomposition in Rodrigues crystal orientation space was developed and found 
to yield some improvements in efficiency (Sundararaghavan and Zabaras, 2007). The Jacobian-Free Newton–Krylov (JFNK) solution 
procedure to crystal plasticity equations in place of Newton’s method can also yield some computational benefits (Chockalingam et al., 
2013). 

To achieve the speedups furthermore, parallel computing implementations on specialized computer hardware are being developed. 
To this end, several high-performance codes as the crystal plasticity solvers have been developed to run on graphic processing units 
(GPUs) (Eghtesad et al., 2022; Knezevic and Savage, 2014; Mihaila et al., 2014; Savage and Knezevic, 2015). 

The approaches to accelerating crystal plasticity codes could be greatly complemented by minimizing the amount of state variables, 
particularly those data related to ODFs. Since crystal plasticity calculations and the number of state variables involved in such cal
culations scale nearly linearly with the number of crystal orientations, the computational speed can substantially be reduced by the 
development of ODF data compaction procedures. To this end, several works approximating a given ODF with a reduced number of 
crystal orientations representing the given ODF exist in literature (Baudin et al., 1995; Baudin and Penelle, 1993; Pospiech et al., 1994; 
Wright and Adams, 1990). The works considered a suitably defined error to measure the difference between a given/measured ODF 
and a reduced ODF. The number of discrete orientations, which were equally weighted, was increased until the error was within 
acceptable tolerances. However, any ODF can be represented by a weighted set of orientations but selecting a minimal set of the 
discrete orientations for weighting is not a trivial task. 

The use of GSH to represent ODF was introduced long time ago by Bunge (1993, 1965), Gelfand et al. (1963), Roe (1965). More 
recent works showed that large ODFs can be effectively compacted to a small set weighted orientations using the GSH functions 
(Eghtesad et al., 2018). Linear fitting of the spectral representation of an ODF containing a compact set of weighted orientations 
towards a full-size ODF containing many crystal orientations was in the core procedure. The linear programming problem was set to 
match the expansion coefficients of a compact ODF with those of the given ODF taking advantage of the linearity in the Fourier space 
by varying the weights of crystal orientation in the compact ODF. The success of the procedure was driven by choosing a set of crystal 
orientations for weighting. One method was based on binning of a given fundamental zone in the Bunge-Euler orientation space for 
selected crystal and sample symmetries. Another method was relying on MTEX to randomly select a set of orientations for weighting. 
While the first method always provided a solution, the second method iterated until arriving to the solution. While successful in 
compacting ODFs, the explored methods were not able to always converge and reach desired accuracy, especially for low symmetry 
metals. 

This paper advances the GSH compaction procedure by replacing the linear with a nonlinear optimization in Matlab for which 
suitably defined gradient and Hessian matrix are derived. The new procedure does not only fit the weights of a compacted set of 
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orientations but also optimizes orientations or a combination of weights and orientations. Greater compactions to a minimum or nearly 
minimum can be achieved using the new procedure. The procedure has been successfully applied to compactions of large ODFs of 
cubic, hexagonal, and orthorhombic polycrystalline metals. In doing so, the evolution of texture, twinning, and stress-strain are 
predicted at large plastic strains with compact ODFs to agree with the corresponding large ODFs using a crystal plasticity model. The 
procedure, the case studies verifying the procedure, and several insights are described and discussed in this paper. 

The remainder of the paper is organized as follows: The spectral representation of ODFs using GSH basis is described in detail in 
Section 2.1. The procedure for the compact reconstruction of ODFs is covered in Section 2.2. The results from several case studies 
involving cubic, hexagonal, and orthorhombic structures are presented in Section 3. Discussion emphasizing the tradeoffs in accuracy 
and computational gains is given in Section 4. Finally, conclusions are drawn in Section 5. 

2. Methodology 

This section describes the spectral representation of ODFs using GSH basis and then the procedure for the compact reconstruction of 
ODFs. 

2.1. ODF and its GSH representation 

ODF, f(g), is a normalized probability density function that describes the occurrence of a crystallographic orientation, g, in a 
sample/specimen of a material. The function is continuous, meaning that it will describe the probability for an orientation to be found 
in each texture. The function basically quantifies how crystal orientations are distributed in a polycrystal and is expressed as 

f (g)dg =
dV
V

,

∫

OS

f (g)dg = 1, (1)  

where V is the volume of a material sample and dV is the volume increment associated with a crystal lattice orientation dg. One way to 
define a crystal lattice orientation is using a set of Bunge-Euler angles (Bunge, 1993). The angles transform the crystal lattice frame to 
the sample reference through an ordered set of three rotation angles. Therefore, each orientation is described by a set of ZXZ 
Bunge-Euler angles (φ1, Φ, φ2). Any crystal orientation must belong to the Bunge-Euler orientation space (OS) (Bunge, 1993). 

GSH basis are a way of representing a continuous ODF using a set of discrete numbers. An ODF is represented using a series of GSH 
using (Bunge, 1993; Gelfand et al., 1963) 

f (g) =
∑∞

l=0

∑l

m=−l

∑l

n=−l
Cmn

l Tmn
l (g), (2)  

where Cmn
l are complex coefficients representing the ODF and Tmn

l is the GSH function providing a way of sampling the ODF at a 
discrete orientation. The index l enumerates the number of dimensions involved in the GSH series, while L will be used to denote the 
upper limit for the l values. Tmn

l is calculated as 

Tmn
l = eimφ2 Pmn

l (cosΦ)einφ1 , (3)  

which expands to 

Tmn
l = Pmn

l (cosΦ)[(cosmφ2cosnφ1 − sinmφ2sinnφ1) + i(cosmφ2sinnφ1 + sinmφ2cosnφ1)]. (4)  

Pmn
l functions are (Bunge, 1993) 

Pmn
l (x) =

(−1)
l−m

(i)n−m

2l(l − m)!

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(l − m)!(l + n)!

(l + m)!(l − n)!

√

(1 − x)
−n−m

2 (1 + x)
−n+m

2
dl−n

dxl−n

[
(1 − x)

l−m
(1 + x)

l+m
]
, (5)  

and conveniently converted into the real functions using Qmn
l (x) = im+nPmn

l (x). These Qmn
l (x) functions are then used to calculate Pmn

l (x)

by way of Fourier expansion with amns
l = Qms

l Qsn
l , which are then used for m+n even Pmn

l (cosΦ) = amn0
l + 2

∑l
s=1amns

l cossΦ and for m+n 
odd Pmn

l (cosΦ) = 2i
∑l

s=1amns
l sinsΦ. Evidently, the equations are entirely dependent on (φ1, Φ, φ2) and the constant library amns

l , which 
has been recalculated in the present work for an increased precision of 16 digits and for L up to 64 compared to an available library 
from earlier works. 

While two successive rotations, g and g′, can be readily multiplied, the corresponding Tmn
l function follows from the addition 

theorem as (Bunge, 1993) 

Tmn
l (g ⋅ g′) =

∑s=l

s=−l
Tms

l (g)Tsn
l (g′). (6)  

The presence of symmetries requires f(g ⋅ ġ˙) = f(g) and f(g̈ ⋅ g) = f(g) in which ġ˙ is the right-handed statistical sample symmetry 
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operation and g̈ is the left-handed physical crystal symmetry operation. These conditions are satisfied by remapping m and n into μ and 
ν and adding up all the rotated Tmn

l using Ämμ
l and Ȧnν

l symmetry coefficients (Bunge, 1993) 

˙̈T
μν

l =
∑

m(μ)

∑

n(ν)

Ämμ
l Ȧnν

l Tmn
l . (7) 

The symmetrized functions ˙̈T
μν

l having both right-handed and left-handed symmetries are used the same way as Tmn
l in representing 

an ODF, f(g) =
∑L

l=0
∑M(l)

μ=1
∑N(l)

ν=1Cμν
l

˙̈T
μν

l . The limits determining the number of dimensions used for the representation, M(l) and N(l), 
depend on selected crystal and sample symmetries (Bunge, 1993). Note that triclinic means no symmetry so no dots on top of the 
functions. Taking into account a crystal (physical) symmetry at the very least and then even a sample (statistical) symmetry if possible, 
facilitates much more economical representation of an ODF using symmetry embedded GSH. T̈μn

l are the functions incorporating solely 
crystal symmetries with no sample symmetries (triclinic textures). To fulfill, only Ämμ

l coefficients are necessary in Eq. (7). While case 
studies presented in the paper will not consider any sample symmetry, the equations will be provided in a generalized way using 

symmetrized ˙̈T
μν

l . 
In order to evaluate the expansion coefficients, Cl

μν, the following orthogonality relation is used 
∫

OS

˙̈T
μν

l (g)
˙̈T

∗μ′ν′

l′ (g)dg =
1

2l + 1
δll′δμμ′δνν′, with dg = sin(Φ)dφ1dΦdφ2. (8)  

The asterisk (*) symbol in the superscript indicates the complex conjugate. dg is the invariant orientation element of the Bunge- 
Euler OS. Multiplying with the complex conjugate, we have 

∫

OS

f (g)
˙̈T

∗μν

l (g)dg =
∑L

l′=0

∑M(l′)

μ′=1

∑N(l′)

ν′=1

Cμ′ν′

l′

∫

OS

˙̈T
μ′ν′

l′ (g)
˙̈T

∗μν

l (g)dg, (9)  

and then taking advantage of the orthogonality, we obtain 

Cl
μν = (2l + 1)

∫

OS

f (g)
˙̈T

∗μν

l (g)dg. (10)  

Cl
μν represent a point in an infinite-dimensional Fourier space. The procedure for the compaction of an f(g) or ODF containing any 

number of crystal orientations is based on matching its GSH representation, Eq. (10), with those of another equivalent ODF by solving a 
nonlinear optimization problem in the space of expansion coefficients. We will refer to Cl

μν of the ODF we want to compact as the target 
texture point. 

In our work, ODFs will be calculated from a set of N discrete orientations and weights indexed individually by k (φk
1, Φk, φk

2, αk) by 

averaging out the ˙̈T
μν
l (g) from each orientation like 

Ĉ
μν
l =

∑N

k=1

˙̈T
∗μν

l

(
φk

1, Φk, φk
2

) αk
∑

jαj, with Cμν
l = (2l + 1)Ĉ

μν
l (11) 

Relying on Cμν
l , f(g) =

∑L
l=0

∑M(l)
μ=1

∑N(l)
ν=1Cμν

l
˙̈T

μν

l is a continuous description of the probability density f(g) from a discrete set of ori
entations and their weights. We will begin using a shorthand expression for the probability density, where the subscript l is used to 
mean the index of l, μ, ν as 

f (g) =
∑

l
Cl

˙̈Tl. (12) 

This is done exclusively for convenience and simplicity. 
We suitably define a scalar measure termed the texture difference index (TDI) to quantify the difference between any two textures. 

When the TDI is 0, it means the two textures are the same. When the TDI is one, the maximum, it means the two textures are as different 
as possible. The measure is redefined in the present work relative to the prior works as 

TDI = T
∑

l
(Ĉl − Ĉ′

l)
2
, (13)  

where T is inverse of the maximum distance between two points in Fourier space calculated using the following equation 

T = min

[(
∑

l
(Ĉl − Ĉ′

l)
2

)−1]

, (14) 
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where Ĉ and Ĉ′
l are the expansion coefficients of single crystals meaning that the denuminator is fixed. Fig. 1 shows T fits as functions 

of L for crystal symmetries. 

2.2. Error, gradient, and Hessian for nonlinear optimization 

The optimization is performed in Matlab using MathWorks’ “Trust-Region-Reflective” fmincon solver. The function we are 
minimizing is 

E =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

l

((
∑

k

˙̈T
k

l

αk
∑

jαj

)

− Ĉl

)2
√
√
√
√
√ , (15)  

where ˙̈T
k
l is a representation of each crystal in the compacted texture where k is the crystal index and l is the index of the Fourier 

Coefficient, Ĉl is the target texture undergoing the compaction, αk is the volume fraction of each individual crystal, and the sum 
∑

j
αj 

over the crystals is used to normalize each αk. We manually normalize αk because the selected solver cannot have linear boundary 
constraints. 

We substitute part of the error equation with Gl for clarity. 

E =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

l
Gl

2
√

with Gl =
∑

k

˙̈T
k

l
αk

∑
jαj − Ĉl. (16) 

Evidently, Gl represents the difference between each index of Ĉl and the mean ˙̈Tl of the compacted texture. Since we have the 
objective function described analytically by a set of Fourier Coefficients, we can analytically calculate the gradient and Hessian matrix 
for efficient convergence. We find it ~300x faster than the implementation of Powell’s Derivative Free Optimization Solvers. To 
calculate the gradient, we use the chain rule for each variable in the texture. xm′ is used to indicate a variable that Gl depends on. There 
are four variables φ1, Φ, φ2, α for each orientation used in the compaction. Therefore, the length of m′ is 4N, where N is the number of 
crystal orientations in the compacted set. It should be noted that the optimization methodology can be simplified to optimize only 
orientations, φ1, Φ, φ2, or only weight, α. However, the default option is to optimize a combination of both orientations and weights. 
We present the equations in such the most generic way. The gradient vector is calculated with respect to the variable indexed with m′ as 

J(m′) =
∂E
∂xm′ =

∂
( ̅̅̅̅̅̅̅̅̅̅̅̅̅∑

lGl
2

√ )

∂xm′ =

∑
lGl

∂Gl

∂xm′

E
. (17)  

The Hessian as a symmetric square matrix is 

H(m′, n′) =
∂E

∂xm′∂yn′ =

∂

⎛

⎜
⎝

∑
l
Gl

∂Gl

∂xm′
E

⎞

⎟
⎠

∂yn′ =

∑
lGl

∂2Gl

∂xm′∂yn′ +
∑

l
∂Gl

∂yn′
∂Gl

∂xm′ − ∂E
∂xm′

∂E
∂yn′

E
(18)  

Fig. 1. Normalization factor for obtaining TDI per crystal symmetry with no sample symmetry for different values of L along with the fits.  
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Evidently, the gradient and Hessian involve Gl, ∂Gl

∂xm′, and ∂2Gl

∂xm′∂yn′, which are provided in Appendix A. Having the gradient and the 

Hessian inserted into the “Trust-Region-Reflective” solver, a solution is continually updated until the error is satisfactorily low (10−10). 
The procedure for compacting an ODF containing many either weighted or equally weighted crystal orientations finds an equiv

alent ODF containing a much smaller number of either weighted or not weighted crystal orientations. The procedure is developed and 
automated in Matlab (MathWorks, 2023). First, expansion coefficients of the ODF containing many orientations are calculated using to 
set the target point in the multidimensional Fourier space with coordinates Cl or Ĉl. Next, to initiate the compaction procedure an 
initial guess containing N equally weighted crystal orientations is necessary to provide. The guess is created based on a set of 30,000 

uniform orientations over the orientation space, each having a probability of f(g) =
∑L

l=0
∑M(l)

μ=1
∑N(l)

ν=1Cμν
l

˙̈T
μν

l . Note that the probability 
based on 30,000 crystal orientations corresponds exactly to the target Cμν

l . Then N crystal orientations are sampled from the proba
bility. We would like to point out that the initial guess is not so important for our novel procedure because the procedure moves the 
orientations. However, finding a global optima would only be possible with a perfect guess. Finally, the optimization is run in Matlab to 

obtain a compacted ODF of N crystal orientations, 
∑N

k=1
˙̈T

k

l
αk∑

j
αj, which is equivalent to the target Ĉl. The N crystal weights can be 

adjusted or not. The latter is a novel feature of the presented nonlinear optimization procedure compared to the old procedure reported 
in Eghtesad et al. (2018). The old procedure was based on a linear optimization of weights of a set of suitably selected crystal ori
entations obtained by binning of the Bunge-Euler orientation space or preferably by pre-fitting towards the target ODF using MTEX. 

In the old procedure, beginning from the suitable set intended to represent the compact ODF, the linear programming problem was 
solved for weights of the expansion coefficients for each orientation to determine the compact ODF. The sum of the weighted co
efficients of the compact ODF evolved during the solution procedure until matching the expansion coefficients of the target ODF. The 
linear optimization procedure was prone to failing because the selected crystal orientations were inadequate to achieve the solution. 
The expansion coefficients corresponding to the individual crystal orientations of the selected set make up a convex and compact 
region referred to as a hulls in the multidimensional Fourier space (Kalidindi et al., 2004; Knezevic and Kalidindi, 2007; Lyon and 
Adams, 2004; Wu et al., 2007). The hull is convex and compact because the space in between the points (the coefficients of single 
crystals) can be filled by combination of the points linearly. To solve the linear programing problem for weights, the target point of 
coefficients corresponding to the target ODF must have been contained within the hull. In another words, the solution was available if 
the target point was within the hull of the compact ODF. Given that this was not always the case in every dimension of the space, 
another set of crystals need to be selected. Therefore, the procedure had to iterate multiple times for selecting crystal orientations to 
eventually optimize their weights during the solution procedure. Adjusting the crystal orientations during the solution procedure is an 
essential feature of the novel procedure presented in this paper. The concept of hull is not needed in the new procedure. 

The number of dimensions used in the fitting procedure is determined by L. The accuracy of the representation and the compu
tational time involved in the procedure scale with L. The number of dimensions to fit depends on L. The numbers of dimensions for L =
8, L = 16, and L = 32 relevant in the present work are 39, 205, and 1253 for triclinic-cubic, 74, 377, and 2420 for triclinic-hexagonal, 

Fig. 2. Stereographic pole figures comparing the measured full size texture (left, a, b, c) and compacted texture (right a’, b’, c’) for (a, a’) AA6016- 
T4, and (b, b’) pure Ti, and (c, c’) U. These textures are used to initialize crystal plasticity simulations. 
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and 174, 1004, and 6680 for triclinic-orthorhombic. The first frequency, which is always (Re = 1, Im = 0) was not counted. Note that 
TDI was always calculated with L = 32. The previous linear optimization procedure had difficulties fitting L > 8, especially for the low 
crystal symmetries. The procedure was set to cycle for another ODF with the same or increased number of discrete orientation or for a 
lower L in case it fails to fit the desired number of dimensions. The novel procedure can fit any L. The novel procedure is applied to 
several case studies as presented and discussed in the next section. 

3. Results 

Three materials, one cubic, one hexagonal, and one orthorhombic are selected to show the utility of the developed procedure. The 

Fig. 3. Simulated flow curves using the initial measured full size texture (solid lines) and compacted texture (dashed lines) in (a) tension and 
compression along TD of AA6016-T4, and (b) compression along RD, TD and ND of pure Ti, and (c) tension and compression of U. The evolution of 
TDI between the full-size texture and compacted texture during deformation. The evolution of twinning during deformation. 
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case studies are of different complexity owing to different crystal structures ranging from simple cubic to more complex hexagonal to 
the most complex low symmetry orthorhombic aimed at fully validating the developed procedure. The cubic material is an Al alloy 
(AA) 6016-T4 in the form of an as-received rolled sheet. The texture of the sheet was measured by neutron diffraction. Such mea
surement technique measures macro-texture. An ODF containing 5000 weighted crystal orientations was reconstructed from the 

Fig. 4. Stereographic pole figures comparing texture evolution from the initial measured full size texture (left) and compacted texture (right) after 
(a) tension and compression along TD of AA6016-T4, and (b) compression along RD, TD and ND of pure Ti, and (c) tension and compression of U. 
These pole figures are in the same frame as the initial measured pole figures per structure in Fig. 2. 
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measured data. Pole figures showing the measured texture are presented in Fig. 2a. The hexagonal material is a rolled plate of high 
purity Ti (Savage et al., 2021). The texture of the plate was measured using electron backscattered diffraction (EBSD). Such mea
surement technique measures micro-texture. The file contained about 500,000 equally weighted orientations. Pole figures showing the 
measured texture of pure Ti are presented in Fig. 2b. Finally, the orthorhombic material is a straight rolled uranium (U) (Knezevic 
et al., 2012). The texture was measured using EBSD containing about 80,000 equally weighted orientations. Pole figures showing the 
measured texture of U are presented in Fig. 2c. The compaction of the three target ODFs is performed to L = 32 using the novel 
procedure. Pole figures of the compacted textures are presented in (a’) for AA6016-T4, (b’) for pure Ti, and (c’) for U and these are 
essentially indistinguishable from the pole figures showing the corresponding full textures. The compacted texture of AA6016-T4 
contained 100 weighted crystal orientations, that for pure Ti contained 200 weighted crystal orientations, while that for U con
tained 400 weighted crystal orientations. 

Texture evolves during plastic deformation because of plastic shearing on slip systems and reorientations due to twinning. Crystal 
plasticity models have been developed to capture the texture evolution and resulting anisotropic mechanical response of poly
crystalline metals. These models consider the operating crystallographic slip and twinning deformation mechanisms. The cubic metal 
deforms by an octahedral {110}<111> slip mode. The hexagonal metal deformed by prismatic {1100}〈1120〉, basal {0001}〈2110〉, 
and pyramidal {1011}〈2113〉slip modes and twinning {1012}〈1011〉 and {1122}〈1123〉. Finally, the orthorhombic metal deforms by 
wall (010)[100], chimney {110}<110>, floor (001)[100], and roof {021}<112> slip modes and twinning {130}<310> and 
{172}<312>. Fig. 3 shows simulated flow stress response in quasi-static tension and compression along the sheet transverse direction 
(TD) for AA6016-T4 using EPSC (Daroju et al., 2022), quasi-static compression along the plate rolling direction (RD), TD, and normal 
direction (ND) for pure Ti using VPSC (Savage et al., 2021), and quasi-static tension and compression along RD for U using EPSC 
(Barrett et al., 2020; Knezevic et al., 2012) based on the initial full and compacted textures. The provided references per case study 
describe details pertaining to the crystal plasticity models used in the simulations. Evidently, the calculated flow curves based on the 
full and compacted ODFs are nearly identical. Given that pure Ti and U deform by twinning, the figure also shows the predicted twin 
volume fractions. Finally, the figure shows the evolution of TDI between the full and compacted ODFs during deformation. The TDI 
measure is used to quantify the differences in the texture evolution between the full and compacted ODFs. Evidently, the compact ODF 
is sufficient to capture flow stress response, texture evolution, and twinning evolution to large strains not appreciably different from 
the full ODF for each case study. Fig. 4 shows pole figures visualizing the predicted textures based on the full and compacted initial 
ODFs at the end of deformation for each case study. 

4. Discussion 

The procedure developed in the present paper constitutes a rigorous methodology for the compaction of crystallographic texture 
data aimed to improve the efficiency of crystal plasticity models, especially those coupled with the finite element method computa
tional tools. The computational time involved in crystal plasticity simulations scales linearly with the number of crystal orientations. 
The speedups are therefore directly proportional to the reduction in the number of crystal orientations representing texture. The 
developed compaction methodology is an essential contribution to enable future large scale crystal plasticity finite element simulations 
of deformation processes. 

The procedure can compact any statistical ODF containing any number of crystal orientations weighted or not to an equivalent but 
compact ODF containing a much smaller number of crystal orientations also weighted or not as desired. Moreover, weights can be pre- 
set for N orientations for the procedure to find the orientations that would fit a given full size ODF. This is particularly useful if 
attempting to couple the developed procedure with the digital representation environment for the analysis of microstructure in 3D 
(Dream. 3D) software (Groeber et al., 2008; Groeber and Jackson, 2014). To this end, grains synthetized in Dream.3D would have 
certain volumes. The GSH representation and the linearity of the expansion space enabled the development of the procedure. Accuracy 
and utility of the procedure was demonstrated by predicting the evolution of flow stress, texture, and twinning for AA6016-T4, pure Ti, 
and U. The case studies showed that the compact ODFs can capture every aspect of deformation behavior with great accuracy just like 
the full ODFs. 

In closing, we present guidance for selecting optimal number of crystal orientations for crystal plasticity simulations trading off the 
accuracy of the compaction and the benefits in improving the computational speed. In doing so, we further verify the procedure by 
compacting the same texture many different times from a different initial guess. We check if the crystal plasticity models predict 
consistent outputs for six sets of 200 different ODFs representing the same target ODF taken to be a uniform ODF with different number 
of crystal orientations. The uniform is taken as a target since it is the most challenging to fit. The procedure for creating the six sets of 
200 as different as possible textures per crystal structure containing 50, 100, 200, 400, 800, and 1600 crystal orientations per set is 
described in Appendix B. Each set of the initial guess textures, Ĉ

z
l with z = 1, 2, … 200, fits the same target, Ĉl, using the developed 

fitting procedure with adjusting weights and orientations and with adjusting orientations solely. We obtain sets of six two times. This is 
to check if there is any difference in accuracy if the fitting is done by adjusting weights and orientations or with adjusting orientations 
solely. Note that the latter can be equally weighted orientations or weighted orientations, but their weights would not be changed 
during the fitting. Typically, adjusting orientations solely requires more iterations but size of the arrays and matrices is smaller (3/4). 
The fitting was performed up to L = 8, L = 16, and L = 32. Pole figures for the 200 textures look nearly the same, especially for N > 100. 
While we create textures with nearly identical pole figures, the purpose is to evaluate whether these textures govern the same or similar 
material properties. We reiterate that each set of 200 textures has either 50 or 100 or 200 or 400 or 800 or 1600 crystal orientations. 

Fig. 5 presents the results of the parametric study in terms of the predicted min and max flow stress curves and min and max twin 
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volume fractions for U amongst the 200 runs of compression along RD using 200 input textures with adjusted weights and orientations 
to fit the same target. Fig. 6 presents the results of the parametric study in terms of the predicted min and max flow stress curves and 
min and max twin volume fractions for pure Ti amongst the 200 runs of compression along RD using 200 input textures with adjusted 
weights and orientations to fit the same target. Finally, Fig. 7 presents the results of the parametric study in terms of the predicted min 
and max flow stress curves for AA6016-T4 amongst the 200 runs of compression along TD using 200 input textures with adjusted 
weights and orientations to fit the same target. Appendix C provides the same plots as those in Figs. 5–7 but based on textures with 
adjusting orientations solely to fit the same target. The legends in the flow stress figures approximate the error of the procedure per N. 
The error is conveniently defined as the maximum standard deviation of stress at each strain increment normalized by the average 

stress at each increment as ξ = 3max
(

std(xi)
xi

)
. Similarly, the legends in the twin volume fractions plots specify the maximum standard 

Fig. 5. The softest (minimum) and the strongest (maximum) flow stress curves amongst the 200 simulations of compression along RD for U 
initialized using 200 as different as possible initial textures fit to the same target. Six sets of 200 textures varied in the number of crystal orientations 
N, as specified in the legend. The fitting was done by adjusting weights and orientations for L = 8 (top row), L = 16, and L = 32 (bottom row). The 
other legends specify the maximum standard deviation of stress over strain increment normalized by the average stress at the given increment. The 
evolution of mean TDI with strain for given N. The smallest (minimum) and the highest (maximum) twin volume fraction amongst the 200 sim
ulations. The legends specify the maximum standard deviation of twinning over the strain increment normalized by the average value at the 
given increment. 
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deviation of twinning over the strain increment normalized by the average value at the given increment. The Figs. 5–7 also present the 
evolution of TDI with strain. An average TDI between every of the 200 textures as they evolve is calculated and plotted. The number of 
possibilities (combinations) to obtain the mean is 200 choose 2, which is 19,900. Evidently, the error reduces with N. 

U as a highly anisotropic material owing to its low symmetry structure best reveals the error. The simulations show a significant 
difference in the predictions based on a set of 200 different input textures up to N = 400. The differences are the greatest when the 
fitting was performed using L = 8, while the fitting using L = 16 and L = 32 produces similar differences. It is worth reflecting on that 
the EDAX OIM (orientation imaging microscopy) analyses software, TSL (TexSEM Laboratories), uses the default value of L as L = 16 
(EDAX and TSL, 2024). Moreover, the representation of ODF-elastic stiffness relationships requires L = 4, while the representation of 

Fig. 6. The softest (minimum) and the strongest (maximum) flow stress curves amongst the 200 simulations of compression along RD for pure Ti 
initialized using 200 as different as possible initial textures fit to the same target. Six sets of 200 textures varied in the number of crystal orientations 
N, as specified in the legend. The fitting was done by adjusting weights and orientations for L = 8 (top row), L = 16, and L = 32 (bottom row). The 
other legends specify the maximum standard deviation of stress over strain increment normalized by the average stress at the given increment. The 
evolution of mean TDI with strain for given N. The smallest (minimum) and the highest (maximum) twin volume fraction amongst the 200 sim
ulations. The legends specify the maximum standard deviation of twinning over the strain increment normalized by the average value at the 
given increment. 
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Fig. 7. The softest (minimum) and the strongest (maximum) flow stress curves amongst the 200 simulations of compression along TD for AA6016- 
T4 initialized using 200 as different as possible initial textures fit to the same target. Six sets of 200 textures varied in the number of crystal ori
entations N, as specified in the legend. The fitting was done by adjusting weights and orientations for L = 8 (top row), L = 16, and L = 32 (bottom 
row). The other legends specify the maximum standard deviation of stress over strain increment normalized by the average stress at the given 
increment. The evolution of mean TDI with strain for given N. 
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ODF-yield stress requires L to about 10 or 12 (Fast et al., 2008; Knezevic and Kalidindi, 2007; Shaffer et al., 2010). However, the 
representation of texture is more demanding than the representation of properties using the GSH basis. The results show that N = 400 
and L = 16 is sufficiently accurate for U. Looking at the results in Appendix C, we observe that adjusting orientations solely or adjusted 
weights and orientations produces similar results. Slightly greater compaction can be achieved by adjusted weights and orientations. 
Hexagonal metals and especially cubic metals can be fit with lower number of orientations. N = 200 is sufficient for pure Ti, while N =
100 is sufficient for AA6016-T4. 

5. Conclusions 

Metal forming process simulations using the finite elements method with crystal plasticity constitutive laws are impractical in part 
because of the need to store many state variables because of many crystal orientations embedded at integration points. The compu
tational time scales nearly linear with the number of crystal orientations embedded at integration points because the crystal plasticity 
equations must be solved for stress for every crystal in every trial increment. This work successfully developed a nonlinear optimi
zation procedure for compacting input ODFs in crystal plasticity codes to contain computationally manageable quantities of crystal 
orientations. The core of the procedure is the spectral representation of ODFs using the GSH basis. Specifically, the spectral repre
sentation of a full size ODF containing many crystal orientations is matched with the spectral representation of an ODF containing a 
compact set of orientations. The gradient vector and the Hessian matrix are derived analytically for rapid convergence of the procedure 
relying on the Matlab optimization solver. The procedure can compact any statistical ODF containing either weighted or not weighted 
crystal orientations into an equivalent but compact ODF containing also weighted or not weighted crystal orientations as desired. Case 
studies involving metals with cubic, hexagonal, and orthorhombic crystal structures revealed that the flow curves, texture evolution, 
and twinning can be predicted nearly identically using the compacted ODFs as using the full size ODFs. The parametric study per
formed to guide selecting optimal number of crystal orientations for crystal plasticity simulations trading off the accuracy of the 
compaction and the benefit in improving the computational speed suggests that 400 crystal orientations are sufficient to accurately 
represent textures of orthorhombic metals, 200 crystal orientations to accurately represent textures of hexagonal metals, and 100 
crystal orientations to accurately represent textures of cubic metals. We anticipate that the developed procedure will become an 
essential tool for compacting input ODFs in many future metal forming process simulations involving crystal plasticity constitutive 
laws. 
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Appendix A 

This appendix defines ∂Gl

∂xm′ and ∂2Gl

∂xm′∂yn′ necessary for obtaining the gradient vector and Hessian matrix. The most essential constituent 

are the derivatives of Eq. (4). The derivatives are with respect to φ1, Φ, φ2, and α, which are embedded into the xm′ vector. However, 
φ1, Φ, and φ2 individually are represented by φ and Φ in the equations that follow, while α is separated. As a result, we switch from m′ 

enumerating 4N length to m enumerating N length to allow us to represent the derivatives as a function of orientation conveniently. 
The derivatives with respect to φ and Φ are therefore vectors of 3N length, while the derivative with respect to α are vectors of N length 
appended to the former 3N length vector to obtain the 4N length. Note that all have an extra dimension, which is the number of Fourier 
coefficients. The derivatives are (no summations on m) 

∂Gl

∂φm =
∂ ˙̈T

m

l

∂φm

αm
∑

jαj (A1) 
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∂Gl

∂αm =

˙̈T
m

l − Ĉl − Gl
∑

jαj (A2)  

∂2Gl

∂φm∂Φm =
∂2 ˙̈T

m

l

∂φm∂Φm
αm

∑
jαj (A3)  

∂2Gl

∂αn∂φm =
δmn

∂ ˙̈T
m
l

∂φm − ∂Gl
∂φm

∑
jαj (A4)  

∂2Gl

∂αm∂αn =
− ∂Gl

∂αm − ∂Gl
∂αn

∑
jαj (A5)  

Appendix B 

This appendix presents equations pertaining to calculating as different as possible initial textures used in the parametric study 
presented in Section 4. Beginning from a uniform texture, the methodology adds another texture as different as possible from the 

existing one. The uniform texture is Ĉ
z
l (total z of one) containing N number of equally weighted crystal orientations. Ĉ

1
l is used in the 

equations that follow to construct a new different texture, Ĉ
2
l (now a total z of two), which is set to also contain N equally weighted 

crystal orientations. Next, the methodology adds another texture as different as possible from the existing two. Repeat this process until 

Ĉ
z
l has (200 + 1) total textures to obtain a sought set of 200 different textures, excluding the initial uniform, Ĉ

1
l . 

The optimization procedure is conceived to keep adding textures with the highest minimum distance from the nearest texture that 
already exists in the set one at a time. The distance is 

D =
(∑

Ez
r
)1

r
with Ez =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

l

(
∑

k

˙̈T
k

l

αk
∑

jαj − Ĉ
z
l

)2
√
√
√
√
√ (B1) 

The higher the exponent r, the closer D will be to the actual maximum distance but the equations exhibit steeper derivatives and 
slower convergence. In our optimization for obtaining sets of 200 different textures, we have set r=15. Sets of 200 textures containing 
50, 100, 200, 400, 800, and 1600 crystal orientations per set are created. It remains to define ∂D

∂φm and ∂2D
∂φm∂φn for Matlab’s fminunc as 

∂D
∂φm =

(∑
Er

z

)1
r−1∑

z

(
∂Ez

∂φmEr−1
z

)

with
∂Ez

∂φm =
∑

l

(
∂ ˙̈T

m

l

∂φm

αm
∑

jαjG
z
l

)

and Gz
l = Ĉl − Ĉ

z
l (B2)  

∂2D
∂φm∂φn =

(∑
Er

z

)1
r−1

(
∑

z
Er−2

z

)
∑

l

(
∂ ˙̈T

m

l

∂φm

∂ ˙̈T
n

l

∂φn

αmαn
∑

jαj
∑

jαj

)

+ (r − 2)
(∑

Er
z

)1
r−1∑

z

(

Er−2
z

∂Ez

∂φm

∂Ez

∂φn

)

+
1 − r

D
∂D
∂φm

∂D
∂φn +

(∑
Er

z

)1
r−1∑

z

(
∑

l

(
∂2 ˙̈T

m

l

∂φm∂Φm
αm

∑
jαjG

z
l

)

Er−1
z

)

(B3) 

Note that the derivatives do not depend on Ĉ
z
l , and that an added texture is Ĉl =

∑

k

˙̈T
k

l
αk∑

j
αj. We only optimized φ when creating 

different textures. 

Appendix C 

This appendix shows the same plots as those in Figs. 5–7 in Figs. C1–C3 but based on the textures fitted to the same target by 
adjusting orientations solely.  
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Fig. C1. The same as Fig. 5 but based on 200 textures with adjusted orientations (fixed weights) to the same target.    
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Fig. C2. The same as Fig. 6 but based on 200 textures with adjusted orientations (fixed weights) to the same target.    
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Fig. C3. The same as Fig. 7 but based on 200 textures with adjusted orientations (fixed weights) to the same target.  
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Segurado, J., Lebensohn, R.A., Llorca, J., Tomé, C.N., 2012. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in 

implicit finite elements. Int. J. Plast. 28, 124–140. 
Shaffer, J.B., Knezevic, M., Kalidindi, S.R., 2010. Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral 

approaches: applications to process design for targeted performance. Int. J. Plast. 26, 1183–1194. 
Sundararaghavan, V., Zabaras, N., 2007. Linear analysis of texture-property relationships using process-based representations of Rodrigues space. Acta Mater. 55, 

1573–1587. 
Taylor, G.I., 1938. Plastic strain in metals. J. Inst. Met. 62, 307–324. 
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