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ABSTRACT. Fruit harvesting poses a significant labor and financial burden on the fruit industry, which underscore the
urgent need for advancements in robotic harvesting solutions. Despite considerable progress in leveraging deep learning
and machine learning techniques for fruit detection, a common shortfall is the inability to swiftly extend the developed
models across different orchards and/or various fruit species. Additionally, the limited availability of pertinent data further
compounds these challenges. In this work, we introduce MetaFruit, the largest publicly available multi-class fruit dataset,
comprising 4,248 images and 248,015 manually labeled instances across diverse U.S. orchards. Furthermore, this study
proposes an innovative open-set fruit detection system leveraging advanced Vision Foundation Models (VFMs) for fruit
detection that can adeptly identify a wide array of fruit types under varying orchard conditions. This system not only
demonstrates remarkable adaptability in learning from minimal data through few-shot learning but also shows the ability
to interpret human instructions for subtle detection tasks. The performance of the developed foundation model is
comprehensively evaluated across several metrics, outperforming existing state-of-the-art algorithms in our MetaFruit,
thereby setting a new benchmark in the field of agricultural technology and robotic harvesting. The MetaFruit dataset
(https://www.kaggle.com/datasets/jiajiali/metafruit) and detection framework (https://github.com/JiajiaLi04/FMFruit) are
open-sourced to foster future research in vision-based fruit harvesting, marking a significant stride toward addressing the
urgent needs of the agricultural sector.
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Introduction

Fruit harvesting is a significant labor and financial burden in modern orchards, accounting for over 10 million worker
hours each year and about 15% of the overall production costs in the U.S. (Bergerman et al., 2015; Chu et al.,2021, 2023).
Moreover, fruit growers are struggling with an increasing labor shortage due to a declining interest in agricultural work
(Zhou et al., 2022). This situation is further aggravated by recent international travel restrictions caused by public health
crises, such as the COVID-19 pandemic, and geopolitical tensions, like the Russia-Ukraine conflict, significantly reducing
agricultural productivity by limiting the availability of migrant labor (Ben Hassen and El Bilali, 2022; Laborde et al., 2020).
Therefore, there is a critical need for the innovation of robotic harvesting technologies to mitigate labor shortages, minimize
human injury risks, and boost the efficiency and economic viability of the fruit industry (Chu et al., 2021; Zhou et al., 2022).

The perception system is essential in harvesting robots, as it enables the identification of fruits within the target area and
guides the robot in executing subsequent tasks (Chu et al., 2021; Zhao et al., 2016). More recently, deep learning (DL) based
approaches have rapidly evolved and attracted significant attention in various agricultural sectors, such as plant disease
identification (Xu et al., 2022), weed detection (Li et al., 2024a; Rai and Sun, 2024), and plant breeding (Li et al., 2024b).
These DL methods have also proven effective in fruit detection (Koirala et al., 2019; Ukwuoma et al., 2022; Xiao et al.,
2023). For instance, Faster-RCNN (Girshick, 2015) has been successfully applied for apple (Fu et al., 2020; Gao et al.,
2020), Kiwifruit (Fu et al., 2018), and multiple fruits detection (mangoes, almonds and apples) (Bargoti and Underwood,
2017). In addition, YOLO models (Terven and Cordova-Esparza, 2023) are also applied for fruit detection and recognition
such as apple (Tian et al., 2019), mango (Shi et al., 2020), orange (Mirhaji et al., 2021), and cherry (Gai et al., 2023). In our
previous research, state-of-theart DL techniques based on Mask-RCNN (He et al., 2017) and Faster RCNN (Girshick, 2015)
are also developed for accurate apple detection for dense orchard settings (Chu et al., 2021, 2023). Despite the
aforementioned successes, developing DL models from scratch faces several challenges. Firstly, it relies heavily on large,
accurately annotated image datasets, which are generally costly to obtain (Chen et al., 2022). Secondly, the training phase is
remarkably time intensive and demands significant computational resources (LeCun et al., 2015). Moreover, while these
specialized models excel in their designated tasks, they often encounter difficulties when applied to novel scenarios, such as
different orchard conditions or fruit species, demonstrating limited capabilities in generalization (Kamilaris and
PrenafetaBoldu, 2018).

It is widely acknowledged that a comprehensive set of annotated images are essential for the development of
highperforming DL models in visual fruit detection tasks (Sun et al., 2017). In Lu and Young (2020), the authors provide an
overview of various publicly accessible fruit image datasets aimed at robotic harvesting. For instance, mango-related
datasets, such as MangoNet (Kestur et al., 2019) and MangoYOLO (Koirala et al., 2019) contain 49 and 1730 images for
mango segmentation and detection, respectively. There are specialized apple datasets for apple detection, including KFuji
RGB-DS (Gené-Mola et al., 2019) WSUApple (Bhusal et al., 2019), LFuji-air dataset (Gené-Mola et al., 2020a), and
MinneApple (Héni et al., 2020), along with two apple datasets from our previous studies (Chu et al., 2021, 2023).
Additionally, DeepBlueberry (Gonzalez et al., 2019) is a dataset including 294 images for blueberry detection. However,
most of these datasets are species-specific and not transferable to different fruit types. Recently, there’s been an increasing
interest in multi-fruit datasets. For instance, FruitNet (Meshram and Patil, 2022) and Fruit3601 feature 19,500 and 41,322
images across 5 and 80 fruit species, respectively, catering to fruit classification tasks. In terms of fruit detection,
OrchardFruit (Bargoti and Underwood, 2017) and DeepFruits (Sa et al., 2016) provide open-source access to 3,232 and 587
images for 3 and 7 fruit species, respectively. Yet, these datasets are typically designed for specific orchard environments
with less dense fruit clusters. Table 1 summarizes these datasets, providing an overview of the resources available for
advancing research in fruit detection.

Lately, the rise of large pre-trained models, commonly known as foundation models (FMs), such as ChatGPT-4 (Achiam
et al., 2023), Segment Anything Model (SAM) (Kirillov et al., 2023), have demonstrated outstanding performance in both
language and vision tasks across diverse domains (Bommasani et al., 2021; Li et al., 2023). These models undergo extensive
training on diverse datasets spanning multiple domains and modalities. Once fully trained, they exhibit the capability to
perform a range of tasks requiring minimal fine-tuning and without extensive reliance on task-specific labeled data. There
has been growing interest in applying FMs within the field of agriculture, offering innovative solutions and insights. As an
example, Yang et al. (2023) employs SAM for chicken segmentation tasks in a zero-shot manner, integrating part-based
segmentation and the use of infrared thermal imagery. The experimental findings reveal that SAM outperforms other vision
foundation models (VFMs) like SegFormer and SETR in accuracy for both whole and partial chicken segmentation.
Williams et al. (2023) introduce “Leaf Only SAM”, an automatic leaf segmentation pipeline designed for zero-shot
segmentation of potato leaves. Compared to a fine-tuned Mask R-CNN model tailored for annotated potato leaf datasets,
this innovative approach demonstrates superior effectiveness. These developments underscore the potential of FMs in
various agricultural applications. However, to the best of our knowledge, FMs have not yet been applied to fruit harvesting
tasks involving multiple fruit classes.

In this study, we introduce a comprehensive multiclass fruit dataset (also named MetaFruit), gathered from commercial
orchards across various U.S. states during the growth seasons of 2022 and 2023. Building on this, we develop an innovative
open-set fruit detection system, leveraging the power of advanced vision FMs (VFMs) to identify a wide range of fruits.
This paper’s contributions are significant and can be summarized as follows:



1. We introduce a uniquely comprehensive and diverse fruit dataset, including 4,248 images with 248,015 manually
labeled fruit instances, meticulously collected from commercial orchard fields across multiple U.S. states.

2. We propose a novel FM-based open-set fruit detection framework designed for multi-class fruit detection, which is
not only capable of identifying various and novel types of fruit but also integrates the ability to process human
language inputs.

3. Comprehensive experiments have been conducted to rigorously assess the performance of our proposed framework
FMFruit on our dataset MetaFruit.

4. Both curated dataset and developed software are open-sourced, making them accessible for further research and
engineering integration in vision-based fruit harvesting and related fields.

Table 1: List of publicly available fruit datasets and our new MetaFruit dataset.

Datasets Fruit Variety Modality | # Imgs [# Instances Tasks
Fruit
MangoNet (Kestur et al., 2019) Mango RGB 49 - segmentation
MangoYOLO (Koirala et al., 2019) | Mango | RGB | 1,730 | 9,067 | Fruit detection
DeepBlueberry (Gonzalez et al., 2019) | Blueberry | RGB | 293 | 10,161 | Fruit detection
Fruit instance
StrawDI Dbl (Pérez-Borrero et al., 2020) Strawberry RGB 3,100 17,938 segmentation
KFuji RGB-DS (Gené-Mola et al., 2019) | Apple | RGB-D | 967 | 12,839 | Fruit detection
WSUApple (Bhusal et al., 2019) | Apple | RGB | 2,298 | - | Fruit detection
Fuji-SfM (Gené-Mola et al., 2020b) | Apple | RGB | 288 | 1,455 | Fruit detection
LFuji-air dataset (Gené-Mola et al., 2020) | Apple | LiDAR | - | - | Fruit detection
Fruit detection
MinneApple (Héni et al., 2020) Apple RGB 1,001 41,325 |and segmentation
OrchardFruit (Bargoti and Underwood, 2017) | Apple, mango, almond | RGB | 3,232 | - | Fruit detection
Strawberry, rockmelon,
otrange, mango, capsicum,
DeepFruits (Sa et al., 2016) avocado, apple RGB 587 - Fruit detection
Apple, banana, guava,
lime, orange, and Fruit quality
FruitNet (Meshram and Patil, 2022) pomegranate RGB |>19,500 - classification
Fruit360
(https://www.kaggle.com/datasets/moltean/fru Fruit
its) 80 classes of fruits RGB 41,322 - classification
MSUAppleDataset (Ours) (Chu et al., 2021) Apple RGB 1,500 19,528 Fruit detection
MSUAppleDatasetv2 (Ours) (Chu et al., 2023) Apple | RGB | 1246 | 14518 | Fruit detection
Apple, orange, lemon,
Ours tangerine, grapefruit RGB 4,248 | 248,015 | Fruit detection

Materials and Methods

In this section, we first present our collected dataset, MetaFruit, and the VFMs used for multi-class fruit detection. We
then detail the few-shot learning, evaluation metrics, and experimental setups employed in our study.

MetaFruit dataset

The multi-class fruit dataset, MetaFruit, introduced in this study is collected utilizing advanced imaging technology,
comprising both a high-definition camera and a sophisticated LiDAR system (with a resolution of 1920 x 1080), from
commercial orchards in North Michigan and California, USA. To guarantee a diverse and varied collection of images that
enhance model robustness (Lu and Young, 2020), the dataset includes images taken under natural field lighting conditions
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across various weather scenarios (e.g., sunny, cloudy, and overcast) during the peak harvest season of the fruit growth stage.
The dataset contains 4,247 images, featuring five distinct fruit types: apples, oranges, lemons, grapefruits, and tangerines.
Figure 1 shows representative samples for each fruit category. Unlike existing datasets, MetaFruit is characterized by more
realistic/complex orchard environments with fruits frequently appearing in clusters, presenting a challenging yet realistic
scenario for model training and evaluation. Notably, the dataset also includes multiple varieties within each fruit category.
For example, the apple class includes both red and green species, adding another layer of diversity and complexity to the
dataset.

The images acquired for the MetaFruit dataset are meticulously labeled by trained personnel. These annotators utilized
the Labelme (Wada, 2011) tool to accurately draw bounding boxes around individual fruit instances in the images. This
meticulous process results in the acquisition of 248,015 manually labeled bounding boxes. The distribution of the MetaFruit
dataset is detailed in Table 2. Overall, the dataset exhibits an even distribution among apples, oranges, lemons, and
tangerines, each with a similar number of images, whereas grapefruits are represented with slightly fewer images, totaling
490. Tangerines are particularly well represented in the dataset with 1,063 images and 85,785 labeled instances, averaging
81 bounding boxes per image. The average number of bounding boxes per image sheds light on the density of fruits captured
in the images, whereas the average size of these instances provides insight into the physical size of the objects. Notably, the
smaller the size of the instances, the greater the challenge in detecting them accurately. Interestingly, while the lemon class
does not have the highest average number of bounding boxes per image, it features the smallest average size of instances
(823 pixels per instance), indicating lemons’ smaller physical presence within the images, which presents its unique detection
challenges.

The MetaFruit dataset, in terms of instance numbers, significantly surpasses previous collections, being more than 10
times larger than the dataset for multi-class fruit species featured in OrchardFruit (Bargoti and Underwood, 2017) (as shown
in Table 1). To the best of our knowledge, it represents the most extensive publicly available dataset for fruit detection
specifically designed for commercial orchard systems, establishing a new benchmark for research and development in
agricultural technology and robotic harvesting.

Table 2: Statistics of MetaFruit dataset.

#Imgs | # Bboxes | # Avg. bboxes/images | # Avg. size/instances Region
Apple 812 62,040 76 1,193 Michigan & California
Orange | 926 | 45834 | 49 | 1176 | California
Lemon | 958 | 42238 | 44 | 823 | California
Grapefruit | 490 | 12,118 | 25 | 2,232 | California
Tangerine 1,062 85,785 81 1,068 California
Total 4,248 248,015 58 1,133 Michigan & California

VFMs for fruit detection

In recent years, DL approaches have made significant strides in advancing fruit detection models. Prominent among the
object detectors employed are FCOS (Tian et al., 2020), Faster-RCNN (Girshick, 2015), and YOLO series (Terven and
Cordova-Esparza, 2023), all of which are designed as closed-set detectors. Such models operate under the assumption that
the categories of objects to be detected are predefined and known during both the training and testing phases, thereby limiting
their capacity to recognize previously unseen categories. Furthermore, these approaches depend on extensive, meticulously
labeled image datasets—a process that is both labor-intensive and demands significant resources. In contrast, recent focus
has shifted towards openset object detection (Geng et al., 2020) and the exploration of LLMs and FMs (Bommasani et al.,
2021; Li et al., 2023). These open-set detectors are capable of not only precisely detecting the known classes but also
efficiently handling the unknown ones. Therefore, the language data needs to be added for model training to solve the
situation that a testing sample comes from some unknown classes. Similarly, LLMs and FMs, which are trained on extensive
datasets covering a wide range of domains and modalities, demonstrate a remarkable ability to perform a variety of open-
set tasks after training, which is achieved with minimal fine-tuning and reduced reliance on extensive, task-specific labeled
data.
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Figure 1: Representative examples of MetaFruit dataset, including five fruit classes: (a) apple, (b) orange, (c) lemon, (d) grapefruit,
and (e) tangerine.

To facilitate open-set fruit detection across a diverse array of fruit categories, this study employs a vision foundation
model (VFM), specifically the Grounding DINO (Liu et al., 2023) model, for the detection task. Grounding DINO is an
open-set detector predicated on the DETR-like architecture, DINO (Zhang et al., 2022), which integrates endto-end
Transformer-based detection mechanisms. A pivotal aspect of enabling open-set detection capabilities is the integration of
linguistic elements for the generalization of unseen objects. This approach involves training the model on existing bounding
box annotations, augmented through language generalization, to facilitate the identification of a broader array of objects
beyond those seen during training.

The overall workflow and architectural design are illustrated in Figure 2. Initially, the process involves extracting
fundamental features from both images and text through respective image and text backbones, i.e., the Swin Transformer
(Liu et al., 2021) module. These foundational features serve as inputs to a feature enhancer network dedicated to the fusion
of cross-modality features, facilitating a comprehensive integration of image and textual information. Following the
acquisition of enriched cross-modality text and image features, the system employs a language-guided query selection
module (Liu et al., 2023) to meticulously select cross-modality queries based on the image features, thereby harnessing the
synergistic potential of linguistic cues and visual data. This selection process mirrors the transformative approach of
integrating diverse modalities to enhance detection precision and contextual understanding through the strategic alignment
of textual and visual elements. Subsequently, these cross-modal queries are introduced into a cross-modal decoder to extract
and refine the desired features from the combined bimodal information, continually updating its parameters to reflect the
insights gained from the cross-modal analysis. Ultimately, the decoder’s output queries are used to predict object bounding
boxes and identify relevant textual phrases, culminating in a sophisticated system capable of precise object detection and
association with appropriate linguistic descriptors. The loss function is defined as



L = Ly + Lgiou + Leons ()

where L; and GIOU (Rezatofighi et al., 2019) are utilized for the regression of bounding boxes. The contrastive loss,
L¢ons, 18 also incorporated as in GLIP (Li et al., 2022), to fine-tune the classification of predicted objects and language
tokens (Liu et al., 2023; Zhang et al., 2022).

The Grounding DINO model (Liu et al., 2023) leverages the foundational DINO architecture (Zhang et al., 2022),

and to save computational resources and training time, the Grounding DINO model is transferred from DINO weights
instead of training from scratch (Zhuang et al., 2020). The DINO model is trained on the O365 data (Shao et al., 2019),
which is a large-scale object detection dataset containing 365 categories and 2 million images. Based on the pre-trained
DINO weights, the grounding DINO with swin-transformer tiny backbone is trained on a combined data set including 0365,
GoldG, and Cap4M, where GoldG contains images in Flickr30k entities (Plummer et al., 2015) and Visual Genome (Krishna
et al., 2017), and Cap4M is from (Li et al., 2022) but not publicly available. Similarly, the grounding DINO with Swin-
transformer large backbone is also transferred from DINO, but with more data (e.g., 0365, GoldG, Cap4M, OI (Krasin et
al., 2017), RefCOCO/+/g (Kazemzadeh et al., 2014), and COCO). To tailor the Grounding DINO model for the specific task
of detecting a wide array of fruits in open-set conditions, we conducted fine-tuning using our MeteFruit dataset based on the
pre-trained Grounding DINO weights.
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Figure 2: The framework of the VFM for fruit detection based on the Grounding DINO (Liu et al., 2023) model

Few-shot learning

Contemporary fruit detection algorithms, while yielding promising results, often struggle to generalize across varying
data distributions, such as different fruit classes and orchard settings, especially when faced with a lack of extensive data
(Wang et al., 2020). The scarcity of data can be attributed not only to the inherent challenges of the task or privacy issues
but also to the significant costs associated with data preparation, including collection, preprocessing, and labeling. In
response to these challenges, few-shot learning has gained recognition as a promising learning method, demonstrating the
significant potential for quickly learning underlying patterns from merely a few or even zero samples (Song et al., 2023).
Zero-shot transfer learning refers to scenarios where no training samples are utilized, and models are directly deployed on
testing images, aiming to make accurate predictions based solely on their pre-existing knowledge and capabilities. On the
other hand, few-shot learning involves using a minimal number of samples to refine and adjust the models. For example, in
5-shot learning, precisely five samples are employed for model fine-tuning. It is important to note that while few-shot
learning allows models to adapt to new tasks with limited data, the performance of such models, when only a few samples
are used for fine-tuning, can sometimes be constrained. The effectiveness of the fine-tuning process is heavily dependent on
the quality and representativeness of the selected samples, their alignment with the task at hand, and the model’s inherent
ability to generalize from minimal information (Song et al., 2023; Wang et al., 2020). This delicate balance between sample
selection and model adaptability is critical for maximizing the potential of few shot learning approaches in diverse
application scenarios, including those within the domain of fruit detection where variability across classes and environments
is high.

In this study, we employ few-shot learning frameworks to evaluate the generalizability of the FMFruit model across
various fruit categories. Specifically, the zero-shot learning scenario is utilized by deploying the FMFruit model on new fruit
classes without any model fine-tuning. Concurrently, for the few-shot learning experiments, a minimal number of samples
are randomly selected from these new fruit categories to slightly adjust the model.

Evaluation metrics

The performance of DL models in fruit detection tasks is rigorously evaluated using key detection accuracy metrics, such
as Average Precision (AP), mean Average Recall (mAR), and mean Average Precision (mAP) (Dang et al., 2023). These
metrics collectively offer a detailed assessment of a model’s proficiency in both identifying and precisely locating fruits
within images. AP, with a specific focus on precision at a 50% overlap threshold (AP50), and mAP, which calculates the
average precision across a range of overlap thresholds (from 0.5 to 0.95, in increments of 0.05), together provide insights
into the precision aspects of model performance. Meanwhile, mAR evaluates the model’s recall capabilities over a spectrum
of Intersection over Union (IoU) ranging from 0.5 to 1.0, thereby gauging the model’s effectiveness in capturing the true
positive detections across various conditions.



Experimental setups
Extensive experiments are conducted based on the following four settings:
e  Zero-shot transfer, few-shot learning, and fine-tuning on our MetaFruits.
e Cross-class generalization ability evaluation by finetuning with four kinds of fruits and evaluating on the remaining
novel one.
e (Case study of language-referring object detection.

We have Swin-T (Liu et al., 2021) as the image backbone of FMFruit model. Following BERT-base (Devlin et al., 2018),
Hugging Face (Wolf et al., 2019) is used as the text backbone. All the models are trained for 100 epochs with the AdamW
optimizer. The learning rate is set to be le-4 with the weight decay as 0.0001, but the learning rate for the image and text
backbone is set to be 1e-5. To expedite the model training process, we leverage transfer learning based on pre-trained DINO
and pre-trained Grounding DINO (Zhuang et al., 2020). The fine-tuning procedure involves using a batch size of 4 over 100
epochs, and we utilize the PyTorch framework (version 1.10.1) (Paszke et al., 2019). Both the training and testing phases of
the models take place on a server running Ubuntu 20.04. This server is equipped with two GeForce RTX 2080Ti GPUs, each
offering 12GB of GDDR6X memory.

Results

In this section, we first evaluate the zero-shot and few-shot transfer learning performance of FMFruit in comparison with
leading-edge fruit detection algorithms on our MetaFruit dataset. Then, we examine its ability of crossclass generalization
and evaluate its effectiveness on other publicly available fruit datasets. Lastly, we present initial findings on its capability to
integrate text inputs and comprehend referring expressions.

Few-shot fruit detection performance

In this subsection, we examine the zero-shot and fewshot transfer learning capabilities of our proposed model across five
distinct fruit types from our MetaFruits data. We compare our model’s performance with that of leading object detection
models, including Fully Convolutional OneStage (FCOS) object detector (Tian et al., 2020), FasterRCNN (Girshick, 2015),
RetinaNet (Lin et al., 2017), and RTMDet (Lyu et al., 2022). The performance comparison is presented in Table 3. It’s
noteworthy that traditional CNNbased models such as FCOS, despite being trained on the comprehensive COCO dataset
(Lin et al., 2014), which encompasses 80 categories including apples and oranges, fail to achieve any positive mAP and
mAR scores in fruit detection tasks across all fruit classes. This highlights a critical limitation of conventional object
detection algorithms, which struggle with generalization across diverse datasets and are typically fine-tuned for narrow,
specific detection scenarios. Among the baseline models, RTMDet emerges as one of the best-performing models following
comprehensive training across all evaluated fruit types in terms of mAP and mAR metrics, while RetinaNet is observed to
lag behind the rest of the baseline models in performance.

Conversely, our foundation model-based fruit detection model, FMFruit, demonstrates exceptional zero-shot transfer
performance across all evaluated fruit classes. Notably, for FMFruit, two out of the five fruit classes achieve a mAP score
exceeding 30, alongside a mAR score surpassing 46 across all types of fruits. Cumulatively, FMFruit yields an overall 28.7
mAP and a mAR 0f46.9 across all fruit classes, underlining its impressive capability to accurately detect and identify a wide
range of fruits without specific prior training in those classes. FMFruit’s performance on apples shows a specific challenge,
achieving a zero-shot 24.1 mAP score. This performance can be attributed to the presence of densely clustered fruits, with
an average of 76 apples per image, as detailed in Table 2. Similarly, the model’s detection capability for lemons, which
achieves a 29.4 mAP score, highlights the difficulty in accurately identifying fruits that occupy very small areas within
images, with the average size being only 823 pixels per lemon, as also indicated in Table 2.

In few-shot learning scenarios, FMFruit exhibits promising performance across all fruit classes. It achieves impressive
overall mAP and mAR scores of 46.7 and 52.7 in the 1-shot setting, using just a single image per fruit class for fine-tuning.
Expanding to a 5-shot scenario, where five images per class are used for retraining, FMFruit maintains excellent
performance, akin to the full-shot setting where all available images are used for fine-tuning. FMFruit also demonstrates
excellent few-shot performance in individual fruit classes. Specifically, FMFruit yields a significant improvement in
performance on the apple class, with a remarkable 78.99 improvement, increasing the AP50 from 45.5 to 81.8 under the 1-
shot setting. Moreover, with the 10-shot setting, it achieves a 96.5 improvement in performance, further illustrating the
model’s impressive ability to rapidly adapt and excel with minimal training data.

Figure 3 presents examples of detection outputs achieved by the FMFruit model under various few-shot configurations.
These visualizations underscore FMFruit’s robust open-set detection capabilities, particularly highlighting its impressive
performance in zero-shot settings where the model undergoes no fine-tuning. This illustrates FMFruit’s inherent ability to
generalize and accurately identify fruits even without direct prior exposure to specific fruit class data. It is noted that in
certain cases, such as with lemons, the model under the zero-shot setting may miss some fruit instances due to occlusion and
the small size of the fruits, as illustrated in Figure 3 (c). However, the model’s detection capabilities are significantly
enhanced through fine-tuning with just one single image (i.e., 1-shot), by effectively adapting to address challenges
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associated with fruit occlusion and small size.

Table 3: Zero-shot and few-shot performance on our MetaFruits dataset.

Apple Orange Lemon Grapefruit Tangerine

mAP AP50 mAR | mAP AP50 mAR | mAP AP50 mAR | mAP AP50 mAR | mAP AP50 mAR

Retinanet 380 674 429 | 412 706 460 | 378 683 436 | 438 813 510|371 62.1 406

Faster-rcnn 484 784 533 ‘ 509 83.1 556 ’ 467 786 527 ‘ 513 868 565 ’ 439 703 474

FCOS 498 809 553 | 525 851 584 | 475 80.1 542 | 545 903 615 | 458 714 497
Full-

RTMDet |shot | 524 815 58.0|53.5 83.5 59.4|49.0 798 55.7|60.3 912 66.9|46.9 710 50.4

shot 24.1 457 46.1 | 36.6 689 522|294 521 473|372 644 527|296 603 43.8

455 818 555 ‘ 459 813 547 ’ 375 723 493 ‘ 486 83.1 59.7 ’ 420 836 473

480 852 56.5‘48.4 82.7 56.8’42.7 76.3 52.6‘47.0 81.9 58.8’38.6 792 462

553 913 60.9|54.4 87.4 61.7|49.8 82.9 57.4|57.8 91.0 65.6|46.7 903  50.9

FMFruit shot 594 941 0647 | 60.1 92.0 665|560 88.0 626|640 947 709|504 93.7 544

10-shot’ 532 89.8 59.3‘52.4 85.9 59.9’48.4 81.2 56.0‘54.6 88.8 62.9’44.9 87.8 493

Zero-shot 1-shot 10-shot Full-shot
- - - - -

Figure 3: Zero-shot and few-shot fruit detection visualization examples for (a) apple, (b) orange, (c) lemon, (d) grapefruit, and (e)
tangerine. The bounding box confidence threshold is set as 0.2 and 0.3 for zero-shot and few-shot, respectively. Best view via zoom in.

Performance of cross-class generalization

In this subsection, we evaluate the cross-class generalization capability of FMFruit to assess the impact of training on
existing fruit classes on the detection performance of an unseen fruit class. Specifically, in this evaluation, the model is first
trained on four fruit classes and subsequently tested on the fifth, unseen class. For instance, to test the model’s generalization
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capability to detect lemons with cross-variety training data of other fruits, the model is first fine-tuned using data from
oranges, apples, grapefruits, and tangerines, and then tested for its ability to detect lemons, class not seen during training.
This assessment helps us understand FMFruit’s adaptability and effectiveness in recognizing new fruit types based on
learned features from other fruit classes.

Table 4 summarizes the performance of FMFruit across three distinct training settings: zero-shot, where the model
receives no training on any of the five fruit classes; crossclass, where the model is trained on four fruit classes and evaluated
on the fifth, unseen class; and full-shot, where the model undergoes training on the specific fruit classes. The data clearly
demonstrate the efficacy of cross-class training in enhancing fruit detection capabilities. Specifically, crossclass training
significantly boosts detection performance by 98.9, with an AP50 improvement from 45.7 to 90.9, nearly matching the
performance in the full-shot setting, which achieves an AP50 of 92.7. This outcome underscores the potential of cross-class
training to effectively prepare models for recognizing new fruit types.

Table 4: Cross-class generalization performance

Apple Orange Lemon Grapefruit Tangerine

mAP AP50 mAR|mAP AP50 mAR | mAP AP50 mAR | mAP AP50 mAR [mAP AP50 mAR

Zero-shot |24.1 457 46.1|36.6 689 522 (294 521 473 | 372 644 527 [29.6 603 438

Cross-class | 53.0 902 594 | 58.0 894 643 [ 520 838 596 | 60.8 90.1 71.1 |47.8 922 52.0

Full-shot 594 941 64.7]60.1 920 665 | 560 88.0 62.6 | 640 947 709 |504 937 544

Performance of Referring Expression Comprehension (REC)

In this subsection, we present an initial evaluation of our FMFruit model’s ability to REC. The model is tasked with
processing human instructions provided in natural language, identifying the critical elements of these instructions, and
selecting features that accurately correspond to the described text.

Figure 5 shows the REC results. The first illustrative set involves the model detecting apples with minimal occlusion,
guided by the specific instruction “apple with less occlusion”. FMFruit demonstrates proficiency in accurately isolating and
excluding apples that are heavily occluded by leaves, adhering closely to the given instructions. The second example
demonstrates the model’s ability to filter out apples occluded by branches, following the instruction “apple without occlusion
by branch”. Unsurprisingly, FMFruit exhibits exceptional adaptability by focusing detection on apples without branch
occlusion. These scenarios highlight FMFruit’s precise interpretation and execution based on specific linguistic instructions,
underscoring its sophisticated ability to utilize referring expressions for enhanced fruit detection accuracy.

v 7 — -

2 AT )
0 .§ ‘A
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Prompt: apple with less occlusion Prompt: apple without occlusion by branch

Figure 5: Visualization examples of referring object detection.

Discussion

Fruit detection is both a widely studied research topic and a practical challenge. Traditional DL methods have shown
considerable success, yet they tend to be specialized for certain fruit types and specific scenarios, limiting their applicability
to new orchard environments and different fruit classes. In response to this limitation, our study delves into the potential of
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VFMs to tackle a wider range of fruit detection challenges. Additionally, we introduce the MetaFruit dataset, encompassing
248,015 labeled instances across five fruit classes, to support and enhance the development and evaluation of advanced fruit
detection models. Despite its contributions, this study acknowledges certain limitations, paving the way for future
enhancements as elaborated below.

Challenges in real-world deployment

Implementing FMs in agricultural applications introduces some challenges, particularly regarding inference speed and
model size which often require significant computing resources (Bommasani et al., 2021). As shown in Table 6, our proposed
FMFruits has the largest inference time, which limits the deployment of FM in many on field agricultural settings, as the
downstream tasks often require immediate action based on the model’s outputs. For example, after outputting the fruit
location, the fruit-picking system needs to implement other actions immediately, such as decision-making and path planning.
In addition, the complexity and size of FMs demand large computing resources and memory bandwidth, which is not
practical for real-world deployment.

Recent researchers have tackled challenges through model optimization, notably model compression techniques. These
methods, including quantization, knowledge distillation, and pruning, significantly shrink model size and speed up inference
without sacrificing performance. For instance, SqueezeLLM's post-training quantization framework achieves lossless
compression, enhancing quantization performance under memory constraints (Kim et al., 2023). Edge computing strategies
further accelerate inference by processing data near its source, exemplified in agriculture by drones or field sensors enabling
on-site decision-making, as seen in MobileSAM (Kirillov et al., 2023). This model distills knowledge from heavy encoders
to lightweight ones, achieving a 12ms inference time and 9.66M parameters, a remarkable improvement over the original
SAM's 456ms inference time and 615M parameters.

Table 6: Model inference time

Model FPS (imgs/s) | Inference time per image (ms|
Retinanet 219 45.7
Faster RONN | 202 | 49.5
FCos | 189 | 529
RTMDet 53.2 18.8
FMFruit 5.5 181.3

Integration of LLMs

The realm of Large Language Models (LLMs) and Foundation Models (FMs) has advanced remarkably, finding
applications in various fields like ChatGPT, robotics, and agriculture. Preliminary investigations suggest promising
integration of LLMs and FMs into farming technologies, enhancing agricultural practices. Section 3.4 explores Referring
Expression Comprehension, getting detection outcomes through human instructions. Using a language-guided query
selection method (Liu et al., 2023), it aligns features with input text, promising more precise detection. However, it requires
well-organized and labeled pairs for training, which is time-intensive and complex. Integrating mature LLM and FM
developer APIs, like OpenAl's ChatGPT API, presents exciting possibilities. Human-robot interaction (HRI) offers another
opportunity, integrating LLMs and FMs into fruit-harvesting robots for enhanced comprehension of natural language
instructions (Wang et al., 2024), improving adaptability in orchard environments.

Conclusions

Fruit detection is a pivotal component in the development of robotic fruit harvesting systems. Central to successful fruit
detection is the assembly of a substantial, accurately labeled fruit dataset and the subsequent development of robust DL
models. This paper introduces, to date, the most extensive fruit detection dataset pertinent to U.S. commercial orchards,
encompassing 4,248 images across 5 fruit classes, annotated with a total of 248,015 bounding boxes, gathered under diverse
natural field lighting conditions. Additionally, we have developed an innovative open-set fruit detection system that utilizes
the advanced capabilities of VFMs to identify a wide range of fruits. This model exhibits outstanding detection performance
in both zero-shot and few-shot learning scenarios, consistently surpassing the FOCS network. Furthermore, the model
effectively demonstrates cross-class generalization capabilities by being trained on known fruit classes and then tested on
unseen classes, showcasing its exceptional open-set detection ability. Lastly, we explore the potential of a human-robot-
interaction (HRI) framework within our developed system, further enhancing its applicability and versatility in real-world
agricultural scenarios. The fruit detection dataset and source codes for model development and evaluation are now publicly
accessible to the research community.
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