Path Planning for Continuum Arms in Dynamic Environments

Brandon H. Meng!, Dimuthu D. K. Arachchige!, Isuru S. Godage?, and Iyad Kanj!

Abstract— Multisection continuum arms are bio-inspired ma-
nipulators that combine compliance, payload, dexterity, and
safety to serve as co-robots in human-robot collaborative
domains. Their hyper redundancy and complex Kinematics,
however, pose many challenges when performing path planning,
especially in dynamic environments. In this paper, we present
a W-Space based Rapidly Exploring Random Trees * path
planner for multisection continuum arm robots in dynamic
environments. The proposed planner improves the existing
state-of-art planners in terms of computation time and the
success rate, while removing the need for offline computation.
On average, the computation time of our approach is below
2 seconds, and its average success rate is around 70%. The
computation time of the proposed planner significantly im-
proves that of the state-of-the-art planner by roughly a factor
of 20, making the former suitable for real-time applications.
Moreover, for application domains where the obstacle motion
is not very predictable (e.g., human obstacles), the proposed
planner significantly improves the success rate of state-of-
the-art planners by nearly 50%. Lastly, we demonstrate the
feasibility of several generated trajectories by replicating the
motion on a physical prototype arm.

I. INTRODUCTION

Continuum arms are manipulators that use continuous
bending as a means of actuation. Such devices employ a
variety of models and construction materials, and are inspired
by organic appendages (e.g., elephant trunks or octopus
arms) [1]. In designing continuum arms, a combination of
compliant and rigid materials can be employed to create an
ideal mix of each component’s strength. Rigid materials, on
the one hand, excel in stability and potential payload, but
may be quite dangerous when in contact with humans. Soft
materials, on the other hand, allow for a great deal of novel
shapes, and pose a far lower risk to humans, but are unable
to manipulate larger payloads.

A multisection continuum arm consists of several con-
tinuum modules that are serially joined. These devices can
assume a large number of poses, but at the cost of very
complicated kinematics. This paper focuses on human-scale
multisection continuum arms consisting of a mix of rigid
and compliant materials. These devices exhibit an ideal
mix of novel bending, inherent safety, and capable payload.
It is these traits that make these devices perfectly suited
to serve as co-robots [2] in domains like healthcare and

1School of Computing, DePaul University, Chicago, IL 60604, USA.
{bmengl, darachch, ikanj}@depaul .edu

2Department of Engineering Technology & Industrial Distribution, J.
Mike Walker '66 Department of Mechanical Engineering (affiliated), and
Department of Multidisciplinary Engineering (affiliated), Texas A&M Uni-
versity, College Station, TX 77843, USA. igodage@tamu.edu

This work was supported in part by the National Science Foundation
(NSF) grants IIS-1718755, 11S-2008797, CMMI-2048142, CMMI-2132994
and National Institute of Health (NIH) RO1 grant SROINS116148-04.

Fig. 1.

Left: A multisection continuum arm at rest,
Middle: A multisection continuum arm shown actuated,
Right: A simulated view of a bent multisection continuum arm.

manufacturing. Continuum arms have been a very active area
of research in recent years [3].

In this paper, we study the path planning of multisection
continuum arms in dynamic environments, i.e., where obsta-
cles are in motion. Continuum arms pose a unique challenge
when performing path planning in dynamic environments,
due to the huge number of complex spatial-shapes these
devices can assume and the non-linear complex mapping
between their configuration-space (C-Space) and work-space
(W-Space). This complex mapping makes planning difficult,
as a sequence of poses may have an excessive amount of
movement if care is not taken to limit such behavior. This is
problematic for inverse kinematics and other standard path
planning methods. Path planning in dynamic environments
(and path planning in general) for multisection continuum
arms remains an open area of research.

A. Related Work

Path planning in dynamic environments is a widely studied
problem across a huge number of domains [4]-[6]. Notably,
autonomous vehicles have seen an explosion of research [7].
There has been some work on path planning for continuum
arms in dynamic environments, though this field is far less
mature. Potential field approaches are standard solutions to
this problem, and such a planner was presented in [8] for
the robotic model in consideration. However, this approach
was shown to be unreliable in [9]. An anticipatory approach
that used a temporal-graph was presented in [9]. Anticipatory
planners try to “anticipate” the motion of obstacles and plan
around the predicted location of obstacles.

A substantial body of literature exists on static path
planning (with stationary obstacles), and several planners

have been developed specifically for continuum arms. The
approaches proposed in [10] and [11] are graph-theoretic,
brute-force, and rely on a look-up table. These approaches
were shown to be reliable and generate smooth paths, but
used offline-computation and were slow to generate solu-
tions. The authors in [10] also demonstrated the unreliability
of inverse kinematics (IK) based path planners. IK is a ubig-
uitous tool used to map the W-Space of a robotic model to its
C-Space. However, IK-based approaches can get “stuck” in
local minima. The authors in [12] introduced a closed-form
solution for the IK of multisection continuum arms. However
this approach does not consider the geometrical constraints
of the curve parameters, and may not arrive at a solution
when applied to the model presented in this paper.

This paper focuses on a random sampling approach for
path planning, and more specifically on the Rapidly Explor-
ing Random Trees (RRT) approach [13]. RRT is notable
for its simplicity and efficiency and has a very popular
variant, RRT* [14], that achieves probabilistic completeness
and asymptotic optimality. Probabilistic Road Maps (PRM)
is another standard sampling approach, and has a similarly
popular variant called Lazy PRM [15]. Though this field is
broad, there have been recent contributions in RRT and PRM
for dynamic environments. These include Dynamic RRT*-
connect [16], LTR* [17], HIRO [18], and T-RPM [19]. RRT
and PRM approaches are commonly applied in the C-Space
of a robot, as they are easy to adapt to rigid-link robots,
specifically with low degrees of freedom (DoF). In general,
RRT and PRM search are known to slow down in higher
dimensional spaces, due to the curse of dimensionality.

As was shown in [20], C-Space planning is ill-suited
for multisection continuum arms. A W-Space based RRT*
approach for multisection continuum arms was proposed
in [20], but this approach is not suitable for dynamic
environments. However, this approach did highlight some
of the advantages of W-Space based RRT*. Notably, the
W-Space RRT* approach reduced the dimensionality of
the path planning problem by using W-Space exploration.
Additionally, paths generated by this approach were shown
to be smoother than other state-of-the-art planners.

B. Contribution

The kinematics of multisection continuum arms are highly
complex and present a major challenge when path planning.
Standard C-Space RRT* approaches are not ideal for path
planning in static environments, and these shortcomings
become more prominent in dynamic environments. Previous
work used W-Space exploration paired with Jacobian-based
configuration generation to create a more suitable RRT* ap-
proach, but has not explored dynamic settings. To overcome
these issues, we present a planner for dynamic environments.
Our contributions are summarized as follows:

1. We propose a W-Space based RRT* path planner for
multisection continuum arms in dynamic environments. This
approach operates in two phases: planning and tracing. In
the planning phase, a path is generated through the use of
a RRT* random tree. In the tracing phase, the arm begins

to follow the generated path, while updating the positions of
the obstacles. At each step, the planner checks for imminent
collision. When the arm is at risk of collision, the planner
returns to the planning phase. In order to design the W-
Space based RRT* planner for dynamic environments, four
main methods were employed: Horizon planning, obstacle
inflation, distance records, and a backup counter.

2. We demonstrate the superiority of the proposed planner
by comparing it to the state-of-the-art planners. The compar-
isons target application domains with three types of motions:
circular orbits, sinusoidal waves, and random walks.

i. We demonstrate a completely on-line planner.

ii. We show that our planner has a significant reduction
in computation time. For most test environments, the
computation time of our approach was below 1 second,
a nearly 20 times improvement over the other planners.

iii. We illustrate the robustness of our approach, specifically
in domains with less predictable obstacle motions. In
these test environments, our approach produces a nearly
50% improvement over the state-of-the-art.

3. Lastly, we demonstrate the feasibility of a generated
trajectory by replicating a restricted set of examples on the
physical prototype arm.

We believe that the methods we develop are general, and
that their applications extend beyond the continuum arms
model, and can be adapted to develop W-Space based RRT*
planners for other continuum manipulators.

II. PRELIMINARIES
A. Kinematic Model

This paper is focused on the prototype continuum arm
model proposed in [9]-[11], [20]. We will briefly summarize
the model. This prototype continuum arm is composed of 3
continuum sections. Each continuum section consists of 3
pneumatic muscle actuators (PMA). These PMAs are joined
around an inextensible backbone with 2?“ radians separation.
Actuation occurs by adding or evacuating air or fluid from
any of the PMAs. These continuum sections are joined
serially to form the multisection continuum arm. The use of a
backbone creates an over-constrained system, meaning that
the third PMA in each section is kinematically redundant
and therefore the bending can be described by just two
curve parameters. These curve parameters are ¢ and 6, and
describe the bending angle subtended by the arc and the
bending plane, respectively. A configuration for the pose of
the complete multisection arm is a 6-tuple consisting of the
¢ and 0 values for each of the 3 continuum sections. We
refer the reader to [20] for more details.

B. W-Space RRT*

The planner proposed in this paper utilizes some of the
tools and methods from [20]. They are briefly summarized
here. The W-Space RRT* planner uses W-Space exploration
with W-Space-C-Space mapping to generate trajectories. In
this approach, an RRT* tree 7 is grown in the W-Space,
and nodes are inserted into 7 only if a corresponding
configuration could be generated in the C-Space using the

Jacobian-based configuration generation method. The parent
tip coordinates and parent configuration along with the
desired child tip point are fed to the configuration generation
method, and a configuration is outputted that places the
arm’s tip at the desired child tip point. The Jacobian-based
method produces a configuration c¢ that places the tip at
approximately the requested child tip point. If ¢ is deemed
invalid, then it is discarded and not inserted into 7. This
static approach utilizes goal-biasing, wherein T is grown in
the direction of the destination for a fixed percentage of node
insertions. An iteration of node insertion where goal-biasing
occurs is called a guiding iteration.

III. DYNAMIC W-SPACE RRT*

In this section, we present a W-Space RRT* planner for
dynamic environments that we refer to as WRRT*D. The
planner grows a sequence of trees in the W-Space, and traces
a partial path in each of these trees, beginning from the
original starting point and finally arriving at the destination
point. During the tree growth, the radius of each obstacle
is inflated, so that planning takes place with an implicit
buffer around each obstacle. A tree is grown until its growth
reaches a certain distance, at which point a partial path in
this tree is generated. Once a path is generated, the arm
begins to trace this path. While the arm is tracing a path,
due to potential collision with obstacles, there may be a need
to generate a replacement path. Specifically, if the arm is
moving too close to an obstacle or away from the target, the
path needs to be reconstructed. In such a case, a new tree
is grown from the arm’s current position. This sequence of
growing trees, finding paths, and tracing paths is repeated
until the destination is reached or the algorithm fails to find
a collision-free path.

A. The Planner

In dynamic path planning, generally, there is no informa-
tion provided to the planner about the future positions of the
obstacles. Therefore, dynamic planners must create a plan,
and then update it as new information is acquired about the
positions of the obstacles. Although path planners for static
environments generally create a global path from the original
starting point to the destination point, this is not suitable for
dynamic planning.

Therefore, to address the challenges of dynamic path
planning, our planner works in two phases. In the first phase,
a partial path is created for the arm to follow. In the second
phase, the arm attempts to trace the partial path. During
this tracing, the current path may lead to a collision with
an obstacle. In this case, a new partial path is created for
the arm to follow starting from the current position. To
avoid unnecessary computation, we use the horizon planning
approach [21], [22]: Rather than attempting to grow a “global
path” from the original starting point towards the target
point, in horizon planning a random tree is grown outwards
from the source until the depth of nodes reaches a certain
threshold. Once this threshold is reached, a path is generated
from the tree, whether or not the target is reached.

Fig. 2. Left: A tree is grown until a node crosses the horizon. The shortest
path from the arm’s current position (the green node) to the horizon is
shown in red. Right: An obstacle obstructs the previously generated path
while tracing it. A new tree is grown from the arm’s new current position
(the center green node).

Despite the use of horizon planning, partial paths are still
costly to generate, so it is necessary to limit the frequency
of replanning. To achieve this during the path tracing phase,
we employ a number of strategies to detect the need for a
replan and to limit the frequency of replans. Phase one is
shown in Alg. 1 and phase two is shown in Alg. 2.

1) Horizon Planning: Let h > 0 be a fixed constant,
referred to as the horizon distance. To grow a tree T in
horizon planning starting from some node u, we proceed as
described in Subsection II-B. At each iteration, the distance
0 between u and the newly-inserted node n is calculated.
There are two termination cases during horizon planning:

i. Node n is the target node ¢. In this case, growth has been
completed and a partial path from u to ¢ is generated.

ii. The distance § exceeds the horizon distance h. In this
case, node n marks a “crossing of the horizon” and the
growth of the partial path is complete. We generate the
partial path from u to n.

Refer to the left side of Fig. 1 for an illustration. Note that,
even though the global target may not be included within
the horizon, the use of goal-biasing will direct the random
exploration towards the destination. The pseudocode of this
procedure is contained within Alg. 1.

2) Tracing: In a dynamic setting, planners only have
knowledge of the current and previous positions of obstacles.
In phase two of the planner, the planner traces the generated
tree path. While the arm is tracing the path, the position of
obstacles is updated to reflect the new state of the W-Space.
The critical distance w between an obstacle and the arm is a
small distance wherein the obstacle and arm are very close
and action must be taken to avoid collision. A replan must
occur when the current partial path is not suitable for the
arm given the current positions of the obstacles. If a replan
is initiated, a new path is created using horizon planning and
originating from the arm’s current position. This means that
a new tree 7 with the arm’s current position as the source
is grown. Refer to the right side of Fig. 1 for an illustration.

B. Obstacle Inflation

To avoid collision with obstacles, the continuum arm needs
to maintain a “buffer distance” from each obstacle present

in the environment. To maintain the buffer distance during
planning, the radius of each obstacle is slightly increased
during the horizon planning. Though arms may get arbitrarily
close to an inflated obstacle during planning, the inflated
region of the obstacle acts as a buffer, such that when
the radius is reduced back to its normal value, the arm is
implicitly maintaining a safe distance from each obstacle.

C. Distance Record

The purpose of keeping a distance record is to keep track
of the relation between the arm and nearby obstacles such
that a replanning occurs only when the distance between the
arm and an obstacle is decreasing and the obstacle is within
the critical distance from the arm.

Let A = [a1,a2...,a;] be a sequence of points along
the arm, where a; corresponds to the point at the base of
the arm and a; corresponds to that at the tip of the arm.
These points are uniformly distributed along each section of
the arm. Let O = {01,02,...,0x} be the set of obstacles,
where k is the number of obstacles in the workspace. Let
D =[dy,ds,...,d;] be the distance record of the arm such
that for each a; for j = 1,...,4, d; is the minimum distance
between a; and the obstacles in O.

As the pose of the arm changes during tracing, the entries
of D are updated. If for a point a; along the arm, its new
distance entry d; is less than the minimum between its
previously recorded distance entry d; and the critical distance
w, then a replan occurs. This procedure is part of Alg. 2.

Algorithm 1 HORIZON
Require: starting configuration s, destination point %,
1: partial path P’ = () > This is maintained as a queue
create a tree 7 using s and ¢,
inflate each obstacle 0o € O
while no node has crossed the horizon and t, ¢ T do
grow 7 by inserting a node n
if n ==t, then
calculate the path P from s to t,
else if dist(n,s) > h then > n crosses the horizon
calculate the path P from s to t,
end if
: end while
deflate the obstacles in O
: return P

R A

—
W N = O

D. Backup Counter

The backup counter is used to implement a simple strategy
for ensuring that the arm makes sufficient progress toward
the target without stalling in one area. It is possible that the
arm might progress away from the target to avoid collision
with an obstacle. However, if after several steps of obstacle
movement, an opening exists towards the target, it would be
ideal to reverse course and head towards the target.

The backup counter is an integer variable, f, that records
the number of steps that the arm has taken away from the
destination. The counter is initialized so that f = 0 at the
start of a plan. Let 5 be the number of permissible backup

steps before a replan is necessary. As the arm traces the
path, the distance between the arm’s tip point and the goal
target point is calculated. If this distance increases, then f
is incremented by 1. If at any moment f > [, then a replan
is initiated. This procedure is part of Alg. 2.

Algorithm 2 W-Space RRT* Dynamic
Require: global starting configuration s, global target point
tg, moving obstacle list O, horizon distance h

1: global path Pg = 0)

2: distance record D = [00, 00, .. .]

3: critical distance w

4: backup counter f = 0, maximum backups /3
5: P = HORIZON

6: current configuration v = P.pop()

7: add u to Pg

8: while t;, ¢ P; do

9: update position of 0 € O

10: for all distance records d € D do

11: calculate new distance entry d’

12: if (' <d AND d’ < w) OR f > h then
13: f=0

14: P’ = HORIZON

15: BREAK

16: end if

17: end for

18: u = P.pop()
19: append u to Pg

20: if the arm moves away from ¢ then
21: f=7r+1
22: end if

23: end while
24: return Pg

IV. METHODOLOGY AND RESULTS
A. Test Environment

In order to evaluate the performance of the proposed
dynamic path planner, we compare it to the state-of-the-
art anticipatory approaches proposed in [9]. To summarize,
these approaches use previous obstacle locations, a prediction
scheme, and a temporal graph to generate paths that ‘antici-
pate’ the motion of obstacles. We subject each of the tested
approaches to three test environments. Each environment
uses spherical obstacles with a radius of either 2 or 3cm, with
each obstacle assigned a radius randomly. When the pose of
the arm is changed during tracing, the change in the obstacle
position is roughly 75% of the change of the arm tip. The
obstacle inflation radius was selected by experimentation. Let
r be the initial radius and r’ be the radius after inflation. This
change in r was selected such that 7' < 3r /2. The parameters
h, w, and 8 were also selected experimentally as 15cm, 2cm,
and 5, respectively. Each of the trials begins at the resting
pose of the arm. This is the pose where none of the PMAs
are actuated and corresponds to the configuration (and joint
values) [0,0,0,0,0,0]. The arm is tasked with navigating
from the resting pose to a randomly-generated target point

TABLE I
ORBIT ENVIRONMENT

Obstacles

Approach 1 2 3 4 5 6
AN2 Succ. 8% 76% 12% T1% 64% 66%
AN2 Time (s) 11.7 155 124 154 176 24
AN3 Succ. 8% 76% T11% T13% 64% 66%
AN3 Time (s) 11.7 9.6 194 232 253 298
WRRT*D Succ. 67% 12% 15% 68% 68% 65%
WRRT*D Time (s) | 0.2 0.7 0.7 1.9 0.8 1.6

without colliding with any obstacles. Additionally, in all
trials, a random target point is selected such that the point
is within 25cm of the origin. A summary of each of the test
environments follows.

Environment 1 - Circular Orbit Motion: In this envi-
ronment, the obstacles are following a circular orbit around
a fixed center. These orbit centers are selected along the
straight-line between the initial tip position and the target
position. Each orbit lies in a plane that makes an angle
—45° < o < +45° with the zy-plane, where « is chosen at
random with uniform probability. Additionally, the direction
of the rotation (clockwise, counter-clockwise) is selected
randomly with uniform probability.

Environment 2 - Wave Motion: This environment uses
sinusoidal waves in order to generate obstacle movement
in the W-Space. Obstacles are placed in a line near the
target point which forms a 90° angle with the straight-
line from the starting point to the target point. Obstacles
are placed such that their respective centers are 4cm apart.
The obstacles move with sinusoidal motion that lies on a
plane and all obstacles intersect at the midpoint between the
starting tip point and the target point. This is, in effect, a
“wall” of obstacles advancing towards the arm that moves in
a sinusoidal pattern.

Environment 3 - Random Motion: The random motion
in this environment consists of random walks. Each of the
obstacles is initially placed along the straight-line between
the resting pose arm tip and the target point. For each obsta-
cle, a random distance between 1 and 5cm is selected. Next,
a random direction is selected. The obstacle then travels a
random distance in a random direction. When the obstacle
has traveled the specified distance, a new distance, and a new
direction are selected, and the obstacle moves according to
those new parameters. Each of these environments is tested
on a range of obstacle counts, with 1,2, ..., 6 obstacles used.
For each number of obstacles, the approaches are tested on
the same 100 random trials. The success rate over the 100
trials is reported along with the average computation time
that each approach took to generate a solution.

B. Results

The results of each of the approaches for the test envi-
ronments are reported in the tables below. We refer to the
Temporal-2, Temporal-3, and WRRT*D approaches as AN2,
AN3, WRRT*D respectively. The success rate reported in
each table is the percentage of trials that were completed

e
4
.'}
g
8%) 1
4 ‘8(
o =/ i
g 7
= = X
A I
—_ v

W
1IN

'~ H

LY
o8 ! !

4 }‘ ® .}‘

“ o v e I(
\ 1)
{
A

YAy

] gh v

Fig. 3. A path generated by WRRT*D performed on Environment 3.
Obstacles are shown as orange spheres and the target tip position is shown
as a purple dot. Frames are shown of the initial position (1), 33% progress
(2), 66% progress (2) (3), and the final position (4).
TABLE 1T
WAVE ENVIRONMENT

Obstacles

Approach 1 2 3 4 5 6
AN2 Succ. 53% 31% 26% 25% 23% 12%
AN2 Time (s) 5.6 6.2 9.9 112 135 124
AN3 Succ. 65% 42% 45% 28% 26% 19%
AN3 Time (s) 112 137 17.0 17.7 205 22.6
WRRT*D Succ. 75% 74% 69% 68% 3% 64%
WRRT*D Time (s) | 0.3 0.4 04 0.5 0.7 0.5

successfully. The columns correspond to the number of
obstacles used in each set of trials. The rows contain the
success rate and computation time of each of the approaches.
Fig. 3 shows a path generated by WRRT*D for environment
3. For more examples, please see the associated video.
Tabs. I, II, and III show the results from the Circular
Orbit Motion environment, Wave Motion environment, and
Random Motion environment, respectively.

In general, it seems that the AN2 and AN3 approaches
are very sensitive to the quality of predictions, whereas the
WRRT*D approach is more consistent across motions. Ran-
dom motion, in particular, is challenging for the anticipatory
approaches. The low success rate of the WRRT*D approach
in certain settings is likely unrelated to the environment, and
instead related to the method of calculating configurations.

C. Continuum Arm Prototype Testing

The 3-section prototype arm shown in Fig. 1 is tested using
the configurations generated in path planning simulations.
Configurations are related to length changes of the arm using
kinematic relationships [23]. Length changes are mapped to

TABLE III
RANDOM ENVIRONMENT

Obstacles

Approach 1 2 3 4 5 6

AN2 Succ. 8% 25% 17% 3% 4% 1%
AN2 Time (s) 5.1 6.8 7.9 8.1 11.1 11.8
ANS3 Succ. 39% 18% 10% 4% 2% 2%
AN3 Time (s) 9.5 10.8 129 143 163 188
WRRT*D Succ. 1% 76% 60% 64% 67% 63%
WRRT*D Time (s) | 025 026 026 026 026 0.26

Fig. 4. Path planning progression of the continuum arm prototype under
(a) single and (b) two obstacles.

actuation pressure trajectories using the joint space — pressure
mapping approach proposed in [24] and fed to the arm via an
experimental setup that consists of an 8 bar air compressor,
09 proportional pressure regulators (ITV3050-31F3N3, SMC
USA) corresponding to 09 PMAs of the arm, and a MATLAB
Simulink desktop real-time model interfaced with a data
acquisition (DAQ) card (PCI-6703, NI USA). The DAQ card
is coupled with pressure regulators and issues voltage signals
corresponding to the pressure commands set in MATLAB
Simulink to release air pressure.

To replicate the motion of dynamic obstacles, we attached
plastic spherical objects to the end effector of a rigid robotic
arm (AUBO-i5, AUBO-cobot USA). The obstacle trajecto-
ries that were generated relative to the base of the continuum
arm are transformed relative to the base of the rigid arm.
This helps generate obstacle trajectories by actuating the
rigid arm. Fig. 4 shows a path generated by the WRRT*D
for one and two obstacles following circular orbit motion.
The arm prototype testing initially validates the proposed
path-planning algorithm. Due to the operation limitations of
the arm, every proposed path planning algorithm herein was
not tested. Here we present proof of the concept through
preliminary experimental results. Refer to the multimedia file
submission to see the complete videos of the experiments.

V. CONCLUSION

In this paper, we studied the problem of dynamic path
planning for multisection continuum arms. We introduced

a Dynamic W-Space RRT* path planner and demonstrated
its strengths relative to other state-of-the-art path planning
approaches for these models. Through the use of different
test environments, we showed the speed of our proposed
approach while also showing its ability to be adapted to a
number of different domains. We showed that our approach
outperformed the anticipatory approach, specifically where
the predictions were not well-suited for the environment.
Future work might center around real-time applications of
this approach. Additionally, this model could be adapted for
parallel robots, to show planning for multiple multisection
continuum arms.

REFERENCES

[1] D. Trivedi et al., “Soft robotics: Biological inspiration, state of the art,
and future research,” Applied Bionics & Biomechanics, 2008.

[2] E. Boy, E. Burdet, C. Teo, and J. Colgate, “The learning cobot,” in

ASME Int. Mech. Eng. Cong. & Exposition, 2002, pp. 867-873.

S. Kolachalama and S. Lakshmanan, “Continuum robots for manipu-

lation applications: A survey,” J. of Robotics, pp. 1-19, 2020.

[4] B. Patle et al., “A review: On path planning strategies for navigation
of mobile robot,” Defence Technology, pp. 582—606, 2019.

[5] C. Cheng, Q. Sha, B. He, and G. Li, “Path planning and obstacle
avoidance for auv: A review,” Ocean Engineering, vol. 235, 2021.

[6] R. Almadhoun et al., “A survey on multi-robot coverage path planning
for model reconstruction and mapping,” SN Applied Sciences, 2019.

[7]1 K. Karur er al.,, “A survey of path planning algorithms for mobile
robots,” Vehicles, vol. 3, no. 3, pp. 448-468, 2021.

[8] L S. Godage et al., “Path planning for multisection continuum arms,”
in [EEE Int. Conf. on Mech. & Aut., 2012, pp. 1208-1213.

[9] B. H. Meng, D. D. Arachchige, J. Deng, I. S. Godage, and I. Kanj,
“Anticipatory path planning for continuum arms in dynamic environ-
ments,” in IEEE Int. Conf. on Rob. & Aut. (ICRA), 2021.

[10] J. Deng, B. H. Meng, 1. Kanj, and I. S. Godage, “Near-optimal smooth
path planning for multisection continuum arms,” in /EEE Int. Conf.
on Soft Robotics (RoboSoft), 2019, pp. 416-421.

[11] B. H. Meng, I. S. Godage, and I. Kanj, “Smooth path planning for
continuum arms,” in IEEE Int. Conf. on Rob. & Aut. (ICRA), 2021.

[12] S. Neppalli et al., “Closed-form inverse kinematics for continuum
manipulators,” Ad. Robotics, vol. 23, no. 15, pp. 2077-2091, 2009.

[13] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The Int. J. of Rob. Research, vol. 20, no. 5, pp. 378400, 2001.

[14] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Rob. Science & Systems, 2010.

[15] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in /[EEE
Int. Conf. on Rob. & Aut. (ICRA), 2000, pp. 521-528.

[16] Y. Chen and L. Wang, “Adaptively dynamic rrt*-connect: Path plan-
ning for uavs against dynamic obstacles,” in IEEE Int. Conf. on Auto.,
Control and Robotics Eng. (CACRE), 2022, pp. 1-7.

[17] T. Lai and F. Ramos, “Ltr*: Rapid replanning in executing consecutive
tasks with lazy experience graph,” in IEEE/RSJ Int. Conf. on Intel.
Rob. & Sys. (IROS), 2022, pp. 8784-8790.

[18] X. Huang et al., “Hiro: Heuristics informed robot online path planning
using pre-computed deterministic roadmaps,” in /EEE/RSJ Int. Conf.
on Intel. Rob. & Sys. (IROS), 2022, pp. 8109-8116.

[19] M. Hiippi, L. Bartolomei, R. Mascaro, and M. Chli, “T-prm: Temporal
probabilistic roadmap for path planning in dynamic environments,” in
IEEE/RSJ Int. Conf. on Intel. Rob. & Sys. (IROS), 2022.

[20] B. H. Meng, 1. S. Godage, and 1. Kanj, “Rrt*-based path planning for
continuum arms,” IEEE Rob. & Auto. Letters, 2022.

[21] J. Wang et al., “Learning to guide online multi-contact receding
horizon planning,” in IEEE/RSJ Int. Conf. on Intel. Rob. & Sys. (IROS),
2022, pp. 12942-12949.

[22] J. Leu, M. Wang, and M. Tomizuka, “Long-horizon motion planning
via sampling and segmented trajectory optimization,” in European
Control Conference (ECC), 2022, pp. 538-545.

[23] D. D. Arachchige and I. S. Godage, “Hybrid soft robots incorporating
soft and stiff elements,” in /EEE Int. Conf. on S. R. (RoboSoft), 2022.

[24] D. D. Arachchige et al., “Soft steps: Exploring quadrupedal locomo-
tion with modular soft robots,” IEEE Access, 2023.

[3

—

