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ABSTRACT: Euclidean path integrals for UV-completions of d-dimensional bulk quantum
gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality,
continuity, reflection-positivity, and factorization. Sectors Hpg of the resulting Hilbert space
were then defined for any (d — 2)-dimensional surface B, where B may be thought of as the
boundary 0% of a bulk Cauchy surface in a corresponding Lorentzian description, and where
B includes the specification of appropriate boundary conditions for bulk fields. Cases where
B was the disjoint union B LI B of two identical (d — 2)-dimensional surfaces B were studied
in detail and, after the inclusion of finite-dimensional ‘hidden sectors,” were shown to provide
a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was
performed by constructing type-I von Neumann algebras A2, AZ that act respectively at
the left and right copy of B in B L B.

Below, we consider the case of general B, and in particular for B = By, U B with By, Br
distinct. For any Bg, we find that the von Neumann algebra at By, acting on the off-diagonal
Hilbert space sector Hp, By, is a central projection of the corresponding type-I von Neumann
algebra on the ‘diagonal’ Hilbert space Hp, B, . As a result, the von Neumann algebras
AEL ) .AgL defined in [1] using the diagonal Hilbert space Hp, | B, turn out to coincide precisely
with the analogous algebras defined using the full Hilbert space of the theory (including all
sectors Hp). A second implication is that, for any Hp, B, including the same hidden sectors
as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi
entropy. We also show the above central projections to satisfy consistency conditions that
lead to a universal central algebra relevant to all choices of By, and Bpg.
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1 Introduction

As emphasized in [1], a number of arguments regarding gravitational entropy that were
originally motivated by the AdS/CFT correspondence have now been understood to follow
directly from bulk physics. A primary example is the derivation [2, 3] of the Island Formula
for the entropy of Hawking radiation transferred from an asymptotically-locally-AdS (AlAdS)
gravitational system to a non-gravitational bath. This derivation simply combines the
gravitational path integral arguments of [4-7] with the setting studied in [8, 9]. And as
explained in [10], in this context the results may be safely interpreted in terms of standard
von Neumann entropies without invoking holography at any intermediate step.

Another class of examples involves taking the semiclassical limit in which Hilbert space
densities of states diverge. Using purely bulk methods, one can show that the algebra of
observables is generated by a type-II von Neumann factor and its commutant. This observation
then leads to an entropy on these algebras that agrees with the quantum-corrected RT
formula up to an additive constant [11-14].



Motivated by such results, it was suggested in [1] that purely bulk arguments (i.e.,
without assuming the existence of a holographic dual field theory) should suffice to provide
a Hilbert-space interpretation of an entropy defined by regions of an A1AdS boundary for
which the semiclassical limit is given by the Ryu-Takayangi formula [15, 16] (or its covariant
Hubeny-Rangamani-Takayanagi generalization [17]).

By assuming certain Euclidean-signature axioms, this was then shown to be the case in
so-called ‘diagonal’ settings where the boundary 9% of a Cauchy surface ¥ in a corresponding
Lorentz-signature spacetime took the form 0¥ = B U B, where B was a compact (d — 2)-
dimensional manifold (with 9B = (), and on which appropriate boundary conditions were
specified for bulk fields.

The argument of [1] was formulated in terms of a supposed path integral for a UV-
complete finite-coupling! bulk asymptotically-locally-AdSy (AlAdSy) theory. The previously-
advertised axioms for such path integrals were called finiteness, reality,? reflection-positivity,
continuity, and factorization. In the above diagonal setting, these properties sufficed to show
the associated Hilbert space sectors Hpp to be direct sums @u ”H‘éu p of Hilbert spaces
that factorize as Hip 5 = Hpp ; ® Hipp g, Where the left and right factors Hly p ; and
Hly, B.R for given p are isomorphic but are associated with operator algebras that, in an
appropriate sense, act at the respective left and right copy of B in Hp_p. It was then further
shown that the path integral defines a trace on such algebras that agrees with the standard
sum-over-diagonal-matrix-elements Hilbert-space trace associated with the Hilbert space

Hp = @ H%UB,L ® C™ = @ Hppr®C™ (1.1)
1 1

for appropriate integers n,. The corresponding entropies thus agree as well and, by first
making use of an appropriate embedding of Hp g in Hp ® Hp and then connecting with
the Lewkowycz-Maldacena argument [4] and its generalizations, one obtains a Hilbert space
interpretation of the Ryu-Takayanagi entropy of either boundary B.

The reader should note that the Hilbert space Hp was not explicitly introduced in [1],
though its use will simplify our discussion. Indeed, the tilde decoration at the bottom of Hp
is intended to help to distinguish H p from the various Hilbert spaces defined in [1] that were
denoted by symbols with upper tildes. As shown by the 2nd equality in (1.1), it would be
unnatural to assign either an L or an R label to Hp. Furthermore, in the diagonal case we
can lose nothing by using only a subscript B instead of B U B. This will turn out to be a
good choice of notation as we will see below that the same space Hp arises in the analogous
analysis of any off-diagonal sector H g5/, where now Hp g’ is to be embedded in Hp @ Hp'.

The focus of [1] on diagonal sectors H pp had two primary drawbacks. The most obvious
was of course that it provided the desired Hilbert space interpretation of RT entropy only
when the two boundaries are identical. Directly generalizing the arguments of [1] to the case

!Gravitational path integrals associated with familiar classical actions diverge in the limit G — 0 (or
So — oo for JT gravity). As a result, the asymptotic expansion of such path integrals in powers of G will
generally fail to satisfy the axioms of [1]; see [18] and especially section 5.4 of [1] for further discussion of this
issue.

2The reality axiom implies that the theory to be invariant under a notion of time-reversal symmetry. We
expect that this axiom is not in fact necessary.



with (d — 2)-dimensional boundary B LI B’ turns out to be nontrivial due to the reliance of [1]
on special properties of cylinders Cc = B x [0,¢]. The obstacle is that such cylinders are
intrinsically diagonal in the sense that 0C. = BU B. We will thus seek other arguments below.
The second issue arises from the fact that the choice of Hilbert space plays a role in
the construction of the desired operator algebras. In particular, while an algebra of simple
operators can be defined directly using smooth boundary conditions in the path integral, the
most useful mathematical structures turn out to be the left and right von Neumann algebras
constructed by using a Hilbert space to define an appropriate notion of a completion. While
this may seem like a mathematical technicality, it raises the interesting question of whether
using the full quantum gravity Hilbert space might lead to von Neumann algebras (and thus to
entropies) that differ from the ones constructed using only the diagonal sectors Hp g as in [1].
We will address both of these shortfalls below. As further motivation for our study, it
is useful to take inspiration from the AdS/CFT correspondence, in which the bulk path
integral is simply equal to a path integral for the dual CFT. While it is not necessarily the
most general allowed setting, this case certainly satisfies the axioms of [1]. Furthermore,
in the AdS/CFT context, for any choice of B and B’ we always have the so-called Harlow-
factorization property® Hp p = Hp ® Hp so that in particular, the left Hilbert space factor
(and the associated type-I von Neumann factor) is manifestly independent of the choice of B’.*
One might then hope that a similar independence of B’ follows more generally from the
axioms of [1]. Below, it will be useful to rename B, B’ as By, Bg and to refer to By, Br as the
left and right boundaries. In that notation, while we have already seen in the diagonal context
that a given boundary By, is associated with a set of left Hilbert space factors Hp, B, 1, one
may nevertheless hope that the full set of such factors has no dependence on Bpg.
As foreshadowed above, this will turn out to be nearly true in the sense that the
off-diagonal Hilbert spaces Hpg, 5, again decompose according to®

_ p : u g M
Hp,uBg = @HBLuBR with  Hp g, = Hp,uBeL @ HB,uBwR: (1.2)
I

such that every left Hilbert space factor H%Lu B, is in fact canonically isomorphic to a left
factor H%Lu By L associated with the diagonal Hilbert space Hp, p,. However, for given
Bpr it may be that we find only a subset of the diagonal left Hilbert-space factors H%LU BL.L-
Indeed, we will see that there is a natural sense in which the isomorphic factors ’H‘E‘;LLI Bp.L
and H’éLI_, B, can be said to be associated with the same value of y, so that for any u
appearing in (1.2) it is natural to write

H%LUBR,L = H%LUBL,L =: H%La (13)

where this defines the symbol H%L used on the right-hand-side. Here we have refrained from
adding an additional j subscript on ’H‘éL since the identical Hilbert space arises from the

3The name comes from the emphasis on this property in [19].

“Indeed, since for AdS/CFT there is only a single value of x4 and it has n, = 1, for this case (1.1) gives
Hp = HB.

5Here we use notation chosen to mirror that of [1]. In this notation, we emphasize that an object labelled
with Br, U Br may in fact depend on the partition of B = By U Bgr into By and Bpgr, and thus that it is
generally not determined entirely by B alone. Symbols in which an explicit LI does not appear will be free of
this issue.



corresponding construction when By, is used as a right boundary (instead of a left boundary as
above). In addition, for given u the integer n, will be shown to be independent of the choice of
boundary so that, in the notation of (1.3), replacing B in (1.1) by By, Br we may write both

Hp, =@ (Hy, ©C™)  and Hp, =P (Hy, @ C™) (1.4)
p f

for the same integers n,.

The results of [1] then imply that the trace defined by the path integral on operators
that act at any By, or Bg coincides with the sum-over-diagonal-matrix-elements trace defined
by the Hilbert spaces (1.4). A Hilbert space interpretation of the Ryu-Takayanagi entropy
associated with either By, or Bg of states in Hp, B, then follows from an appropriate
embedding of Hp,uB, in Hp, ® Hp,.

Finally, we will also verify the analogous statements for the above-mentioned von Neumann
algebras, showing in particular that the algebras constructed in [1] using only the diagonal
sectors Hpyp do in fact coincide with von Neumann algebras completed by using the topology
defined by the entire quantum gravity Hilbert space. More specficially, we will see that
the von Neumann algebra acting at By, associated with an off-diagonal sector Hpg, 5, is
always a central projection of the corresponding algebra defined by the diagonal Hilbert
space sector Hp, B, . Furthermore, these projections will be shown to satisfy compatibility
conditions that allow us to assemble such central projections into a universal central algebra,
independent of the choice of any particular By, from which the central algebra for each pair
Br,,Br can be recovered by acting with an appropriate projection. Such algebraic results
are in fact more fundamental than the Hilbert-space results described above and will thus
be addressed first in the work below.

This paper is organized as follows. We begin in section 2 by reviewing the construction of
algebras and Hilbert spaces from Euclidean path integrals as described in [1]. This includes
the definition of general off-diagonal Hilbert space sectors Hp, ,, as well as algebras
flfLuB R, flgLuB # of operators on Hp, B, defined by attaching surfaces respectively to the
left and right boundaries By, Br. However, these algebras are not complete in any natural
topology, and [1] defined von Neumann completions only in the diagonal context By = Bp.
The new results begin in section 3, which shows that the off-diagonal left-algebra flfLuBR is
canonically identified with a quotient of the diagonal left-algebra AEL“'BR, and similarly for
the right-algebras. It then remains to study the completions that define the off-diagonal von
Neumann algebras in section 4. After developing some useful technology, we demonstrate
that the off-diagonal von Neumann algebras are again canonically identified with quotients
of the diagonal von Neumann algebras. Section 5 then shows this identification to take
the form of a central projection, discusses the relationship between the off-diagonal and
diagonal Hilbert spaces, and organizes the discussion of centers in terms of a universal central
algebra that is independent of the choices of boundaries. The fact that the left and right
von Neumann algebras are commutants on Hp, B, is also established in this section by
making use of further supporting results from appendix A. With all of the above results in
place, it is then straightforward to describe the Hilbert space interpretation of RT entropy
in the off-diagonal context. This is done in section 6, after which further discussion and
final comments are provided in section 7.



2 Algebras and Hilbert spaces from gravitational path integrals

The results of [1] were established within an axiomatic framework for the Euclidean path
integral in UV completions of quantum theories of gravity. The five axioms used in [1] are
briefly summarized below, though we refer the reader to [1] for full details and additional
discussion.

1. Finiteness: the boundary conditions for the path integral are assumed to form a
space X% of d-dimensional ‘source manifolds’ X¢. The path integral then defines a
map ¢ : X? — C to the complex numbers; i.e., ((M) is well-defined and finite for
every M € X% Local restrictions on the sources may be imposed as needed to achieve
this property. As an example, one may choose to require source manifolds to have
non-negative scalar curvature.

2. Reality: let X denote formal finite linear combinations of source manifolds with
coefficients in C. We extend ¢ to elements of X¢ by linearity. For every M € X,
we have both M* € X¢ and [((M)]* = ¢((M*). This axiom is trivial if the original
space X¢ of source manifolds is taken to be real; i.e., if * is taken to act trivially on
X4, Furthermore, as noted in the introduction, this axiom also implies a time-reversal
symmetry. We thus expect that it can be dropped without significant harm, though we
leave such a study for future work.

3. Reflection-Positivity: ((M) is a non-negative real number for reflection-symmetric
source manifolds M, i.e. M € X? can be written in the form M = S Ta=1VivaMr g
where 77 € C, 77 denotes the complex conjugate of 7, and where each M; ; can be
sliced into two parts Nj and N, for some n € Z*.

4. Continuity: suppose that the source manifold M € X9 contains a ‘cylinder’ C, of the
form B x [0, ¢]. Then ( is continuous in the length € of this cylinder for all € > 0.

5. Factorization: for closed boundary manifolds M7, Ms and their disjoint union M7 LI My,
we have ((My U Ma) = ((Mq1)((M2).

The framework can also be applied to contexts like those in [20] and [21] where factorization
fails, but where the path integral can be expressed as an integral (( = [ da (,) over path
integrals ¢, in which all of the above axioms hold. The results of [1] then clearly hold for
each (4, with corresponding implications for the full path integral (.

Another important ingredient in the discussion of [1] was the concept of a source-manifold
N with boundary ON. An operation * (also used in axiom 3) was defined on Y by complex-
conjugating the sources on N and simultaneously reflecting N about its boundary. This *
was then used to define the notion of a rimmed source-manifold-with-boundary N, which is a
was allowed to have a non-trivial boundary N so long as some open set containing N was
a cylinder of the form C. = B x [0, €] described above with C. = C*. We will discuss only
boundaries B for which there exist cylinders satisfying this condition.

The space of such rimmed source-manifolds with boundary B was denoted Yg. We see
that any Nj, No € Yg can be naturally sewn together across B to define a smooth closed



source-manifold My n,. The space of formal finite linear combinations XdB, equipped with a
pre-inner product defined by the path integral of glued source manifolds (N1|N2) = ((Mn:n,),
then forms a pre-inner product space® which we denote as Hz. The Hilbert space Hp is
obtained by first taking the quotient by the space of null vectors Np, and then taking
the completion with respect to the norm. To reflect the fact that it is a dense subspace
of Hp, we introduce the notation Dg = Hpg/Np for the pre-Hilbert space defined before
taking the completion.

The analysis of [1] focused on the case when the boundary B is a disjoint union of
two closed boundary manifolds B = Bj LI Ba. The spaces X‘élu B, and Xdeu B, can then

be promoted to algebras Af

I,A% by defining products that simply glue together the two
surfaces being multiplied. The product a -1, b on ZdBlu B, (which is used to define Af ) is
defined by gluing the right boundary of a to the left boundary of b, while the product ¢ g d
on XdBQI_, B, (which is used to define A%) is defined by gluing the left boundary of ¢ to the
right boundary of d. Since left and right products are related by a - b = b -g a, we may
define ab:=a -, b = b-g a. There is also a natural involution x defined by a* := (at)*, where
the transpose operation ! simply interchanges the labels left and right on the boundaries
of a. Thus a' is the same source manifold as a but with the left boundary of a now called
the right boundary of a’, and vice versa.

If we interchange the two boundaries to instead use B = By LI By, the same construction
defines analogous algebras AEQ and Agl. The involution * then defines an anti-linear
isomorphism between Afi and A%. Furthermore, a trace operation ¢r can be defined on
these surface algebras using the path integral, tr(a) := ((M(a)), where M(a) € X% denotes
the source manifold obtained from gluing together the two copies of B in the boundary
of a € Y& -

Representations of the surface algebras Afl and A? on the sector Hp, B, were then
constructed in two steps. The first step was to consider the natural actions of Afl,AgQ
on the pre-inner product space Hp, B, by gluing the relevant surfaces along corresponding
boundary components (B; or Bs). For example, a € Afl is represented by an operator ar,
that acts on |b) € Hp,up, by gluing the right boundary of a to the left boundary of b so
that ar, |b) = |ab). The next step used the trace inequality

tr(b*aa*db) < tr(a*a)tr(b*d). (2.1)

derived in [1] for” a in either AP or A? and any b € Hp,,B,. As shown in figure 1, the
relation (2.1) is equivalent to the inequality

(blaral|b) < tr(a*a)(blb), (2.2)

which immediately implies that each operator in the representation is bounded. It thus
preserves the null space Np,p,, and induces a (bounded) operator on Dp,p,. It follows
that there is a unique bounded extension to the Hilbert space Hp,.B,-

5This is the same Hg as in [1], where it was called a pre-Hilbert space.

In fact, the inequality (2.1) was derived in [18] for any a € XdBllJBz7 be X‘JZBIUBS. In that context, we can
still define a corresponding operation * such that a* € X%Qu B b7 € X‘éw B,» and concatenation of surfaces
then defines a*a € AP? and b*b, b*aa*b € AP3. This more general version will be useful in appendix B.



Bl Bl Bl B2

tr(a*a) = (ala)

tr(b*b) = (b|b)

tr(b*aa*b) = (bla,a, |b)

Figure 1. For surfaces a € Y3 5 and b€ YgLI_,BR, the traces of a*a and b*b coincide with (a|a)
and (b|b) as shown in the upper panel. The left hand side tr(b*aa*b) of the trace inequality (2.1)
computes the inner product (b|a L&E|b>, as shown in the lower panel.

The left and right representations established on the sector Hp, B, are denoted by
ABEB2 anq flgluBQ. The adjoint operation defined by Hp, 15, then satisfies (ar)" = (a/*\)L,
and similarly for the right algebra. Finally, it is clear that operators in flf“"B 2 commute
with those in A%UBQ.

The remaining analysis of [1] was restricted to so-called diagonal sectors of the form
‘Hp,uB,; i.e., with By diffeomorphic to By. In that context, left and right von Neumann
algebras A]‘gl and Agl were constructed by taking completions of the representations flfluB !

1B1UB,
AR

and in the weak operator topology. The adjoint operation again acts as an involution

on these von Neumann algebras.



A key point was then that the above trace tr can be extended to positive elements of
the von Neumann algebras Afl and Agl by taking it to be defined by

tr(a) = lim{Cp|alCs), (2.3)

where Cj is an appropriate cylinder® of length 3. The result is faithful, normal, and semifinite.
In addition, it continues to satisfy the trace inequality (2.1), as well as related inequalities
derived using larger numbers of boundaries. Together, these results require ¢r(P) to be a
non-negative integer for any projection P with finite trace. Each of the algebras Afl ) Agl
must thus be a direct sum of type I factors. Furthermore, the Hilbert space Hp, B, is
a direct sum of Hilbert spaces ’H’élUBl that factorize as H%luBl = ’H%IHBLL ® /HléluBl,R
with H’ ,uB,.. canonically isomorphic to Hlg \UB;,R UP tO an overall phase. Finally, it was
shown that such Hilbert-space factors H’élu B H glu Bi.R could be supplemented with finite
dimensional Hilbert spaces C™* such that the trace Tr defined by summing diagonal matrix
elements of operators on Hp, := P, H%ﬂ—lBhL @C™ =, H%IUBLR@)CR“ coincides on Afl
and Agl with the trace tr defined above. Since Hp,up, C HB, ® HB,, this provided a Hilbert
space interpretation of the entropy described by the gravitational replica trick. And by the
argument of [4], this entropy is well approximated by the Ryu-Takayanagi entropy [15, 16]
when the bulk theory admits an appropriate semiclassical limit.

3 Off-diagonal representations from the diagonal representation

The main goal of this paper is to generalize the above results to off-diagonal sectors Hp, 1B,
with By, # Br. We perform the first steps of that analysis in this section, focusing on the
surface algebras AEL and AgR and their representations AELUBR and AgLUBR on Hp,Bg-
In particular, we will show that any off-diagonal representation AELUBR can be identified
with a quotient of AELUBL.

The construction of these objects with By, # Bpr was already given in [1] and was
reviewed in section 2. We may thus proceed rapidly. The surface algebras Afl and A%
were in fact defined in section 2 using only properties that are intrinsic to the spaces of
surfaces Yglu Blegzu B,» Without mention of any Hilbert space sector. We thus need only
set By = By and By = Bpg to obtain surface algebras ALBL and AgR which are identical
to those used in the diagonal context.

We will show below that the representation of AfL on any sector Hp, By is always a
quotient of the representation on the diagonal sector Hp, B, , and similarly for the right
surface algebra. This statement is equivalent to the claim that, if n lies in the diagonal null
space ‘ﬁfL"'BL of elements of AfL that annihilate all states in the diagonal sector Hp, B, ,
then n must also annihilate all states in any non-diagonal sector Hp,1B-

To streamline our notation for boundaries, we now introduce the shorthand LR = By L BRg,
LL = Br U By, and RR = Bgr U Bgr. We will in particular write AIL*P‘ = AELL'BR and
A]L%R = flgL"'BR. As in the diagonal case, the adjoint operation defined by Hp,p, satisfies

®Ref. [1] instead used so-called normalized cylinders Cg, but this is unnecessary since the appendix of [1]
shows that the appropriate norm approaches 1 as 5 — 0.
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Figure 2. For surfaces a € YLdR, v eY, o€ YJng the left panel shows the action of ar on
|t)) € Hrr while the right panel shows the action of ar on |¢p) € Hry, as defined in equation (3.2).
Both surfaces obtained belong to Y.

(ap)t = (a/*\) 1» and similarly for the right algebra. It is also again clear that operators in
ALE commute with those in AIL%R.

The representation A,%R is a faithful representation of the quotient algebra AEL / W%R,
where ‘JT%R = ‘JTELUBR is the null space consisting of elements whose operator representations
annihilate the entire sector Hp, B, We now make the following claim:

Claim 3.1. For any Bg, the null space ‘REL"'BR contains the diagonal null space ‘)TELL'BL :
qBeBr 5 BBy (3.1)

Here, and throughout the rest of this work, we could of course also discuss the cor-
responding properties of algebras that act on the right boundary (which here would give
‘ﬁgLuBR D ‘)”IgRuBR). For simplicity, we will generally refrain from doing so explicitly, though
in all cases such properties clearly follow from analogous arguments.

It is useful to introduce an additional set of bounded operators before we prove claim 3.1.
For any surface a € YLdR, we can define an operator agr : Hrr, — Hpgr via the usual gluing of
surfaces; see figure 2. This is just the analogue of the action of the surface algebra AgL on
Hpr, but where the two boundaries of a are now allowed to be different (so that the set of
such objects no longer forms a natural algebra, and so that ar|¢) lives in a different Hilbert
space sector than the original state |¢)). As usual, the inequality (2.2) implies that ar maps
zero-norm states to zero-norm states and so yields a well-defined operator on the image of
Hrpr in Hrp. The action of the resulting operator is naturally written in the form

ar|¢) = |pa) Vl|b) € Hrr, (3.2)

where ¢a denotes the surface formed by gluing the right boundary of ¢ € YLdL to the left
boundary of a € YLdR. The subscript R on agr denotes the fact that this operator acts on the
right boundary of ¢. We also define the analogous left operator aj, : Hrr — Hp g for which

ar [¢) = lay)  V|¢) € Hrg, (3.3)



Figure 3. For surfaces a,b € Y 5 , we can construct a* and compute ¢r(a*b) and ¢r(ba*). Both are
given by evaluating ¢ on the closed surface shown at right, as is (a|b) This observation yields (3.6).

Now, as described in section 2, surfaces a define states |a) in the dense subspace
Drr C Hrr- It will be useful below to think about defining the operator ag directly from
such |a). To do so, we simply choose an arbitrary representative element a € Hpr of the
equivalence class defined by |a). This a is a finite linear combination of surfaces in Y, to
which we can extend our definition of ar by linearity. We then need only observe that if
two representatives ap,as differ by some zero-norm surface N € Ny, then for any ¢ the
norm of |¢pN) is given by

(ON|N) = (N[} dLIN) < tr(¢*¢)(N|N) =0, (3.4)

where the inequality as usual follows from (2.2). Thus the operators a1,z and ds g are identical
so that ap is fully defined by the choice of the state |a) € Drr C Hig.

For later use, we denote the associated map on Drr by Vg, and we use ¥y, for the
corresponding left operator. In particular, we will use the notation

Vr(la)) == ar, Vi(la)):=ar, (3.5)

where we remind the reader that ag maps Hyy to Hpgr while a; maps Hrr to Hyp.
To discuss the adjoints of dr and dar, we first extend the definition of the * operation
to off-diagonal surfaces:

Definition 1. For any a € YgluB2, we define a* € Yg2u31 to be the source manifold-with-
boundary obtained from a by compler-conjugating all sources, relabeling the left boundary B
of a as the right boundary of a*, and similarly relabeling the right boundary By of a as the
left boundary of a*. As shown in figure 3, this definition then satisfies the relation

(a|b) = ((M(a*b)) = tr(a*b) = tr(ba*) VYa,b € Hp,up,, (3.6)
where the first trace acts on a*b € X%ZUB2 and the second trace acts on ba* € XdBluBl-

The adjoint (ag)" : H g — Hrp of (ag) is associated with a* in the sense that it satisfies

(ar)'|¢) = |6a™) V@) € Hip. (3.7)
The result (3.7) can be verified by writing
(dlva) = tr(¢™pa) = tr(ap™) = tr ((¢a”)") = (pa*|¢)). (3.8)

,10,



ﬂlP = aCﬁlj)ﬁ

Figure 4. For rimmed surfaces ¢ € Y, and a € Y, , we define the action of ar, on [) as |ath). As
shown in the right panel, we can also separate out a cylinder Cg from the left rim of ¢ and rewrite
the surface ay) as aCp1)?, where 18 € Yig.

As usual, we can use the trace inequality (2.1) to show that ag in fact defines a bounded
operator that maps the Hilbert space Hy, to the Hilbert space Hr. In this case we consider
again |¢) € Hpr. After setting b = ¢, the right analogue of (2.2) yields

(plakarle) < (6]¢)(ala). (3.9)

Thus G annihilates null states in Hy;, and defines a bounded operator on the dense subspace
Drr = Hp,/Npr € Hrr. A unique bounded extension to Hpz, then follows.

As a result, the operation g : |a) — ag defines a linear map from Drr C Hrgr to
the space B(Hrr, Hrr) of bounded operators from Hyy to Hyr. We will extend this map
to the entire Hilbert space in section 4.2. In the diagonal context B; = Bp, the map
Up:Hip — flff coincides with the representation of the right surface algebra under the
natural identification of Hp; with AgL.

Returning to claim 3.1, we need to show that any element a of the surface algebra AEL
that is represented by the zero operator on the diagonal Hilbert space Hy, is also represented
by zero on any Hyr. And since our operators are bounded, it in fact suffices to show that the
representation ay, € A%R of a on Hr annihilates every state |¢) in the dense subspace Drg.

Proof. Let us consider a rimmed surface 1) € YgLI_, By, and the corresponding state |¢)) € Dpg.
The rim at the left boundary requires there to be a neighborhood of the left boundary whose
closure coincides with some cylinder Cz for some 3 > 0. As shown in figure 4 we may thus
write the surface ay) as aCBwa for some ¢? € YgLu By~ Lhis observation yields the relations

iz |9) = L |Csv”) = |aCsu”) = U |aCp) = dpaf"|Cs)  VIv) € Dop,  (3.10)
where &fL is the representation of a on the diagonal sector Hyy. Thus d%L = 0 requires

ar, |Y) = 0. Since Dp g is the linear span of i) with ¢ € YélLu B it follows that @, annihilates
Drr. This establishes ‘JT%L - ‘ﬁfp” as claimed above. O
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As a result, every left representation A%R of the surface algebra AEL is also a represen-
tation of the diagonal representation fl%L. This is equivalent to the statement that there
is a surjective *-homomorphism g from A%L to any A%R. It follows that A%R may be
identified with the quotient of A%L by an appropriate kernel, and thus that the diagonal
representation contains all information about all representations A%R. We will show below
that analogous statements continue to hold for the von Neumann algebra completions.

4 Completions and von Neumann algebras

We saw above that, for a given surface algebra ALBL, the diagonal representation A%L acts
as universal ‘covering algebra’ for any representation A%R in the sense that there is a *-
homomorphsim drp from A%L to A%R. Furthermore, as reviewed in section 2, completing
the diagonal representation A%L yields an associated von Neumann algebra AEL.

We will now generalize this construction to define an off-diagonal von Neumann alge-
bra A = AELUBR by completing ALF with respect to the weak operator topology on
B(HB,uBg)- It is thus natural to ask if the results of section 3 extend to such completions.
To make the notation more uniform between the diagonal and off-diagonal contexts, we will
henceforth use the symbol A = AELLIBL for the von Neumann algebra AEL defined using
the weak operator topology on the diagonal Hilbert space Hp, B, -

The goal of this section is to show that this is indeed the case. The subtlety, however,
is that the weak operator topology is defined by the Hilbert space on which the operators
act. Thus, a priori, two completions might be very different even if we begin with isomorphic
representations. It will turn out, however, that our axioms in fact require there to be a
simple relation between AFf and ALE.

As a result, we will be able to extend the surjective *-homomorphism drp: A%L — A%R
to a surjective *-homomorphism @y : A%L — .AfR that is continuous with respect to the
weak operator topology. Note that the extended &y is written without a hat decoration ~ .
Extending o LR Means in particular that, given any a € A%L , we must construct an appropriate
bounded operator ®1r(a) on the Hilbert space Hr. This first step will be accomplished
in section 4.1, which also verifies that the extension defines a *-homomorphism. After an
aside to introduce some useful technology in section 4.2, the desired continuity will then
be established in section 4.3.

4.1 Extending our homomorphism to the von Neumann algebra ALLAL**LL

For each a in the von Neumann algebra A", we will first define the desired ®7x(a) as an
operator on the dense domain Dy r. Any state |¢)) € Drg is a finite linear combination

N

Z C; ‘¢Z> (4.1)
i=1
for states |¢;) defined by rimmed surfaces ); with given right and left boundaries. Since each
such surface will have a neighborhood of its left boundary that coincides (up to closure) with
some cylinder C, for € > 0, by choosing € > 0 sufficiently small we can write 1; = Cc1)5 for
all i; see again figure 4. Defining the state |1¢) = SN, ¢;[tb), we may use the associated
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operator 1,/3% = Wr(|¥)) from Hrr to Hrg given by (3.2). We thus make the following
definition for any a € ALF :

V|¢) € Dor  we define ®pg(a)|¢) == ¢pha|C.) for small enough e. (4.2)

It is manifest that ®;p(a) = ®rr(a) for a € AL, since then ®pp(a)|th) = |ath) and (4.2)
reduces to (3.2). Furthermore, for all ¢ in the von Neumann algebra A’ we will show
below that the definition (4.2) is independent of € for small enough e. It is then also manifest
that ®pr(ab) = ®rr(a)Prr(b) and Prr(aa + fb) = a®rr(a) + fPLr(b) for a,f € C, so
that ®pr is a homomorphism.

We now establish several claims regarding the definition (4.2).

Claim 4.1. The definition (4.2) is independent of € so long as Ce is a cylinder common to

all rimmed surfaces v; appearing in (4.1).

Proof. For a € AEL, this claim follows from the observation that ®;p(a) = ®rr(a). Fur-
thermore, a general a in the von Neumann algebra A%L can be written as the limit of a net
of operators {aq} C A%L that converges to a in the strong operator topology.” As a result,
since Hilbert spaces are metrizable,'? given any two common rims C, and Cj there must be a
sequence {a,} C ALY such that the sequence {a,|Cc)} converges in norm to a|C.) while the
sequence {a,|Cs)} converges in norm to a|Cs). Since @% and LZAJ% are bounded, we similarly
find the limits

Viin|Ce) — 5alCe)
and  Y}in|Cs) — 1}a|Cs). (4.3)

But since a, € AFY we have @Z?jzfzn]CL) = ®pp(an)|Y) = Q,ZAJ%&MC(;) as noted in the opening
sentence of this proof. Thus (4.3) implies ¢%a|C.) = ¥%a|Cs) as claimed.
O

Claim 4.2. For any a € A, our ®pp(a) is a bounded operator on Drr (with operator
norm no larger than the norm ||a|| of a). It thus admits a unique bounded extension to the
entire Hilbert space HiR.

Proof. We begin by computing the norm of (4.2). Since |¢) € Drr, we have
| Lr(a) [) |* = [Pfa |Ce) 2 = (C| alidhalC) . (4.4)

Recall now that 1[15% is a bounded operator from Hyy to Hrr. As a result, 1/3?1&5%
is a bounded operator on Hpz. Furthermore, since [¢) is of the form (4.1), the operator

9For convex sets of bounded operators, the closure taken in the weak operator topology agrees with that
taken in the strong operator topology; see e.g. theorem 5.1.12 in [22]. Here we regard the von Neumann AF”
as the closure of AfL in the strong operator topology, which then requires that we include the limits of all
strongly-convergent nets.

0Here we used an extended sequential property of metrizable spaces. Given two convergent nets in a
metrizable space {|Ya)} — |¥) and {|¥4)} — [¢') with a common index set J, there exist subsequences
{|Ya,)} = [¢) and {|¢,, )} — |¢') with common indices o, € J that converge to the same limit point. We
presume the argument for this result‘ is standard, but reader’s seeking an explict reference can consult the
discussion around (3.42) in [1].
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1&?@% is a finite linear combination of the operators &f; A; r» €ach of which lies in the right
representation AEL of the surface algebra AgL. Thus z@?@@ﬁ% € fl{éf c ALL. so that its
(unique) positive square root \1/3%\ also lies in the von Neumann algebra A%LL. We may then
use the fact that a and a are in the left von Neumann algebra .A%L to conclude that they
commute with any operator in the right von Neumann algebra AﬁL, and in particular with
|77ZA)§3| This observation allows us to write

(Celaldi i |Ce) = (Cul al [0 Pa|Ce) = (Cl [5] ala |5 1)
< Jlal ? (Cel |52 |Ce) = llall? (Cel 55705 1Ce) = llal ? (1 ), (4.5)

where ||a|| is the operator norm of a. Thus ®r(a) is bounded as claimed and, in particular,
its norm can be no larger than the norm of a. O

For each a € A%F, we may now extend the domain of ®7r(a) to all of Hg by continuity
to define ®; as a linear map from A%L to the space B(Hrr) of bounded linear operators
on Hrpr. Since bounded operators are determined by their matrix elements on the dense
subspace Dpg, this extension is again a homomorphism. One can also quickly use (4.2) (and
the fact that a € AXF commutes with @ZAJ;”RLZAJS,R € AEL for any |i1), [¢2) € Drr) to show
that ®p is a *-homomorphism, meaning that ®r(a") = (®1r(a))’. We will also mention
that we will find in section 4.3 that ®1r(a) is continuous with respect to the weak operator
topology. Since we know that ®7p maps AL c AFL onto AL and since the AFR is the
closure of A%R in the weak operator topology, it will then follow that ®;p : A%L — A%R is
a surjective *-homomorphism. This is precisely the analogue of our result from section 3
at the level of the von Neumann algebras AXL ALE,

4.2 Vectors in an off-diagonal sector as intertwining operators

Before proceeding to the proof of continuity in section 4.3, it will be useful to first derive
some additional properties of the map Wg. Recall that section 3 defined Wg as a linear map
from D to B(Hrr, Hrr). The results of section 4.1 will turn out to imply this U to be
continuous in the strong operator topology. In particular, we now establish the following claim:

Claim 4.3. The map Vg : Drg — B(Hrr, Hir) is continuous w.r.t. the norm topology on
Hrr and the strong operator topology on B(Hrr, Hrr). It then follows that Vg admits a
unique continuous extension to the entire Hilbert space.

Proof. Since Dy g is a metric space, the map Vg is continuous if and only if it acts continuously
on preserves all convergent sequences. Consider then an arbitrary sequence of vectors
{|¥n)} C Drr that converges to some [1)) € Hpr. The first step is to show that the
corresponding sequence of operators {fb; r = Yr(|tYn))} is uniformly bounded. In particular,
replacing |a) by |¢) in (3.9) shows that HqZJ;RH is bounded by /(¢¥n[t,). In addition,
since the sequence {|¢n,)} converges in Hrgr, we know the sequence of norms { (¢, |¢n)} is
convergent and must be bounded. The sequence of operator norms {||¢,||} is thus bounded
as well, so that the sequence {@n} is uniformly bounded.

Next, for any |#) € Dy, we will show that the sequence of vectors {¢, 5 |z)} converges
in Hrr. Let us first note that (3.2) implies

Ynple) = |2n) = PLr(EL) [¢n) (4.6)
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where x € Hy, is any representative of the vector |x), and where 27, := W (|z)) € AEL is the
bounded operator associated with the representation of x € AEL on the diagonal sector Hpr .
Since the sequence of vectors |t,) converges to |1), and since ®r(27) is bounded, (4.6)
shows that the sequence of vectors ¥y |#) also converges to &1 (21)[1).

Via a standard calculation, it then follows that, given any Cauchy sequence {|x,)} C Dprg,
the sequence % rlxn) is also Cauchy, and that it thus converges in Hyr (see e.g. theorem 6 in
section 15.2 of [23]). This means that the sequence of operators 1},\1 g converges in the strong
operator topology to an operator 1/33. In particular, for any |¢) € Hppr, the limit yields a
bounded operator @R satisfying

V|e) € Drr, Yrle) = SLr(@L) [4). (4.7)
We may thus define g ([¢))) := p. O
We will now show the extended Ur to satisfy the following extension of (3.2).

Claim 4.4. V|¢)) € Hpgr, the operator Vp = Ur(|Y) : Hop — Hrr is an intertwining
operator between the von Neumann algebras A%L and .AfR. Specifically, we have

Orp(a)dr =dra Vae AL". (4.8)

Proof. Any |¢) € Hrg is the Hilbert space limit of a sequence {[i,)} C DL r- Note that for
any € > 0 we may construct the states |¢,,) := |Cctb,) € DR, and that gbnR = wnR For any
a € AR we may thus write

(I)LR(G/),(L:LR|CE> = q)LR(a)|Cewn> = @Ra’|06>7 (4'9)

where the first equality is the definition of t,, r and the second is a direct application of (4.2).
Recalling that ¢, 5 = g(|¥,)), and that ¥ = x(|¥)), boundedness of ®(a) and the
continuity property of Claim 4.3 allow us to take the limit n — oo to find

Opr(a)Pr|Ce) = ralCe). (4.10)

To show that the above intertwining relation in fact holds when acting on arbitrary states
in 1, we simply consider any x € Y%, and compute

YralkCe) = praip|Ce) = Cpr(aky)dr|Ce)
= ®Lr(a)®Prr r(AL)YR|Ce) A
= Orr(a)YrAL|Ce) = Prr(a)Pr|rCe). (4.11)

Here the last equality on the first line uses (4.10) with the a of (4.10) replaced by afr. We
then pass to the second line using the fact that &g is a homomorphism as shown at the
end of section 4.1. The third line follows by applying (4.10) with the a of (4.10) replaced
by kr. Since the operators qg R, a, ®rr(a) are bounded, and since every state in the dense
subspace Drr C Hrr is of the form |kC,) for some k&, €, the general result (4.8) follows by
taking corresponding limits of (4.11). O
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Before proceeding to the next section, we also wish to establish a further useful property
of the extended map ¥pr. This property is a partial extension of (3.6) associated with the
fact that 1/3}%1&3 lies in ALL. In particular, we will find

tr(Phdn) = (W) V) € Hir. (4.12)
To see this, we will use the following two results:

Claim 4.5. For cylinder operators @L € A%L, the limit limg @LR(@L) converges in the
strong operator topology to the identity 1 € B(HLR).

Proof. Since 6\'5 ;, is the representation of the cylinder Cz on Hpr, we know from section 3
that @, R(@ ;) is just the corresponding representation of Cg on the off-diagonal Hilbert
space Hpgr. Furthermore, from claim (3.9) we have H<I>LR((/Z\'5L)H < ||@Ll\ And since it was
shown in appendix A of [1] that [|Cs|| — 1 as 8 ] 0, the operators @LR(@L) are uniformly
bounded at small 5. We also observe that, since states in Hyr are determined by their inner
products with states in Dpp, for any |z) € Drr the continuity axiom of [1] requires the
vectors @LR(@L) |z) = |Cgx) to converge to |z) in the limit 8 | 0. Together, as in the proof

of claim 4.3, these properties imply that ®;r(Cg, ) converges in the strong operator topology
to 1 as 8 | 0; see e.g. theorem 15.2.6 of [23]. O

Claim 4.6. For any |¢) € Hp,uB,, we have
= lim¢g|C, 4.13
[9) =l drlCs) (1.13)
for Cg the cylinder of length 8 with boundary By U B;.

Proof. Since any such state |)) is fully determined by its inner products with states in Dp,p,,
is clear from the continuity axiom that (4.13) holds for |¢)) € Dp, 1 B,. For more general |¢),
we may consider a sequence of states |¢,) € Dp,up, that converge to |¢). Continuity of Up

and boundedness of each operator (Cp), then gives

—

lim Vr|Cp) = lim Lim (¢n)R|E’_/i
=l fen, B ((C),) o)
=lim @1 ((Cp),) [9) = o), (4.14)

where we pass from the first to the second line using (4.7), and where the final step uses
claim 4.5. O

Equation (4.12) then follows from (4.13) by applying definition (2.3) of the trace on
positive elements of ALL.
4.3 Continuity of &7z in the weak operator topology

The goal of this section is to show that our *-homomorphism @ is continuous with respect
to the weak operator topology (imposed on both B(Hrr) and B(Hrr)). In order to do so,
we first establish the following intermediate claim.
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Claim 4.7. For any |y) € Hrr and any a € AXE, we have

(Y®rr(a)ly) = (verlalve), (4.15)

where we have defined |yrr) = limg,o |Yr||C3) € Hrr and where |yg| is the positive square
root of ’AV;%’AVR'

Proof. Let us first rewrite (y|®rg(a)|y) by inserting the identity operator in the form
limg o ® LR(CA’g ;) established in claim 4.5. As noted in the proof of that claim, if 6\'5 L isa
cylinder operator on Hpr, then ®1r(Cs; ) is the corresponding cylinder operator on Hprg.
We thus have

(v|®Lr(a)|y) (Y@ 1r(a)®Lr(Cs,)|Y) (v|®(a)yr|Cp) (V[AralCg) (4.16)

= lim = lim = lim

B0 B0 £10
where in the second equality we have used equation (4.7) with |¢)) = |7) and |z) = |Cj), and
where the third equality used (4.8) (again with |¢)) = |v)).

We now insert another identity operator and perform similar manipulations to write
Ak 1) = limAk@1r(Cer) 1) = limARAr [Ce) = lim Jr[* |Co) (4.17)
el0 el0 el0

Since tr(|9r|*) = tr(’y}}’m) = (7|y) is finite, Corollary 1 of [1] then shows that the limit of
|9r||Ce) converges as € | 0 to a state |yrr) € Hrr. Thus (4.17) yields

%Tz 1Y) = ARl |ver) (4.18)

and we may evaluate (4.16) by writing
lim (v|yra|Cg) = lim Yrla |Cg) = lim alAr| |Cg) = a , 4.19
lim (v17ralCs) = lim (yic] [gla [Cp) = lim yie| alir] [Cs) = (voclalyre) (4.19)
where the second step follows by noting that |§r| lies in the right von Neumann algebra AﬁL

and so necessarily commutes with a € AX*. Combining (4.19) with (4.16) then completes
the desired proof. O

We have now acquired all of the tools we need to prove continuity of the map ®rr in
the weak operator topology. Recall that convergence in the weak operator topology of the
net of operators {O,} on a Hilbert space H is equivalent to convergence of the associated
nets of matrix elements {(¢1|Oq|¢2)} for all |p1), |p2) € H. In particular, let us consider any
state |y) € Hrr and the associated state |yrr) € Hrr defined as in Claim 4.7. If a net of
operators {an} C AL converges in the weak operator topology to b € AFL| then the net of
expectation values {(yrr|aa|yLL)} clearly converges to (yrr|blyrr). Claim 4.7 then implies
that the net of expectation values {(v|®rr(aq)|7)} also converges to {{(v|Prr(b)|7)}.

Using the standard construction of general matrix elements from expectation values, this
is enough to establish that the net of matrix elements {(¢1|®rr(aq)|P2)} also converges to
(01|PLR(b)|¢2). In particular, given any two states |¢1) ,|¢2), we can define |a) = |¢1) + |p2)
and |) = |¢2) + i|p1) to write (for any operator a)

(p1lalda) = ((alala) +i(BlalB))/2 = (¢1]aldr) — (Palalda) . (4.20)
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Convergence of expectation values of a net of operators thus implies convergence of all matrix
elements. In particular, we see from the above that the net {®rr(as)} converges to ®1r(b)
in the weak operator topology.

We thus see that @ g is continuous in the weak operator topology. This fact can be used
to provide an alternate proof that ®p is a *-homomorphism directly from the corresponding
properties of the map 7 : AL 5 AER . And since the von Neumann algebras AFL, AL are
the weak-operator-topology closures of A,%L, ALR surjectivity of drp: fliL — A%R implies
surjectivity of @y : AR — ALR. As a result, the off-diagonal von Neumann algebra AL%
is isomorphic to the quotient AL/ ker(®rg). This establishes analogues of the results of
section 3 at the level of the corresponding von Neumann algebras.

Furthermore, since distinct sectors Hp are orthogonal, the above observations achieve
our primary goal. In particular, they show agreement between the von Neumann algebra
AL = AEL UBL (defined from the surface algebra AEL by the diagonal sector Hrr, = Hp,uB, )
and the von Neumann algebra defined by using the representation of same surface algebra
AEL on the larger Hilbert space

Hp, := ®ByHB,uBR- (4.21)

Here the sum on the right is over all possible right boundaries Br (including the empty set).
This is the largest Hilbert space defined by the Euclidean path integral on which AfL can
naturally be said to act. In this sense the von Neumann algebra AXF = AELUBL defined
by the diagonal sector Hrr, = Hp,uB, coincides with the von Neumann algebra acting on
By, defined by the full quantum gravity Hilbert space.

5 Off-diagonal central projections

In order to pave the way for a discussion of entropy in section 6, we devote this section to
developing a better understanding of the off-diagonal central alebras and their relations to one
another. We have already seen in section 4.3 that the off-diagonal von Neumann algebras A%R
are quotients AXL/ ker(®r) of the digaonal von Neumann algebra AFL. Section 5.1 will make
this more concrete by developing a better understanding of ker(®7r). Section 5.2 then utilizes
this understanding to show that our structure defines a universal central algebra, independent
of any choice of boundaries, that can be said to contain all centers Zg, 5, C AEIHBQ OA%L'B 2,
This will in turn help to organize our discussion of entropy in section 6.

5.1 Off-diagonal algebras as central projection of diagonal algebras

The weak-operator-topology continuity of @1 established in section 4.3 means that the
inverse image of any weak-operator-topology-closed set is weak-operator-topology closed. This
is in particular true of ker(®pr) = @Z}%(O), since any single point is weak-operator-topology
closed. Furthermore, as usual, the fact that ®;r is a homomorphsism implies that ker(®g)
is a two-sided ideal. We may thus make use of theorem 6.8.8 of e.g. [22], which states that
any weak-operator-topology-closed two-sided ideal in a von Neumann algebra A is of the form
PA = AP for some central projection P € A. We denote the projection corresponding to
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ker(®pr) C AFL by Prer(@1,5), and we also define Pker(‘I) B = =1 — Pier(d, z)> S0 that we have

LR

ker(®1R) = Prer(a, n)AL"  and
ALL J er(®) ~ Pker (@) ALL AﬁLpgr@LR) = AR (5.1)

where the final step used the fact that ®; defines an isomorphism between Pk A%L

er(®LR)
and AfR in order to identify these algebras.

Now, the diagonal von Neumann algebra .A%L admits a central decomposition into a
direct sum which, due to the trace inequality (2.1), is in fact a sum over a discrete set of
type I factors indexed by Zp, (see section 4.2 of [1]). Each factor Af% (for p € Ip,) is
associated with a central projection P, that is minimal within the set of central projections
(in the sense that there is no smaller non-trivial central projection) and which is orthogonal

to p, when v # pu. In particular, we have

Al = @ AfL for Aph = P,ALR. (5.2)

HELR,

Note that, since P, is a minimal central projection, we must have either Plgér(chR)P# =0
or Prer(@, )P = 0 (else one of these would be a smaller central projection). The former
case requires ®pr(P,) = 0, while in the latter case we have Pktr(CIDLR)P# = P, # 0 so that

®r(P,) is a non-trivial minimal central projection in A%, We may thus write

Pker (PLr) @ XL:# (5.3)
HEIR,

where X%Z = 0 when ®yr(P,) = 0 and X%i = 1 when ®pr(P,) # 0. Furthermore, (5.3)
immediately leads to a corresponding decomposition of the algebras (5.1).

As reviewed in section 2, the diagonal Hilbert space decomposes as a corresponding
direct sum

,HBLuBL = @ HﬁL with %ﬁL :PMHLL- (54)
HELR

Furthermore, each HﬁL admits a factorization
LL
H, ’H L ® HEL R (5.5)

such that .AL acts as B(HY ) ® 1, where 17 is the identity on the right factor H]L%LM Since
applying & r to (5.2) is equlvalent to multlplymg by P, ker(<1> 2) the relation (5.3) yields a
corresponding decomposition of the off-diagonal algebra

= P xifoLr(ALL) with ®pp(ALh) = ®Lr(P,)ALR, (5.6)
w€lp,

and also for the off-diagonal Hilbert space

Hin= D xii®Lr(P)HLr. (5.7)

HELR,
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In both (5.6) and (5.7) the factor of X%i is redundant (since e.g. XL @LR(.A L) = ‘PLR(Afi))
but serves to emphasize which terms are non-zero.

We also emphasize that &y is an zsomorphzsm when acting on any factor A that it
does not annihilate. Thus each A = & p(ALL ) is a type I factor and the Hllbert space
HﬁR = ®rp(P, )HLR must again factorlze as HLR HER 0 ® 7—[ ,, for some HER i HLR such
that .ALR = & p(ALL ,,) acts as B(HEY ) ® ]IR Up to the ch01ce of an arbitrary overall phase,
the 1som0rphlsm between A ., and .A then also defines an 1som0rphlsm betwen the left
Hilbert-space factors HEL L and HER Lo We will thus henceforth write HIL Lo = MR L

The algebra B(HIL{;) of bounded operators on the right factor can be similarly associated
with a type-I von Neumann factor given by a central projection of the right diagonal von
Neumann algebra ARR .ABR"'BR To do so, we recall that a corresponding result for diagonal
Hilbert space sectors Hpp was derived in [1] by using the commutation theorem [24] for
Hilbert semi-birigged spaces derived in to show that the left and right von Neumann algebras
are commutants.'’ One may then check that the off-diagonal dense subspace X = Drp
equipped with representations C' = flfR and D = flﬁR also satisfies the four axioms of
Hilbert-semi-birigged spaces from [24], and where the notation X,C, D comes from that
reference. One may also check that the so-called coupling condition from [24] is satisfied.
See appendix A for further details.

As a result, theorem 1.3 of [24] implies that the von Neumann algebras AFf and AL
generated by AX® and AﬁR are commutants on Hyg. This fact has two immediate implications.
The first is that the central projections of A are exactly the central projections of AR
In particular, the minimal central projections of AﬁR must again be ®r(P,), so that the
right algebra admits a decomposition of the form (5.6):

AER _ @ .ALR

B (5.8)
wE€LlpR,

where for X%ﬁ = 1 the corresponding Aﬁi = & r(P,)ALR is a type-I factor.

The second implication is that (again for X%Z = 1) each A%{i must act as ]1{; ® B (”Hé}z)
on the Hilbert space ’HﬁR = ’Hﬁ ® ’H}L?i. We have thus arrived at an off-diagonal analogue
of the structure derived for diagonal sectors in section 4 of [1]. In particular, if we define
Ip,uB; C Ip, as the set on which X%,}Z = 1, we may write

Hir= P H= P HIEoHE (5.9)

KE€IB UBR rE€IB, UBR

Now, as described above, we may use the isomorphism ®;p : A s .A for i€ LB, LBy
to write HEE Lo = HIL ., for such p. But since all of the above dlscussmn of the left von
Neumann algebras A can be repeated analogously for the right von Neumann algebras
AREthere must be another surjective *-homomorphism from ARF — ALE. We will call
this new homomorphism @fR and, for clarity, we will sometimes also write @f p for the
previous left map ®r. Furthermore, for u € Zp,,5,, the right homomorphism @fR must
define an isomorphism between AIL%, and some type-I von Neumann factor AZR Ry in A%R.

"Though there was also a more direct proof in the diagonal case studied in [1].
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We may then also write ”Hﬁi = Hgi, and thus

Hir= P HIEoH = P HLoHEE (5.10)

HGIBLL_IBR MEIBLL_IBR

i.e., the decomposition of the off-diagonal sectors involves the same left and right Hilbert
spaces as the decomposition of the digaonal factors.

5.2 A universal central algebra for B

Our result (5.10) imposes a compatibility constraint on our von Neumann algebras. Since the
left algebra AfluBQ and the right algebra AgluB? associated with two arbitrary boundaries
Bi and By must be commutants, they share a common center Z81952 - Furthermore, we saw
that the center of such an off-diagonal algebra is identified with central projections of the

centers of either diagonal algebra AfluBl, A?u&. We thus have the following relations:
ZBlLJBg ~ PfluB2ZBll‘|Bl ~ PgluBZZB2UB2. (511)

Let us now define a universal Abelian algebra
Z~univ = @ZBHB (512)
B

as the direct sum of all diagonal centers. We may again regard this as a von Neumann algebra
by taking the elements to act on the direct sum Hilbert space (Bp Hpun)-

As it stands, the algebra (5.12) is a purely formal construction whose universality comes
by fiat from our choice to sum over all source-manifolds B. However, the result (5.11) turns
out to define an interesting equivalence relation ~ on elements of Z“"" so that the quotient
Zuniv — Zuniv / ~ provides an algebraic encoding of the above compatibility condition. To
see this, we begin by defining a relation ~ that relates centrally-minimal projections in
different centers:

Definition 2. Consider projections P, € ZB1UB1 | Py ¢ ZB2UB2 that are each minimal in
their respective central algebras. We will write P, ~ Py when there is some boundary B, a
projection P € ZBYB | and non-zero states |¢) € Hp,up, |¥) € Hp,up that satisfy

%, 5(P1)|¢) = D5 p(P)¢) #0 and
05, 5(Po)|Y)) = F, (P)|w) # 0. (5.13)

Here @%”32, (D%;Bl are just ®F, for By, = B and Bg = Bs, By, and we will use analogous
notation below.

This definition is manifestly symmetric, meaning that P, ~ P, is equivalent to P, ~ P;.
It also satisfies the reflexive property P; ~ P;. This may be seen by setting B = By = Bj,
P =P, =P, and |¢) = |¢) = P1|Cp) € Hp,up, for some 3 > 0. Since it was shown in [1]
that P;|Cg) cannot vanish for any central projection P; € ZB1UB1 t6 establish P, ~ P in
this context we need only recall that any such P; can be interpreted as a member of both
AP and AP and that ®f g (Py) = PL = ®F 5 (P).

Showing that ~ is an equivalence relation thus requires only that we establish transitivity,
which means that P, ~ P3 whenever P; ~ P, and P; ~ P3. The conditions P; ~ P, and
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P, ~ P; mean that there are boundaries B, B', projections P € ZBYB p' ¢ zB'UB' 4nd
non-zero states ¢p, g, ¥B,B, ¢B, B, PByp’ (Which respectively lie in Hp,B, Hp,uB, HByuB,
Hp,up) such that we have

% (P)|ép,B) # 0,

(I)g (P)‘¢BzB> 7& 0,

@ng/( Neop,p)#0, and

5, 5 (P)|éB,m) # 0. (5.14)

5, (Pl B
%, 5(P2)|dB,5
% i (P1)|op,
5.5/ (Ps)| 0B,

) =
)
)
> =

Given the existence of |¢pp,p/), we can show P; ~ P3 by demonstrating the existence
of a non-zero |¢p,p') € Hp,up such that

b, 5 (P)|bpy ) = P, 5 (P)|dpymr) # 0. (5.15)

We will build such a |¢p,p/) by noting that the construction of our map ¥p : Hrr —
2P g s, — B(Hpus,, Hpub,)
involving arbitrary Hilbert spaces B, By, Bs. We w111 again use the simplified notation
aR = \I/B 12852 (1)), As with the original Wg, the full \IIB B1=B2 s first defined as a map

from Dp, 1B, to B(Dpup,, DpLp,) where it is defined by sewing surfaces as in the definition of

B(Hpr,Hrr) readily generalizes to define a map Ue

ap in figure 2. As described in appendix B, in the same manner that it was demonstrated for

B B1—)BQ

the original Wg, each agr defined by the more general W is a bounded operator and,

B.B17B2 jtself can be shown to be continuous with respect to the Hilbert

moreover, the map ¥,
space topology on HBlUBQ and the strong operator topology on B(Hpup,, HBuB,). The full
is then given by the unique continuous extension to the full Hilbert space
Hp,uB,- Appendix B also derives two intertwining relations (B.2), (B.5), which we restate

here for the convenience of the reader. The first of these is that for all d € APYP we have
The second is the relation
(") = b, (5.17)

where (as described in appendix B) the operation x has been extended from Dp, 5, to the
entire Hilbert space by continuity.

There is also an analogous left map \I’BQ_)BL : Hp,uB, — B(HpB,uB, Hp,up). Writing,
ar = \IJEQHB“ (la)), this map satisfies
(I)BlB(d) L = &L(I)ggB(d) (5-18)
for all d € ABYB. Tt also satisfies
(a*), :=al. (5.19)

By including the projections <I>B 5(P), <I>B g (P') in their definitions, we can take |¢p,5)
and |¢p,pr) to satisfy

%, 5(P2)|6B,8) = |9B,8) #0, OF p(P)|op,p) =55 #0. (5.20)
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If we now choose any br € Agl By CR € Ag g, the above structures allow us to define a state

165,5) = (@555 OE . (br) (052 5) 8@, p(cr) |65,5). (5.21)

If all of the relevant states and operators above were defined directly by rimmed surfaces
we could write

— ~ — T
68,5) = (65,8 g Phy5, (bR) (¢BI§)R@§23(5R) |¢B,B)
= |¢B,5 ¢ O, b bpp) = (0B,8), Php(eL) (¢5.8) 5,5 (br) |65, 5),  (5.22)

As described in appendix C, this observation generalizes to arbitrary states and operators
as above when written in the form

165,57) = (655) 5 & (br) (65,5) @, s (cn) |65,5)

= Gmp)y, ¥hm(cr) Gmp) @5 (L) 65,5, (5.23)

where ¢y, by, are defined from bg, cr as described in appendix C.
We may now compute

— /\T
D% 5 (P2)|0B,5) = o, (P2) ép,5 g 8,5 (bR)OB, BR P8, 5(CR) |9B,B)

— /\T
= ¢, P8, (br) OB,8R 8,5(cR) O5,5(P2)|¢5,B)
= |¢B,5'), (5.24)

where we pass from the first to the 2nd line using intertwining relations of the form (5.16)
and commutivity of left- and right-acting operators, and where the final step uses (5.20).
We may also similarly write

—— —
%, 5 (P)|op,p) = 5,5/ (P)(6B.8)p ®hp(cL) (68,8), P8, 5 (bL) |65,5)

— @mn)1 ®hp(cr) (0m,5) 0%, o (br) OF, 5 (P)|op, )
= ¢B,5)- (5.25)

This will establish transitivity so long as we also show that we can choose bg, cg such
that |¢pp,p) # 0. We can do so by using the following two results (where the first will act
as a Lemma that will be useful in proving the second.

Claim 5.1. For non-zero |¢), |k) € Hp,uB,, the states QASJILL|¢>> € Hp,up, and Rr|k*) € Hp,uB,
cannot vanish. Here ¢ := \Ilgl’BlﬁBzﬂgb)) and R == 1122’31_}32(|ﬁ>).

Proof. Let us first use (4.13) and boundedness of ¢ (and thus of its adjoint) to rewrite the
first state in the form

Ohl) = lim 6} dr|Cs). (5.26)

The definition (2.3) of the trace ¢r then shows that the norm of our state is ¢r ((QZA)EQ?)R)Q).
But QASJIBL&R is non-zero since deleting dgk from (5.26) and repeating the same argument gives
t'r(gﬂ%qﬁ}g) = (¢|¢) # 0. Since QASEQASR is manifestly self-adjoint, the operator (QEEQA&R)Q is again
non-zero and faithfulness of ¢r as established in [1] means that tr[(qung r)?] # 0. Thus our
state has non-zero norm and cannot vanish. The analogous argument then also shows that
RRr|k*) € Hp,uB, is non-zero. O
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c ADHB

Claim 5.2. Given a centrally-minimal projection Py and non-zero states |¢) €

Hp,uB, and |K) € Hp,uB, that satisfy

©h, 5, (P1)|0) = ¢)  P5, g, (P1)|K) = k), (5.27)

there is some agr in the right von Neumann algebra A?"'Bl for which the state |y) :=
Rl ()

Rragr|®*) € Hp,uB, s non-zero, where as usual kg = Y
Proof. We will also write (?b-*\)R = \Ifgl’BQ_)Bl(W*)) = [\Ilgl’Bl_)Bz(W»r =: QAS; , where the

2nd equality uses (B.5). As in the proof of 5.1 above, the operators /%E/% r and (?b:) R(?b:); =

&E@R on A1L31u31 are both non-zero.
Furthermore, for Pf‘ =1 — P, we may write e.g.,

lim Pi* &} r| Cg) = Py lim k| Cp) = Piahls) = ik (24,5, (PF)] 10 =0, (5.28)

where the first equality uses boundedness of Pi-, the 2nd follows as in the proof of 5.1,
the third uses the intertwining relation (4.8), and the fourth follows from (5.27) since
@gl Bo (Pll) =1- @’él B, (P1). Using the definition (2.3) of the trace tr on positive elements

of the von Neumann algebra AglUBl, the above result requires (H}L{/%R(]l - Pl)/%}%/% R) to have
vanishing trace.
Faithfulness of the trace now requires IQ}L%HR(]l — PR }% = 0. In particular, for all
|7) € Hp,uB, we have
(7|hAr(1 — P)akARl) = 0. (5.29)

But (5.29) is the norm of the state (1 — Pl)/%}r%/%R\’y), so this state must vanish for all v and
we have

Piihivg = AR 5.30

\RpRR = ARRR. (5.30)

Since the same argument holds with k replaced with ¢, we must have

Pidhdn = dhdn, or, cquivalently, Pi(67)p(67)h = (@) p(@ ) n  (5.31)

so that both ’%E’%R and (¢*) ((;5*); in fact lie in the same p-sector ABluBl.

Due to (5.27) and the fact that |¢) # 0, we see that AB}:’Bl is also isomorphic to some
off-diagonal factor .AB 2UB1 , and we may use <I>§2 p, to denote this isomorphism. But let us
also recall that ABl“'B ! is a type I von Neumann factor isomorphic to B(H, | B,.r)- Thus
AB?MUBl is also 1somorphic to B(H's,u5,.r)-

Furthermore, since traces on type-I factors are unique up to multiplication by constants,
up to such constants we can use the identification of Agi';'B ! with B(H', p,.r) to evaluate

ABQLIBl

traces on We can then use the trace on B(”H‘élu B ) to show that there is some

ag € A?';'Bl for which tr((?ﬁ?);aTRf%Ef% RQ R(?z;) ) is non-zero. This is in particular true for
the ar obtained by applying the isomorphism <I>BQB to the operator |¢*)(&| € B(Hg, B, R)
where |%),[¢*) € Hp |5, R are the largest-eigenvalue eigenvectors of AE/% r and (qﬁ*) (qﬁ*) R

But by the same argument used in the proof of claim 5.1, this trace is (y|y) for |v) =
Rrar|¢*) € Hp,up,- Thus |y) is non-zero as claimed. O
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To show that the |¢p,p/) defined in (5.21) is non-zero, we simply apply Claim 5.2 twice.
The first time uses |¢1) = ¢}, 5) and |k1) = [¢, ), while the second uses |rk2) = |¢p, p) and

(62) = BB Cklon,B)- (5.32)

The fact that |¢2) # 0 follows from the first application of Claim 5.2, and the second
application then gives |¢p,p/) # 0

This establishes the desired transitivity of ~ and shows that it defines an equivalence
relation on centrally-minimal projections. We can then extend the relation ~ to more general

elements of ZB1UB1  zB2UB:

. We will write 21 ~ 22 when 21 =), ¢;P1; and 22 = ), ¢; P; for
centrally-minimal projections Pi;, Po; with Py; ~ Ps;. It is then manifest that this extension
is again an equivalence.

We may thus take the quotient of me by the relation ~ to obtain a smaller algebra
Zuniv — ~univ/ ~ . (533)

The algebra (5.33) is universal in the sense that any diagonal or non-diagonal center can
be obtained as a projection of Z,,;,. This property allows us to then identify any center
ZB1UB2 with a subalgebra of Zun,. In particular, this allows us to say that zi, € ZB1HB2
and 234 € ZP3UB1 are ‘the same’ if they map to the same element of Zyip.

6 Traces and entropy

The remaining properties (regarding entropy, hidden sectors, etc.) discussed in section 4
of [1] now follow by essentially the same arguments given there. However, we can use the
universal structure identified in section 5.2 to provide a unified and clean discussion for any
bipartite boundary By LI Bs. We briefly summarize such results below.

Recall that we have a *-homomorphism ®pp/ from Af UB to the bounded operators on
Hpup- Given any normalized state 1)) € Hpp/, we can thus compute the expectation
value (¥|®pp(a)|)) for any a € APYB. This is a positive linear functional on the type-I von
Neumann algebra .Af UB  Furthermore, our functional is normalized in the sense that

(W1@pp (L)|¢) = (P[1]¢) = 1. (6.1)

+
As a result, given any trace tr on the set (AEHB ) of positive elements in Af UB there is

+
a density operator pf[ € (.AEL'B ) with tr(pf[) = 1 such that
A\ 1/2 A\ 1/2
o (o) " a (o)) = Wiens @) (6.2

for all a € (Af uB )+. A brute-force argument for (6.2) can be found in the discussion around
(4.63) in [1] where pl is constructed by tracing out the right Hilbert space factors from
each term in the direct sum that defines Hp. However, we suspect that the mathematical
literature contains a more elegant derivation.

The notation pf[ explicitly indicates the dependence of this operator on the choice of the
trace tr. Three traces on AEHB were discussed in [1]. The first, called simply ¢r, is given
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by (2.3). The second trace, called Tr, was defined by choosing an arbitrary orthonormal
basis {|i, )} for each of the Hilbert spaces Hi'f;B for yu € Zpup and writing

Tr(a) =) (i, plali, p) (6.3)

(7

Jr
for every a € (.AEL'B) .
Now, on a given type-I factor Af iB, any two traces are proportional. In this context
we must thus have

tr=mn,Tr. 6.4
“w

It was shown in [1] that their axioms imply higher generalizations of the trace inequality (2.1)
which require the n, to be positive integers. The third trace Tr from [1] can be defined
by constructing the Hilbert spaces

Hp =P HP oC™, (6.5)
I

choosing an arbitrary orthonormal basis {|7)} of HZ, and then writing

Tr(a) = (| (a®1) i) (6.6)

7

+ —~
for every a € (Aqu”) . Comparing (6.4) with (6.6) then shows that tr = T'r, and thus

that pf[ = pir. Following [1], to simplify the notation we will henceforth denote this density
operator by py. The factors C™ in (6.5) were termed hidden sectors in [1], where their
physical interpretation was discussed in more detail and illustrated with examples.'?

An explicit formula for py can be given by using an appropriate embedding of Hp
in Hp ® Hp'. To do so, simply choose a maximally entangled state |x,) in C™ @ C"
for each p and write

W)= > (@ep(P)Y) @ |xu), (6.7)
pezMP
where Z%g is the set of projections in Z,,;, that are also minmal in Z,,;,. In (6.7), we

have also defined ®p/(P) := ®pp/(P’) when there is some P’ ~ P with P’ € 2898, When
there is no such P’ we set ®gp/(P) := 0. Finally, we also regard u as a function of P defined
by the fact that the above P’ here projects onto some H' 5.

2The structure of (6.5) and the embedding (6.7) of HpLp in Hp ® Hp: define a (sum of) quantum error
correcting codes with two-sided recovery of the type described in [25]. This is not a coincidence, as the
insertion of Hidden sectors can be taken to define the Hilbert space of a more fundamental theory in which
Hpup: is embedded. Some differences, however, are that the QEC structure described in [25] is expected
to hold only approximately and to require some notion of cut-off in the bulk. In contrast, our Hp_p/ is an
exact construction. It is also often noted that the same mathematical structure also appears in discussions of
so-called edge modes (see e.g. [26-28]). However, the physics of edge modes appears to be rather different. In
particular, in contrast to edge modes, our C™* hidden sectors play no role in the factorization of the Hilbert
space. Furthermore, there are interesting examples in which the hidden sectors are trivial.
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The density operator (or density matrix) fj, can then be constructed from [¢)) (1]
by ‘tracing out’ the right factor Hp/ in the above decomposition (using its natural trace
ﬂ) The result p, is a density matrix on Hp whose von Neumann entropy is given by
S(B) := —tr (pylnpy) = ~Tr (py Inpy). On the other hand, the connection of ¢r to our
path integral means that, when |¢) is defined by a finite linear combination of surfaces to
which the Lewkowycz-Maldacena argument [4] can be applied in an appropriate semiclassical
limit, our entropy S(B) in that limit will conicide with that computed by the Ryu-Takayanagi
formula [15, 16]. In this sense we obtain a Hilbert space interpretation of the Ryu-Takayangi
formula for general states having the (d — 2)-dimensional closed source-manifold B as any
part of their boundary.

7 Discussion

The main primary goal of our work above was to generalize the analysis in [1] of UV-
completions of asmptotically locally AdS Euclidean gravitational path integrals to Hilbert
space sectors Hp, B, defined by bipartite boundaries By, LI Bg for general By, Bg. In
analogy with the diagonal case B;, = Bp, the defining path integral provides a notion of
entropy on both By, and Bg. Furthermore, by the Lewkowycz-Maldacena argument [4], if
the path integral admits an appropriate semi-classical limit then the entropy in that limit is
given by the Ryu-Takayanagi formula with small corrections. Our main result is that there
are Hilbert spaces Hp,,Hp, such that Hp, B, can be embedded in Hp, ® Hp, so that
the above entropy on By, can be computed by tracing out Hp, to define a density matrix p
and then calculating —Tr (p Inp) using the trace Tr defined by summing diagonal matrix
elements of operators over an orthonormal basis of Hp,. In this sense we have provided
a Hilbert space interpretation of Ryu-Takayanagi entropy without assuming the existence
of a holographic dual CFT.

At the technical level, we showed that the non-diagonal sectors admit left and right
von Neumann algebras, each of which can be obtained by appying central projections to
the corresponding diagonal von Neumann algebras on Hp, B, and Hp,B,. This property
ultimately followed from our use of rimmed source-manifolds, which can always be well-
approximated by the product of a cylinder (B x [0,1] and/or Br x [0,1]) with another
manifold as illustrated for the source-manifold 4 in figure 4. An immediate implication of the
above result is that both the left and right von Neumann algebras are type-I. We also showed
the left and right von Neumann algebras on any non-diagonal sector to be commutants
on Hp,uBg- Asin [1], we did not need to assume any of the various Hilbert spaces to be
separable, though in realistic models one might expect that to be the case.

Natural directions for further research include providing a corresponding Lorentz-signature
analysis and/or studying the effect of dropping the reality condition from the list of axioms.
Such reality conditions imply that the theory is invariant under time-reversal which, based
on analogy with quantum field theory, one does not expect to hold in general. Since the
arguments both here and in [1] generally involved only the operation * (as opposed to
separately using either the transpose operation ! or the complex-conjugation operator *),
we suspect that it will be straightforward to drop this axiom from the list of requirements.
However, this remains to be checked in detail.
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It is perhaps more important to emphasize that our work focused on bipartitions of the
boundary, meaning that the boundary was written as a disjoint union of precisely two pieces
By, U Bpg. It thus remains to study more complicated partitions of the boundary. In particular,
for boundaries of the form Bj U By U B3, we would not necessarily expect Hp,B,uB; to
embed in a useful way into the tensor product Hp, ® Hp, ® Hp, of our Hilbert spaces Hp,,
HB,, Hp,. It would be very interesting to understand if our definitions of these spaces can
be modified in a way that makes the above property hold. Establishing that this is the
case would bring us one step closer to showing that AdS/CFT-like results hold in a generic
theory of gravity satisfying the axioms of [1].
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A The off-diagonal sector is a Hilbert semi-birigged space that satisfies
the coupling condition

This appendix provides the details associated with the use of theorem 1.3 from [24] for
Hilbert semi-birigged spaces as required for the arguments of section 5. In particular, it
was stated in section 5 that, when equipped with representations C := flfR and D := flﬁR,
the off-diagonal dense subspace X := Dy satisfies the four axioms of Hilbert-semi-birigged
spaces found in [24], and that it also satisfies the so-called coupling condition from that
reference. We explain these properties briefly below.

The axioms introduced in [24] for a Hilbert semi-birigged space require the existence
of two sesquilinear forms on X that we call (,)c and (,)p, and which take values in C
and D as indicated. In our case, we take these to be given by the left and right gluing
of any of their representative surfaces (or linear superpositions thereof) with one surface

involuted according to

er9) =y, (1)) Uy (|y)"  and
b=Tr(y) Vg (). (A1)

(), [v)e = [zy*]L
(Iz),[v)p = [*ylr = §rT

There are then 6 axioms to check:
1. C' and D are faithfully represented on X.
2. (z,y)cz =z(y,z)p for all x,y,z € X.

3. If c € C is of the form (z,y), then so is cl.
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4. The linear span of the objects of the form (z,y). 2 is dense in X.

5. («T,y)c = (y,$)c and (xay)D = (ya x)D for all T,y € X.
6. For any x € X, both (z,z)c and (z,x)p act as non-negative operators on X.

Five of these axioms are essentially trivial to verify. Axiom 1 was established in section 3.
Axioms 2 and 5 follow from short computations using our definitions (A.1). Axioms 3 and
6 are also manifest from (A.1).

This leaves only axiom 4. To verify this remaining axiom, we need only show'? that there
is no state |£) € Hpp that is orthogonal to all states of the form (x,y)cz for z,y,z € Dpg.
To do so, we recall that Drp is dense in Hyg, so such a |{) would require there to be a
sequence {|&,) € Drr} that converges in norm to &. Failure of axiom 4 would in particular
require |£) to be orthogonal to all states of the form (|&,), |&m))c |€k), so that

0 = (€] (&), &m)) e €)= (€T L&) [TL(&m)] [&)  for all n,m, k, (A.2)

where in the last step we have used (A.1) and the analogue of (3.7) for the left map V.
But we can use the weak-operator-topology continuity of the map W (the left version of
Claim 4.3) and of the adjoint map { to take the limits n,m,k — oo (in any order) of the
matrix elements (A.2) and obtain

0 = (€120 [YLIEN I€) = Lim(¢W1(1€)Canp WL (ED]' I€)
= 1 (€| (Co ) VL(1€) (V1€ @Lr(Cap)I€)
= 1 (C| [ (1€D]" (1€)) [ (€D]T . (1€))IC)
= tr({[2L (€] (P2 (EN]F), (A.3)

where the 2nd equality follows by inserting the identity operator in the form limg g C/’Q\g R the
3rd uses the intertwining relation (4.10), the 4th uses (4.7) twice, and the final step then follows
from the definition (2.3) of the trace on positive elements of the von Neumann algebra A%,

Now, as in the proof of Claim (5.1), since 0 # (£]&) = tr ([€2(1€)]WL(¢))), the

operator [U(|E))]]¥1(€)) cannot vanish. And since this operator is self-adjoint, its square
must also be non-zero. Faithfulness of the trace (as derived in [1]) then requires that (A.3)
be non-zero, contradicting (A.3). We thus see that states of the form (z,y)cz are dense in
Drr, and thus that full set of axioms is satisfied.

In order to use theorem 1.3 from [24], we will also need to verify the so-called coupling
condition. This condition states that if m,n € X and z,y € X, and if

(m(z,2z)p,w) = (z,n(y,w)p) for all z,w € X, (A.4)
then for any fixed z,w € X there is a net {c,} of elements of C' such that

cLz — m(x, 2)p,
coqw — n(y,w)p. (A.5)

13This argument was inspired by the related proof of proposition 1.9.2 in [29].
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To see that the coupling condition holds in our context, let us use equation (3.6) to
rewrite the two sides of equation (A.4) in the form:

tr (m(z, 2)p) w) = tr ((x, 2)pm*w) = tr((x*z) m*w)
= tr(z*zm*w) = <z|:%LmTL]w> and
tr(z*n (y,w) ) = tr(z"ny*w) = <z|ﬁngTLlw>. (A.6)

Thus we have
(zlapmyw) = (2lALg]|w) . (A7)

Since equation (A.7) holds for all z,w € Dy, we must have & LmTL =N L@E. In particular,
both sides are elements of C' = A%R. We are therefore free to take {co} to be the constant
(a-independent) net ¢, = & LmTL =N L@E, for which we trivially compute the limits

c:rlz — msz?Ez,

CoW —> ﬁngEw. (A.8)

It is then straightforward to see the result (A.8) agrees with the condition (A.5) by writing

m(x,z)p = 2R§:Lm = |ma*z) = mLi"Ez

n(y, w)p = Wrign = |ny*w) = argiw, (A.9)

where the 3rd expression in each line has been written by choosing representatives of each
object in X%LUBR'

B A generalization of ¥

As described in section 5.2, the construction of our map ¥ : Hpr — B(Hrr, Hir) generalizes
readily to define a map \Ifg’Blﬁ\BZ : Hp,uB, — B(HBuB,, HBuB,) involving arbitrary Hilbert
spaces B, By, Bo. The original map Vg is then the special case of \Ifg’BlﬁBZ for which
B = By = Bp,By = Br. The more general map \Ifg’BlﬁBQ naturally satisfies properties
analogous to those of the original W . The purpose of this appendix is to state those properties
explicitly and to describe the corresponding proofs. Our treatment below will be brief since
we have already provided detailed arguments for W in the main text.
We formalize the main result of this appendix as follows:

Claim B.1. There is a map \I/gBl_>32 : Hp,uB, — B(Hpup,, HBuB,) that is continuous

w.r.t. the norm topology on Hp,up, and the strong operator topology on B(Hpup,, HBuB,)
which, if we define ap := \Pg’BlﬁBQ(|a>), for |a) € Dp,uB, and |b) € Dp,p, satisfies

arlb) = [ba) (B.1)

for any representatives a € Hp,,B,,b € Hpup, of the equivalence classes defined by |a), |b).
The map \115’31%32 is then uniquely defined by (B.1) and the above continuity requirements.
Furthermore, it satisfies the intertwining relation

Ogp,(d)ag = agPhp, (d) (B.2)
for all d € AE'—’B. Here ¢é32,¢f331 are just @%R for Br, = B and Br = B, B;.
There is also a corresponding left-map \I/f2_>Bl’B : Hp,uB, — B(Hp,uB, HB,uB)-
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Proof. The proof of this claim is directly analogous to our arguments for the corresponding
properties of the original g : Hrr — B(Hrr,Hrr). The key point is that, because Up
defines an operator in B(H 1, Hrr) that acts at the right boundary of H ., the left boundary
of this Hrr, plays no role in the arugments and may be replaced with an arbitrary boundary
B. In particular, using footnote 7 (with a replaced by a*) and the corresponding version of
the trace inequality, for all a € Hp,,p,,b € Hp,p, we have

(balba) < (ala)(b|b), (B.3)

so that (B.1) requires that ar = 0 when |a) is a null state and, in addition, for all states
|a) (B.1) implies that ar annihilates all null states in Hpp,. The condition (B.1) is thus well-
defined for |a) € Dp,B, and |b) € Dp,p,. Furthermore, the operator norm of \I’IE’BI%BQ(]@)
is bounded by (a|a) and so admits a unique continuous extension to all |b) € Hpp, -
Continuity in the argument |a) of \Ifg’BlﬁBQ then follows as in the proof of Claim 4.3,
implying uniqueness of the corresponding extension to all |a) € Hp,up,. The intertwining
relation (B.2) can then be derived by noting that for a € Hp,B,,d € Hp g, and ¢ € Hp B,

we have d € APYF and

0L, (d)ar|g) = |dypa) = arPhy, (d)|6). (B.4)

A A

Since ®pp,(d), ®pp, (d), and ar are bounded operators, they are continuous. The left and
right sides of (B.4) must thus in fact agree for all |¢) € Hp,p,. Continuity of the maps
®pp,, PBB,; \]Zlg’Bl_ﬂg2 with respect their arguments then similarly requires the left and right
sides of (B.4) to agree for all a € Hp,B,,d € Hpp. This yields the desired intertwining
relation (B.2). Note that this simple argument was not available when Claim 4.4 was originally

proven in section 4.2 since continuity of ®7z had not yet been established. O

We will also use this appendix to state a small additional observation. Before doing so,
let us first recall the operation * defined on surfaces in any Ylelu B,» Where for a € Yglu By
we have a* € Yggu B,- Note that |a) and |a*) have the same norm. Thus x is an anti-linear
continuous map that extends to all states |a) € Hp,uB,- The output of this map will be
denoted |a*) € Hp,up,- This leads to the following result.

Claim B.2. The maps \Ifg’BlHB2 : Hp,uB, — B(HpuB,, HBuB,) and \I/g’BQHBI : Hp,uB, —
B(HpuB,, HBuB,) intertwine the above anti-linear map * : Hp,uB, — HpB,up, with the
adjoint operation on B(Hpup,,Hpup,). In other words, for |a) € Hp,up, and defining

—

ag = WP (10)), (a%) = OE PP (10%), we have

(a*)p = Gp. (B.5)
Proof. For a € Dp,p, this is just (3.7). Continuity of , \I/g’Bl_}BQ, and \Ifg’BZ_}Bl then
imply the result for all |a). O

C Relating the left and right diagonal von Neumann algebras

Recall that our von Neumann algebras AEL'B , ABYB were defined by completing simpler
algebras AguB , AEHB that were defined by concatenation of surfaces. The identification with
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surfaces then gives a natural map £ from ABYF to ABUYB 1n particular, any ap € ABUB g
defined to act via the right-gluing of some a € Y% 5 in the sense that, for |¢) € Dp_p, we have

ar|¢) = |pa). (C.1)
We may then define £(ag) := ar, where

ar|k) = |ak) (C.2)
for |k) € Dpup. For |¢),|k) € Dpup, we find the relation

(¢p*|ar|k*) = tr(par™) = tr(k*¢a) = (k|ar|P), (C.3)

where we recall that the trace tr is defined on the entire space Y% 5 and not just on the
manifestly positive such elements. We also find the relation

Rragp|d) = |pak) = drag|k). (C.4)

We will use the relation (C.3) to extend L to a map £ defined on all of ABUB - In
particular, for ap € Ag'—’B we define ay, := L(ag) to be the operator in AEL'B whose matrix
elements satisfy

(dlarlrk) = ("|ar|¢") (C.5)

for all |¢),|k) € Hpus.
To see that aj, is a bounded operator on Hp B, let us introduce an orthonormal basis
|i) and write

lar|k) Z! ilag|k)
= Z K" |agli*))|

(2
= larls*)* < llarl|*(s]s). (C.6)
Furthermore to see that a, € APYB| let us write ag as the weak—operator topology limit
of a net {( aa)R} c ABYB. We then simply note that for (aa) =L ((aa)R), the net

{(aa)L} C ABYB converges in the weak operator topology to ar.
We now wish to show the following:

Claim C.1. For any boundary B, any ar € AB"B, and any states |¢), |k) € Hpup the
operator ar, := L(ag) satisfies

krap|o) = |par) = drar|x). (C.7)

Proof. To see this, we again consider a net {(aa) } C ABuB that converges to agr in the
weak operator topology and the associated net {(aa) 1} C AB'—’B that converges to ar,. Using
relation (C.4) for each « and taking the inner product with a fixed state |y) € Hpup gives

(11~ r(aa) pl#) = (161 (a) plr). (C8)
Taking limits then gives

(V|krar|e) = (yldar) = drar|r) (C.9)
for all |y), which is equivalent to (C.7). O
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