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ABSTRACT: Spacetime wormholes can provide non-perturbative contributions to the gravita-
tional path integral that make the actual number of states e in a gravitational system much
smaller than the number of states e predicted by perturbative semiclassical effective field
theory. The effects on the physics of the system are naturally profound in contexts in which
the perturbative description actively involves N = O(e) of the possible e perturbative
states; e.g., in late stages of black hole evaporation. Such contexts are typically associated
with the existence of non-trivial quantum extremal surfaces. However, by forcing a simple
topological gravity model to evolve in time, we find that such effects can also have large
impact for N < e’ (in which case no quantum extremal surfaces can arise). In particular,
even for small N, the insertion of generic operators into the path integral can cause the
non-perturbative time evolution to differ dramatically from perturbative expectations. On
the other hand, this discrepancy is small for the special case where the inserted operators are
non-trivial only in a subspace of dimension D < e°. We thus study this latter case in detail.
We also discuss potential implications for more realistic gravitational systems.
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1 Introduction

Perturbative descriptions of quantum gravity are well-known to allow an arbitrarily large
number of states inside a black hole with given area A. For example, a large collection of
states is readily formed by starting with a black hole of very large area and then letting
the black hole decay until it has area A. The tension between this fact and the finite
Bekenstein-Hawking entropy forms the core of the so-called black hole information problem.

Recent work on gravitational path integrals and quantum extremal surfaces shows in
a rather concrete way how this divergent perturbative result is transformed into a density
of states that is finite at the non-perturbative level [1-4], and which is in particular given
by the generalized entropy Sgen of an appropriate quantum extremal surface [5]. Important
components are the inclusion of spacetime wormholes and the choice of a baby-universe
superselection sector [6].

At least in simple contexts and with the use of these ingredients, the resulting non-
perturbative path integral can be said to define a new inner product on the space of
perturbative states. In particular, certain would-be perturbative states turn out to have



Topological gravity system

- 1— iHAt
with EOW branes

1—iHAt

1— iHAt

Figure 1. While the original dynamics of the topological model is trivial, we can force the system to
evolve in time by inserting a large number of operators (1 — iHAt) with small At.

vanishing norm with respect to the full non-perturbative inner product [3, 6]. After taking
the quotient of the perturbative Hilbert space by such null states, one finds the desired
finite density of states; see also [7, 8].

This scenario provides an elegant solution to the state-counting issue. However, it is
clearly of interest to understand any further implications for gravitational physics as well.
Below, we use the 2d topological model of [6] (with end-of-the-world [EOW] branes) to study
path integrals that compute time evolution in the presence of repeated boundary sources; see
figure 1 above. It will be convenient to use the language of Euclidean path integrals, so that
a real-time evolution is then generated by the insertion of complex sources. An immediate
benefit of this approach will be to show that, in contrast with the concerns expressed in
e.g. section 7.3 of [9], there is no tension between the presence of null states and unitary
evolution. However, for general such sources, we will nevertheless find the non-perturbative
results to differ markedly from perturbative expectations, even in contexts where we study
only a small number of initial and final states.

This initial result then motivates us to further investigate a special class of boundary
sources for which we expect non-perturbative contributions to be small. Namely, we consider
operators of rank D on the perturbative Hilbert space with D < d, where d is the dimension
of the non-perturbative Hilbert space. In such cases we find close agreement between
the perturbative and non-perturbative path integrals, even when these integrals describe
evolution over long times ¢ of order d* with a < % Furthermore, in this case, we also
find there to be a map 7 from the perturbative Hilbert space H, to the non-perturbative
Hilbert space Hnp that is approximately equivariant with respect to time evolution. In other
words, if our path integral defines the perturbative time evolution operator e~ ** and the
non-perturbative time evolution operator e_th, then acting on generic states |1) in H,
to good approximation we have

eyl ~ e Hty). (1.1)

Here and below we will use the term ‘generic states’ to mean states chosen without knowledge
of the baby-universe superselection sector. Statements about generic states will hold with high
probability in the limit where the dimension d of the non-perturbative Hilbert space is large.

We begin with a brief review in section 2 of the topological gravity model introduced
in [6]. Section 3 then discusses the perturbative and non-perturbative Hilbert spaces #,,



and H,, as well as the natural map 7 from H, to H,p. The large discrepancies between
perturbative and non-perturbative time evolutions for general sources are studied in section 4,
while the long-time agreement for repeated sources of small rank is derived in section 5.
We close with further discussion in section 6 emphasizing possible implications for more
realistic models of gravity.

2 The Euclidean gravitational path integral and our topological model

The Euclidean gravitational path integral computes correlation functions of observables by
integrating over a set of fields ® that satisfy given boundary conditions. Such fields are
generally taken to include a spacetime metric. For asymptotically Anti-de Sitter (AdS)
gravitational theories, the gravitational path integral is usually interpreted as computing
partition functions Z[J] for each boundary condition J defined by an asymptotically lo-
cally AdS (AlAdS) boundary. In the context of AdS/CFT, the quantity Z[J] is dual to a
corresponding CFT partition function.

We will denote bulk fields ® satisfying the boundary condition J by writing ® ~ J. For
boundary conditions on a disconnected boundary manifold with n connected components,
and with boundary condition J; on the ith component, we use the following notation for
the Euclidean gravitational path integral:

(Z[L]- Z[J)) = Dde 5P, (2.1)

b~ J
Note that the description on the right-hand-side depends only on the union of the asymptotic
boundaries and is thus manifestly independent of the numbering assigned to the various
connected components of the boundary. As a result, such correlation functions are invariant

under permuting the boundary conditions J;; e.g.,
(ZN]Z[ ] Z[J]) = (Z L] Z[Js] Z[Ja]) = (Z [Js] Z[J] Z[N1]) , ete. (2.2)

A feature of the gravitational path integral is that it generally does not factorize over
disconnected boundaries:

(Z[N]Z]Ja]) # (Z[1])(Z]J2]). (2.3)

The difference between the two sides arises from the contributions of bulk spacetime wormholes
that connect otherwise-separate asymptotic boundaries. This feature is inconsistent with
expectations from AdS/CFT since CFT partition functions factorize on any disconnected
manifold. However, it is expected that gravitational path integrals that fail to factorize can
be instead interpreted as describing averages over a non-trivial ensemble of dual boundary
theories; see e.g. [10, 11].

When the above ensemble structure arises, it can be seen directly in the bulk description.
There it is related to the existence of baby universes [12, 13]. Such baby universes are
necessarily a part of any bulk theory in which the Euclidean gravitational path integral sums
over topologies. The baby universe states then span a subspace Hpy of the full quantum
gravity Hilbert space, where states in Hgy can be obtained by slicing open gravitational
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Figure 2. A particular contribution to the path integral that computes (Z[J1]Z[J5]|Z[J1]Z[J2])-

path integrals on slices that do not intersect any asymptotic boundaries. Our description
of the above connections will follow [6], which emphasizes a basis of baby universe states
that may be labeled

| Z[ L] Z[J2] - - Z[Jn]), (2.4)

where Ji,...,J, again represent a set of closed asymptotic boundaries on which given
boundary conditions are satisfied. There is in particular a ‘no-boundary Hartle-Hawking
state’ |HH) associated with choosing n = 0. The inner product between two such states
is then defined to be

(ZIRMZTa) - ZIT | ZI W 2] - - Z1Jn)) = (217121057 -+ Z1 T, 1 Z[ W 21 T2 - - Z[ ),
(2.5)
where * denotes an appropriate anti-linear CPT-conjugation operation on the space of
boundary conditions; see e.g. figure 2. One thinks of these boundaries as lying in the
asymptotic Euclidean past or future so that space has no boundary at any finite time. We
will assume the above inner product to satisfy reflection positivity:

N
| ®[? := (¥|T) > 0 for all |¥) = ch- \Z [Jia]* Z [Jim,]) - (2.6)
=1

The invariance of correlation functions with respect to permutations of the J; (described
under (2.1)) then implies the states (2.4) to be similarly invariant under such permutations
of their Z[J;] labels; e.g. |Z[1]Z[J2]) = |Z]J2]Z[]1]).

A state of the form (2.4) can also be thought of as the result of acting with operators
Z/[J\i] on the no-boundary Hartle-Hawking state |HH). In fact, we may define the Z/[\JZ]
by the relations:

—  ——

\Z[ )2 Ja] - Z[Ja]) = Z 1) Z(Ts) - -~ Z]J,] |HH). (2.7)

—

Since changing the order of operators does not alter the state, all of the Z[J] operators
commute with each other when acting on the dense domain spanned by states of the form (2.4).

—

Furthermore, since (2.5) implies that the adjoints satisfy Z [J]T = Z/[J\*] on the given states,

—

. f .
these operators also commute with all of the Z[J] operators when acting on such states.



As a result, if we assume that such results extend to a larger common domain on which

all Z/[TT] + Z/[TT]T satisfy the mathematical requirements to be fully self-adjoint (or anti self-

adjoint) [14],! then the Z[J] can all be diagonalized simultaneously. The simultaneous
eigenvectors of all such operators are called a-states:

Z[J)a) = Za[J)|a). (2.8)

By inserting complete sets of a states, we find an ensemble structure:

(ZIn)--Z ) = > (HHlao) (a0 |Z[A]|ar) - (an-1 |2 ]| an ) (@l HED)
:?’ZPOCZ& [J1] -+ Za [Jn] 2

where 3 = (HH|HH) is the norm of the Hartle-Hawking state, and p, = % is the

probability to measure the state |HH) to be in the state |a). We also see that correlation
functions factorize in « states. For example, when the a-states are normalizable we have

(a|Z101Z1R]| o) = (a|Z17]| o) (o |Z (]| 0) = Za (1] Za [2). (210)

We emphasize that a more standard AdS/CFT scenario, in which the bulk path integral
respects factorization, can also be described in the above language. In that case, one simply
finds that there is only one a-sector, so that the ensemble becomes trivial. The interesting
consequence is then that there can be only one state in the baby universe Hilbert space Hpy-
Assuming that it is not a null state, the Hartle-Hawking no-boundary state |[HH) is then
non-perturbatively equivalent to the unique a-state.

Other sectors of the quantum gravity Hilbert space can be generated by cutting open
the gravitational path integral along slices that intersect asymptotic boundaries on some non-
trivial codimension-2 surface X. The full quantum gravity Hilbert space can be decomposed
into sectors labelled by geometry (and perhaps other sources) on such X so that we may write

Haa = D Hs, (2.11)
b

where ¥ = () corresponds to Hpy. A general Hilbert space Hy; also admits a decomposition
into different « sectors,

Hy = PHS. (2.12)

In particular, the set defined by the labels « is the same for all ¥; see [6] for details.

!The reader should be aware that the mathematics literature contains examples where such extensions fail
spectacularly; see e.g. [14] for an example where symmetric operators that commute on a common invariant
dense domain are essentially self-adjoint — so that they have a unique self-adjoint extension to the full Hilbert
space — but where their self-adjoint extensions nevertheless fail to commute. However, it is far from clear
that such failures occur in interesting models of gravitational physics.



2.1 The topological model

We now review the two-dimensional topological gravity model introduced in [6] with &k flavors
of end-of-the-world-branes (EOW branes). This gives a concrete and solvable model that
demonstrates the features mentioned above. The action for the model is given by

S(M) = =50 x(M) — Sgn(M), (2.13)

where the action is evaluated on a compact two-dimensional surface M with Euler character-
istic x(M) =2 —2g(M) —n(M) where g(M) is the genus of M and n(M) is the number of
circular boundaries (including both those that are determined by the boundary conditions
J; and those that arise dynamically from summing over loops of end-of-the-world branes).
The theory allows two independent parameters, Sy and Sy, but only certain choices satisfy
reflection positivity.? For simplicity, we will use the choice Sy = Sy below.

Because we consider a model with EOW branes, the surfaces M over which we will
sum are allowed to have additional so-called dynamical boundaries, which are boundaries
described entirely by EOW branes not specified by the asymptotic boundary conditions. Such
dynamical boundaries must be labeled by some flavor I of the EOW branes. Circular (S!)
dynamical boundaries of the same flavor are considered indistinguishable.

The path integral for the model sums over all diffeomorphism classes of two-dimensional
oriented surfaces that satisfy given boundary conditions:

Do 5= N p(M)e M, (2.14)
o J Surfaces M~J

where u(M) =

— L if M has m, connected components of genus g that have only
Hgmglnlzln[! 9

dynamical boundaries, and if M has n; dynamical boundaries associated with EOW-brane
flavor I. The factor n; accounts for residual gauge symmetries under the diffeomorphism-
invariance described in [6]. Note that all boundaries specified by asymptotic boundary
conditions are treated as distinguishable. In other words, we do not quotient by diffeomor-
phisms that relate disconnected components of such boundaries.

Another result of including EOW branes is that there are two kinds of connected
asymptotic boundary conditions, which are associated with the following two kinds of
operators on Hpy:

e Z, which creates a (unoriented) circular non-dynamical boundary. In the notation

—

introduced earlier we might have written J = O and called this operator Z[O].

. (m), which creates an oriented interval of non-dynamical boundary running from a
label I to a label J. One may think of such boundaries as describing the creation of an
EOW brane with flavor I at the initial endpoint, and then describing the annihilation
of a brane with flavor J at the final endpoint. Surfaces M in the sum (2.14) are
allowed only if each initial label I is connected to a final label of the same flavor I by a

2The possible choices are 2% € N due to the observation of [6] that the line segment defines a projection
with trace €279 in one of the a-sectors and the observation of [15] that positive-definiteness of the inner
product requires traces of projections to take values in NU {+o0}.
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Figure 3. The labelled boundary interval (¢r,% ) (left) and the disk contribution to ((¢r,v 7))
(right).

dynamical boundary segment. In the notation introduced earlier we might have written

—

J =1 — K and called this operator Z[I — K| := (zm]); see figure 3.

Correlation functions of these operators can be computed from the gravitational path integral;
see [6] for details. As described earlier, all of these operators commute, and they also commute
with their adjoints. We may thus simultaneously diagonalize them. Their simultaneous
eigenstates are the a-states.

After summing over all contributions, one finds that the Hartle-Hawking no-boundary
state |HH) gives a Poisson distribution for the eigenvalues of Z:

M

o (2.15)

3N = S dpa(N), pald) = e
d=0

where d € N, and 3 = (1) = e* for A\ = 16275250 is the contribution from summing over all

vacuum bubbles. For d < k, we will find beelow that this Poisson distribution can also be
interpreted as an ensemble over d-dimensional Hilbert spaces for the one-boundary sector
with probabilities py.

Similar computations show that, within the sector where Z = d, the probabilities of
the various eigenvalues (v7,%r1)4.a of (m) are given by a Wishart distribution. This

means that we have?

SHN

d
(W1, 1) ga = 5 D V5L, (2.16)
a=1
where the 9 are independent random variables selected from a complex normal (Gaussian)
ensemble with unit variance, and where the symbol & denotes the collection of ¢ for all
I,a. Some properties of Wishart distributions are given in appendix A.

A specific a-state is defined by choosing a particular instance (d, &) of both the Poisson
and Wishart distributions. Below, we will simply choose some fixed value of d by hand and
then randomly draw the remaining variables & from the corresponding Wishart distribution.

3Note that our normalization differs from that of [6], by an overall factor 1/d.



3 One-boundary Hilbert spaces and time evolution

The discussion in section 2 focussed on the baby universe Hilbert space Hgy in order to
discuss a-sectors in their simplest context. However, our main interest in the current work
will concern the space of one-boundary states; i.e., the space Hy = @, H$ for the case
where the codimension-2 boundary X is a single point. We will use the notation H§; for the
superselection sector of the one-boundary Hilbert space labelled by «. This Hilbert space and
its perturbative analogue will be described in section 3.1. Section 3.2 clarifies the relation
between the perturbative and non-perturbative Hilbert spaces and introduces notation to
keep this manifest. Formalism for inserting operators into path integrals of the topological
model (and thus inducing time evolution) will be described in section 3.3. This will set the
stage for the analysis of such time evolutions in sections 4 and 5.

3.1 The non-perturbative and perturbative Hilbert spaces

An a-sector H§, of the one-boundary Hilbert space is defined by considering all possible
boundary conditions J that can be cut into two pieces by using a cut of the form ¥ = ¥,
so that the cut consists only of a single point. It is clear that any such boundary condition
must contain an (oriented) interval J = I — K for some I, K, which is then cut by the
choice of a point ¥; into the pieces 1y := I — and 9}, :=— K. The 1; define a basis for a
linear space V that we may call the space of allowed ‘Euclidean past’ boundary conditions.
Similarly, the 17 define a basis for a linear space V* that we may call the space of allowed
‘Euclidean future’ boundary conditions. We also define an anti-linear map * : V— V™ such
that (¢1)* := 47, and a corresponding map * : V* — V such that (¢7)* := 1.

The eigenvalues (¢, 17), then define a Hermitian inner product on V. Since this inner
product was derived taking into account non-perturbative contributions associated with
the sum-over-topologies, we will call it the non-perturbative inner product on V. Below,
we will use |I) to denote the state ¢y € V, and we will write the non-perturbative inner
product of such states in the form

[ )np = (Y1, %7)q - (3.1)

Taking the quotient of V' by null vectors then yields the Hilbert space H$; . Note that
this Hilbert space is automatically complete since V' has finite dimension k. It is easy to
see from (2.16) that, with probability one, the right-hand-side of (2.16) has rank min(k, d).
It is thus clear that min(k,d) is the dimension of HS .

In particular, equation (2.15) defines an ensemble of such Hilbert spaces Hs,, with different
dimensions d. Below, we will imagine that we have already selected a value of a = (d, @)
from this ensemble. We will then refer to the associated H§;, as the non-perturbative
Hilbert space Hnpp.

The goal of our study below will be to compare the results of non-perturbative com-
putations with those that would be obtained using a simpler perturbative description that
does not include sums-over-topologies. Such perturbative computations cannot depend on
«, as the a-parameters were already a result of non-perturbative effects from spacetime
wormbholes. We thus define the perturbative computation to be performed by taking the baby



universes to be in the no-boundary state |HH). With this understanding, we also take the
perturbative results to be defined by using only the topology that would give the leading
contribution at large Sy. In particular, there is a perturbative Hermitian inner product
(I|J)p defined on V which we take to be given by? e=2% times the disk path integral with
asymptotic boundary condition (¢7,1 ). In particular, we define a conveniently normalized
version D of the disk amplitude by the relations

D[Z) =1, and D[(¢r,¥)] =e 2 ((¢r,91))aisk = 615 = (I|)p; (3.2)

see again figure 3. Since this inner product is non-degenerate, it promotes the original linear
space of Euclidean past boundary conditions V' to a (perturbative) Hilbert space H,.

More generally, when the boundary condition has n connected components we similarly
define D to be e~2™% times the leading (n-disk) contribution to the associated path integral.
With this definition, D factorizes over disconnected boundaries; e.g.

D[(¢r,¥0) (W, ¥L)] = D[(¥r, )] D[(¥k, ¥r)] - (3.3)

For each fixed value of «, the non-perturbative inner product defines a self-adjoint
operator M of rank min(k,d) on the perturbative Hilbert space with

(IIM|T)p = ([ T)np = (b1, 97) 0 - (3-4)

In particular, although our notation does not indicate this explicitly, we emphasize that M is
a different operator for each value of . Using an overline to denote the average over the
Wishart ensemble (2.16) with a given fixed value of d, we find

(I|M]J)p =614 (3.5)

As a result, the perturbative and non-perturbative inner products coincide on average, though
they may be very different in particular elements of the ensemble. In particular, we know that
the rank of M is min(k, d) while the rank of the perturbative inner product is k. Nevertheless,
since the Wishart distribution is Gaussian, it is clear from (2.16) that fluctuations in given
matrix elements (/|M|J), will be small whenever d is large.

3.2 Formalism and notation

Recall that the non-perturbative Hilbert space Hyp, is defined by taking the quotient of V'
with respect to the space of states of vanishing physical norm; i.e., H,p, = V/Ker M. Since
the perturbative inner product was non-degenerate, we may write H, = V. Calling the
above quotient map 7, we may write

n: Hp - ana |7> = |5/>a (36)

where |¥) is the equivalence class in V/Ker M of the state |y) € V. We may alternatively
think of 7 as an isomorphism from the quotient H,/Ker M to Hyy.

—25So

“Including this factor of e gives a convenient overall normalization, though the results would be

equivalent if one chose not to include this factor.



Note that since the eigenvalues of M are determined by the Wishart distribution, the
map 7 is generally not an isometry even when acting on states in H, orthogonal to Ker M.
However, it will also be useful to isometrically embed the non-perturbative Hilbert space
into Hp,. In order to do so, let us recall that, since M is Hermitian and positive semidefinite,
there is a well-defined positive square root that we may denote by X : H, — H,. As a
result, if we define a map Y : H,, — Hp by

) = X1), (3.7)

then Y is an isometry. In particular, the perturbative inner product of Y|3) and Y|f3) is
(y|YTY|8)p = (7| XTX|B),, which agrees with (5|8)np by (3.4). Here and below, it will often
be useful for clarity to decorate some X’s with daggers (T) even though X is self-adjoint
(so that XT = X).

It will be useful to note that, as for any isometry, we have the relations YTY = 1, and
YYT = Py, where Py is the projection onto the range of Y. In particular, we have PrX = X.
We also comment that it is natural to think of T as defined by the ¢ of the Wishart
distribution in the sense that there is another (not orthonormal, possibly overcomplete) basis
|a) of Hyp such that Y|a) = > ;¥¢|I). Below, we will often use the isometry YT to identify
a state |@) in the quotient V/Ker M with X|a) € XV C V. Here XV is the range of the
linear operator X acting on the linear space V.

Let us now make two further brief observations. The first is that X = T on. The second
is that if, for every element of our ensemble, X were of the form N P for a random projection
P and some fixed normalization constant A, then for k& > d the condition (3.5) and the fact
that X has rank min(k, d) would imply N = /k/d. We will show in appendix A.3 that X
is indeed well-approximated by an operator of this form in the limit k& > d.

3.3 Operator insertions and time evolution

The above inner products are computed by path integrals with a single boundary (¢, ).
We will be interested in path integrals that describe the further insertion of operators at
that boundary. Recall, however, that the allowed boundary conditions in the model are just
unions of the circles (Z’s) and labelled intervals (i1, 7). Suppose then that we wish to insert
the perturbative operator |K) ,(L|, where the notation ,,(L| indicates that this dual-state
acts on vectors in V in the manner defined by the perturbative inner product.® We will
then consider boundaries that contain two labelled intervals, (¢7,% ) and (¢r,1) which
yields (3.3); see figure 4. Of course, a general operator O on H,, can be written in the form

0 => OkrlK) (Ll (3.8)

K,L

In fact, for any Hilbert space Hext, we can write a general operator on H, ® Hext in this
form by taking the coefficients Ok 1, to be operators on Heyxs. Let us now introduce the

5We now see that it would have been better to denote the perturbative inner product of |I),|J) € V with a
left-subscript ((I|J)) rather than a right-subscript ((I|J)p), though we will continue to use the right-subscript
as this notation will be more familiar to many readers.

,10,
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Figure 4. The two labelled intervals (¢7, %) and (11, 1;) (left) that result from the insertion of the
operator |K) ,(L| into (¢1,%k), and the disk contribution to the path integral with this boundary
condition (right).

symbol (, to denote the full non-perturbative path integral in a given baby universe a-state.
Applying (, to the above boundary condition gives

Co | D Or. (b, ¥x) (W, ) | = D Ok (I K)np (L] )mp

K,L K,L

=Y Ok L{I|M|K), (L|M|.J),
K,L

= (1XT (xOXT) X[J), = (I|TF (XOXT) 1|} (3.9)
In the last equality we have used the definition (3.7) and the immediate consequence

(I1X|)p = (JIX|I); = (J|TI)}
= (YWD, = (T T )up, (3.10)

where |YI) := YT|I) € XV and |YT.J) := YT|J) € V/Ker M. The result (3.9) suggests that
we should associate any operator O on H, with a gravitationally dressed operator O on
the non-perturbative Hilbert space of the form

O="IXO0XTT. (3.11)

Indeed, if we write down a corresponding path integral that, at the disk level, would compute
the correlator (I|010s...0y|J)p, then at the non-perturbative level we instead find the
result (110103 . ..0p|J)np. Henceforth, it will be convenient to use Y to identify Hy, with
its isometric embedding in M, as previously advertised. In doing so, we will write (3.11)
in the simpler form

O =X0Xx". (3.12)

— 11 —
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Figure 5. Boundary insertions can be used to couple our topological model to an external non-
gravitational ‘bath’ system.

In the case where the O j, are operators on some external Hilbert space Hexs, it would be

more explicit to write (3.12) in the form

0= (X ® ]lext) O (XT b2y ﬂext) 3 (313)

where Ty is the identity on Hext.

Although the original topological model has no evolution (i.e., its Hamiltonian H
vanishes identically), we can now use this formalism to introduce and study an arbitrary
notion of time-evolution for this model. In particular, let us consider a one-parameter family
of operators H(t) on the perturbative one-boundary Hilbert space H,,. Let us then choose
times ¢,, for all n € Z such that ¢, — foo as n — £oo and use the representation (3.8)
to define boundary conditions corresponding to the insertion of the sequence of operators
1 —i(tp — tn—1)H(ty). In the limit where we increase the density of times ¢, such that
tn — tn—1 — 0 for all n, the corresponding (rescaled) disk path integral D computes matrix
elements of the path-ordered-exponential operator P exp(— [iH (t)dt). It thus implements the
time evolution associated with H(t). As noted above, this can also include the introduction
of interactions between our topological model and an external system Hext; see figure 5.

As in figure 4, each insertion of an operator of the form (3.8) increases the number of
connected components of the boundary by one. Since each component computes an inner
product, and since the non-perturbative inner product inserts an X (or XT) next to each
bra or ket, we see immediately that the non-perturbative path integral with such insertions
describes evolution under the gravitationally dressed Hamiltonian

H(t)=XH(t)X'. (3.14)

Furthermore, it is clear from (3.14) that the dressed Hamiltonian is self-adjoint, so that time
evolution on the non-perturbative Hilbert space is unitary. In contrast, a less careful analysis
might instead lead one to believe that one could use interactions with Hey to evolve our
gravitating system from a non-trivial state to a null state (which would be a clear violation
of unitarity). Indeed, one can easily write down scenarios where the perturbative evolution
under P exp(— [¢H(t)dt) would transform our system from a non-trivial state |¢)) (for which
n]) # 0) into a null state annihilated by 1. However, we also see that non-perturbative
corrections will then necessarily modify the dynamics such that the gravitationally dressed
evolution Pexp(— [iH (t)dt) remains unitary. We will discuss this issue again in section 6.
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4 Large discrepancies for generic insertions

Having introduced both our general formalism and the specific toy model, we now turn
to the question of how the perturbative and non-perturbative time-evolutions compare for
path integrals of the form described in section 3.3; see again figure 5. In performing such
analysis we will often compute averaged quantities in order to derive results applicable to
typical « sectors, but the reader should keep in mind that the dynamics we define will act
within each «a sector separately.

We consider the case d < k so that the dimensions of H,, and H,, differ, and we will be
most interested in the case d < k. We may take the initial and final states to be described by
the same boundary condition so that we study only expectation values. This is not actually
a restriction since matrix elements of an operator between states |¢1) and |¢2) can always
be expressed as linear combinations of expectation values of the operator in states of the
form c;|¢1) + ca|p2). For simplicity, we will also take H(t) to be independent of time. We
thus wish to choose [¢)) € H,, with [¢) := 7|)) € Hyp and to compare

(Wle™ ), (4.1)

with i
(Dle™ MYy = (] XTe XX Xy (4.2)

We will shortly find that, even for short times ¢ of order \/d/k for d < k, the evolu-
tions (4.1) and (4.2) are starkly different for general choices of H and [¢). One way to see
this is to compute averages of traces of powers of H over the Wishart ensemble (again, for a
fixed choice of d). Note that, if we choose an orthonormal basis |I) of Hyy, for I =1,...,d,
then each state |I) must be of the form n|I) for some |I) € V, and our isometric embedding
T (3.7) then tells us that the trace of any operator O on Hyp, can be written in the form

Trop O = > (I|O|D)np = > _(I|XTTOYTX|I),, (4.3)
I I

where we recall that YYT = Py (where Py is the projection onto the range of Y, which is

also the range of X) and that YTY = 1,p, so that Y1 is the left-inverse of Y. In particular,

for O = " = [YIXHXTY)* = TIXHX]"Y, so that the result (4.3) gives

Trpp(H™) = Ed: NXTXHXT"X|T), = Trp((XHX") = Tr,([MH]"), (4.4)

where Try, denotes the trace on the non-perturbative Hilbert space Hnp, and Trp, is the trace
on the perturbative Hilbert space H,,. The second equality in (4.4) follows from the fact that,
since |I)yp is an orthonormal basis and Y is an isometry, the states T|I) = X|I) form an
orthonormal basis for the orthogonal complement of the kernel of X.

Recall also that the Wishart ensemble is built from Gaussian variables. As a result, so long
as one can write the desired expression in terms of M rather than just X, ensemble expectation
values are straightforward to compute by performing appropriate Wick contractions; see
appendix A. In particular, using (3.5) immediately yields

Trpp H = Trp, H. (4.5)
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The result (4.5) is already interesting since H has k eigenvalues while H has only d eigenvalues.
As a result, typical eigenvalues of H must be larger than those of H by a factor of k /d.

The result (4.5) leaves open the possibility that the discrepancy might just be an
overall additive shift in the eigenvalues, which would then give only an overall phase in
the time evolution. However, this possibility is easily ruled out by considering the operator
A:=H-— clyp with ¢ = éTrp H, so that m = 0. Using cyclicity of the trace together
with (A.10) and (A.11) yields

Trop(A%) = Try, (XHXTXHXT —2cXHXT + 2Py) = Try(H?). (4.6)

Again, the trace on the left hand side of (4.6) is performed over a space of dimension d,
while the trace on the right is over a space of dimension k. As a result, if there is a meaning
to discussing typical eigenvalues of A, they must have absolute values that are roughly /k/d
times the absolute values of typical eigenvalues of H. Since \/k/d is large and H= clyp + A,
even if we ignore the overall phase the evolution generated by H will still be more rapid than
that generated by the perturbative Hamiltonian H. (However, when Tr, H is dominated by
its positive eigenvalues it is also true that H is close to a multiple of the identity in the sense
that c¢ is large compared with the magnitudes of the typical eigenvalues of A.

We have also computed the next two moments of A. Performing the relevant Wick
contractions yields

Trap(A?) = Trp(H?), (4.7)

and
Trop(AT) = <clz + d52> Trp(H*) + (Z + dg) (Trp(H2)>2. (4.8)

These results are again consistent with typical eigenvalues of A having absolute values that
are roughly \/k/d times the absolute values of typical eigenvalues of H. The result (4.7) also
suggests that, at leading order in k/d, the eigenvalues of A are distributed evenly on both
sides of zero, but that there is a subleading asymmetry dictated by traces of odd powers of H.

Given that the d x d matrix H is constructed from the k x k matrix H by the random
compression H = XHXT, such large discrepancies should not be a surprise. Indeed, since
the ensemble average over H is invariant under all unitary transformations on Hp, and since
we expect fluctuations to be small for k > d, it is natural to expect that H is proportional
to the identity at leading order in k/d, and that the remaining part of H given by A should
consist largely of random junk that has little to do with the detailed dynamics of H (though
the distribution of eigenvalues will be influenced by the corresponding distribution for H).
Indeed, if instead the eigenvalues of A? became sharply peaked in the limit of large d and
large k/d, then the coefficient of the (Trp(H 2))2 term on the right-hand-side of (4.8) would
approach 1/d at large d. The fact that it instead approaches 2/d thus supports the idea
that the eigenvalues of A are rather random.

Further support for this picture is provided by considering simple special cases with small
d. For example, if d = 1, then X picks out a single random vector in H,, to represent the
one non-trivial eigenstate of H,;,. Since the direction of this vector is chosen uniformly, up
to fluctuations that are small at large &k it must consist of roughly equal components along
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Figure 6. Comparison of two perturbative time evolutions (4.1) (blue solid and dashed lines) with
the corresponding non-perturbative time evolutions (4.2) (gold solid and dashed lines) for a fixed
random draw from the Wishart ensemble with £k = D = 2000 and d = 100 for a randomly chosen
state |¢) € Hp. The perturbative Hamiltonian H; was chosen to have a uniformly spaced spectrum
with eigenvalues between E, = 1 and Ep.x = 2. In contrast, Hy is proportional to identity but was
normalized to have the same trace as H;. While the details of such plots depend on the random draw
from the ensemble, the qualitative features shown above are typical.

each eigenvector of H. Thus X HXT is proportional to Py with a coefficient proportional to
Try,(H). Similarly, for d = 2, the Wishart distribution will build X from a pair of random
states. Such states are nearly orthogonal at large k, and both will again have roughly equal
components along each eigenvector of H. So both eigenvalues of H will be roughly equal and
will differ only by random fluctuations. This will then continue to be the case for all d < k.

As final confirmation of this picture, figure 6 shows numerical results comparing two
perturbative time evolutions (4.1) (blue solid and dashed lines) with the corresponding
non-perturbative time evolutions (4.2) (gold solid and dashed lines) for a fixed random draw
from the Wishart ensemble® with k = D = 2000 (where D is the rank of H) and d = 100
for a randomly chosen state |¢)) € H,. The perturbative Hamiltonian H; was chosen to
have a uniformly spaced spectrum with eigenvalues between Fi, = 1 and FEpax = 2. In
contrast, Hs is proportional to the identity but was normalized to have the same trace as
H,. While the associated perturbative evolutions are very different, the initial parts of the
corresponding non-perturbative time evolutions in figure 6 are nearly identical. We interpret
this as being due to the fact that (4.6) implies typical eigenvalues of A for Hy and Hs to
be related by a factor of \/Trp(Hf)/Trp(Hg) ~ 1.018; i.e., they differ only at the 2% level.
The higher moments will be closely related as well.

Choosing special states |¢) instead of random states does not appear to improve the
situation. In particular, if |Eyax) is the eigenstate of H; with highest eigenvalue, taking
either |¢) = |Emax) or |) = X|FEnax) yields plots that look qualitatively similar to those
already shown in figure 6.

5The built-in Mathematica function WishartMatrixDistribution is defined only for d > k. In contrast, we are
interested in the £ > d case. The matrices used to generate our numerical results were thus built using the
Mathematical function NormalDistribution and equation (A.3).
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5 Long-time agreement for small-rank insertions

Having illustrated the stark difference between perturbative and non-perturbative time
evolutions for generic H in section 4, it is natural to ask whether there is better agreement for
certain choices of H. One context where this is to be expected occurs when the rank D of H is
small but the dimension d of H,,, is large. At a heuristic level, this follows from the fact that,
for a collection of orthonormal states |I) € H,, (with I =1,...,D), when D < d, with high
probability one finds the corresponding non-perturbative states \1: ) :=n|I) to be approximately
orthonormal. As a result, if H = Y0_ Aa|pa)(pal, then each X|¢4) is an approximate
eigenvector of X HX T with eigenvalue A4. This means that the dynamics generated by H on
the subspace spanned by the |¢4) will approximate that generated by H on the subspace
spanned by the images n|¢4). Furthermore, since d > D, a state |¢ ) annihilated by H, and
thus orthogonal to all |¢4), will have n|¢ ) approximately orthogonal to all n|¢4) and will
thus be approximately annihilated by H. Thus the perturbative and non-perturbative path
integrals should generate the same dynamics. The rest of this section will make the above
argument precise and will establish quantitative estimates of the associated errors.

We will also choose to make a stronger comparison between the perturbative and non-
perturbative time evolutions than in the above sections. Rather than merely comparing
matrix elements of the time evolution operators between corresponding pairs of states,
we will now directly compare the final states obtained after time-evolving an initial state.
Specifically, after choosing a state |¢)) € H,, we will compare the non-perturbative states
emtn]1/1> and ne'flt|yh). Since for typical states |¢1),|¢2) the perturbative inner product
(¢1|¢2)p is (with high probability) a good approximation to the non-perturbative inner
product of n|¢1) and n|¢p2), close agreement between eimmw and ne't|v) will imply (again,
with high probability) close agreement between (4.1) and (4.2). It is in this sense that
the comparison below will constitute a more stringent test of agreement than that used in
section 4 above. We also mention that ne’?|y)) is the quantity that appears when we can
approximate the full set of non-perturbative effects as the insertion of a ‘black hole final
state’ (postselection) condition [16]. It is thus clear that this approximation will also fail
drastically in the large-rank context that was studied above in section 4.

Below, it will often be useful to directly discuss the corresponding operator

Ei(t) :=ne tHt = YT x e (5.1)
which enacts perturbative evolution followed by the action of n, as well as
Es(t) := e_igtn = TTe_iXHXTtX, (5.2)

which describes non-perturbative evolution following the action of 7. In writing (5.1) and (5.2)
we have used the relation TTX = 5 which follows from the identities YTY = 1, and X = Y.

Note that E;(t) and E3(t) are both maps from H,, to Hyp. As above, we will generally
use the isometry T to identify H,, with its image YH,, and we will thus omit the factors
of YT from E; and Ey. We will also introduce a notion of ‘generic’ states in ‘Hp,, meaning
that such states are chosen without knowledge of the particular matrix M = XX drawn
from the Wishart distribution. We will see below that for D < d, even for long times ¢ of
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order d* with a < §, with high probability the operators i (t), E2(t) will agree well when
the eigenvalues of H are well-separated and when these operators act on generic states.

5.1 Eigenvalues and eigenvectors

In order to compare (5.1) and (5.2), it will be useful to first develop some understanding
of at least approximate eigenvalues and eigenvectors for the non-perturbative Hamiltonian
H = XHXT.

Recall from (3.5) that the ensemble average of the physical inner product is

(IIXTX|J) = d1,. (5.3)
We can also use (A.10) to find

- 1
|<I’XTX‘J>|2:MIJM]*J:(sIJ"i‘g, (5.4)
where I,.J are not summed. The variance of any given matrix element (I|XTX|J) is thus
1/d for all I,.J.

Denoting the nontrivial eigenvalues of H by A4 and the corresponding orthonormal
eigenvectors by |¢p4) with A = 1,--- D, we may write the perturbative Hamiltonian H

in the form

D
H=3 Mloa)(dal (5.5)

A=1

We will assume that we can write (5.5) in a form that is independent of d and then study the
limit d — oco. For the moment, we also assume the eigenvalues to be non-degenerate. We will
consider the degenerate case separately in section 5.3. The non-perturbative Hamiltonian
is correspondingly written

D
H=XHX" =Y AaX|pa) p(dalXT, (5.6)
A=1

where the notation (¢ 4| again indicates the linear functional on V' = #,, that acts on any
|Y) to give the perturbative inner product (¢a|v)p.

For D < d, the D states X|¢4) will be linearly independent with probability one (though
they will not generally be orthogonal). This occurs because the states |¢4) are linearly
independent, so that fine-tuning is required for the action of the map X to render them
linearly dependent. Thus X H X' has rank D with probability 1. However, only in the D < d
limit will the states X|¢4) become approximately orthonormal. In particular, let us consider
applying the Gram-Schmidt orthonormalization procedure to the states X|¢4). So long as
|pa), |PpB) are generic states, from (A.6) and (A.10) we know that

(palXTX|¢B) = 548 + €as, (5.7)

where
€EAB = ‘EAB‘eiaAB, (5.8)
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leap| = O(1/4/d), and for A # B the above 0,5 is a random phase.” As a result, the
Dth vector generated by the Gram-Schmidt procedure will differ from X|¢p) by D — 1
approximately orthogonal terms of order \/1/d, so that the magnitude of the difference from
X|¢p) is of order \/g . Thus for D < d the states {X|¢p4)} are orthonormal with probability
1. In this limit (holding fixed the non-trivial eigenvalues A4), we see from (5.6) that the
eigenstates of H become precisely {X|¢4)} with eigenvalues 4.

We can also expand H = X HX in terms of its own nontrivial eigenvectors |®4) and the
corresponding eigenvalues A4. Note that while |®4) must be n|®4) for some state [®4) € V,
this |®4) will generally not be an eigenvector of the perturbative Hamiltonian H. This is
the reason that eigenvectors of H should not be called \(;NS A)-

As argued above, H = X HX' has rank D with probability 1, so we again take A =
1,---,D and write

XHXT=71AHY = S\ATMTT

(@A|DAYnp

n®a) p(Paln’
(PAIXTX|DA)p

>

s T1e

AY ol (5.9)

b
l

X|®a) p(@alXT
(PalXTX|DA)p

A

I
Mo

T

1

where in the last step we have used X = Y o7 and thus ' o TT = XT. The notation ,(® ]
again indicates the linear functional on V' = H,, that acts on any |¢) to give the perturbative
inner product (®4|¢),. Note that we allow arbitrary normalizations for the |®4) because
we would like to approximate Y|®4) by X|¢4) = Tn|pa). We also define Py to be the
projection operator onto the kernel of H.

We now explore the details of how A4, |®4) approach A, X|¢4) as d — co. In order to
do so, it is useful to note that while states in the kernel of H are orthogonal to those in the
range of H, this will no longer be true of the images obtained by acting on the above states
with the operator X. In particular, for an arbitrary normalized state |¢o), if the projection
map to the kernel of H is Py, we find (4| XX Py|¢o)p = O(1/Vd).

To avoid writing out this matrix element repeatedly below, we define the symbol €4 :=

(pa| XTX Py|po)p = O(1/V/d). Furthermore, from (A.6) and (A.10) we have

2
AR X Bl =0, and (AKX RGP = L0l (549)

As we will see, the small parameters e4p and €4 will control the discrepancy between the
action of Fi(t) and Fs(t) on a generic state. We will compute this discrepancy to leading
order in these parameters.

"However, Hermiticity of XX requires eas € R and thus 844 = 0 or 44 = 7. More generally, hermiticity
of XX requires eap = € 4.
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We begin by studying the rate at which each non-perturbative eigenvalue {5\ A} converges
to {Aa}. In particular, we use (3.14), (5.5), and (5.7) to write

HX|¢pp) = XHX'X|¢p) = 3 AaX[6a) (04| X X|05)p = ApX|05) + O (\/5) - (5.11)
A

To see that the error term is of order 1/%, one may calculate the norm of the difference
between the left side and the explicit term on the right. This yields

Ty (H?) | N+ (Try H)?
d d? ’
Since Try,(H?), Trp(H) = O(D), it follows that the norm squared is of order %, hence the
error term in (5.11).
While this result already shows Ay — A4 and X|pa) — |<i>A) as d/D — oo, the error
terms can be characterized more explicitly by introducing the quantities

I

H(ﬁX ~AsX) |65) (5.12)

5/\,455\,4—)\,4 and |AA>E‘&)A>—X’¢A>. (5.13)

The normalization of |®4) will be chosen to set (Aa|X|pa)p, = 0. We then have dAq =

O(1/Vd),|A4) = O(,/B), where the notation [A4) = O(,/2) means [|AA)l, = O(,/2);
ie., (Aa|lAa)p = O(D/d). Thus we find

A|®Pa) = H|®) = XHXT|D )

_ ;)\BX|¢B> (0B XT(X|pa) +A4)) (5.14)

= MaX|6a) + > ApX|¢p)epa + > ApX|65) (0 XT|A4)p,
B B

where in the last step we have again used equation (5.7). At the same time, we have
Aal®a) = (Aa+024)(X[da) +[A4)) = AaX|pa) +0AaX|0.4) +AalA4) +O(VD/d). (5.15)
Putting these together yields

SAAX|Pa) + AalAa) =D ApX|dp)epa+ > ApX|65) (95X |AA), + O(D/d). (5.16)
B B

Taking the inner product with X|¢4) and keeping only first-order corrections we obtain
dAA = Aaean + O(D/d). (5.17)

In computing the above error term, we have noted that the range of X HX' is spanned
by the states X|¢pp) so that, since we defined |A4) to be orthogonal to X|¢a), |Aa) is
in fact a superposition of the D — 1 states X|¢p) for B # A. We have then made the
natural assumption that the orders of each matrix element (¢p|XT|A4), in both d and D
are independent of B, and thus that they are of order (D°/v/d). This assumption will be
justified below. We also used the following relation

> XAl XTX|¢p)epa = Aacaa + Y Apleas/?, (5.18)
B B

,19,



which follows from (5.7). If we now insert (5.17) into equation (5.16), take the inner product
with X|¢p), and keep only first-order corrections we find

AB

(AalX[oB)p = VDTS

eap(l —dap) + O(D/d), (5.19)

whence (5.16) yields
A
Ax) = Y ﬁeBAquszHO(D?’/?/d). (5.20)
B:B£A A B

In particular, the leading term in (5.19) is sufficient to justify the above assumption stated
below (5.17). This establishes the error bound stated in (5.17) and thus also in (5.20).
To leading order in the small parameters e4p and €4 we then obtain

- A
(@1 X[6m)0 = (ploal X1+ o{8a)X[6m) = ba + ean + 52 ean(l — bam) + O(D/d).
(5.21)
Similarly, for any fixed state |¢p), we have
(Aa| X Po|go)p = O(D*?/d). (5.22)

We can also use the above results to extract leading order corrections for the projection
Py onto the kernel of H. In particular, we find

B Py ZX\@A (4| X
0 (I)A‘(I)A>np

=Py— ZX[ —eaa)|pa) p(dal+ Z (eal¢B) p(dal+eanlda) p(dnl)| XT

BB;éA
D3/2
+0< . ) (5.23)

In contrast, the projection onto the kernel of H is Py = 1, — > 4 [¢a) p(dal.

5.2 Evolutions of a generic state

With the above results in hand, we can now compare the actions of E(t), Ea(t) on a generic
state |¢). We remind the reader that we use the term ‘generic’ to refer to states that are
selected independently of the random variables in the Wishart distribution. Since we assumed
the form of (5.5) to be fixed (in the sense that it is independent of d), we have effectively
required D to be of order one as d — co. We will thus cease to keep track of factors of
D in the error terms below.

Let us write our state in the form

D
¢) = Polo) + D calda). (5.24)

A=1

Perturbative evolution followed by acting with X thus yields

Ey(t)|¢) = Xe ¢) = X Po|g) + > cae 4 X[pa). (5.25)

A
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On the other hand, acting with X and then evolving non-perturbatively gives

fiS\AtX‘(I)A> p(‘I’A|XT

Ex(t)|¢) = e M1 X|g) = PyX|g) + > e A0 X|o)
I (DA[PA)np
) s X|® ) (@] X Caar X[®4) p(@4|XT
— P X iAat ~ p~ XP iAat < I?. X
0 |¢)+ZA:€ (DA ®a)ur o|¢>+AZB: cpe (D Al®A)no |¢B)
X|®4) p(PalXT < )
= XPF, X — — = X | P
0\¢>+ZCA |pa) ; BaBoatns 0|¢>+§CB!¢B>
—{—ZX‘(I)A @A|X 71'5\,425 <XPO|¢>+ZCBX|¢B>> )
(I)A‘(I)A>np B
(5.26)

We can now use the results of section 5.1 to further evaluate the final line of (5.26). This yields

> e-i”(anr¢A> +eall = ean)XI6a) + 3 eancnX|oa)
B

+ B%;AA )\B [CAGBAX’¢B> + CBEABX|¢A>D +0 <(11)

A - - 1
= Z ( _Z’\At (ca+ea)+ Z 637)\14 A)\BGAB(e_”\At - e_l)‘Bt)) X|pa)+ O (d> .

B:B£A
(5.27)
We can then similarly expand the other terms in (5.26). For example, using (5.23) we find

X|D4) p(Pa|XT

(D 4| A)np
1
= X[ (1 ea)6) pl0al + Y 22 (enalon) p(0al + eanloa)n(onl)| X140 (3)
BEaA M~ >‘B d
#A
(5.28)
From this, it follows that
X[®a4) p<<I>A|XJr 1
Al p XPy|¢) = eaX|pa) + O (> 5.29a
BRI = eaXloa) +0 (5.290)
and
X|® Dyl XT A
[4) p{24l X|pc) =0acX]da) + (1 — dac)eac~———X|da)
(PalPA)np A — Ao
. (5.29b)
+ ) )\ GBA5ACX|¢B> +0 <d) :
B:B#A
Substituting these results into (5.26) we obtain
(E2(t) — Ex(t Z 6aX|pa), (5.30)

A=1
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Figure 7. The discrepancy (5.35) for a small-rank Hamiltonian (k = 2d,d = 10°,v/d = 1000, D = 4)
with eigenvalues \; = 0.5, Ao = 1.5, A\3 = 2.5, \y = 3.5 and a random non-perturbative inner product
drawn from the Wishart distribution (2.16). Results are shown for the second perturbative eigenstate
|¢2) (lower curve in blue), the third perturbative eigenstate |¢3) (upper curve in red), and the linear
combination % (|p2) + |¢p3)) of these eigenstates (middle curve in purple). As emphasized in the

right panel, the discrepancy is small for t < v/d, but it becomes of order 1 when t ~ v/d as shown on
the left. There are O(1) variations between random draws from the Wishart enesmble, though the
qualitative form shown is common to many such draws.

where

< . < A < <
04 =cq (e_z’\At — e_Z)‘At> + (6_“\‘“ — 1) €a+ Z cBiAeAB(e_MAt — e_”\Bt). (5.31)
B:B A= AB
:B£A
From (5.17) we have Aq — Ay = O(1/Vd), so that the first term in (5.31) may be
rewritten in the form
< 5 - t
—idat _ Z()\A—)\A)t — _ — _
cae (1 e ) cA0 (t[)\A )\A]) cA0 (\/E) . (5.32)
Thus for t < v/d this term remains very small.

The second term in (5.31) is a bounded function of time with amplitude of order ﬁ.
However, the third term is more complicated. It clearly becomes large for Ay — Ap small,
so let us assume these differences to be O(1). The term then involves a sum over a set of
bounded functions of time with coefficients of order cp/ V/d. The functions of time are small
when ¢ is small, after which they will generically contribute random phases. Thus we see

/ 2
that this sum will again be of order % < 1/+/d so that we find

64 = O(1/Vd) 4+ cAO(t/Vd) for t< O(Vd). (5.33)
As a result, for any generic state |¢) we find
(Bx(t) — Ei(t)|¢) = O(y/1/d) + O(t/Vd) for t< O(Wd). (5.34)

A numerical example is shown in figure 7. For this purpose we define a real-valued
measure of the discrepancy between Fi(t) and Es(t) acting on the given state |¢) :

I(E1(t) — Ex(0))|9)]|

XI5 (5.35)

discrepancy =
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Figure 8. For each d, 10000 random draws from the Wishart ensemble for k = 2d were used to
(G| XTXHXTXHXTX[go) (<<252|X*XHX*X|¢2>>2 for the D — 4

Var(H, X|¢2))

compute the quantity var(H, X ¢9) := (521 XTX192) B2 XTXT92)

Hamiltonian with A\; = 0.5, Ao = 1.5, A3 = 2.5, \4 = 3.5. For each draw, this quantity encodes the
variance (squared uncertainty) of X HX in the state X|¢3). Since X|¢2) becomes an eigenstate at
large d, var(H, X ¢2) should tend to 0 with probability one as d — oo (with an error of order 1/d). In
the left panel, the data is shown in black dots, which indeed asymptotes to 0 as d — co. In the right
panel, the red and blue dots show the average value and standard deviation of the data in the left
panel for each d. The red and blue solid lines are the best fit of the data for d > 512 to a curve of the
form A-d=B. We find B ~ 1.000 and B ~ 0.998 for the average and standard deviation, respectively.
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Figure 9. For each value of d shown, the 10,000 random draws from the Wishart ensemble from

i t
figure 8 are used to compute % for the same H as in figure 8. In the left panel, the

data is shown in black dots and the dotted red line indicates the eigenvalue Ay = 1.5 of H to which
the black dots should converge at large d. In the right panel, the red and blue dots show the average
value and standard deviation of the absolute value of the residuals from the left panel for each d. The
red and blue solid lines are the best fit of the data for d > 512 to a curve of the form A -d—B. We
find B ~ 0.503 for the average and B ~ 0.507 for the standard deviation,.

We also include figures 8 and 9 which show numerical studies of the convergence of the
eigenvectors of X HXT to X|¢4) and the associated eigenvalues to A4. The results support
the claims that |A4) and 6\ are of order 1/v/d.

In fact, the discrepancy is even smaller than that described above when |¢) is a randomly
chosen state in H, as then Y5 _; ea|> = O (%) However, in that case the improvement is
due to the fact that, because H was chosen to be of small rank, most of the state simply does
not evolve at all under either Fy or Es. Such states may thus be of less interest.
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As described in section 3.3, our formalism also allows us to discuss perturbative Hamil-
tonians H that couple our topological gravity model to a non-gravitational ‘bath’ system
with Hilbert space Hext. We can apply the above analysis directly to this case when
there is a D-dimensional subspace Haynamical C Hp such that H acts nontrivially only on
Hdynamical @ Hext C Hup ® Hext. For D < d the perturbative and non-perturbative evolutions
will again agree for t < v/d. But when the smallest such D is instead comparable to d,
the evolutions will generally show marked differences even for short times — at least in
randomly-chosen initial states.®

5.3 Degeneracies and approximate degeneracies

While the denominators in (5.31) diverge when two eigenvalues of H coincide, such exact
degeneracies are not in fact hard to handle. As usual in degenerate perturbation theory,
given an n-fold degenerate eigenspace of H we may simply choose the orthonormal basis
|d1), |d2), - .. |dn) in such a way that each associated |A4) (A € {1,...,n}) is orthogonal to
all X|¢p) with B € {1,...,n} and not just for B = A. This choice removes all divergent
denominators from (5.31) so that the analysis of section 5.2 continues to apply.

The case where eigenvalue differences A4 — Ap within each band become small as d — oo
is difficult to analyze in general. This case also seems rather artificial as the perturbative
Hamiltonian by definition knows nothing about the non-perturbative corrections that set
the dimension of Hy, to d.

However, we mention briefly that we can in fact address the case where H has bands of
eigenvalues within each of which the eigenvalue differences A4 — Ap become small as d — oo
but where distinct bands remain separated by O(1) gaps. In this case we can we write H
as the sum of an exactly-degenerate Hamiltonian H, (whose eigenvalues label the above
bands) and a term V' that lifts the degeneracies but leaves the splittings small. If we assume
the small splittings to be of order 1/ V/d, then V is also of order 1 / Vd. As a result, up to
times ¢ < V/d, Hy gives a good approximation to the evolution given by H. Furthermore,
the corresponding non-perturbative Hamiltonians Hy = X HyXT and H = X HXT will also
generate nearly-identical time evolutions for times ¢ < v/d. And since we have just seen that
the analysis of section 5.2 can be applied to Hy and Hy, it follows that the perturbative and
non-perturbative evolutions E1, Es defined by H also agree well for times t = O(d?®) for a < %

5.4 Finely-tuned states with large discrepancies

An important caveat in the above analysis is that the high probability of long-time agreement
between Fj(t) and Es(t) derived in section 5.2 holds only for what we called generic states.
These were defined to be states chosen independently of the a-sector drawn from the Wishart
distribution; i.e., the state was chosen without knowledge of the random variable X. However,
as we now show, there is also a D-dimensional X-dependent subspace of H}, on which the two
operators differ significantly. This subspace is just the image of M or, equivalently, the image
of X. Indeed, let us consider the space spanned by the X|¢4), where |¢4) again represent

8In cases where there is a subspace Hsman C Hext such that H preserves the space Heg := Hp @ Hsmall,
and where the restriction of H to Hen gives a Hamiltonian with a smaller value of D, the discrepancy can be
reduced by choosing the initial state to lie in Hes-

— 24 —



the eigenvectors of H with non-vanishing eigenvalues. It was already argued in section 5.1
that X|¢4) is an approximate eigenvector of H with eigenvalue A4 ~ A4. Furthermore, in

the limit % — 00, appendix A.3 shows that X satisfies XTX = X2 = \/EX , which then yields

Eb(t)X|pa) ~ \/EG_MMXWA% (5.36)

In contrast, let us consider the perturbative evolution e **. Since X is a uniformly-
chosen random projection, X|¢4) will have only a tiny correlation with |¢4) in the limit
k > d. In particular, in that limit X|¢4) will have amplitude 1 to be orthogonal to |¢p4).

And since k > d > D it will also have amplitude 1 to lie in ker H. Thus,

Ei(t)X|pa) = \/§X¢A>~ (5.37)

The two evolutions thus differ by a large phase. Of course, a global phase is of no physical
relevance. However, different X|¢4) clearly lead to different phases, so physical differences
between F; and Fs become large for superpositions of these states.

We thus conclude that Es(t) — Eq(t) is not small on the subspace spanned by the X|¢4).
A certain caution is thus needed in distinguishing results that hold with high probability
for states chosen independently of X from those that hold for all possible states. We have
included a numerical example in figure 10. We may also read this result backwards to say
that, for any state [¢), there are a-sectors in which (E4(t) — Ea(t))[y) is large, namely
those for which we have

X|¢1)
(1| XTX|ap1)

(5.38)

for some state |i)1).

6 Discussion

The above work investigated the effect of null states on time-evolutions defined by gravitational
path integrals. We worked in a simple topological model of quantum gravity with k£ end-
of-the-world branes, and we focused on the one-boundary sector of such models. Since the
model is topological, the source-free Hamiltonian vanishes identically. However, general time-
dependence was introduced by adding boundary sources that insert one-boundary operators
defined by annihilating and creating end-of-the-world branes. Such insertions led to a non-
vanishing Hamiltonian H at the perturbative level, as well as a non-perturbative Hamiltonian
H. In this context, even for times that are short in comparison with natural timescales of the
perturbative Hamiltonian H, we found the perturbative and non-perturbative time evolutions
defined by such path integrals to have large corrections when the rank D of H is of the same
order as the dimension d of the non-perturbative Hilbert space, and to be starkly different for
D > d. On the other hand, for D < d the perturbative and non-perturbative evolutions are
nearly identical for all times ¢ of order d* with o < % We emphasize that such timescales
are exponentially large in the entropy of the system. In particular, for D < d we showed that
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Figure 10. The figure shows the large discrepancy (5.35) that arises for a finely-tuned state M|¢)
with parameters d = 103, k = 10%, D = 4. Here the eigenvalues of the perturbative Hamiltonian H are
A1 =0.5, Ao = 1.5, A3 = 2.5, Ay = 3.5. The spacing between the peaks agrees well with 27/A; = 47
as predicted by comparing (5.36) with (5.37).

the operation Fj(t), defined by applying the perturbative time-evolution to a perturbative
state and then mapping the result to the non-perturbative Hilbert space, was an excellent
approximation to the operation Es(t) defined by first mapping the perturbative state to the
non-perturbative Hilbert space and then evolving with non-perturbative time evolution. Our
formalism also allowed us to discuss dynamics that couples our topological gravity system
to a non-gravitational ‘bath’ system, in which case analogous results apply.

A critical point is that, even though E;(t) and E»(t) differ strongly for D 2 d, the non-
perturbative dynamics is manifestly unitary for any value of D. Furthermore, this remains
true when the system is coupled to an external bath. On the other hand, section 7.3 of [9]
argued in a related context that interactions with a system with null states was necessarily
non-unitary. The scenario considered by [9] involved a large parent universe that emits a set
of baby universes, and where the pieces to be emitted are in a state that — if emitted as
baby universes — would become a null state. Thus the emission process appeared to take a
state of finite-norm to one of zero norm, violating unitarity in a particularly strong way.

To resolve this tension, let us compare the discussion of [9] with our work above. Since
the full time evolution — including any emissions of baby universes — must be defined by
a non-perturbative path integral, even if one described the initial state in a perturbative
language we would expect the resulting operation to correspond to something like our Es(t)
which continually incorporates the effects of wormholes and a-sectors at all times ¢. In
contrast, [9] mentions possible effects of null states only after the baby universes have been
emitted from the parent universe. It thus assumes that the emission process itself can be
described in terms of states in the perturbative Hilbert space. It is only when the process
is completed that [9] evaluates the result using the non-perturbative inner product. It thus
appears to us that the notion of time-evolution described in [9] corresponds to something like
our F(t), rather than to our Fs(t). And while it is certainly true that F;(t) is generally far
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from unitary, we have seen that there is no tension with the unitarity of Fy(t). Indeed, our
interpretation of the scenario described in [9] is that, since the non-perturbative evolution
must remain unitary in the presence of null states, the non-perturbative time evolution is
required to deviate strongly from the perturbative evolution. Strong deviations were indeed
seen in section 4 for our model with D > d, though of course many details remain to be
understood for more realistic contexts.

While our calculations were performed for time-independent Hamiltonians, the evolution
operator  U(t) = Pexp (—i [ H(t)) for time-dependent H(t) can be well-approximated by
a product of evolutions over short time intervals, each of which is defined by a Hamiltonian
that is time-independent within the given interval. It is thus clear that the perturbative
and non-perturbative evolutions are again nearly identical over spans of time in which the
non-trivial part of H(t) is confined to a D-dimensional subspace of the perturbative Hilbert
space H,, with D < d, though the discrepancy should again become large once H(t) explores
a subspace with D = d.

Although the small D agreement is technically interesting, our most striking result may
be the large discrepancy that arises between the perturbative and non-perturbative time
evolutions for D 2 d. Recall, for example, that even in asymptotically AdS space any
small band of energies is associated with an infinite set of states in the perturbative gravity
description. In particular, due to the possibility of having a black hole with a long throat
deep inside the horizon, this is the case even if we require states to have no structure within
a Planck distance of any event horizon (i.e., if we impose some sort of stretched horizon
cutoff). One might thus attempt to model such settings by taking the & — oo limit of our
results. Furthermore, since all such states have similar non-zero energies F, it is clear that
the perturbative Hamiltonian has full-rank on this space. But path integral computations
(see e.g. [3, 4, 6-8, 17]) indicate that the non-perturbative theory in such contexts has only a
finite number of states d = e°BH, where Sgy is the associated Bekenstein-Hawking entropy.
Carrying over our results directly would then suggest that the non-perturbative dynamics
in such contexts bears no relation whatsoever to the perturbative dynamics, and that it
is instead essentially random.

Although our model showed no hints that quantum extremal surfaces are important
for the above effect, one might nevertheless hope that in interesting gravitational theories
any such effects may be confined to the interior of black holes (or, perhaps, to the regions
inside and just outside an event horizon in the context described by [18]). Furthermore, the
random dynamics seen in our model appears similar in spirit to the idea that there may be
no coherent semiclassical spacetime inside a black hole associated with the firewall hypothesis
of [19]. But our model suffers from an especially extreme form of such effects which appear
to arise equally for ‘young’ black holes” as well as those that are ‘old. The reader may thus
naturally find such a scenario to be unpalatable.

A potential clue to how this predicament might be avoided can be found by recalling
that we induced time-evolution in our model by inserting operators, and that we found the
above results even for insertions that give H = cl,, where ¢ € R and 1}, is the identity on the

9T.e., even for special states confined to tiny sectors of the Hilbert space which we again choose without
knowledge of the random draw M from the Wishart ensemble.
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Figure 11. N insertions of the c-numbers (1 — icAt) are equivalent to summing a series of path
integrals with trivial insertions and non-trivial weights.

perturbative Hilbert space. However, for this special case there is an alternative way to insert
the operator iH At, which is to simply add a term with a single asymptotic boundary weighted
by icAt as shown in the 2nd term on the right in figure 11. For past boundary condition
|I) and future boundary condition |J), the perturbative evaluation of the one-insertion
path integral then yields precisely ict(I|1,|J)p = ict(I|.J), as desired. However, instead of
the matrix elements of a random operator implied by the results found in section 5, it is
immediately clear that the one-insertion non-perturbative path integral computes precisely
ict(I|J)np. The corresponding non-perturbative Hamiltonian is thus H = cl,p, which is
now distinctly different from the operator X HXT.

This, then, suggests that it is important to discuss such issues directly in the language
of boundary conditions rather than using the language of operators and states on the
perturbative Hilbert space. We will return to this point in a forthcoming work. However, for
the moment we simply observe that a given model may feature certain boundary conditions
for which the perturbative and non-perturbative evolutions agree to good precision for long
times and which we may call np-stable. In our topological model, the np-stable boundary
conditions include the trivial boundary condition (representing the identity) and boundary
conditions describing the annihilation and creation of small numbers of EOW-branes. A
tantalizing fantasy is that for higher-dimensional AdS/CFT models the np-stable boundary
conditions might include those with sufficiently smooth boundary-sources of low conformal
dimension (i.e., sources that define relevant or marginal deformations). In this context,
the long-time agreement we found for low-rank Hamiltonians may naturally generalize to
similar successes for linear combinations of a small number of np-stable boundary conditions.
However, unless the boundary condition defines a Hamiltonian that approximates a linear
combination of the identity operator and an operator of small rank, the potentially-vast
difference in dimension between the perturbative and non-perturbative Hilbert spaces makes
it unlikely for the perturbative and non-perturbative evolutions to act similarly across the
entire space of available states. In particular, the recurrence time for the non-perturbative
evolution will generally be much shorter. One might thus expect that a useful notion of
np-stability applies only when evolving a small and special space of states which might, for
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example, be associated with appropriately ‘young’ black holes. We hope to return to this issue
in future work as well by studying non-perturbative time evolution in more realistic models,
perhaps based on recent analyses of non-perturbative geodesic lengths in JT gravity [20].

As a final comment, we note that the reader may find it tempting to associate the
special np-stable boundary conditions with the notion of ‘simple operators’ described by
Akers, Engelhardt, Harlow, Penington, and Vardhan in their discussion [21] of non-isometric
codes. While it would certainly be interesting to explore such connections, we emphasize
that our proposed notion of np-stable boundary conditions is intended to mean that the
perturbative and non-perturbative path integrals both define linear operators with compatible
time evolutions (perhaps on a small linear space of states).

In contrast, the non-isometric code paradigm of [21] would in principle allow us to declare
in our topological model that the identity operator remains simple when represented in the
form H = ;|I) ,(I|, and to then recover the associated (trivial) perturbative dynamics
from the action of the operator X HXT discussed in section 5. A similar phenomenon occurs
in the dynamical model of [21] where the non-perturbative evolution is simply reinterpreted as
a non-isometric map applied to the desired perturbative evolution. While the non-isometric
codes of [21] are generally constrained by the extrapolate dictionary, such constraints become
trivial in models like the one studied above that lack propagating bulk fields. And even in
more complete models, this dictionary imposes no obvious constraints inside the horizon. The
freedom to choose a general non-isometric map V' thus allows one to essentially define V' to be
equivariant with respect to the perturbative and non-perturbative time evolutions even if the
two evolutions have no common structure deep in the bulk. The resulting flexibility makes
the non-isometric code paradigm extremely powerful, though at the apparent cost of making
the perturbative evolution (called the effective description in [21]) essentially independent of
the fundamental non-perturbative evolution. We would prefer to instead see any effective
description derived directly from a fundamental description, rather than have the two simply
rendered consistent by fiat. Again, we hope to return to such issues in future work.
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A Wishart distribution

This appendix summarizes our conventions regarding the Wishart distribution and performs
a few calculations. Other calculations described in the main text are similar.
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A.1 Basic definitions

The Wishart distribution is a unitarily invariant distribution on the space of k x k hermitian
linear matrices. Let us introduce a set of gaussian variables ay; satisfying

(ari) =0, (apaz;) =0, (apay;) =0, (afaz5) = 0150, (A1)

where I,J € {1,...,k} and 4,5 € {1,...,d}. All higher moments of the a;; may be calculated
using Wick’s theorem.

From the ay;, we may build a rectangular random matrix that maps from C? to C*:
[Gl1i = ar. (A.2)

We may then construct a random k x k matrix M which is said to be drawn from the
Wishart distribution:

1
ZgGGﬁ (A.3)

More explicitly, this matrix may be written

1 d
My = y Zanaf]i. (A.4)
=1

The matrix M is hermitian by construction. Moreover, because it can be expressed
as the product (A.3), we have

rank M < min(d, k). (A.5)

The inequality is saturated with probability one as obtaining a smaller rank requires an
accidental degeneracy.

A.2 A few moments

We will now explicitly calculate the first few moments of M. This is a nice a warm-up before
performing some of the more intricate calculations described in the main text.

A.2.1 Mean

We want to calculate (M). This is quite immediate, since we have:

1
[(M)]1s = P > lanab;) Z&J% = [1p]17, (A.6)
i=1
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A.2.2 Variance

To calculate the variance of M we will also need (M?). More explicitly, we wish to compute
the enesmble average of the matrix

k A
(M1 =Y MpyMyg = -2 Z > (aliajiana;(j) . (A7)
J=1 j=1J=1

Taking (-) on both sides and applying Wick’s theorem yields

d & d &k

1 1

-2 Z Z alzanaJyaK] df Z Z ( arialy;) ana%ﬂ + <a1ia;(j><ajja}i>)7
(A.8)

and thus

d k
(M*) 1k = % Zl Z (0176:i0 K055 + 01K 0ij077) = d1K + 2511( = <1 + 2) Mplrx. (A9)
ij=1J=1

The variance is then (M?) — (M)? = %]lp. We see that for k > d, the matrix M is far from
being sharply peaked. This should be no surprise since, although the ensemble is invariant
under k X k unitaries, any given M has rank d < k and must thus determine a preferred
d-dimensional subspace of a rank k vector space.

Another useful result is the two-point function (My, 1, Mr,1,). Wick’s contractions anal-

ogous to those above yield
1
d

From (A.10) we can also see that for any (fixed) k& x k matrix H we have:

<M1112M1314> = []110]1112 []lp]1314 + []lp]1114 []lp]fzfs' (A.IO)

Trp,H
d

In particular, taking H = 1, recovers our previous result.

(MHM) = H + 1,. (A.11)

A.3 Random projections

For large k, the central limit theorem tells us that the magnitudes of the vectors > ;ar;|I)
should have small fluctuations. Furthermore, for k& > d we expect these d vectors to be
approximately orthonormal. In this limit we thus expect M to be proportional to a rank d
projection. If this is so, then the result (3.5) tells us that the projection must be P = ¢
Since the distribution for M is clearly invariant under unitary transformations, the range
of P must be a random subspace with respect to the uniform distribution.'”

We now explore the details of this argument. Since P is manifestly Hermitian, it is a

projection if P? = P. A straightforward yet tedious calculations yields
d2
Sl

10Geometrically, the space of all d-dimensional subspaces is U(k)/ (U(d) x U(k — d)). The uniform distribu-
tion on this space is given by the associated Haar measure.

(P? = P) = —5[1,], (A.12a)
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while

(P?=P)%) = (PY) + (P?) — 2(P%)
<4d2 d*  3d Ad® 2d2>[]l] (A.12b)

TR TR T T

In the limit k/d — oo we thus find that P approaches a projection in the sense of
the weak operator topology. However, a stronger measure of convergence is given by the
Frobenius-norm, or the Schatten 1-norm:

V]2 = (YY), (A.13)
which is easily computed by taking the trace of (A.12b). We find
2d>

So even in this stronger sense we find P to approach a projection in the stronger limit
k/d> — oo.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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