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Differentially Private Nash Equilibrium Seeking
in Quadratic Network Games

Lei Wang, Kemi Ding, Yan Leng, Xiaoqiang Ren, and Guodong Shi

Abstract—In this paper, we develop distributed computation

algorithms for Nash equilibriums of linear quadratic network

games with proven differential privacy guarantees. In a network

game with each player’s payoff being a quadratic function, the

dependencies of the decisions in the payoff function naturally

encode a network structure governing the players’ inter-personal

influences. Such social influence structure and the individual

marginal payoffs of the players indicate economic spillovers and

individual preferences, and thus they are subject to privacy

concerns. For distributed computing of the Nash equilibrium,

the players are interconnected by a public communication graph,

over which dynamical states are shared among neighboring

nodes. When the players’ marginal payoffs are considered to

be private knowledge, we propose a distributed randomized

gradient descent algorithm, in which each player adds a Laplacian

random noise to her marginal payoff in the recursive updates. It

is proven that the algorithm can guarantee differential privacy

and convergence in expectation to the Nash equilibrium of the

network game at each player’s state. Moreover, the mean-square

error between the players’ states and the Nash equilibrium is

shown to be bounded by a constant related to the differential

privacy level. Next, when both the players’ marginal payoffs

and the influence graph are private information, we propose

two distributed algorithms by randomized communication and

randomized projection, respectively, for privacy preservation.

The differential privacy and convergence guarantees are also

established for such algorithms.

Index Terms—Differential privacy, distributed computation,

linear quadratic network game.
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I. INTRODUCTION

In recent years, game theory has been introduced to the
operation of large-scale complex network systems in emerging
applications including wireless communications [3], [35], smart
grids [4], [36], and electric vehicle charging [5]. In such
systems, each agent (representing a user/customer/unit) makes
an individual decision, and experiences a payoff which often
depends only on the decisions of a few neighboring agents in
large-scale networks. The inter-dependency of agents’ payoffs is
restricted to local views due to physical constraints. As a result,
the agents are naturally organized in a game associated with a
network structure, i.e., a network game [6], [7]. The notions
of Nash equilibrium or the generalized one become sensible
resolutions for the network operation where agents are rational
players aiming at maximizing individual payoffs. The graph
describing the underlying network structure becomes critical
for the existence and positioning of the Nash equilibrium [7].

Linear quadratic games are a class of network games where
the payoff of each player is a simple quadratic function. The
dependencies among the player decisions in the quadratic
function induce a network structure, determining the players’
inter-personal influences. Despite its simplicity, the linear
quadratic game has been a fundamental model for network
games [8], [9], [42]. The Nash equilibrium of linear quadratic
game can be explicitly linked to the underlying network
structure, which facilitates new centrality measures [8]; linear
quadratic games has been applied to characterize the user
behaviors for online e-commerce platforms [9] and industrial
collaboration [42].

The scalability and robustness requirements for large-scale
networks have sparkled the need to develop distributed algo-
rithms for Nash equilibrium computing. In a distributed Nash
equilibrium computing algorithm, players share a sequence
of decisions over the communication links of the network.
Despite the payoff function for each player being private
information, the decisions shared with other agents inevitably
carry information about the payoff functions and the underlying
influence network structure. Parameters of the individual payoff
functions may consist of sensitive private information about
users’ preferences and economic status; the network structure
further captures the inter-personal peer influence among the
users over the platform, which may be sensitive trade secrets.
Therefore, privacy concerns related to key user parameters
and/or network structure in distributed Nash equilibrium
seeking cannot be overlooked. Particularly, for linear quadratic
network games, both the marginal payoffs and the influence
network structure can be sensitive private information, which
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may be subject to unintended leakages during distributed Nash
equilibrium computing processes by eavesdroppers having
access to communication messages and attempting to infer
the sensitive information.
A. Related Work

For games over networks with convex payoff functions,
there has been a growing line of research in the distributed
computation of Nash equilibrium. For cognitive radio network
games, a joint and distributed computing framework was
proposed in [10] by embedding best response maps to the
local states update. In [11], a simple projection-free primal-
dual algorithm was proposed for incomplete information games
in order to compute an approximate Nash equilibrium. In
addition, in [12], [13], [31] the Nash equilibrium seeking
problem was transformed into a distributed optimization
problem, for which distributed gradient-descent algorithms
were employed to develop both synchronous and asynchronous
computation algorithms with almost-sure convergence to the
Nash equilibrium. Along this line of study, several important
game-theoretic models have been investigated such as quadratic
games [29], aggregative games [30], [33], network games [32],
[34], etc. The considered distributed Nash equilibrium seeking
problem is also related to the multi-agent learning problem
of continuous games where actions are taken from continuous
space and each agent adopts a common policy. For such
a problem, online learning algorithms have been developed
with guarantees of convergence to the Nash equilibrium with
feedback delays [14], lossy feedback [15] and bandit feedback
[16], [17]. We note that our proposed algorithms are also
established on the gradient-descent scheme, but with the aim
to compute the whole network Nash equilibrium at each agent,
which is different from these relevant results where each
agent computes its own action at a Nash equilibrium, i.e.,
the corresponding entry of the network Nash equilibrium, in
addition to the extra privacy requirements.

The privacy we consider is closely related to the concept of
differential privacy [1]. It was originally proposed for databases
of individual records subject to public queries and has been
extended to different areas thereafter. Of more relevance to
our paper are the works in [18]–[21] focusing on distributed
differentially private optimization. Within these papers, the
objective functions, the optimization constraints, and the agents
states are treated as private information, respectively. The
underlying commonality is the algorithm design approach
based on the idea of message perturbation. To protect the
differential privacy of sensitive objective functions, the authors
in [19], [21] proposed to perturb the communication messages
in the distributed optimization problem to address the privacy
concerns for objective functions. To further improve the
trade-off between the achievable privacy and accuracy, [40]
develops an optimized noise injection strategy to minimize the
perturbation impact and [41] proposes to employ a decaying
stepsize while iteratively injecting noises to communication
messages with an appropriately designed increasing variance.
Of particular relevance is the work of [30], where the authors
proposed a differentially private distributed Nash equilibrium
seeking scheme by injecting Laplacian noise in node-to-node
communications for aggregative games.

B. Contributions

We consider privacy-preserving distributed Nash equilibrium
seeking algorithms for linear quadratic network games.

System and Problem Definition: The payoff function
of each player is a quadratic function with a separate term
representing its individual marginal benefit and cross terms
capturing the inter-personal influences among players. Both can
be regarded as sensitive information needed to be protected.
To compute the Nash equilibrium in a distributed manner,
players usually need to broadcast their local information to
their neighbors through a communication graph, whereas the
sensitive information would be inferred from neighboring
communications. To address this, we follow the idea of injecting
perturbations to tailor the distributed computation algorithm
with differential privacy guarantees and establish the trade-off
between the privacy level and computation accuracy.

Algorithms: The agents hold dynamical states which are
updated with gradient descents and local averaging over the
communication graph. We explore three different mechanisms
for privacy protection in the computing process, leading to
three algorithms for computing the Nash equilibrium under
differential privacy.

In the case of preserving the marginal payoff privacy, a
distributed randomized gradient descent algorithm is proposed
where each agent computes the local gradient with the perturbed
marginal payoff by a Laplacian random noise, and then
updates the local state by averaging across its neighboring
information. In the case of preserving marginal payoff/social-
influence privacy, a distributed randomized communication
algorithm is given utilizing noise injection in node-to-node
communications, and a distributed randomized projection
algorithm is constructed by taking perturbed marginal payoff
and social influence into embedded local projections.

Privacy vs Accuracy: When the influence network structure
is considered to be public knowledge, the distributed random-
ized gradient descent algorithm achieves ✏-differential marginal
payoff privacy regardless of the length of the computation
time, and converges in expectation to the Nash equilibrium of
the network game at each player’s state. When both players’
marginal payoffs and the influence graph are considered to be
private, the distributed randomized communication algorithm
is shown to achieve differential privacy with a horizon-specific
privacy budget, and the distributed randomized projection
algorithm is proven to be able to achieve differential privacy
under a privacy budget independent with the horizon. For
all algorithms, explicit bounds on the mean-square errors of
the computation process are established in the asymptotic
sense, revealing a clear trade-off between the privacy level and
computation accuracy.

Our distributed randomized Nash equilibrium algorithm is
along the same line of privacy protection ideas developed in
[19], [21], [30] for distributed optimization and aggregative
games. The key innovations of our framework lie in strategic
privacy protections for marginal payoffs and network structure
both separately and collectively, random noise injection inspired
by inherent geometries in best responses, and clear structure-
specific trade-off between privacy and accuracy.
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C. Paper Outline
The system setup and problem statement are presented in

Section II. Tow different cases where the marginal payoff
function or both marginal payoff and the influence graphs are
regarded as private information, are considered in Section III
and Section IV, respectively. All the proofs of statements are
presented in Section V, and finally a few concluding remarks
are given in Section VI.

Notation: We denote by R the real numbers, Rn and Rn
+

the real and positively real space of n dimension for any
positive integer n and N+ the set of positive integers. For
any x1, . . . ,xm 2 Rn, we denote [x1; . . . ;xm] as a vector⇥
x
>
1 . . . x

>
m

⇤> 2 Rmn, and [x1, . . . ,xm] as a matrix of
which the i-the column is xi, i = 1, . . . ,m. For any x =
[x1; . . . ;xn] 2 Rn, we denote kxk = (x>

x)
1
2 and kxk1 =Pn

i=1 |xi|. The maximum and minimum singular values of a
matrix A are denoted as �M (A) and �m(A), respectively. For
a matrix A 2 Rn⇥m, we denote kAk = �M (A), vec(A) =
[A1; . . . ;Am] with Ai being the i-th column of A. A matrix is
said to be non-negative if all its elements are equal to or greater
than zero. The range of a mapping is denoted as range(·). For
any X ✓ Rn, we denote 1X(x) as a characteristic function,
satisfying 1X(x) = 1 for x 2 X and 1X(x) = 0 for x /2 X .

II. PROBLEM FORMULATION

In this section, we present our system setup on linear
quadratic network games, and define our problem of interest.
A. Quadratic Network Games

Consider a game with n players indexed in the set V =
{1, . . . , n}, where each player holds a decision (action) ai 2
R�0. In a linear quadratic game [8], the payoff of player i is
represented by

ui = biai �
1

2
a2i +

X

j2V/{i}

gijaiaj . (1)

Here bi 2 R�0, termed the marginal benefit of player i,
indicates the contribution of player i’s own decision in i’s
decision. Therefore, bi characterizes the level of selfishness
of player i. Moreover, gij 2 R represents the particular peer
influence from player j towards player i for i, j 2 V. It is
noted that these data of marginal benefits and peer influences
may be privacy-sensitive and need to be protected.

Let gii = 0 and the matrix G be given by [G]ij = gij
for all i, j 2 V. We term the matrix G the social influence
matrix of the game. Then there is an induced graph from G,
denoted by G = (V,E), where a directed arc (j, i) 2 E if and
only if gij 6= 0. The graph G is termed to be the influence
graph associated with the game. Let a = [a1; . . . ; an] and
b = [b1; . . . ; bn], and let a�i represent the action profile of a
excluding ai. Now under a�i, the best possible action, termed
the best response, from player i that maximizes ui is

Bi(a�i) = max
�
bi +

X

j2V

gijaj , 0
 
. (2)

Let (I � G)�1 be well defined and nonnegative, rendering
the linear quadratic game to have a unique Nash equilibrium
satisfying [8]

(I�G)a⇤ = b . (3)

B. Distributed Nash Equilibrium Computing with Differential
Privacy

A natural idea to compute the Nash equilibrium a
⇤ is to

directly solve the linear algebraic equation (3) in a centralized
manner given a center having the whole network of data {G,b}.
However, given the distributed nature and privacy concern of
these data, such a centralized approach is less desired than a
distributed and privacy-preservation approach.

Distributed computation of Nash equilibrium is equivalent
to the problem where players cooperatively compute a Nash
equilibrium without sharing the payoff functions with each
other. We suppose there is an undirected and connected
communication graph, denoted Gcom = (V,Ecom), over which
each player i holds a dynamical state xi(t) in discrete time,
broadcasts messages yi(t) (which may or may not be equal
to xi(t)) to its neighbors in Ni

com :=
�
j : {i, j} 2 Ecom

 
,

updates xi(t) based on its received messages and local payoff
function. For simplicity it is assumed that each communication
edge in Ecom has the same weight w satisfying 0 < w 

1
1+maxi2V |Ni

com| and the structure of this communication graph
is publicly known.

The objective is to develop distributed Nash equilibrium
computing algorithms for the linear-quadratic game (1) with
differential privacy with respect to two types of private data D:
(i) D = b for marginal payoff privacy, and (ii) D = (b,G)
for complete marginal-payoff/social-influence privacy. In either
case, we consider the scenario that the eavesdroppers have
access to all communication messages yi(t) for i 2 V and
t 2 [0, T ] over the communication graph Gcom and aim to infer
the sensitive data D. Denoting yt = (y1(t), . . . ,yn(t))>, we
use M to represent the random mapping from D to

�
yt

�T
t=0

.
Let D be the space of the private data D, any pair D,D0 2 D
is termed µ-adjacent if kvec(D�D

0)k1  µ 1. We present the
following definitions [1], [27], [28].

Definition 1. (i) Let D = b. A distributed Nash equilibrium
computation algorithm for the linear quadratic network game
achieves differential marginal payoff privacy with privacy bud-
get ✏ > 0 under adjacency of µ > 0 if for all R ✓ range(M),
there holds for any µ-adjacent D,D0 that

P
�
M(D) 2 R

�
 e✏P

�
M(D0) 2 R

�
. (4)

(ii) Let D = (b,G). A distributed Nash equilibrium
computation algorithm for the linear quadratic network game
achieves differential marginal-payoff/social-influence privacy
with privacy budget ✏ > 0 under adjacency of µ > 0 if for all
R ✓ range(M), (4) holds for any µ-adjacent D,D0.

The Nash equilibrium computation problem of the game (1)
can be transformed into solving the network linear equation (3),
or equivalently the following distributed optimization problem

a
⇤ := argminx2Rn

X

i2V

fi(x)

where each agent holds a private cost function fi(x) := |(ei �
Gi)>x� bi|2, with Gi the i-th column of G

> and ei 2 Rn

1The notation vec denotes the vectorization operation, i.e., to stack all the
elements into a vector.
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a unit vector whose entries are all zero except the i-th being
one. In the absence of privacy concern, by [22], [23] the Nash
equilibrium seeking algorithm is given by

xi(t+1) = xi(t)�w
X

j2Ni
com

[xi(t)� xj(t)]�shi

⇥
h
>
i xi(t)� bi

⇤

(5)
with stepsize s > 0 and hi := ei �Gi. In the following, the
above distributed gradient descent algorithm (5) will be further
explored to solve the differentially private Nash equilibrium
computation problem in question. This thus demonstrates the
difference of the proposed algorithms from other existing
algorithms [30], [38], in the sense that the proposed algorithms
allow each agent to compute the network Nash equilibrium a

⇤

in a differentially private manner while each agent computes
the local action at the Nash equilibrium in [30], [38].

Remark 1. It is noted that the edge weight of the communica-
tion graph Gcom is assumed to be identical for computational
simplicity, while the forthcoming results can be easily extended
to other cases with non-identical edge weights with some
additional computational complexities, once the resulting
Laplacian matrix is doubly stochastic [22], [23]. On the other
hand, it is also worth noting that the communication network
Gcom is different from the influence network G whose edges
are private for protection while there is no privacy requirement
to the former Gcom.

C. Model Rationale
The class of linear quadratic games has been one of the

basic models for network games [8], with applications in smart
energy market [4] and social network formations in e-commerce
[9]. Readers of interest can be referred to [42, Section 4] for
its more explicit applications, such as crime activity, education
outcomes, industrial cooperation, etc.

Our problem setup is consistent with [9] in the sense that
in both works, the payoff functions of individual players are
considered to be private. In [9], the agents are assumed to be
playing their actions at Nash equilibriums, and the problem
under investigation there is how one may recover the marginal
payoffs and network structure from the observed equilibriums
(in multiple independent games). Here our problem is essen-
tially the inverse problem: agents reveal information about their
payoff functions in recursive computations, with the aim to
compute the network-level Nash equilibriums.

Moreover, the Nash equilibrium seeking problem of average
aggregative games was studied in [30] under differential privacy
and in [38] under a qualitative or binary privacy notion. Average
aggregative game is a class of network games where individual
agent payoff depends on agents’ own actions and the average
actions across the network. Therefore, linear quadratic games
are not a subclass of aggregative games. The fundamental new
feature in linear quadratic games arises from the clear agent
interaction relations defined in the matrix G, which has real-
world implications in interpersonal influences [9]. In addition,
in [30], the gradients of the payoff functions are required to
be globally bounded, which, however, is not satisfied in the
linear quadratic network games having unbounded gradients
of the payoff functions.

III. MARGINAL PAYOFF PRIVACY

In this section, we consider the case where only the marginal
benefit b is considered to be private data. In this case, we have
D = b and D = Rn, and our aim is to develop a distributed
Nash equilibrium computation algorithm for the linear quadratic
network game that achieves provable differential marginal-
payoff privacy.

A. The Algorithm
We propose the following distributed privacy-preserving

Nash equilibrium computation algorithm over the communica-
tion graph Gcom. Note that each player (node) i has access to
bi,hi from its payoff function.

Algorithm 1 Privacy-Preserving Distributed Randomized Gra-
dient Descent Algorithm
Input: Local parameters bi,hi, i 2 V, stepsize s, iteration
steps T , and variance 2�2

� .
Initialize: Node i generates an i.i.d. Laplacian noise �i v
L(0, 2�2

�), and chooses any xi(0) 2 Rn.
Output: xi(T ) at each node i 2 V.
For t = 0, 1, . . . , T � 1, run

1: Each node i sends yi(t) = xi(t) to its neighbors in the
set Ni

com over Gcom.
2: Each node i updates its node state according to

xi(t+ 1) = yi(t)� w
X

j2Ni
com

[yi(t)� yj(t)]

� shi

⇥
h
>
i yi(t)� (bi + �i)

⇤
. (6)

Algorithm 1 is established on the distributed gradient descent
algorithm (5) by perturbing the local marginal payoff bi with
random noise �i, i 2 V. By doing so, it follows that the
differential privacy of bi can be implied when releasing the
resulting noisy marginal payoff. Thus the differential privacy of
the marginal payoffs is still preserved when using the resulting
noisy marginal payoffs in the Nash equilibrium computing
process due to the resilience property of the differential privacy
to post-processing [1].
B. Main Results

First of all, we establish the following result, which shows
Algorithm 1 can indeed preserve the privacy of the marginal
payoffs of the players against eavesdroppers having access
to all node-to-node communications over the communication
graph Gcom.

Theorem 1. Let �� � µ/✏. Then the Algorithm 1 preserves
the differential marginal-payoff privacy with a privacy budget
✏ for any finite time horizon T .

The proof of Theorem 1 lies in expressing the mapping/mech-
anism from the sensitive data to the eavesdropped communi-
cation messages as a composition of a deterministic mapping
and a randomized mapping. Then by designing the noise level
�� such that the latter preserves ✏-differential privacy, the
composed mechanism still preserves the ✏-differential privacy
by recalling that the differential privacy is resilient to post-
processing [1].
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Next, we show that with suitable step size, the node states
in Algorithm 1 indeed converge to the Nash equilibrium a

⇤

in expectation with an asymptotically bounded mean-square
error. To this end, we introduce di = w|Ni

com| and then D =
diag(d1, . . . , dn). Denote W 2 Rn⇥n where [W]ij = wij

with wij = w if (i, j) 2 Ecom and wij = 0 if (i, j) /2 Ecom.
Then L = D�W is the Laplacian of the communication graph
Gcom. We arrange the eigenvalues of L in the increasing order
as �1 < �2 . . .  �n. Then there hold �1 = 0 and |�i| < 2 for
all i = 1, . . . .n [24]. Denote the following useful parameters

⇢m = �m

�Pn
i=1 hih

>
i /n

�
,

hM = max{kh1k, . . . , khnk},

↵1 =
�n+2sh2

M+
q

�2
n+4s2h4

M

2 � 1,

↵2 =

q
(�2�s⇢m)2+4s2h4

M��2�s⇢m

2 + 1,
↵ = max{|↵1|, |↵2|}.

(7)

Theorem 2. Suppose the step size s is chosen in the way that

0 < s < min
n

2(2��n)
h2
M (4��n)

, ⇢m�2

h4
M

o

Then there hold for Algorithm 1 that
(i) limt!1 Exi(t) = a

⇤;
(ii) limt!1 Ekxi(t) � a

⇤k2  2ns2�2
�h

2
M/(1 � ↵)2 with

0 < ↵ < 1.

The results in Theorems 1 and 2 clearly demonstrate a trade-
off between the achievable privacy and accuracy. A higher
differential privacy requirement (i.e., a smaller ✏) relies on a
greater injected noise variance by Theorem 1, which in turn
leads to a higher computation error in the mean-square sense
by Theorem 2.
C. Numerical Example

We consider three well-studied random graph models,
including the Erdős-Rényi random graph, scale-free graph,
and community graph for the social influence graph G. These
random graphs have been widely adopted for characterizing
complex networks in the real world. In our simulation, we
made use of the GSP toolbox [2]2 to generate these three social
influence graphs. We run the simulations in Matlab 2019b, and
the code used for the numerical experiments is provided in the
supplementary materials.

For the simulation setup of the game, we generate the
three random graphs (each is regarded as the social influence
graph G and associated with a single game) with n = 30
players. In particular, the edge probability of the Erdős-
Rényi random graph is set as 0.5; the scale-free graph is
generated from a preferential attachment dynamic where each
new node establishes one edge with the existing graph, and
the community graph is generated containing 5 communities
based on stochastic block model. The communication graph
Gcom is set to be fixed obtained from a sample of an Erdős-
Rényi graph. For the simulation setup of Algorithm 1, we
randomly generate the local parameter bi following the uniform
distribution over the interval [0, 1]. The stepsize s, the initial
value x0 and iteration steps T are set as 0.3, all-zero vectors,

2https://epfl-lts2.github.io/gspbox-html/, released under the GNU General
Public License (GPLv3).

and 16000, respectively. For each graph, the weight matrix G

is constructed with elements gij =
1

1+maxi2V |Ni| , where |Ni|
is the degree of the set of player i’s neighbors. Similarly, we
set w = 1

1+maxi2V |Ni
com| .

We run Algorithm 1 over these three graphs in order to
evaluate the effect of the differential privacy mechanisms.
Throughout the simulations over each graph, the empirical
results are based on averaging across 10000 sample trajectories.
Moreover, following the standard differential privacy guideline,
we set the privacy requirement as µ

✏ = �� 2 {0.1, 0.01, 0.001}.
The condition in Theorem 2 always holds for all simulations
over the three graphs with parameters as follows: for Erdős-
Rényi graph, hM = 1.048, ⇢m = 0.003; for scale-free graph,
hM = 1.027, ⇢m = 0.015; for community graph, hM = 1.044,
⇢m = 0.002; for communication graph, �n = 1.245, �2 =
0.085. To validate Theorem 2, we calculate the result, i.e., the
averaged error variance E||xi(t)�a

⇤||2. The simulation results
are presented in Figure 1, which demonstrates the relationship
between the resulting computation accuracy and the algorithm
step t under different privacy requirements. Among all sub-
figures, it is obvious that as the iteration t increases, the
resulting computation accuracy decreases until a lower bound.
Moreover, by comparing sub-figures in Figure 1, we can obtain
the trade-off between the accuracy and the privacy requirement,
as the computed solution xi(t) is more accurate with respect
to a lower-level privacy requirement.

IV. MARGINAL-PAYOFF AND SOCIAL-INFLUENCE PRIVACY

In this subsection, we study the case where both the marginal
payoff and the influence network are considered to be private
information. In this case, we have the private data D = (b,G),
and impose the following assumption on its space D.

Assumption 1. There holds D = B⇥G with B = {b 2 Rn :
0  bi  `b, i 2 V} and G = {G 2 Rn⇥n : |gij |  `g, gii =
0, i, j 2 V} for `b > 0 and `g > 0.

A. Randomized Communication for Horizon-Specific Privacy

Before presenting the algorithm, we make the following
assumption on the Nash equilibrium.

Assumption 2. There exists a convex compact set A ⇢ Rn

known to all players such that a⇤ 2 A.

Let `A = maxy2A kyk and PA(y) be the projection of
y 2 Rn on the set A, i.e., PA(y) := argminy02A ky � y

0k.
We propose the distributed privacy-preserving Nash equilibrium
computation algorithm in Algorithm 2.

Algorithm 2 is established on the distributed gradient descent
algorithm (5), but is different from Algorithm 1. Algorithm 2
injects random noises to communication messages, yielding
noisy messages for adversaries in order to preserve the
differential marginal-payoff/social-influence privacy. However,
as explicitly shown later, we note that the required noise level
�� in Algorithm 2 depends on the length of T , which is a
significant difference compared to Algorithm 1.

Theorem 3. Suppose Assumptions 1-2 hold. Let �⌫ �
sTµ(2`A(1 + `g) + max{1 + `g, `b})/✏. Then Algorithm
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(c) Error variance under ✏ = 1000.

Figure 1: Accuracy performance of Algorithm 1 under three differential privacy budgets.

Algorithm 2 Privacy-preserving Distributed Randomized Com-
munication Algorithm
Input: Local parameters bi,hi, i 2 V, stepsize s, iteration
steps T and variance 2�2

⌫ .
Initialize: Node i selects any xi(0) 2 Rn.
Output: xi(T ) at each node i 2 V.
For t = 0, 1, . . . , T � 1, run

1: Each node i generates an i.i.d. Laplacian noise ⌫i(t) v
L(0, 2�2

⌫ 1N+(t))
n.

2: Each node i sends yi(t) = xi(t)+⌫i(t) to its neighbors
in the set Ni

com over Gcom.
3: Each node i updates its node state according to

xi(t+1) = PA(yi(t))�w
X

j2Ni
com

�
PA(yi(t))�PA(yj(t))

�

� shi

�
h
>
i PA(yi(t))� bi

�
. (8)

2 achieves the differential marginal-payoff/social-influence
privacy with a privacy budget ✏.

The proof of Theorem 3 is established by elaborating the
mapping/mechanism from the sensitive data to the eaves-
dropped communication messages and then deriving the re-
quired noise level �⌫ to achieve ✏-differential privacy following
the Definition 1.(ii). Further, we can also prove that each
node state xi(T ) at the output of Algorithm 2 is within a
neighborhood of the Nash equilibrium a

⇤ in the mean-square
error sense. The distance between xi(T ) and a

⇤ is controlled
by the magnitude of the variance �⌫ .

Theorem 4. Suppose Assumption 1 holds. Let the step-size s
satisfy

0 < s < min
n

2(2��n)
h2
M (4��n)

, ⇢m�2

h4
M

o

Then there holds along Algorithm 2 that

Ekxi(T )� a
⇤k2  2n↵2

1� ↵2
�2
⌫ + O(e��T )

where � = �2 ln |↵| > 0.

B. Randomized Projection for Any-time Privacy
Let lij 2 Rn, j 2 V be linearly independent vectors such

that lii = hi/khik and h
>
j lij = 0 for j 6= i, for i 2 V. For

any x 2 Rn(n+1)/2, we denote by H (x) the mapping from
vector x to a symmetric matrix with j-th entry of the i-th row
being the i + j(j�1)

2 -th entry of x. It is noted that H (·) is
invertible, whose inverse is denoted by H

�1(·). For i 2 V, we
let q̄i > khik2 > q

i
> 0, and introduce the following convex

set

Ci =

8
<

:x 2 Rn(n+1)/2 :
X

j2V

x j(j+1)
2

2 [q
i
, q̄i],

H (x)lij = 0, 8j 2 V/{i}
)
. (9)

It is clear that H
�1(hih

>
i ) 2 Ci. Let PCi(y) be the

projection of y 2 Rn(n+1)/2 on the set Ci, i.e., PCi(y) :=
argminy02Ci ky � y

0k.
We are now ready to introduce another distributed privacy-

preserving Nash equilibrium computation algorithm.

Algorithm 3 Privacy-preserving Distributed Randomized Pro-
jection Algorithm
Input: Local parameters bi,hi, i 2 V, stepsize s, iteration
steps T and variance 2�2.
Initialize: Node i generates i.i.d. Laplacian noises !i v
L(0,�2)n and ⌘i v L(0, 2�2)

n(n+1)
2 , and selects any xi(0) 2

Rn.
Output: xi(T ) at each node i 2 V.
For t = 0, 1, . . . , T � 1, run

1: Each node i sends yi(t) = xi(t) to its neighbors in the
set Ni

com over Gcom.
2: Each node i updates its node state according to

xi(t+ 1) = yi(t)�
X

j2V

w
�
yi(t)� yj(t)

�

� sH � PCi

�
H

�1(hih
>
i ) + ⌘i

�
yi(t) + s(hibi + !i) .

(10)

Algorithm 3, inspired by Algorithm 1, employs the idea of
injecting random noises to the private parameters hih

>
i ,hibi

for producing noisy parameters, which achieves the differential
privacy of the data D = (b,G). In this way, the differential
privacy of D = (b,G) is still preserved when using such noisy
parameters in the computation of Nash equilibrium, due to
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the robustness property of the differential privacy [1]. As a
result, it follows that the differential privacy of D = (b,G)
is independent of the time horizon T . In addition, we also
introduce a projection in (10) onto a local compact set Ci to
ensure stability. The following result shows that a fixed level of
noise injection is enough to guarantee differential privacy for
any finite horizon, in contrast with Theorem 3 for Algorithm
2 by perturbing messages.

Theorem 5. Assume Assumption 1 hold. Let � � µ
�
2(1 +

`g) + max{1 + `g, `b}
�
/✏. Then the Algorithm 3 preserves

the differential marginal-payoff/social-influence privacy with a
privacy budget ✏ for any finite time horizon T .

The proof of Theorem 5 is similar to that of Theorem 1,
relying on the resilience property of differential property to
post-processing. Before proceeding to analyze the computation
accuracy of Algorithm 3, it is important to study the properties
of the following stochastic matrix

K⌘i := H � PCi

�
H

�1(hih
>
i ) + ⌘i

�
, i 2 V .

Lemma 1. Let ⇢̄m = min{ q
1

kh1k2 , . . . ,
q
n

khnk2 }⇢m, h̄M =
max{

p
q̄1, . . . ,

p
q̄n}. Then there hold

Pn
i=1 K⌘i/n � ⇢̄mIn

max{kK⌘1k, . . . , kK⌘nk}  |h̄M |2. (11)

With suitable step size, the node states in Algorithm 3 indeed
converge to the Nash equilibrium a

⇤ in expectation with an
asymptotically bounded mean-square error. To this end, we
introduce

↵̄1 =
�n+2sh̄2

M+
q

�2
n+4s2h̄4

M

2 � 1,

↵̄2 =

q
(�2�s⇢̄2

m)2+4s2h̄4
M��2�s⇢̄2

m

2 + 1,
↵̄ = max{|↵̄1|, |↵̄2|}.

(12)

Theorem 6. Suppose the step size s is selected in the way that

0 < s < min
n 2(2� �n)

h̄2
M (4� �n)

,
⇢̄m�2

h̄4
M

o

Then there holds for Algorithm 3 that

lim
t!1

Ekxi(t)� a
⇤k2  (2s2�2n4ka⇤k2 + 2ns2�2)/(1� ↵̄)2

with 0 < ↵̄ < 1.

In view of Theorems 5 and 6, given any noise level �
according to Theorem 5, the desired ✏-differential privacy can
always be preserved, and one can increase the time horizon
T to improve the computation accuracy with no effect on the
privacy guarantee.

V. PROOFS OF STATEMENTS

In this section, we prove the various statements claimed in
the previous discussions.

A. Proof of Theorem 1
We begin the proof by representing the mapping M into a

recursive algebraic from Algorithm 1. For convenience of the
subsequent analysis, the following matrices are introduced:

F = In2 � L⌦ In � sHH
> ,

H =

2

64
h1

. . .
hn

3

75 , � =

2

64
�1
...
�n

3

75 .
(13)

Now under Algorithm 1, we can obtain the following compact
form for the evolution of the observations yt as

yt+1 = Fyt + sH(b+ �) , 0  t  T � 1 . (14)

By defining the random mapping bM(b) := b+�, (14) can be
rewritten as

yt+1 = Fyt + sH bM(b) .

It immediately follows that there exists a deterministic mapping
 : Rn ! Rn2(T+1) such that

�
yt

�T
t=0

:= M(b) =  � bM(b) .

According to [1], it is known that ✏-differential privacy is
resilient to a deterministic post-processing. That is, M(b)
achieves an ✏-differential privacy under µ-adjacency if so does
the bM(b).

With this in mind, the proof reduces to show that the bM(b) is
✏-differentially private. Note that the sensitivity of mechanism
bM equals to the adjacency µ. According to [1], given any two
µ-adjacent b,b0 2 Rn, there holds

P
� bM(b) 2 R̂

�
 exp

✓
kb� b

0k1
��

◆
P
� bM(b0) 2 R̂

�

 exp(µ/��)P
� bM(b) 2 R̂

�

for all R̂ ✓ range( bM). This indicates that bM(b) is ✏-
differentially private under µ-adjacency for all �� � µ/✏,
which thus completes the proof.

B. Proof of Theorem 2
Instrumental to the proof is the following technical lemma.
Lemma 2. With F defined in (13), there holds

�I < �↵1I  F  ↵2I < I . (15)

Proof. First of all, we recall that

⇢m = �m

�Pn
i=1 hih

>
i /n

�
,

hM = max{kh1k, . . . , khnk},

↵1 =
�n+2sh2

M+
q

�2
n+4s2h4

M

2 � 1,

↵2 =

q
(�2�s⇢m)2+4s2h4

M��2�s⇢m

2 + 1,
↵ = max{|↵1|, |↵2|}.

(16)

By some simple but lengthy computations, it can be found that
↵1 < 1, ↵2 < 1, and ↵1 + ↵2 � 0 by ⇢m  h2

M .
Then the proof reduces to show (i) F+↵1I � 0 and (ii) ↵2I�

F � 0. Before proceeding to show the both cases, we denote
by {u1, . . . ,un} a set of the orthogonal unit eigenvectors of
L with each ui corresponding to the eigenvalue �i and u1 =

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3398729

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MIT. Downloaded on September 01,2024 at 05:11:13 UTC from IEEE Xplore.  Restrictions apply. 



8

U
>
FU+ ↵1I =


(1 + ↵1)I� sU>

1 HH
>
U1 �sU>

1 HH
>
U2

�sU>
2 HH

>
U1 (1 + ↵1)I� ⇤� sU>

2 HH
>
U2

�
. (17)

(1 + ↵1)I� ⇤� sU>
2 HH

>
U2 � s2U>

2 HH
>
U1

�
(1 + ↵1)I� sU>

1 HH
>
U1

��1
U

>
1 HH

>
U2

�
✓
1 + ↵1 � �n � sh2

M � s2h4
M

(1 + ↵1 � sh2
M )

◆
I = 0 (18)

↵2I�U
>
FU =


(↵2 � 1)I+ sU>

1 HH
>
U1 sU>

1 HH
>
U2

sU>
2 HH

>
U1 (↵2 � 1)I+ ⇤+ sU>

2 HH
>
U2

�
� 0 . (19)

(↵2 � 1)I+ ⇤+ sU>
2 HH

>
U2 � s2U>

2 HH
>
U1

�
(↵2 � 1)I+ sU>

1 HH
>
U1

��1
U

>
1 HH

>
U2

�
✓
�2 + ↵2 � 1� s2h4

M

s⇢m + ↵2 � 1

◆
I = 0 . (20)

1n/
p
n, and let ⇤ = diag{�2, . . . ,�n} ⌦ In, U = [U1, U2]

with U1 = u1 ⌦ In and U2 = [u2, . . . ,un]⌦ In. It is noted
that U>

U = I.
We now prove F+ ↵1I � 0, which is equivalent to proving

U
>(F+ ↵1I)U = U

>
FU+ ↵1I � 0. To show this, we first

give the expression of U>
FU+ ↵1I as (17).

Bearing (16) in mind, we then observe that

(1 + ↵1)I� sU>
1 HH

>
U1

= (1 + ↵1)I� s
Pn

i=1 hih
>
i /nI

� (1 + ↵1 � sh2
M )I

=
�n+

q
�2
n+4s2h4

M

2 I

> 0

and (18), where the definition of ↵1 in (16) is used. Thus,
according to the Schur Complement, it can be concluded that
U

>
FU+ ↵1I � 0, proving F � �↵1I.

Similarly, we proceed to prove ↵2I � F � 0, which is
equivalent to proving (19). To prove this, with (16) we notice
that

(↵2 � 1)I+ sU>
1 HH

>
U1

= (↵2 � 1)I+ s
Pn

i=1 hih
>
i /n

� (↵2 � 1 + s⇢m)I > 0

and (20). Again, according to the Schur complement, it can
be concluded that ↵2I�U

>
FU � 0, proving F  ↵2I. The

proof is thus completed.

Now we are ready to establish the theorem. According
to Algorithm 1, the evolution of the network state xt =
(x1(t), . . . ,xn(t))> can be described by

xt+1 = Fxt + sH(b+ �) (21)

where F is defined in (13) and satisfies (15).
Define the error between the network state and the Nash

equilibrium as zt := xt�1n⌦a
⇤, whose evolution along (21)

can be described by

zt+1 = Fzt + sH>� ,

yielding

zt = F
t
z0 + s

t�1X

j=0

F
j
H

>� . (22)

Note that kFk  ↵ := max{|↵1|, |↵2|} < 1 by (15) and z0 is
deterministic. Thus, we have Ezt = F

t
z0, which proves that

limt!1 Ezt = 0, and thus limt!1 Exi(t) = a
⇤.

Moreover, by (22), there hold

Ekztk2 = EkFt
z0 + s

Pt�1
j=0 F

j
H

>�k2

= kFt
z0k2 + s2Ek

Pt�1
j=0 F

j
H

>�k2
 ↵2tkz0k2 + 2ns2�2

�h
2
M

1
(1�↵)2 .

Therefore, it can be seen that

lim
t!1

Ekxt � 1na
⇤k2 = lim

t!1
Ekztk2  2ns2�2

�h
2
M

1

(1� ↵)2
.

The proof is completed.

C. Proof of Theorem 3
We proceed the proof of Theorem 3 by deriving the mapping

M from the sensitive dataset (b,G) to the eavesdropped
messages (yt)Tt=0. We first introduce the following evolution
of the messages yi(t) of node i according to Algorithm 2 as

yi(t+ 1) = Mi,t+1(bi,Gi)
:= PA(yi(t))�

P
j2V wij

�
PA(yi(t))� PA(yj(t))

�

�shi

�
h
>
i PA(yi(t))� bi

�
+ ⌫i(t+ 1)

where we denote Gi by the i-th column of G
>, and ⌫i(t +

1) v L(0,�2
⌫In) for t = 0, 1, . . . , T � 1 and i 2 V. Then

we can denote the mapping M =
⇥
M0;M1; · · · ;MT

⇤
with

M0 = y0 and Mt =
⇥
M1,t; · · · ;Mn,t

⇤
for t = 1, . . . , T .

Note that the mapping M0 is deterministic and independent of
(b,G). Correspondingly, for any R ✓ range(M), we denote
R = R0⇥R1⇥ · · ·⇥RT with Rt = R1,t⇥ · · ·⇥Rn,t ✓ Rn2

,
and Ri,t ✓ Rn for i = 1, . . . , n, and t = 0, 1, . . . , T .

Thus for all R ✓ range(M), we have

P
�
M(b,G) 2 R

�

P
�
M0(b,G) 2 R0

�

=
TY

t=1

P (Mt(b,G) 2 Rt|Mt�1(b,G) 2 Rt�1)

=
TY

t=1

nY

i=1

P
�
Mi,t(bi,Gi) 2 Ri,t|yt�1 2 Rt�1

�
.

(23)
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P
�
Mi,t(bi,Gi) 2 Ri,t|yt�1 2 Rt�1

�

=

R
Rt�1

ft�1(y)
R
Ri,t

(2��)�nexp
�
�
��x� gi(y) + shi

�
h
>
i PA(y)� bi

���
1
/�⌫

�
d x d y

P
�
yt�1 2 Rt�1

�


Z

Rt�1

ft�1(y)

Z

Ri,t

(2��)
�nexp

⇣
�
���x� gi(y) + sh0

i

�
h
0
i
>

PA(y)� b0i
����

1
/�⌫

⌘
d x

exp
⇣���shi

�
h
>
i PA(y)� bi

�
� sh0

i

�
h
0
i
>

PA(y)� b0i
����

1
/�⌫

⌘
d y
.
P
�
yt�1 2 Rt�1

�

exp
⇣
s`Akvec(hih

>
i � h

0
ih

0
i
>
)k1/�⌫ + skhibi � h

0
ib

0
ik1/�⌫

⌘
P
�
Mi,t(b

0
i,G

0
i) 2 Ri,t|yt�1 2 Rt�1

�
,

(24)

P
�
M(b,G) 2 R

�


TY

t=1

nY

i=1

exp
⇣
s`Akhih

>
i � h

0
ih

0
i
>k1/�⌫ + skhibi � h

0
ib

0
ik1/�⌫

⌘

P
�
M0(b

0,G0) 2 R0

� TY

t=1

nY

i=1

P
�
Mi,t(b

0
i,G

0
i) 2 Ri,t|yt�1 2 Rt�1

�

=exp

 
nX

i=1

Ts`Akvec(hih
>
i � h

0
ih

0
i
>
)k1/�⌫ +

nX

i=1

Tskhibi � h
0
ib

0
ik1/�⌫

!
P
�
M(b,G0) 2 R

�
.

(25)

Denote by ft(yt) the probability density function of yt for
t = 1, . . . , T , and let gi(y) = PA(y) �

P
j2V wij

�
PA(y) �

PA(y)
�

for i 2 V. Then, for t = 1, . . . , T and any (b0,G0) 2
B⇥G, we have (24), where the first inequality is obtained by
using the triangle inequality, and the second is obtained by using
the triangle inequality again and the fact that kPA(y)k  `A
for all y 2 Rn. Here h

0
i = ei � G

0
i with ei 2 Rn is a unit

vector whose entries are all zero except the i-th being one and
G

0
i is the i-th column of G0>.
By combining the above inequality (24) with (23) and

recalling that M0(·) is independent of G,b, it immediately
follows (25).

Towards this end, it is clear that the proof is completed if
there holds

Pn
i=1 Ts`Akvec(hih

>
i � h

0
ih

0
i
>)k1/�⌫

+
Pn

i=1 Tskhibi � h
0
ib

0
ik1/�⌫  ✏

(26)

for any two µ-adjacent (b,G), (b0,G0) 2 B⇥G.
We now proceed to show (26) and recall that hi = ei �Gi

and h
0
i = ei �G

0
i, which yields

hih
>
i = eie

>
i �Gie

>
i � eiG

>
i +GiG

>
i

h
0
ih

0>
i = eie

>
i �G

0
iei

> � eiG
0
i
> +G

0
iG

0
i
> (27)

Hence, we have
Pn

i=1 kvec(hih
>
i � h

0
ih

0
i
>)k1

=
Pn

i=1 kvec((Gi �G
0
i)G

>
i )� vec((Gi �G

0
i)e

>
i )

�vec(ei(Gi �G
0
i)

>) + vec(G0
i(Gi �G

0
i)

>)k1


Pn
i=1 kvec((Gi �G

0
i)G

>
i )k1 + 2

Pn
i=1 kGi �G

0
ik1

+
Pn

i=1 kvec(G0
i(Gi �G

0
i)

>)k1
 2µ`g + 2µ ,

(28)
and Pn

i=1 khibi � h
0
ib

0
ik1

=
Pn

i=1 k(bi � b0i)ei � (Gibi �G
0
ib

0
i)k1


Pn

i=1 |bi � b0i|+
Pn

i=1 kGibi �G
0
ib

0
ik1


Pn

i=1(1 + `g)|bi � b0i|+
Pn

i=1 kGi �G
0
ik1`b

 max{1 + `g, `b}µ .

(29)

Therefore, there holds
Pn

i=1 Ts`Akvec(hih
>
i � h

0
ih

0
i
>)k1/�⌫

+
Pn

i=1 Tskhibi � h
0
ib

0
ik1/�⌫

 2sTµ`A(`g + 1)/�⌫ + sTµmax{1 + `g, `b}/�⌫

 ✏ .

This proves (26) and thus completes the proof.

D. Proof of Theorem 4
We begin the proof by presenting the evolution of node state

xt under Algorithm 2 as

xt+1 = FPAn(xt + ⌫t) + sHb , (30)

where F and H are given by (13), and ⌫t = [⌫1(t); . . . ;⌫n(t)]
with ⌫0 = 0 and ⌫t v L(0,�2

⌫In2) for t = 1, . . . , T � 1.
Denote the error between the network node state and the Nash
equilibrium as zt := xt � 1n ⌦ a

⇤, which along (30) satisfies

zt+1 = F[PAn(zt + 1n ⌦ a
⇤ + ⌫t)� 1n ⌦ a

⇤] .

Recalling that the set A is a convex compact set and kFk 
↵ := max{|↵1|, |↵2|} < 1 by Lemma 2, we thus have

kzt+1k2  kFk2kPAn(zt + 1n ⌦ a
⇤ + ⌫t)� 1n ⌦ a

⇤k2
 ↵2kzt + ⌫tk2
= ↵2kztk2 + ↵2k⌫tk2 + 2↵2

z
>
t ⌫t .

It then follows that

kztk2  ↵2tkz0k2 +
t�1X

k=0

↵2(t�k)k⌫kk2 + 2
t�1X

k=0

↵2(t�k)
z
>
k ⌫k .

By taking the expectation on both sides of the above inequality,
we can obtain

Ekztk2  ↵2tkz0k2+
t�1X

k=1

↵2(t�k)n2�2
⌫ , t = 0, 1, . . . , T�1 ,

where we have used the facts that zk is independent of ⌫k and
z0, z1 are deterministic.
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P
� bM(b,G) 2 R̂

�

P
� bM(b0,G0) 2 R̂

�  exp

 
1

�

nX

i=1

kH �1(hih
>
i )� H

�1(h0
ih

0
i
>
)k1 +

1

�
khibi � h

0
ib

0
ik1

!

= exp

 
1

�

nX

i=1

kH �1(hih
>
i � h

0
ih

0
i
>
)k1 +

1

�
khibi � h

0
ib

0
ik1

! (31)

Therefore, with � = �2 ln(|↵|), we have

Ekztk2  ↵2tkz0k2 + 2n↵2(1� ↵2(t�1))�2
⌫/(1� ↵2)

 exp
�
� �t

�
kz0k2 + 2n↵2�2

⌫/(1� ↵2) ,

completing the proof.

E. Proof of Theorem 5
Similar to the proof of Theorem 1 in Section 5.1, we will

employ the resilient property of ✏-differential privacy to a
deterministic post-processing. To be precise, we proceed the
proof by firstly representing the mapping M into a composition
of a deterministic mapping and a random mapping, and then
establishing the ✏-differential privacy of the random mapping.

Under Algorithm 3, we can obtain the following form for
the evolution of the observations as

yi(t+ 1) = yi(t)�
P

j2V wij

�
yi(t)� yj(t)

�

�sH � PCi

� bM1,i(bi,Gi)
�
yi(t) + s bM2,i(bi,Gi) .

where we have defined
bM1,i(bi,Gi) := H

�1(hih
>
i ) + ⌘i

bM2,i(bi,Gi) := hibi + !i .
8i 2 V .

Let
bM(b,G) =

"
bM1(b,G)
bM2(b,G)

#

with

bMk(b,G) =

2

4
bMk,1(b1,G1)

· · ·
bMk,n(bn,Gn)

3

5 k = 1, 2 .

It then follows from (V-E) that there exists a deterministic
mapping  : Rn ! Rn2(T+1) such that

�
yt

�T
t=0

:= M(b,G) =  � bM(b,G) .

By [19, Proposition IV.3], M(b,G) achieves an ✏-differential
privacy under µ-adjacency if so does the bM(b,G).

With this in mind, we now proceed to show that the
bM(b,G) is ✏-differentially private. According to [1], given
any two µ-adjacent (b,G), (b0,G0), there holds (31) for all
R̂ ✓ range( bM).

By kH �1(hih
>
i � h

0
ih

0
i
>)k1  kvec(hih

>
i � h

0
ih

0
i
>)k1,

and using (28) and (29), we can further obtain

P
� bM(b,G) 2 R̂

�

 exp
✓
2µ`g + 2µ+max{1 + `g, `b}µ

�

◆
P
� bM(b0,G0) 2 R̂

�

which indicates that bM(b,G) is ✏-differentially private under
µ-adjacency for all � � 2µ(`g+1)+max{1+`g,`b}µ

✏ . This thus
completes the proof by [19, Proposition IV.3].

F. Proof of Lemma 1
For convenience of subsequent analysis, we give the defini-

tions of Ci and K⌘i below

Ci =
n
x 2 Rn(n+1)/2 :

P
j2V xj(j+1)/2 2 [q

i
, q̄i],

H (x)lij = 0, 8j 2 V/{i}
o

K⌘i = H � PCi

�
H

�1(hih
>
i ) + ⌘i

�
, i 2 V .

(32)
Before proceeding to the explicit upper and lower bounds

of K⌘i , we note some properties on the composite mapping
H � PCi . From the definition of Ci and H , it is observed
that H � PCi(x) is a symmetric matrix and has only one
non-zero eigenvalue as Trace

�
H �PCi(x)

�
2 [q

i
, q̄i], for any

x 2 Rn(n+1)/2. Thus, there must exist a vector mi such that
H �PCi(x) = mim

>
i . It is also noted that {li1, . . . , lin} are

linearly independent, which implies that there exist cij such
that mi =

Pn
j=1 cijlij . By (32), we know that mim

>
i lij = 0

for all j 6= i, which yields cij = 0 for all j 6= i using
the equality that l

>
ii lij = 0 for all j 6= i. Namely, we have

mi = ciilij = cii
hi

khik . Hence, there must hold

H � PCi(x) =
Trace

�
H � PCi(x)

�

khik2
hih

>
i . (33)

With this in mind, we are now ready to derive upper and
lower bounds of K⌘i . By (33), we can obtain

Pn
i=1 K⌘i/n

=
Pn

i=1

Trace
�
K⌘i

�

nkhik2 hih
>
i

� min{ q
1

kh1k2 , . . . ,
q
n

khnk2 }
Pn

i=1 hih
>
i /n � ⇢̄mI

where the latter inequality is obtained based on (16). This
proves the lower bound.

We then proceed to show the upper bound, and by (33),
there holds

kK⌘ik  Trace
�
K⌘i

�
 q̄i .

This proves the upper bound with h̄M :=
max{

p
q̄1, . . . ,

p
q̄n}.

G. Proof of Theorem 6
According to Algorithm 3, the evolution of the network node

state xt = (x1(t), . . . ,xn(t))> can be described by

xt+1 = F⌘xt + s(Hb+ !) (34)

where F⌘ = (In � L) ⌦ In � sK⌘ with K⌘ =
diag(K⌘1 , . . . ,K⌘n). It is noted that following the arguments
of Lemma 2 and using Lemma 1, one can easily conclude the
following upper and lower bounds of the stochastic matrix F⌘ .
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Lemma 3. There holds

�I < �↵̄1I  F⌘  ↵̄2I < I . (35)

With this lemma in mind, we express xt as a mapping of the
deterministic initial state x0 and random noises (⌘,!), i.e.,

xt

= F
t
⌘x0 + s

Pt�1
k=0 F

k
⌘(Hb+ !)

= F
t
⌘x0 +

Pt�1
k=0 F

k
⌘(I� F)(1n ⌦ a

⇤) + s
Pt�1

k=0 F
k
⌘!

where F is defined in (13), and to obtain the second equality,
we have used

sHb = sHH
>(1n ⌦ a

⇤) = (I� F)(1n ⌦ a
⇤) .

This then yields

xt � 1n ⌦ a
⇤

= F
t
⌘x0 +

⇣Pt�1
k=0 F

k
⌘(I� F)� I

⌘
(1n ⌦ a

⇤)

+s
Pt�1

k=0 F
k
⌘!

= F
t
⌘x0 +

⇣Pt�1
k=1 F

k
⌘ �

Pt�1
k=0 F

k
⌘F

⌘
(1n ⌦ a

⇤)

+s
Pt�1

k=0 F
k
⌘!

= F
t
⌘[x0 � (1n ⌦ a

⇤)] +
Pt�1

k=0 F
k
⌘(F⌘ � F)(1n ⌦ a

⇤)

+s
Pt�1

k=0 F
k
⌘! .

By (35) and recalling that the set Ci is constructed to be
convex, we have

limt!1 Ekxt � 1n ⌦ a
⇤k2

 n2ka⇤k2

(1�↵̄)2 EkF⌘ � Fk2 + 2ns2�2/(1� ↵̄)2

 s2n2ka⇤k2

(1�↵̄)2 maxi2V{EkH � PCi(H
�1(hih

>
i ) + ⌘i)

�hih
>
i k2}+ 2ns2�2/(1� ↵̄)2

= s2n2ka⇤k2

(1�↵̄)2 maxi2V{EkH
�
PCi(H

�1(hih
>
i ) + ⌘i)

�H
�1(hih

>
i )
�
k2}+ 2ns2�2/(1� ↵̄)2

 2s2�2n4ka⇤k2/(1� ↵̄)2 + 2ns2�2/(1� ↵̄)2

The proof is thus completed.

VI. CONCLUSIONS

We have developed distributed computation algorithms for
Nash equilibrium of quadratic network games with proven
differential privacy guarantees. In such network games, the
underlying social influence structure and the individual marginal
payoffs are subject to privacy concerns since they encode
economic dependencies and preferences. The players inter-
connected by a public communication graph over which
dynamical states are shared among neighboring nodes, were
shown to be able to compute the Nash equilibrium with
differential privacy guarantees. Three algorithms were proposed
for preserving only the privacy of marginal payoffs only,
or the privacy of both the marginal payoffs and the social
influence structure. Their achievable differential privacy level
and convergence properties were systematically established.
Future work includes generalization of the differentially private
Nash equilibrium computing framework to general continuous
network games, and implementation of the results in real-world
applications.
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