Subsumption, Correctness and Relative Correctness:
Implications for Software Testing

Samia AlBlwi!, Imen Marsit?, Besma Khaireddine?, Amani Ayad?*, JiMeng
Loh!. and Ali Milil:{0000—0002—6578—5510}

1: NJIT, NJ, USA, 2: University of Sousse, Tunisia, 8: University of Tunis, Tunisia, 4:
Kean University, NJ, USA
sma225@njit.edu, imen.marsit@gmail.com, besma.khaireddine@gmail.com,
amanayad@kean.edu, loh@njit.edu, mili@njit. edu

Abstract

Context. Several Research areas emerged and have been proceeding inde-
pendently when in fact they have much in common. These include: mutant
subsumption and mutant set minimization; relative correctness and the seman-
tic definition of faults; differentiator sets and their application to test diversity;
generate-and—validate methods of program repair; test suite coverage metrics.
Objective. Highlight their analogies, commonalities and overlaps; explore their
potential for synergy and shared research goals; unify several disparate concepts
around a minimal set of artifacts.

Method. Introduce and analyze a minimal set of concepts that enable us
to model these disparate research efforts, and explore how these models may
enable us to share insights between different research directions, and advance
their respective goals.

Results. Capturing absolute (total and partial) correctness and relative (total
and partial) correctness with a single concept: detector sets. Using the same
concept to quantify the effectiveness of test suites, and prove that the proposed
measure satisfies appealing monotonicity properties. Using the measure of test
suite effectiveness to model mutant set minimization as an optimization prob-
lem, characterized by an objective function and a constraint.

Generalizing the concept of mutant subsumption using the concept of dif-
ferentiator sets. Identifying analogies between detector sets and differentiator
sets, and inferring relationships between subsumption and relative correctness.
Conclusion. This paper does not aim to answer any pressing research question
as much as it aims to raise research questions that use the insights gained from
one research venue to gain a fresh perspective on a related research issue.

Keywords: mutant subsumption; mutant set minimization; relative
correctness; absolute correctness; total correctness; partial correctness;
program fault; program repair; differentiator set; detector set.

Preprint submitted to Elsevier June 29, 202/

1. Introduction: Distinctions and Differences

1.1. Five Research Directions
We consider five active research directions in software engineering:

e In [34, 35] Kurtz et al. introduce the concept of mutant subsumption as a
criterion for eliminating redundant mutants and minimizing mutant sets;
this concepts is subsequently investigated from various angles [22, 50, 53,
37, 30, 28, 34, 55, 49], and tools are proposed to support its use [50].

e In [13] Diallo et al. introduce the concept of relative correctness and
use it to give a semantic definition of a software fault; this concept is
subsequently used by Khaireddine et al. as a basis for modeling program
repair [33, 17], and for quantifying program faultiness [32].

e In [51] Shin et al. introduce the concept of differentiator test as a test
datum that distinguishes a mutant from a base program, and use the
concept to characterize and investigate test diversity in mutation testing;
they also use differentiator tests, accessorily, to define detector tests, which
disprove the correctness of a program with respect to a specification. In
[42], Mili generalizes the concepts of differentiator sets and detector sets
by considering the possibility of program divergence (i.e. failure to ter-
minate normally), by considering non-deterministic specifications, and by
distinguishing between partial correctness and total correctness.

e In [16], Gazzola et al. present a survey of program repair, a discipline that
has garnered a great deal of attention over the past two decades, and has
given rise to a stream of increasingly sophisticated tools.

e One of the most important decisions we make in software testing is the
selection of test data; and one of the most important factors in this decision
is the way in which we define and quantify the effectiveness of test data
sets (aka test suites). Virtually all of the existing measures of test suite
quality equate effectiveness with the test suite’s ability to detect faults
[18, 26, 37, 36, 10, 27, 5, 54, 1, 20, 56, 11], but we argue that there is
a different (and perhaps better) criterion for test suite effectiveness: the
ability to expose program failures.

1.2. Analogies and Overlaps

Even though these directions of research have emerged and evolved indepen-
dently, and were driven by different research goals, they have much in common.
In this paper we highlight the analogies and overlaps between these, and we
explore the potential mutual insights that they offer, as well as the research
questions that they raise. In particular, we show that these research areas can
all be modeled by two simple and related concepts: Detector Set, i.e. the set
of program inputs that disprove the correctness of a program with respect to a
specification; Differentiator Set, i.e. the set of program inputs that disprove the
semantic equivalence of two programs.

e Detector Sets and Correctness. Given a program P and a specification
R, the detector set of P with respect to R is the set of inputs x for
which execution of P on x disproves the correctness of P with respect
to R. Since there are two standards of correctness (partial and total
[21, 40]), we introduce two versions of detector sets: detector sets for
partial correctness, and detector sets for total correctness. Also, we use
detector sets to define two properties: Absolute Correctness, the property
of a program to be correct with respect to a specification, and Relative
Correctness, the property of a program to be more-correct than another
with respect to a specification. This is the subject of section 3.

o Differentiator Sets and Subsumption. Given two programs P and @, the
differentiator set of P and @ is the set of inputs = such that executions
of P and @ on x yield different outcomes. Though it may sound straight-
forward, this definition depends actually on what we consider to be the
outcome of an execution, under what condition we consider that two ex-
ecution outcomes are comparable, and under what condition we consider
that two comparable outcomes are distinct: If a program execution fails to
terminate or aborts due to an illegal operation (e.g. division by zero), do
we consider that it has no outcome or that failure to terminate normally is
itself an outcome? How do we compare outcomes in the presence of such
possibilities? In this paper we introduce three definitions of differentiator
sets, that depend on how we answer these questions; these yield three dif-
ferent definitions of what it means to kill a mutant, hence three different
definitions of mutant subsumption. The possibility of divergence (failure
to terminate, failure to avoid aborts, etc) is all the more important in the
study of mutation testing that several mutation operators are prone to
cause divergence even where the base program excutes normally. This is
the subject of section 4.

e Density of Subsumption Graphs. Using differentiator sets, we can model
mutant subsumption as an inclusion relation between their differentiator
sets. This, in turn, enables us to derive a statistical model that estimates
the probability that any two mutants are in a subsumtion relation by an-
alyzing the probability that two random non-empty subsets of a given set
are in an inclusion relation. This model enables us, in turn, to estimate
the number of arcs in a subsumption graph, as well as the number of mu-
tants that are maximal by subsumption; this number is important because
it represents the size of the minimal mutant set. This is the subject of
section 4.4.

o Subsumption as Relative Correctness. By considering how relative cor-
rectness [43, 13] can be characterized by means of detector sets, and sub-
sumption [34, 35] can be characterized by means of differentiator sets,
we find that these two properties are actually equivalent. This is inter-
esting, given that these properties were introduced independently, albeit
simultaneously (in 2014), and have so far evolved separately. Given that

subsumption is introduced in the context of mutation testing and relative
correctness is introduced to define software faults, this relationship can
be seen through the lens of the ongoing debate on whether mutants are
faithful representatives of faults [5, 4, 48, 29]. This is the subject of section
5

Defining Test Suite Effectiveness. Of all the decisions we make in soft-
wqare testing, none is as consequential as the selection of test data; the
selection of test data is, in turn, profoundly influenced/ determined by the
criteria that we use to assess test suite effectiveness, whence the way in
which we compare candidate test suites. We consider two possible criteria
for assessing the effectiveness of a test suite:

— The ability to detect faults, or

— The ability to expose failures.
The existence of these two criteria raises three questions:

— Are these two criteria equivalent? if not,
— Are these two criteria statistically correlated? if not,

— Is one of them better than the other, for the purposes of test data
selection?

A fourth question may be worth considering: which of these two criteria
are current measures reflecting? In section 6 we discuss the concept of
semantic coverage, which equates the effectiveness of a test suite with its
ability to expose the failures of a program, and analyze its attributes.

Defining Mutant Set Effectiveness. To quantify the effectiveness of a mu-
tant set we start by pondering the question: What is the purpose of a
mutant set? If we postulate that the purpose of a mutant set is to vet
test suites, then the effectiveness of a mutant set can be quantified as a
function of the effectiveness of the test suites that it vets; since we quan-
tify the effectiveness of a test suite by its semantic coverage, we resolve to
quantify the effectiveness of a mutant set by the semantic coverage of the
test suites that it vets. This is the subject of section 7.

Mutant Set Minimization as an Optimization Problem. Subsumption was
introduced as a means to minimize the cardinality of a mutant set [34],
without reducing its effectiveness to vet test suites. Mutant set mini-
mization is essentially an optimization problem; as such, it ought to be
defined by two parameters, namely the objective function to minimize,
and the constraint under which this minimization is attempted. While
the published literature is clear about the objective function (re: the car-
dinality of the mutant set), it does not include an explicit definition of
the optimization constraint. In section 7.2, we use the definition of mu-
tant set effectiveness of section 7 to formulate the constraint of mutant

set minimization as the condition that the minimal mutant set has the
same effectiveness as the original set; we show that removing a subsumed
mutant has no impact on the effectiveness of the mutant set, as defined.

Figure 1 shows an outline of this paper: In section 2 we introduce some el-
ementary relational mathematics that we use in the remainder of the paper.
In section 3 we introduce detector sets and use them to define four correct-
ness properties: absolute partial correctness, absolute total correctness, relative
partial correctness and relative total correctness. In section 4 we introduce
differentiator sets and use them to define three subsumption properties, which
vary according to how we interpret the outcome of a program execution: Ba-
sic subsumption, Strict subsumption, and Broad subsumption. In section 5 we
show that some forms of relative correctness are equivalent to some forms of
subsumption and in section 6 we use detector sets to define a measure of test
suite effectiveness. In section 7 we use the results of sections 4 and 6 to recast
mutant set minimization as an authentic optimization problem: we do so by
presenting its objective function and the constraints under which this objective
function is optimized. In section 8 we summarize our results, critique them, and
discuss future research directions.

2. Relational Mathematics

2.1. Sets

We represent sets by C-like variable declarations; if we define a set S by the
variable declarations:

xType x; yType y;

then S is the cartesian product of the sets of values that the types xType and
yType represent; elements of S are denoted by lower case s, and are referred
to as states. Given an element s of S, we may refer to the x-component (resp.
y-component) of s as z(s) (resp. y(s)). But we may, for the sake of convenience,
refer to the x component of states s, s’, s” (e.g.) simply as z, 2/, ”.

2.2. Operations on Relations

A relation on set S is a subset of the cartesian product S x S; special
relations on set S include the universal relation L = S x S, the identity relation
I ={(s,8')|s € SAs = s} and the empty relation ¢ = {}. Operations on
relations include the set theoretic operations of union (U), intersection (N),

difference(\) and complement (R = L\ R). They also include the product of
two relations, denoted by Ro R’ (or RR/, for short) and defined by

Ro R ={(s,8')|3s” : (s,s") € RA(s",5") € R'}.

The converse of relation R is the relation denoted by R and defined by R =
{(s,s)|(s',s) € R}. The domain of relation R is denoted by dom(R) and defined
by dom(R) = {s|3s’ : (s,s") € R}. The pre-restriction of relation R to set T is
the relation denoted by m\ R = {(s,s")[s € T A (s,5') € R}.

Mathematics

Program Semantics

R

Detector Sets
for Total and Partial
Correctness

Y

Absolute Correctness
and
Relative Correctness

Y
Detector Sets
and
Semantic Coverage

\

Differentiator Sets
for

Mutant Subsumption

Y

Basic, Strict
and Broad

Mutant Subsumption

Subsumption

and

Relative Correctness

Subsumption Graph
Density
Estimation

Mutant Set Minimization

An Optimization Problem

as

Figure 1: Paper Outline

S/

C)

S
Figure 2: R’ refines R: R¥ J R, RC R'.

2.3. Properties of Relations

A relation R is said to be reflexive if and only if I C R; relation R is said to
be symmetric if and only if R = R; relation R is said to be transitive if and only
if RR C R; relation R is said to be asymmetric if and only if RN R = ¢; relation
R is said to be antisymmetric if and only if RN R C I. A relation R is said to be
an equivalence relation if and only if it is reflexive, symmetric and transitive. A
relation R is said to be a partial ordering if and only if it is reflexive, transitive
and antisymmetric. A relation R is said to be a strict partial ordering if and
only if it is transitive and asymmetric.

A relation R is said to be deterministic (or: to be a function) if and only if
RR C I. A relation R is said to be total if and only if RL = L. A relation R
is said to be a wvector if and only if RL = R; a vector V on set S is a relation
of the form V' = A x S for some non-empty subset A of S. We may use vectors
to define pre-restrictions and post-restrictions: Given a relation R and a vector
V = A xS, the pre-restriction of R to A can be written as V' N R and the
post-restriction of R to A can be written RN V. A relation R’ is said to refine
a relation R if and only if

RLNRLN(RUR)=R;

this is denoted by R O R or R C R’. The following Proposition, which we
present without proof, gives an equivalent formulation of refinement.

Proposition 1. Given two relations R and R’ on space S, R’ refines R if and
only if RL C R'L and R" " RL C R.

This proposition shows that our definition of refinement is similar (modulo its
relational formulation) to traditional definitions of refinement which equate re-
finement with having a weaker precondition (RL C R'L) and a stronger post-
condition (RL N R’ C R) [23, 47, 21, 15]. Figure 2 illustrates the property of
refinement.

3. Detector Sets and Correctness

3.1. Program Functions

We can define the semantics of a program by means of a function from an
input space to an output space, or by means of a function from initial states to

final states. For the sake of simplicity, we adopt the latter model, as it enables
us to work with homogeneous relations, without loss of generality. This model
encompasses the case where we want to think of a program as mapping an
input space into an output space: It suffices to add to the state space of the
program a variable that represents the input stream (in the parlance of C++)
and a variable that represents the output stream. Then the mapping that the
program defines from inputs to outputs is simply the set of pairs of the form
(is,0s") where is is the value of the input stream in the initial state, and os’ is
the value of the output stream in the final state. Hence focusing on the (initial
state, final state) model causes no loss of generality.

We consider a program P on space S; execution of P on an initial state s
may terminate in a final state s’ after a finite number of steps; conversely, it
may enter an infinite loop or attempt an illegal operation such as a division by
zero, an array reference out of bounds, reference to a nil pointer, the square root
of a negative number, the log of a non-positive number, etc. When execution
of P on s terminates normally in a final state s’, we say that it converges on s,
else we say that it diverges.

Given a program P on space S, the function of program P, which we also
denote by P, is the set of pairs (s, s’) such that if execution of P starts in state
s, it converges in final state s’. Consequently, the domain of P is the set of
initial states on which execution of P converges.

3.2. Absolute Correctness

Absolute correctness is a property between a program and a specification;
we discuss it in this section. Following decades-old tradition, we distinguish
between two forms of program correctness: total correctness and partial cor-
rectness [40]. A specification on space S is a relation on S. For the sake of our
discusions herein, we consider that programs are deterministic, but specifica-
tions may be non-deterministic. The following definition, due to [46], introduces
absolute total correctness.

Definition 1. Program P on space S is said to be totally correct with respect
to specification R on S if and only if:

dom(R N P) = dom(R).

The domain of (RN P) is called the competence domain of P with respect to R;
it is the set of initial states for which P behaves according to R. Figure 3 shows
a simple example of a (non-deterministic) specification R and two programs P
and P’ such that P is correct with respect to R and P’ is not; the competence
domains of P and P’ are shown by the ovals. Even though it looks different,
this definition is equivalent, modulo differences in notation, with traditional
definitions of total correctness [40, 21, 23]. We present a brief argument to
this effect: Given that dom(R N P) C dom(R) is a set theoretic tautology, the
condition of Definition 1 is equivalent to:
dom(R) C dom(RN P).

P R P’
0 \ 0 0 0 0 0
1 \ 11 1 1
2 \ 2 2 2 2 2
3 3 3 3 3 3
dom(RN P) ={1,2} dom(RN P') = {1}
= dom(R) = P correct # dom(R) = P’ incorrect

Figure 3: Total Correctness

By set theory, this can be interpreted as:
Vs :s € dom(R) = s € dom(RN P).

By Definition of domain, this can be written as:
Vs:s € dom(R)= (I’ : (s,¢') € (RN P).

Since P is deterministic, we can replace s’ by P(s), hence:
Vs :s € dom(R) = s € dom(P) A (s, P(s)) € R.

If we interpret:

e s € dom(R) as: s satisfies the precondition implied by R,
e s € dom(P) as: execution of P on s converges,
e (s,P(s)) € R as: P(s) satisfies the postcondition implied by R,

then we find that this is exactly the traditional definition of total correctness
[40, 21, 15].

The following definition, due to [44], mimics the style of Definition 1, to
define partial correctness.

Definition 2. We say that P is partially correct with respect to R if and only

if:
dom(R N P) = dom(R) N dom(P).

A similar argument to what we offered above can establish that our definition
is equivalent to traditional definitions of partial correctness [25, 15, 40, 21]. See
Figure 4: Program @ is partially correct with respect to R because for any
initial state of dom(R) for which it converges, program) delivers a final state
that satisfies specification R; by contrast, program Q' is not partially correct
with respect to R, even though it terminates normally for all initial states in
dom(R), because it does not satisfy specification R; neither @ nor Q' is totally
correct with respect to R.

Whereas the distinction between partial correctness and total correctness
has been a key feature of the program correctness literature [40, 21, 15, 23],
it has not been given much consideration in software testing. Yet, testing a
program for partial correctness is different from testing it for total correctness,
as we discuss below:

Q
0 0 0 0 0 0
/1 1 11 1
2 2 2 2 2 2
3/3 3 3 3 3

dom(RN Q) = {1} dom(RN Q") = {}
= dom(R) N dom(Q) dom(R) N dom(Q’) = {1, 2}
= @ part. correct = Q' not part. correct

Figure 4: Partial Correctness

e Interpreting Test Outcomes. If we test a program P for correctness with
respect to specification R on some initial state s € dom(R) and P fails
to converge on s, then what conclusion we draw depends on whether we
are testing P for total correctness or for partial correctness. Under total
correctness we conclude that P fails on s; under partial correctness we
conclude that s is a wrong test.

e Test Data Selection. The essence of test data selection is to approximate
an infinite (or prohibitively large) input domain by a finite and small
subset, which serves as a proxy thereof. If we are testing a program P
for total correctness with respect to R, the infinite set we are trying to
approximate is dom(R); for partial correctness, the set we are trying to
approximate is dom(R) N dom(P).

3.8. Detector Sets

Given a program P on space S and a specification R on S, the detector set of
P with respect to R is the set of initial states in S which disprove the correctness
of P with respect to R; given that there are two standards of correctness (partial
and total), we get two versions of detector sets.

Definition 3. Given a program P on space S and a specification R on S,

e The detector set of P with respect to R for total correctness is denoted by
ATOT(R, P) and defined by:
ATOT(R, P) = dom(R) N dom(R N P).

e The detector set of P with respect to R for partial correctness is denoted
by APAR(R, P) and defined by:
APAR(R P) = dom(R) N dom(P) N dom(R N P).

Figure 1 shows in red the detector sets of program P with respect to specification
R as a function of dom(P), dom(R) and dom(R N P). Since total correctness
is a stronger property than partial correctness, it is a harder property to prove,
hence an easier property to disprove: Indeed, the detector set of P for total
correctness is a superset of the detector set of P for partial correctness (because
it is a larger set, it offers more opportunities to disprove total correctness than

10

dom(R)

dom(Rn P) dom(Rn P)

dom(R) n dom(P)

Total Correctness: AT9T(R, P) Partial Correctness: ATAE(R, P)

Table 1: Detector Sets for Total and Partial Correctness

partial correctness). Detector sets are useful and relevant when we discuss
program testing; the simple Propositions below show that they are useful when
we discuss program correctness verification as well.

Proposition 2. Program P is totally correct with respect to specification R if
and only if its detector set with respect to R for total correctness if empty.

Proof. Necessity stems trivially from Definition 1. Sufficiency can be proved
by observing that whenever an intersection of two sets is empty, each set is a
subset of the complement of the other. From dom(R)Ndom(R N P) =), we infer
dom(R) C dom(R N P); this in conjunction with the tautology dom(R N P) C
dom(R), yields that P is totally correct with respect to R. qed

A similar proof yields the following Proposition, which we present without
proof.

Proposition 3. Program P is partially correct with respect to specification R
if and only if its detector set with respect to R for partial correctness if empty.

Of course, if and only if a program is correct, the set of inputs that disprove
its correctness ought to be empty.

3.4. Relative Correctness

Whereas correctness is a property that involves a specification and a pro-
gram, relative correctness involves a specification, say R, and two candidate
programs, say P and P’, and ranks P and P’ according to how close they
are to being correct. The following definition introduces the concept of rela-
tive correctness. Since to be correct means to have an empty detector set (per
Propositions 2 and 3), it is natutal to define relative correctness by means of
inclusion of detector sets; whence the following definitions.

11

Q Q' R P P
0 010 >0 0 » 0 0 0 0 0
1 s 1|1 \ 11 11 s 1 (1 ?: 1
2 \ 2 12 \ 2 2 2 12 \ 212 / 2
3 3 3 3 3 3 3 3 3 3
Preserving Correct Behavior Preserving Correctness
(RNQ)C (RNQ") (dom(RN P) C dom(RN P'))

Figure 5: Relative Total Correctness

Definition 4. Given a specification R on space S and two programs P and P’
on S, we say that P’ is more-totally-correct than P with respect to R if and
only if:

ATOT(R,P/) C ATOT(R,P).

Definition 5. Given a specification R on space S and two programs P and P’
on S, we say that P’ is more-partially-correct than P with respect to R if and
only if:

APAR(R,P/) C APAR(R, P).

Figure 5 illustrates relative total correctness by showing a specification (R)
and two sets of programs: Q' is more-correct than Q with respect to R by virtue
of imitating the correct behavior of Q; P’ is more-correct than P with respect to
R by virtue of a different correct behavior. Relative total correctness culminates
in absolute total correctness in the following sense: a totally correct program is
more-totally-correct than any candidate program. Figure 6 illustrates relative
partial correctness by showing a specification (R) and two sets of programs: @’
is more-partially-correct than) because it is more totally correct than @; by
contrast, P’ is more-partially-correct than P by virtue of diverging more often
(from the standpoint of partial correctness, a program that fails to converge
evades accountability, and is considered partially correct, by default).

Note the following relation between the detector sets of a program P with
respect to a specification R:

APAR(R P) = dom(P) N ATOT (R, P).

From this simple equation, we can readily infer two properties about absolute
correctness and relative correctness:

o Absolute Correctness. If a program P is totally correct with respect to
specification R, then it is necessarily partially correct with respect to R.

e Relative Correctness. A program P’ can be more-partially-correct than
a program P either by being more-totally-correct (hence reducing the
term ATOT(R, P)) or by diverging more widely (hence reducing the term
dom(P)), or both.

12

Q Q' R P P
0 0|0 >0 0 » 0 0 0 0
1 \ 1|1 11 1 (1 \ 11
\ 2 |2 \ 2 2 2 \ 2 /
3 \ 3 3 \ 3 3 3 3 \ 3 3
Q' is more-partially-correct than Q P’ is more-partially-correct than P
by virtue of being more-totally-correct: by virtue of diverging more broadly
APAR(R, Q/) =0 APAR(R7 P’) =0
APAR(R,Q) = {0} APAR(R, P) = {0}

Figure 6: Relative Partial Correctness

p0: {s=pow(s,3)+4;} p4: {s=pow(s,3)+s+1;} p8: {s=pow(s,3)+s*s-4%s+8;}

pl: {s=pow(s,3)+5;} p5: {s=pow(s,3)+s;} p9: {s=2*pow(s,3)-6*s*s+11%*s-3;}
p2: {s=pow(s,3)+6;} p6: {s=pow(s,3)+s*s-5*s+9;} | pl1l0:{s=3*pow(s,3)-12*s*s422%s-9;}
p3: {s=pow(s,3)+s+2;} | p7: {s=pow(s,3)+s*s-83*s+5;} | pll:{s=4*pow(s,3)-18*s*s+33*%s-15;}

Table 2: Candidate Programs for Specification R

To illustrate the partial ordering properties of relative total correctness, we
consider the following specification on space S of integers, defined by

R={(s,8)1<s<3As =s"+3}.

We consider twelve candidate programs, listed in Table 2. Figure 7 shows how
these candidate programs are ordered by relative total correctness; this ordering
stems readily from the inclusion relations between the detector sets of the candi-
date programs with respect to R; the detector sets are given in Table 3, to allow
interested readers to check Figure 7. The green oval shows those candidates
that are absolutely correct, and the orange oval shows candidate programs that
are incorrect; the red oval shows the candidate programs that are least correct
(they violate specification R for every initial state in the domain of R, hence
their detector set is all of dom(R)).

Note that all twelve programs in this example converge for all initial states
in S, hence dom(P;) = S for all P;. Consequently, the detector sets of these
programs for total correctness are identical to their detector sets for partial
correctness; hence their ordering by relative partial correctness is identical to
their ordering by relative total correctness, as shown in Figure 7.

Table 4 summarizes and organizes the definitions of correctness to help con-
trast them. In [43, 14], total relative correctness is defined, not by comparing

p0 [{1,2,3} Tpl [{L23} [[p2 | {1,2,3}
p3 | {2,3} pd | {1,3} || p5 | {1,2}
p6 | {1} p7 | {3} p8 | {2}

P9 | {} plo | {} pll | {}

Table 3: Detector Sets of Candidate Programs for Total (and Partial) Correctness

13

A

>

P104¢—» P9 4«—p-P11
\ PR /'p

N
D6 AN

><‘
p3

A

-

ps

>

-

Figure 7: Ordering Candidate Programs by Relative Total (and Partial) Correctness with

Respect to R

| Partial Correctness

| Total Correctness

Absolute Correctness

P is correct iff:

APAR(R P) =)

ATOT(R, P) =)

Relative Correctness

P’ is more-correct than P iff:

APAR(R, P’) - APAR(R, P)

ATOT(R, P’) - ATOT(R7 P)

Table 4: Definitions of Correctness by Means of Detector Sets

14

detector sets, as we do in Definition 4, but by comparing competence domains.
The following Proposition provides that these definitions are equivalent.

Proposition 4. Given a specification R on space S and two programs P and
P’ on S, P’ is more-totally-correct than P if and only if:

dom(RN P) C dom(RN P').

Proof. Sufficiency can be inferred readily by inverting the inequality (and
complementing both sides) then taking the intersection with dom(R) on both
sides. Necessity can be proved by using the set theoretic identity to the effect
that the two conditions below are equivalent:

ANBCANC, ANCC ANB.

This lemma can be proved by inverting the first inequality, applying DeMorgan’s
laws, then taking the intersection with A on both sides. From the hypothesis:
dom(R) N dom(R N P') C dom(R) N dom(R N P)
we infer (by the lemma above):
dom(R) N dom(R N P) C dom(R) N dom(R N P’),
which we simplify into:
dom(RN P) C dom(RN P’),
since dom(R N P) and dom(R N P’) are both subsets of dom(R). qed

3.5. Detector Sets and Oracles

Given a program P on space S and a specification R on S, we ponder
the question of what test oracle do we use if we want to test program P for
correctness with respect to R. We consider the following framework:

{Stype s, s0; // current state, initial state
read(s); sO=s; // read state, save it in sO
PQO; // modifies s, keeps sO intact
if (not oracle(so,s)) {testfailure(s0);}}

The question we raise is: how should predicate oracle(,) be defined, if we are
interested to test P for correctness with respect to R? Of course, the answer
depends on whether we are talking about partial correctness or total correctness.

Definition 6. Due to Khaireddine et al [33]. Given a program P on space S
and a specification R on S, the oracle for total correctness of Program with

respect to specification R is denoted by QF;%?ICE](S, s') and defined by:

Qa%(?lz] (s,8") = —s € dom(R) V (s,s') € R.

Khaireddine et al. prove in [33] that if and only if Q%;g}% (s, P(s)) returns TRUE
for all elements s in T" then P is totally correct with respect to the pre-restriction
of R to T, \R. The following Proposition links the links the oracle of total
correctness with the detector set of total correctness.

15

Proposition 5. Given a program P on space S and a specification R on S, an
element s of S is in the detector set for total correctness of P with respect to
R if and only if the oracle for total correctness of P with respect to R returns

FALSE for the pair (s, P(s)):
Vs e S:se Al & Qb (s, P(s)).

Proof. This Proposition stems readily from the Definitions:
s € ATOT
[R.P]
& {Definition}
s € dom(R)Ns ¢ dom(RN P)
& {Determinacy of P}
s€ dom(R)Ns [s,P(s)) € R
& {De Morgan}
—(=s € dom(R) V (s, P(s)) € R)
& {Definition}

ﬂﬂg;%?lf](s,P(s)). qged

Notwithstanding the issue of how we determine that a program fails to ter-
minate, we can define the oracle of partial correctness as follows:

Qﬁ{‘}j} (s,58') = s & dom(P) V Q[q;%?lig](s, s).
Then we can easily prove a result analogous to Proposition 5.

Vs e S:se Al & - (s, P(s)).

4. Differentiator Sets and Mutant Subsumption

Whereas in the previous section we discuss detector sets and their relation-
ship to relative correctness, in this section we discuss differentiator sets and
their relationship to mutant subsumption.

4.1. Ezxecution Outcomes

The differentiator set of two programs P and) on space S is the set of ini-
tial states for which execution of P and execution of @ yield distinct outcomes.
Whenever P and @ both converge for some initial state s, then their outcomes
are the final states, P(s) and Q(s) that they yield; determining whether they
have the same outcome amounts to checking P(s) and Q(s) for equality. But
if one or both programs diverge, determining whether they have the same out-
come or different outcomes becomes less clear-cut, more debatable. Given the
possibility of divergence, we must consider the following questions, on which the
definition of differentiator set depends:

16

Space S Program P Mutation | Divergence
i=100; x=0; Failure to
int i, x; while(i!=0) {x=x+1; i=i-1;} i-1 — i+1 | Terminate
int a[100], x; i=0; x=0.0; Array Reference
int i; while (i<100) {x=x+alil;i=i+1;} | < — <= Out of Bounds
int x; x=100; y=0; Division
float y; while (x>0) {y=y+1./x; x=x-1;} > — >= By Zero
cin >> Xx; Illegal
if (x>=0) {y=sqrt(i+x);} Arithmetic
float x,y; else {y=sqrt(1-x);} 1-x — 1+x | Operation

Table 5: Examples of Mutation Operations Causing Divergence

o What is the outcome of a program’s execution? In particular, is divergence
an outcome or the absence of an outcome?

o When are two outcomes comparable? In particular, is divergence compa-
rable to the outcome of a program that converges?

o When are two comparable outcomes identical or distinct? In particular,
is divergence a different outcome from any convergent outcome? Are two
divergent outcomes identical or incomparable?

How we define differentiator sets depends on how we answer these questions.
Though these questions may sound like mundane academic exercises, we argue
that divergence is in fact a common occurrence in mutation testing; indeed
many mutation operators are prone to cause divergence even when the base
program converges; this includes mutation operators that are applied to guards
that programmers routinely include to avoid illegal operations. Table 5 shows
examples of common mutation operators which cause common program patterns
to diverge.

4.2. Differentiator Sets

The differentiator set of two programs P and () on space S is the set of
initial states s such that the execution of programs P and @ on s yields different
outcomes [51, 42]. In light of the foregoing discussions, we adopt three definitions
of differentiator sets, which reflect three sensible interpretations of what it means
for two program executions to yield distinct outcomes.

e Basic Interpretation. We assume that programs P and @ converge for
all initial states in S, and their outcome is their final state. Their basic
differentiator set (which we denote by do(P, @)) is the set of initial states
for which their final states are distinct.

e Strict Interpretation. We do not assume that P and @ converge for all
initial states, but we restrict their differentiator set to those initial states

17

for which they both converge and produce distinct outcomes; we denote
their strict differentiator set by 61 (P, Q).

e Broad Interpretation. We do not assume that P and @) converge for all
initial states, but we restrict their differentiator set to those initial states
for which they both converge and produce distinct outcomes along with
the initial states for which only one of them converges; we assume that
a program that diverges has a different outcome from a program that
converges, regardless of the final state of the latter; we denote the broad
differentiator set by d2(P, Q).

The following definition gives explicit formulas of differentiator sets under the
three interpretations given above. To understand these definitions, it suffices to
note the following;:

e The set of initial states for which program P (resp. Q) convergesis dom(P)
(resp. dom(Q)).

e The set of initial states for which the final states of P and @ are identical
is dom(P N Q).

e The following inequalities hold by set theory:
dom(P N Q) C dom(P) N dom(Q) C dom(P) U dom(Q).

Definition 7. The definition of a differentiator set of two programs P and Q
depends on how we define the outcome of a program, under what condition
we consider that two outcomes are comparable, and under what condition we
consider that two comparable outcomes are identical or distinct.

e The basic differentiator set of two programs P and Q is defined as:

do(P,Q) = dom(P N Q).

e The strict differentiator set of two programs P and Q is defined as:

01 (P, Q) = dom(P) N dom(Q) N dom(P N Q).

e The broad differentiator set of two programs P and Q is defined as:

J2(P, Q) = (dom(P) U dom(Q)) N dom(P N Q).

Figure 8 illustrates the three definitions of differentiator sets (represented in red
in each case). Whenever we want to refer to a differentiator set of programs P
and @ without specifying the interpretation, we use the notation 6(P, Q). Note
that having three different definitions of differentiator sets means that we now
have three distinct definitions of what it means to kill a mutant:

e Test suite T kills mutant M of program P in the basic sense if and only
if: TNog(P, M) # 0.

18

e Test suite T kills mutant M of program P in the strict sense if and only
if: TN6(P, M) # 0.

e Test suite T kills mutant M of program P in the broad sense if and only
if: TNéa(P, M) # 0.

For illustration of differentiator sets under the basic interpretation, we con-
sider space S defined by a single integer variable, and we consider two programs
that converge for all initial states:

P: {s=pow(s,4)+35*s*s+24;}
Q: {s=10*pow(s,3)+50%*s;}

The functions of these programs are:

P =/{(s,8")|s = s* + 3552 + 24}.

Q = {(s,5")|s" = 10s> + 50s}.
Their intersection is:

PNQ=1{(s,s)|s*+ 3552 +24 = 10s® + 505 A s’ = s* + 3552 + 24}.
The domain of their intersection is:

dom(P N Q) = {s|s* + 3552 + 24 = 105> + 50s}.
Solving this equation in the fourth degree, we find:

dom(PN Q) ={s|]l1 <s<4}.
Taking the complement, we find:

do(P, Q) = dom(P,Q) = {s|s <1Vs >4}
For illustration of differentiator sets under the strict and broad interpretation,
we consider the following programs P and @ on space S defined by an integer
variable s, where abort () is a program that diverges for any execution, such as
{int x=1/0.;} or {while (true) {}}

P: {if (s<0) {abort();}

else {s=pow(s,4)+35*s*s+24;}}
Q: {if (s>5) {abort();}

else {s=10*pow(s,3)+50%*s;}}

Note that P fails to converge for all s less than zero (since it enters an infinite
loop) and @ fails to converge for all s greater than 5 (for the same reason). The
functions of these programs are:
P={(s,8)]s >0NAs =s*+355% + 24}.
Q={(s,8)|s <5As =108+ 50s}.
From these definitions, we compute the following parameters:
dom(P) = {s|s > 0}.
dom(Q) = {s|s < 5}.
PNQ={(s5)0<s<5As*+355%+24 = 105> + 50s A s’ = 105> + 50s}.
dom(PN Q) = {s]0 < s <5As*+ 3552+ 24 = 10s> + 50s}.
By solving the equation (s* + 35s% + 24 = 10s® + 50s), we find:
dom(PN Q) ={s|]l1 <s<4}.
Whence:
(P, Q) ={0,5}.
02(P,Q) = {s]s <0V s> 5}
Interpretation:

19

dom(P N Q)

dom(P N Q)

dom(P) n dom(Q)

dom(P)

(50(P7 Q) o1 (P7 Q)

dom(P N Q)

dom(P) U dom(Q)

52(P7 Q)

Figure 8: Three Definitions of Differentiator Sets (shown in red)

e Strict Differentiator Set. The set of initial states that expose the difference
between P and @ is {0, 5} because the interval [0..5] includes all the initial
states where both P and @ are defined (dom(P)Ndom(Q)), and programs
P and @ return the same results for initial states in the interval [1..4]
(dom(PNQ)).

e Broad Differentiator Set. Any initial state outside the interval [1..4] ex-
poses the difference between P and @), either because they both converge
but give different results (for initial states 0 and 5) or because one of them
converges while the other diverges (for s greater than 5, P converges but
Q@ does not; for s negative, () converges but P does not).

As further illustration of differentiator sets, we consider the space S defined
by a single variable s of type integer, and we consider the following programs:

P {s=pou(s,5)+pow(s,4)+9; }.

Q@ {s=2*pow(s,5)+pow(s,4)-5*pow(s,3)+4*s+9; }.

20

Assuming perfect arithmetic, these two programs are total on space S; their
competence domain is:
dom(P N Q)
= {substitutions}
{s]s® +s* +9 =25 +s* — 55 + 45+ 9}
= {simplification}
{s]s® — 55 +4s =0}
= {factoring}
{sls(s =1)(s —=2)(s+1)(s +2) =0}
= {simplification}
{-2,-1,0,1,2}.
Hence the basic differentiator set of P and @ is:

do(P,Q) = {sls < —-2Vvs>2}

See Figure 9 for illustration.
To illustrate strict and broad differentiator sets, we consider non-total ver-
sions of P and Q:

P’ {if (s<-10 || s>5) {abort();}
else {s=pow(s,5)+pow(s,4)+9;}}.

Q' {if (s<-5 || s>10) {abort();}
else{s=2xpow(s,5)+pow(s,4)-5*pow(s,3)+4*s+9; }}.

The functions of these programs are given as:
P ={(5,8)-10<s<5As =35 +5* 49},

Q ={(s,8)| -5 <s<10As =25 +s* — 55> +4s + 9}.

The domain of the intersection of these two functions is the same as that of P
and @, namely:
dom(P'NQ") ={-2,-1,0,1,2}.

On the other hand,
dom(P") N dom(Q") = {s| —5 < s <5},
dom(P") U dom(Q") = {s| — 10 < s < 10},
From this, we can derive easily:
61 (Pla QI) = {_57 _47 _37 37 47 5}7

52(P/a Ql) = {_10) _9) _8) _75 _65 _57 _45 _37 37 45 5) 6) 77 87 9) 10}

We leave it to the reader to check that these are indeed the sets of initial states
for which programs P’ and @’ have distinct outcomes for the selected definitions
of outcomes and outcome comparisons. Figure 10 helps in this analysis.

21

3o (P, Q)

dom(Q)
dom(P)
-00 -10 -5-4-3-2-101 2 3 45 10 o
Figure 9: Basic differentiator Set for P and @
51 (P/? Q’)
52(P/?Q,)
dom(Q")
dom(P")
-15 -10 -5-4-3-2-1012 345 10 15

Figure 10: Strict and Broad differentiator Sets for P’ and Q'

4.8. Differentiator Sets and Mutant Subsumption

In [34, 35] Kurtz et al. define mutant subsumption as follows: Given a
program P and two mutants thereof M and M', we say that M’ subsumes M
(in the sense of true subsumption) with respect to P if and only if:

P1 There exists a test s such that P and M' compute different outcomes on
s.

P2 For every possible test on P, if M’ computes a different outcome from P,
then so does M.

The following Proposition formulates the condition of true subsumption in
terms of basic differentiator sets.

Proposition 6. Given a program P on space S and two mutants M and M’
on S, such that P, M and M’ converge for all s in S, M’ subsumes M with
respect to P in the sense of true subsumption if and only if:

0 C 6o(P,M") C 8o(P, M).

Proof. We prove in turn that P1 is equivalent to § C do(P, M’) and that P2 is
equivalent to 6g(P, M') C éo(P, M). We use the simple lemma that the set of
states for which two functions F' and G produce the same outcome (F'(s) = G(s))
is dom(F N G).
P1 is interpreted as:

ds: P(s) # M'(s)
< {Interpretation}

0 C {sIP(s) £ M'(s)}
< {Set theory}

22

0 C {s|P(s) = M'(s)}
< {Lemma above}
0 C dom(PN M)
< {Definition of dp}
0c 50(P, M/).
P2 is interpreted as:
Vs: P(s) # M'(s) = P(s) # M(s)
< {Set theory}
{8IP(5) £ M'(3)} {sIP(s) £ M(s)}
< {Inverting the inclusion}
{s|P(s) = M(s)} € {s|P(s) = M'(s)}
< {Lemma above}
dom(P N M) C dom(PNM')
< {Definition of dp}
50(P,M’)§50(P,M) qed

This Proposition provides that the original ([34, 35]) definition of true sub-
sumption can be defined by means of basic differentiator sets; but this definition
applies only if the base program and its mutants converge for all initial states.
If we want to make provisions for the possibility that the base program (P) and
its mutants (M, M’) may diverge, we can use strict differentiator sets and broad
differentiator sets. Whence the following definitions.

Definition 8. Given a program P on space S and mutants M and M' of P,
we say that mutant M’ subsumes mutant M in the sense of basic subsumption
if and only if:

0 C do(P,M") C 6o(P, M).

Definition 9. Given a program P on space S and mutants M and M’ of P,
we say that mutant M’ subsumes mutant M in the sense of strict subsumption
if and only if:

0 C (P, M) Co(P,M).

Definition 10. Given a program P on space S and mutants M and M’ of P,
we say that mutant M’ subsumes mutant M in the sense of broad subsumption
if and only if:

0 C 6o(P, M) C 53(P, M).

Of course, having three different definitions of mutant subsumption may
lead to three different subsumption graphs, whence potentially three different
minimal mutant sets.

In [34, 35], Kurtz et al. introduce dynamic subsumption as follows: Given a
program P, a test suite T and two mutants of P, M and M’, we say that M’
dynamically subsumes M with respect to P for test suite T if and only if:

D1 There exists a test ¢ in 7" such that P and M’ compute different outcomes
on t.

23

D2 For every possible test ¢ in T, if M’ computes a different outcome from
P, then so does M.

We argue that once we admit the possibility that programs and mutants may
diverge for some inputs, then there is really no difference between true subsump-
tion and dynamic subsumption: dynamic subsumption with respect to program
P and test data T is the same as subsumption with respect to the program
whose function is 7\ P, the pre-restriction of P to T
if (s in T) {P;} else {abort();}.

Given the possibility for programs to define partial (rather than total) func-
tions, dynamic (i.e. test suite dependent) mutant subsumption is reducile to
strict subsumption of the program pre-restricted to the test suite.

4.4. Subsumption Graph Topology

Modeling mutant subsumption by an inclusion relationship between differ-
entiator sets opens an opportunity that was hitherto unavailable: Assuming
that the differentiator sets of mutants are statistically independent, we can es-
timate the probability that two mutants are in a subsumption relationship by
computing the probability that two random non-empty subsets of a set are in
an inclusion relationship. This probability can, in turn be used to estimate the
number of arcs in a subsumption graph, and can be used to estimate the num-
ber of maximal nodes in the subsumption graph, all without having to draw
the graph. estimating the number of maximal nodes in a subsumption graph is
important in practice, because it enables us to determine whether the effort of
building the subsumption graph is even worthwhile: If we find that the number
of maximal nodes is not much smaller than the total number of mutants, then
the whole subsumption exercise may be futile.

If subsumption is judged by observing the behavior of mutants on a test
suite T, then all the differentiator sets are by construction subsets of T'. Given
a set T and K non-empty subsets thereof (which represent, for our puposes,
the differentiator sets of K mutants), we ponder the question: what is the
probability that any two subsets among K are in an inclusion relationship?
This represents, for our purposes, the probability that two mutants are in a
subsumption relation. Let D be the random variable that takes its values in
subsets of T'. The probability that D takes any particular value E is given by

the inverse of the number of non-empty subsets of T
1

The probability that D takes the value of a subset of size n is:
T
n

2T —1°

Given a subset F of size n, the probability that another subset E’ is a subset
of F is:

prob(|D| =n) =

2" —1
/ —
pTOb(E g E) = ﬁ,

24

where the numerator is the number of subsets of F and the denominator is the
total number of subsets of T'. The probability that two subsets E and E’ of T
are in a subset relation is:

prob(E' C E)
= {conditional probability}

S n_y prob(E' C E| |E| = n) x prob(|E| = n)
= {substitutions}

]

n=12T_1 X ~9T—1
= {simplification}

n_ T
S (h)

n

= {factorization}

T onf T
i xSl (1)

T

_ 1 T
1z < D=1 n

= {highlighting the binomial formula}
T
(2T1—1)2 X Yopeg 20 x 1770 (>

n
T T
_(2T+1)2X2n—1(>

n
= {simplifying}
3T 2T
eT-12 — @T-1D)*"
For large (or even moderate) values of T', this can be approximated by (2)7.
Under the assumption of statistical independence cited above, the expected
number of arcs in a subsumption graph of K nodes can be approximated by:

3
(Z)T x K(K —1).
In practice, even with moderate values of T', this expected number is very small.
Using the probability estimate p = %T, we can estimate the probability that
any subset of 7" is maximal: A given subset is maximal if and only if all (K —1)
other subsets are not supersets there of; hence,
3
prob(maximality) = (1 — (Z)T)Kfl.
Whence we derive the expected number of maximal mutants in a subsumption
(/ relative correctness) graph that stems from K mutants and a test suite of
size T': 5
KEx(1—(H5
4
When we consider published subsumption graphs [34, 35, 22, 37, 50, 53,
55], we find that they have far more arcs than our estimates, and far fewer

25

maximal mutants than our estimates; this may be due to our assumption of
statistical independence of differentiator sets. Hence this matter is left for future
investigation; if the differentiator sets of the mutants of a base program are not
statistically independent, then it is very intriguing to elucidate what statistical
relationship represents their dependence.

5. Relative Correctness and Subsumption

So far we have used detector sets to define (partial and total) correctness, and
we have used differentiator sets to define (basic, strict, and broad) subsumption.
In this section we present two simple Propositions that relate correctness and
subsumption.

Proposition 7. We consider a program P on space S and two mutants M and
M’ such that P, M and M’ converge for all states in S. Then M’ subsumes M
in the sense of basic subsumption if and only if M’ is more-totally-correct than
M with respect to (the function of) P, and M’ is not (absolutely) totally correct
with respect to (the function of) P.

Proof. Since P converges for all s in S, dom(P) = S. Hence the detector set
of M and M’ for total correctness with respect to the function of P (viewed as
a specification) is:

dom(P) N dom(P N M) =5SnNdom(PNM)= dom(PNM).
This is the same as the basic differentiator set of P and M. The two clauses of
the basic subsumption relation of M’ over M with respect to P can be written
as (once we replace differentiator sets by the corresponding detector sets):

P1 § c ATOT(P, M"), which according to Proposition 2 is equivalent to: M’
is not (absolutely) totally correct with respect to (the function of) P.

P2 ATOT(p, M') C ATOT(P, M), which according to Definition 4 is equiva-
lent to: M’ is more-totally-correct than M with respect to (the function
of) P.

qed

This Proposition means that the subsumption graphs seen in [34, 35, 22,
50, 53, 37, 28, 34, 55], represent essentially the same relation as the graphs
of relative correctness seen in [12, 13, 32, 31]; the only meaningful/interesting
difference is that, while in relative correctness we are interested in the top of
the graph, which represents the absolutely correct programs, in subsumption we
are interested in the layer immediately below the absolutely correct programs,
which represents the maximally stubborn mutants [57].

Proposition 8. We consider a program P on space S and two mutants M and
M' of P. Then M’ subsumes M in the sense of strict subsumption if and only
if M' is more-partially-correct than M with respect to (the function of) P, and
M’ is not (absolutely) partially correct with respect to (the function of) P.

26

mO0: {s=pow(s,3)+4;} m4: {s=pow(s,3)+s+1;} m8: {s=pow(s,3)+s*s-4%s48;}

ml: {s=pow(s,3)+5;} mb5: {s=pow(s,3)+s;} m9: {s=2*pow(s,3)-6*s*s+11%*s-3;}
m2: {s=pow(s,3)+6;} m6: {s=pow(s,3)+s*s-5%s+9;} | ml10:{s=3*pow(s,3)-12*s*s422%s-9;}
m3: {s=pow(s,3)+s+2;} | m7: {s=pow(s,3)+s*s-3*s+5;} | mll:{s=4*pow(s,3)-18%s*s|33%s-15;}

Table 6: Mutants of Program P

Proof. If and only if M’ subsumes M in the strict sense with respect to P, we
can write:

0 C o1 (P, M) C 6 (P, M).
Interestingly, the strict differentiator set of P and M is the same as the detector
set of M with respect to (the function) of P for partial correctness. We rewrite
this condition as:

0 c APAR(P M) C APAR(P M).
According to Proposition 3, the first inequation is equivalent to: M’ is not
partially correct with respect to (the function of) P. According to Definition
5, the second inequation is equivalent to: M’ is more-partially-correct than M
with respect to (the function of) P. qed

For illustration, we consider the following program P on space .S defined as
the set of integers:
p: {if ((s<1) || (s>3)) {abort();}
else {s=3+s*s*s;}}
The function of this program is:

P={(5,8)1<s<3Ans =s>+3}.

This is the same relation as specification R presented in section 3.4, though
we change its name from R (a specification used as a reference for relative
correctness) to P (a program used as a reference for mutant subsumption). Also,
for mutants of P, we take the programs that we used in section 3.4, though we
rename them as (m0, m1, m2, ..., m11), listed in Table 6, and we rank them by
subsumption with respect to P. These programs are not derived from P by
any known mutation operator we know of, but we use them for the purpose of
illustration.

Since program P does not converge for all s, we cannot use basic subsump-
tion; we will use strict subsumption instead. Table 7 shows the strict differ-
entiator set of each mutant with respect to P, and Figure 11 shows the strict
subsumption graph of the mutants m0, m1, m2, ... m11 with respect to program
P. Not surprinsingly, this is the exact same graph as that of Figure 7, except
for the different names (mi vs pi). In Figure 11 we highlight (in blue) the maxi-
mally subsuming mutants; they are the most (relatively) correct among mutants
that are not absolutely correct. Their strict differentiator sets are singletons.
Whereas relative correctness is based on comparing detector sets, subsumption
is based on comparing differentiator sets.

27

m0
m3
m6
m9

1,2,3]
{2,3}
{1}

{

ml
m4
m7
ml0

1,2,3}
{1,3}
{3}

{

m2
mbd
ms
mll

1,2,3}
{1,2}
{2}

{

mloe———»M9t——»IN11

A

A

Cm

)

my
A

m] ~———p=11 () P11

7 me m.
ms3 m,

A

5

Table 7: Strict Differentiator Sets of Mutants

Figure 11: Ordering Mutants by Subsumption with respect to P

28

6. Test Suite Effectiveness

6.1. Defining Effectiveness

The effectiveness of an artifact can only be defined in reference to a purpose
of the artifact, and must reflect the artifact’s fitness to the declared purpose.
Hence before we discuss how to quantify the effectiveness of a test suite, we
must agree on what is the purpose of a test suite. We propose the following
axiom:

Axiom 1. Given a program P on space S and a specification R on S, the pur-
pose of a test suite T (a subset of S) is:

e To expose the failures of P with respect to R if P 1is incorrect with respect
to R, or

e To gives us confidence in the correctness of P with respect to R, if P is
correct.

These two clauses are logically equivalent, since what gives us confidence in the
correctness of P if it passes the test T' successfully is the assurance that if P
were incorrect, test suite T" would have revealed its incorrectness by exposing
its failures.

Whereas, according to this axiom, the purpose of a test suite is to expose
program failures, most metrics in use nowadays to assess the effectiveness of a
test suite are focused on another attribute: the ability to detect faults [39, 38,
24,19, 6, 52, 9, 41]. Indeed, metrics used nowadays to quantify the effectiveness
of test suites can be divided into two broad categories:

e Syntactic Coverage. This family of metrics reflects the extent to which a
test suite exercises syntactic features of the program’s source code (state-
ments, branches, conditions, lines, paths, etc). The rationale for syntactic
coverage is that in order to detect a fault, we need to exercise the code
that contains it.

e Mutation Coverage. Mutation coverage reflects the ability of a test suite to
distinguish the base program from mutants thereof obtained by applying
small mutations to its source code. The rationale for mutation coverage is
that mutants are faithful proxies of faults [5, 4, 48, 29], hence the ability
to kill mutants can be used as an indicator of a test suite’s ability to detect
faults.

Exercising all the syntactic features of a program is neither necessary nor suf-
ficient to detect all the faults in a program. It is not sufficient since the same
faulty feature may be sensitized for some inputs, and not sentizied for other in-
puts; hence the same fault can go undetected at testing time but cause failures
in field usage. Also, exercising all the syntactic features of a program is not nec-
essary either, since strictly speaking only faulty features need to be exercised,
to expose all the faults of a program.

29

While mutation coverage is usually a better measure of test suite effectiveness
and is sometimes used as a reference in analyzing other measures [6, 26], it has
issues of its own:

e The same mutation score means vastly different things depending on
whether the surviving mutants are equivalent to the base program (in
which case the effectiveness of the test suite is not in question) or not.

e The same mutation score means vastly different things depending on
whether the killed mutants are semantically equivalent to each other (in
which case the test suite has just killed several times the same mutants)
or are semantically distinct (in which case the test suite has killed that
many distinct mutants).

e Whereas the mutation score of a test suite is usually considered as an
attribute of the test suite and the program under test, we find in empirical
experiments that the mutation score of the same test suite varies widely
depending on the mutation operators that are used to generate mutants

[2].

Hence before we can interpret or assign a meaning to the mutation score of a
test suite, we must consider the following questions: Are the surviving mutants
semantically equivalent to the base program or distinct? Are the killed mutants
semantically equivalent to each other or distinct? To what extent is the muta-
tion score dependent on the mutation operators? Such questions challenge the
validity of the mutation score as an accurate measure of test suite effectiveness.

All the quantitative metrics of test suite effectiveness, whether they are
based on syntactic or semantic criteria, have another flaw in common: they
define a total ordering on what is essentially a partially ordered set. Indeed, if
we measure test suite effectiveness by a number, then any two test suites can
be compared, even when they are not actually ordered (none can be considered
to be better than the other); two test suites that detect distinct sets of faults or
disjoint sets of faults are not comparable (we have no basis for considering that
one is better than the other), yet if their effectiveness is measured by numbers,
we will always find one to have a greater (or equal) effectiveness than the other.
Modeling a partial ordering relation by means of a total ordering relation will
necessarily yield a loss of precision.

6.2. Detecting Faults vs. Exposing Failures
There are two ways to quantify the effectiveness of a test suite:
e By equating effectiveness with the ability to detect faults, or

e By equating effectiveness with the ability to expose failures.

There is no one-to-one correspondence between failures and faults: the same
failure can be attributed to more than one fault or set of faults. Hence while
failures are observable, certifiable effects (whether program P runs correctly on

30

input s with respect to specification R can be checked by oracle Qf’;gg] ()), faults
are hypothetical, speculative causes to the observed effects; Avizienis et al. [7]
define a fault as the adjudged or hypothesized cause of an error. Hence it is safe
to argue that detecting faults and exposing failures are distinct capabilities: a
test suite may be good at one and not the other. An empirical study by Ayad
et al. [8] finds that these two capabilities have low statistical correlation. This
bears out a long standing recognition that faults are not created equal: some
cause failures at a much higher rate than others [45].

While we argue in the previous section that most existing measures of test
suite effectiveness appear to equate effectiveness with the ability to detect faults,
we propose in section 6.5 a measure (under the name semantic coverage) that
equates effetiveness with the ability to expose failures. Prior to introducing this
metric, we discuss in sections 6.3 and 6.4 the requirements that a measure of
test suite effectiveness ought to satisfy, then the design principles that we adopt
in the design of this metric. In section 6.6 we prove that semantic coverage
satisfies all the criteria listed in section 6.3.

6.3. Requirements on Test Suite Effectiveness

We consider a program P on space S and a relation R on S; we let T be
a subset of S and we want to define the semantic coverage of T to reflect the
effectiveness of T to expose possible failures of P with respect to R. As such,
semantic coverage depends on four parameters: T, P, R and the standard of
correctness with respect to which correctness is tested. The four requirements
below mandate how we want semantic coverage to vary according to each of the
following parameters.

e Monotonicity with Respect to T. Of course, we want the effectiveness of a
test suite to be monotonic with respect to set inclusion: If T is a subset
of T”, then the effectiveness of T ought to be less than or equal that of 7.

e Monotonicity with respect to the specification. If specification R is refined
by specification R’, this means that R’ imposes stiffer requirements on
candidate programs than R; hence it is more difficult to test a program
for correctness with respect to R’ than with respect to R. Consequently,
the same test suite 7" ought to have a smaller measure of effectiveness
against R’ than against R.

e Monotonicity with respect to the program. If program P’ is more-correct
than program P with respect to specification R, then P’ has fewer failures
for a test suite T to expose than does P. Hence a test suite T ought to
have a higher measure of effectiveness for P’ than for P.

o Monotonicity with respect to the standard of correctness. Total correctness
of a program P with respect to a specification R is a stronger property
than partial correctness; hence it is a more difficult property to test a
program against. Therefore, the same test suite 7" ought to have lower
semantic coverage for total correctness than for partial correctness, given
the same program and specification.

31

6.4. Design Principles
We resolve to adopt the following design principles as we define semantic
coverage:

o Focus on Failure. Given that a failure is an observable effect and a fault is
the hypothesized cause of the observed effect, it is clearly better to anchor
our definition in failures.

e Partial Ordering. It is easy to imagine two test suites whose effectiveness
cannot be ranked, i.e. we cannot say that one of them is better than the
other: for example, they reveal disjoint or distinct sets of failures; hence
test suite effectiveness is essentially a partial ordering. Consequently, we
resolve to define semantic coverage, not as a number, but as an element of
a partially ordered set; our goal is to ensure that whenever the semantic
coverage of some test suite T is superior to that of T, it is because T is
better (in some sense) than T”.

o Analytical Validation. There are ample reasons why we could not envisage
an empirical validation of semantic coverage, some of which are: we know
of no measure of test suite effectiveness that can be considered as ground
truth; whereas all coverage metrics we know of take numeric values, seman-
tic coverage is an element of a partially ordered set, hence precluding any
statistical analysis; whereas existing coverage metrics focus on faults and
fault detection, semantic coverage is based on failures; whereas existing
coverage metrics depend exclusively on the program and test suite, seman-
tic coverage depends also on the specification and standard of correctness,
hence precluding meaningful comparison.

Consequently, we validate semantic coverage analytically, by showing that
it meets the monotonicity conditions discussed in section 6.3.

6.5. Semantic Coverage

Given that the declared purpose of a test suite if to expose the failures of
an incorrect program (Axiom 1) and given that the detector set of program P
with respect to a specification R includes all the inputs that expose the failures
of P with respect to R, an ideal test suite is any superset of the detector set.
This condition can be formulated as:

A(R,P)C T,

where A(R, P) is a stand-in for APAR(R, P) or ATOT(R, P), depending on
whether we are testing P for partial or total correctness. Now that we know
what characterizes an ideal test suite, we introduce a measure that reflects to
what extent a random (not necessarily ideal) test suite differs from an ideal test
suite. The elements that preclude a test suite T' from being a superset of A(R, P)
are the elements of A(R, P) that are outside T'; the fewer such elements, the
better the test suite. The set of these elements is T N A(R, P); since we want a
quantity that increases (rather than decreases) with the quality of a test suite,
we take the complement of this expression. Whence the following definition.

32

Definition 11. Given a program P and a specification R on space S, the se-
mantic coverage of test suite T for program P with respect to specification R is
denoted by T'r p(T) and defined by:

Trp(T)=TUA(R,P).

Definition 11 represents, in effect, two distinct definitions, depending on whether
we are interested to test P for partial correctnes or total correctness:

e Partial Correctness. The semantic coverage of test suite T for program P
relative to partial correctness with respect to specification R is denoted
by Fﬁ{‘g] (T) and defined by:

I3 5/(T) = T U APAR(R, P),

e Total Correctness. The semantic coverage of test suite T' for program P
relative to total correctness with respect to specification R is denoted by
1"[:'1;05] (T') and defined by:

r@?g](T) =T UATOT(R, P),

To gain an intuitive feel for this formula, consider under what condition it is
minimal (the empty set) and under what condition it is maximal (set S in its
entirety).

e I'p p(T) = (. The semantic coverage of a test T for program P with
respect to specification R is empty if and only if T is empty and the
complement of the detector set of P with respect to R is empty; in such
a case the detector set of P with respect to R is all of S. In other words,
even though any element of S exposes the incorrectness of P with respect
to R, T does not reveal that P is incorrect since it is empty. This is clearly
characteristic of a useless test suite.

e I'p p(T) = S. If the union of two sets equals S, the complement of each
set is a subset of the other set. Whence: A(R, P) C T', which is precisely
how we characterize ideal test suites. As a special case, if P is correct
with respect to R, then, according to Propositions 2 and 3, the semantic
coverage of any test suite T" with respect to P and R is S. If there are no
failures to expose, then any test suite will have maximal semantic coverage.

See Figure 12; the semantic coverage of test suite T" for program P with respect
to specification R is the area colored (both shades of) green. The (partially
hidden) red rectangle represents the detector set of P with respect to R; the
dark green area represents the complement of this set, i.e. in fact all the test
data that need not be exercised; the light green area represents test suite T
The semantic coverage of T is the union of the area that need not be tested
(dark green) with the area that is actually tested (light green). Test suite T is
as good as the red area is small.

33

Figure 12: Semantic Coverage of Test T for Program P with respect to R (shades of green)

6.6. Analytical Validation

In this section we revisit the requirements put forth in section 6.3 and prove
that the formula of semantic coverage proposed above does satisfy all these
requirements.

6.6.1. Monotonicity with Respect to the Test Suite

Definition 11 clearly provides that the semantic coverage of a test suite T'
is monotonic with respect to T. Note that in practice we are also interested in
minimizing the size of T', but that is an efficiency concern, not an effectiveness
concern.

6.6.2. Monotonicity with Respect to Relative Correctness
The effectiveness of a test suite increases as the program under test grows
more (totally or partially) correct.

Proposition 9. Given a specification R on space S and two programs P and
P’ on S, and a subset T of S. If P’ is more-totally-correct than P with respect
to R then:
o o

EOR (1) 2 D),
Proof. By hypothesis, and according to Definition 4, we have:

ATOT(R, Pl) C ATOT(R, P).
By taking the complement on both sides, inverting the inequality, and taking
the union with T" on both sides, we obtain the result sought. qed

Proposition 10. Given a specification R on space S and two programs P and
P’ on S, and a subset T of S. If P’ is more-partially-correct than P with respect
to R then:

LiE B, (T) 2 DIEE(D).

34

Proof. By hypothesis, and according to Definition 5, we have:

APAR(R,P') C APAR(R,P).
By taking the complement on both sides, inverting the inequality, and taking
the union with 7" on both sides, we obtain the result sought. qed

6.6.3. Monotonicity with Respect to Refinement

A test suite T' grows more effective as the specification against which we
are testing the program grows less-refined; this is true whether we are test-
ing for total correctness and for partial correctness, as shown in the next two
Propositions.

Proposition 11. Given a program P on space S and two specifications R and
R on S, and a subset T of S. If R’ refines R then:
E0(T) € TAOA ()
Proof. It suffices to prove ATOT(R' P) D ATOT(R, P), i.e.:
dom(R) \ dom(RN P) C dom(R’') \ dom(R' N P).
Since dom(R) C dom(R’) (by hypothesis R’ J R), it suffices to prove:
dom(R) \ dom(RN P) C dom(R) \ dom(R' N P).
We rewrite \ using intersection and complement:
dom(R) N dom(R N P) C dom(R) N dom(R' N P).
We complement both sides, invert the inequality:
dom(R) U dom(R' N P) C dom(R) U dom(R N P).
Taking the intersection with dom(R) on both sides and simplifying, we get:
dom(R) N dom(R' N P) C dom(R) N dom(R N P).
Let s be an element of dom(R) N dom(R' N P); then (s, P(s)) is by definition
an element of RL N R’; by the second clause of Proposition 1, (s, P(s)) is an
element of R; since it is also by construction an element of P, it is an element
of (RN P). Whence,
ATOT(R, P) - ATOT(R/,P).
By complementing both sides of the inequation, inverting it, then taking the
union with 7" on both sides, we find:

PEOT () € DTOL(T). qed

Proposition 12. Given a program P on space S and two specifications R and
R on S, and a subset T of S. If R’ refines R then:

Lirip(T) S TR A (D).
Proof. In the proof of the previous proposition, we have found that if R’ refines
R, then

ATOT(R, P) - ATOT(R/,P).
By taking the intersection with dom(P) on both sires, we find

APAR(R,P) C APAR(R/,P).
By complementing both sides of the inequation, inverting it, then taking the

35

union with 7" on both sides, we find:

I‘ﬁ%‘}f}] (T) C I‘ﬁégl (T). qed

6.6.4. Monotonicity with Respect to the Standard of Correctness
A test suite T is more effective for testing partial correctness than for testing
total correctness.

Proposition 13. Given a program P on space S, a specification R on S, and
test suite T (subset of S), the semantic coverage of T for partial correctness of
P with respect to R is greater than or equal to the semantic coverage for total
correctness of P with respect to R.

Proof. By definition of detector sets, we have:
APAR(R P) C ATOT(R, P).
By complementing both sides and inverting the inequality, we find:
APAR(R P) D ATOT(R P).
By taking the union with 7" on both sides, we find the result sought. qed

7. Mutant Set Minimization

Mutant subsumption has been introduced as a way to minimize the cardi-
nality of a mutant set, on the grounds that a subsumed mutant can be removed
from a mutant set without affecting its effectiveness. We argue that at its core,
mutant set minimization is an optimization problem; yet to the best of our un-
derstanding it has not been cast as such in the published literature. Indeed,
an optimization problem ought to be defined by two parameters, namely: The
objective function to minimize, and the constraint under which the objective
function is minimized. Whereas the objective function of mutant set minimiza-
tion is clear (the cardinality of the mutant set), the constraint under which
this function is minimized had not been defined explicitly in the literature. Of
course, the implicit assumption is that we are minimizing the cardinality of the
mutant set while preserving its effectiveness, but this raises the question: How
do we define or quantify the effectiveness of a mutant set?

The effectiveness of an artifact must be defined with respect to the purpose
of the artifact, and must reflect the artifact’s fitness for that purpose; hence
the first question we must consider is: what is the purpose of a mutant set?
If we consider that the purpose of a set of mutants is to vet test suites, then
the quality of a mutant set can be assessed as a function of the quality of the
test suites that it vets. This, in turn, raises the question: What does it mean
for a mutant set to vet a test suite? We consider that a mutant set p vets a
test suite T if and only if T kills every mutant in yx, and no subset of T does
(i.e. whenever we remove an element of T, at least one mutant in p survives);
see Figure 13. Given that the same mutant set may vet several test suites, we
must ponder the question: How do we aggregate the quality of all the test suites

36

Ty

T

=3
e
- U U Y

DA U

Figure 13: Test Suites {T;} Vetted by a Mutant Sety = {M,}

vetted by a mutant set p into a synthetic quality metric of the whole set? This
is the subject of the next section.

7.1. Mutant Set Effectiveness

We resolve to quantify the effectiveness of a mutant set through the semantic
coverage of the test suites that it vets. We denote by 0(u) the set of minimal
test suites vetted by mutant set u:

O(p) ={TVM € p: TN6(P,M) # 0}

N

{TVT' CT,3M € u:T'N6(P,M) = (}.
Figure 13 illustrates the relation of orthogonality between the differentiator
sets and test suites, and helps follow the subsequent discussions. We want to
characterize the effectiveness of mutant set 1 as an aggregate of the semantic
coverage of the elements of (u). Since the test suites vetted by a mutant
set may have different levels of semantic coverage, we resolve to capture the
effectiveness of a mutant set by a lower bound and an upper bound, as follows:

Definition 12. Mutant Set Effectiveness.

e Assured Effectiveness, na(p). This is a lower bound of the semantic cov-
erage of all the test suites vetted by p.

na(p) = ﬂ Trp(T).
Teb(n)

e Potential Effectiveness, np(u). This is an upper bound of the semantic
coverage of all the test suites vetted by . It represents the potential se-
mantic coverage of a test suite that is vetted by p.

ne(n) = |J Tre(D)

Te0(p)

37

It stems from this definition that the semantic coverage of any test suite that is
vetted by u is bounded by the assured effectiveness and the potential effective-
ness of u.

VT € 0(p) : na(p) € T(T) € np(p)-

The following Proposition stems readily from the definition of semantic coverage.

Proposition 14. Given a program P on space S and a specification R on S,
we let p be a set of mutants of P, then the assured effectiveness of u can be
written as:

na(p) =AR,P)U () T
Te0(p)

Also, the potential effectiveness of i can be written as:

ne(p) = AR P)U |J T
Te0(p)

Proof. This proposition stems readily from the fact that A(R, P) is indepen-
dent of T', hence can be factored out of the effectiveness formulas. qed

7.2. Mutant Set Minimization as An Optimization Problem

The following Proposition provides that removing a subsumed mutant in a
mutant set preserves its potential effectiveness.

Proposition 15. Let p be a set of mutants of program P and let ' be p' =
pU{M'} for some mutant M’ that is subsumed by some mutant M of p. Then
i and p' have the same potential effectiveness.

Proof. According to Proposition 14, it suffices to prove that

Ur= U r

Te0(p) Teb(n)

Since p’ is a superset of u, 8(u') is a subset of 8(u) (since the test suites of 6(u')
have more test to kill). Therefore

U rc J 1

Teo () Teb(n)

To prove the reverse inclusion, we consider an element t of UTee() T'; there
exists a test suite T' in 6(u) that contains ¢. This test suite has a non-empty
intersection with the detector sets of all elements of u, including with §(P, M);
since 6(P, M) C §(P,M’), T has a non-empty intersection with §(P, M), hence
with the detector sets of all the elements of u/. We infer that ¢ is an element of
Ureagu) - qed

38

We have not proven that removing a subsumed mutant preserves the assured
effectiveness of a mutant set, nor have we found a counter-example; this matter
is under investigation.

Given that subsumption favors mutants whose detector sets are smallest
without being empty, we would expect that it lends a special importance to
mutants whose detector sets are singletons; this is confirmed by the following
Proposition.

Proposition 16. Let p be a set of mutants of a program P on space S and
let R be a specification on S. Let g be the set of mutants in p whose detector
set is a singleton and let Ty be the union of all the detector sets in po. Then
the semantic coverage of Ty with respect to P and R is a subset of the assured
effectiveness of u with respect to R.

Proof. The semantic coverage of Tj is, by definition, 'r p(Tp) = To UA(R, P).
Any test suite that kills all the mutants in p kills all the mutants in g, hence
is a superset of Ty, since for all M in pg, To N 6(P, M) # 0 is equivalent to
To D §(P, M). Since Ty is a subset of any test suite that kills all the mutants in
i, it is necessarily a subset of their intersection. Whence we infer:

Trp(To) € (| TUA(R,P)=na(p).
Teb(n)

qed

We can see a confirmation of this Proposition in the example below, where
To is 6(P,M0O)U §(P,M1) ={0,1}.

7.3. Summary Illustration

We let space S be defined by S = {0,1,2,3,4,5} and we consider a (fic-
titious) program P and specification R such that the detector set of P with
respect to R is:

A(R,P)=1{0,1,2,3}.

Since the detector set of this program is not empty, this program is incorrect;
testing it on any element of this set exposes its incorrectness. Also, we consider
the set of mutants yu = {MO0, M1, M2, M3} whose differentiator sets with re-
spect to P are, respectively:

6(P,MO0) = {0}.

6(P,M1) ={1}.

0(P,M2) = {2,4}.

o(P,M3) ={3,5}.

The following test suites kill all the mutants in p, hence are elements of 6(pu):

T1={0,1,2,3}.
T2 ={0,1,2,5}.
T3 ={0,1,4,3}.
T4 ={0,1,4,5}.

39

The assured effectiveness of mutant set u is:
na(n) =T1NT2NT3NT4U{0,1,2,3}
={0,1}u{0,1,2,3}
={0,1,4,5}.
The potential effectiveness of mutant set y is:
np(p) =T1UT2UT3UT4U{0,1,2,3}
={0,1,2,3,4,5}U{0,1,2,3}
=5

Interpretation: Though program P fails for four tests ({0,1,2,3}) a test suite
that is vetted by mutant set p is assured to reveal only two of these failures:
{0,1}. But mutant set p has the potential to reveal all the failures of program
P, if only we are lucky to pick the right test suite among those that are vetted
by w. If we select test suite T'1, then we reveal all the failures of program P; in
fact the semantic coverage of T'1 is all of S. But T4 is also vetted by u, yet it
reveals only two failures of P with respect to R: {0, 1}.

7.4. Mutant Set Minimization as an Optimization Problem

We conclude this section by formulating the minimization of mutant sets
as an optimization problem, including an objective function and a constraint
under which the objective function is minimized.

Mutant Set Minimization: Given a mutant set u, find a mutant set px that

e minimizes |y * |,
e under the constraints:

— wx C p.
— np(px) = np(p).

8. Conclusion

8.1. Summary

The main contributions of this paper can be summarized as follows:

e Detector Sets and Correctness. The detector set of a program with respect
to a specification is the set of inputs that disprove the correctness of the
program with respect to the specification. Since there are two definitions
of correctness (partial, total), we have two definitions of detector sets:

Detector Set for Detector Set for
Partial Correctness Total Correctness
AFPAR(R, P) = ATOT(R, P) =
dom(R) N dom(P) N dom(RN P) | dom(R) N dom(RN P)

We use detector sets to characterize absolute correctness and relative cor-
rectness:

40

— Absolute Correctness: A program P is absolutely correct (in the sense
of partial correctness or total correctness) with respect to R if and
only if the correspnding detector set is empty:

P correct with respect to R if and only if: A(R, P) = (.

— Relative Correctness. A program P’ is more-correct-than a program
P (in the sense of partial or total correctness) with respect to R if
and only if the detector set of P’ is a subset of the detector set of P:

P’ more-correct than P if and only if: A(R, P") C A(R, P’).

[Correctness Type | Partial Correctness | Total Correctness |
Absolute Correctness APAR(R P) ATOT(R P)
P is correct wrt R =0 =0
Relative Correctness APAR(R7 P ATOT(R7 P
P’ is more-correct than P | € <
with respect to R APAR(R P) ATOT(R, P)

e Differentiator Sets and Subsumption. The differentiator set of two pro-
gram P and @ is the set of inputs that expose their different behavior.
Taking into account the possibility that one or both programs may diverge,
we consider three possible definitions of differentiator sets:

Basic Strict Broad
Differentiator Set | Differentiator Set Differentiator set
6O(P,Q): 61(P7Q): 62(P7Q):
m dom(P) N dom(Q) (dom(P) U dom(Q))
Ndom(P N Q) Ndom(P N Q)

We use detector sets to generalize the concept of mutant subsumption by
taking into account the possibility that the base program or its mutants
diverge for some input: Mutant M’ subsumes mutant M with respect to
base program P if and only if:

hco(P,M") C6(P,M),
where §(P, M) stands in for the basic, strict or broad differentiator set of
P and M, depending on the interpretation we choose.

| Interpretation | M’ subsumes M with respect to P iff: |
Basic Subsumption | 0 C §o(P, M") C 6o(P, M)
Strict Subsumption | 0 C §1(P, M’) C 61 (P, M)
Broad Subsumption | 0 C §2(P, M’) C 62(P, M)

o Subsumption as Relative Correctness. Given that the detector set of par-
tial correctness has the same definition as the strict differentiator set, we
find that mutant M’ subsumes mutant M with respect to program P in
the sense of strict subsumption if and only if:

41

— Mutant M’ is not partially correct with respect to (the function of)
P.

— Mutant M’ is more-partially-correct than mutant M with respect to
(the function of) P,

e Semantic Coverage. Given a program P, a specification R, a test suite
T, and a standard of correctness (partial or total correctness), the se-
mantic coverage of T' to test program P against specification R for the
selected (partial or total) standard of correctness is denoted by I'r, p(T)
and defined as:

FR)p(T) =TU A(R, P),

where A(R, P) is the detector set of (partial or total) correctness of pro-
gram P with respect to specification R. Semantic coverage depends on four
parameters, and is monotonic with respect to each one of them: We find
that it increases when 7" increases (with respect to set inclusion), when R
becomes less refined (easier to satisfy), when P grows more-correct with
respect to R, and when we transition from total correctness to partial
correctness.

o Mutant Set Effectiveness. We postulate that the purpose of a mutant set
is to vet test suites, and we quantify the effectiveness of a mutant set by
the semantic coverage of the test suites that the mutant set vets. Given
that different vetted test suites may have different levels of semantic cov-
erage, we aggregate these by means of two metrics: assured effectiveness
and potential effectiveness, which represent, a lower bound and an upper
bound, respectively, of the semantic coverage of vetted test suites.

o Mutant Set Minimization as an Optimization Problem. We model the
problem of mutant set minimization as an optimization problem, where
the objective function is the cardinality of the mutant set and the con-
straint under which the minimization is attempted is the presevation of
the potential effectiveness. We prove that removal of a subsumed mutant
from a mutant set does preserve the set’s potential effectiveness.

8.2. Assessment and Critique: Practical Implications

In this section we briefly discuss the practical implications of the main results
of this paper.

e Detector Sets as a Basis for Modeling Correctness. Detector sets can
be used to model absolute total correctness, absolute partial correctness,
relative total correctness and relative partial correctness; they do so in
simple, uniform formulas. Relative correctness can, in turn, be used to
define (and reason about) faults, elementary faults, fault density, fault
depth, and fault removal, with applications in program repair [33]. In [33]
Khaireddine et al. argue that to repair a program does not neccessarily
mean to make it absolutely correct; it only means to make it more-correct

42

than it is. They use the definition of relative correctness to derive an or-
acle for relative correctness, and show empirically that when they replace
the test for absolute correctness by a test for relative correctness in exist-
ing program repair tools, they achieve better precision, better recall, and
higher performance than the original version of the tools.

e Detector Sets as a Basis for Defining Semantic Coverage. One of the
most important decisions we make in software testing is the choice of test
suites, and one of the most important factors in choosing test suites is the
criterion that we use to compare test suites. In this paper we argue that
test suite effectiveness can be quantified by equating it with the ability to
detect faults, or by equating it with the ability to expose failures, and we
observe that most existing metrics for test suite effectiveness are based on
the former criterion. Also, we propose a measure of test suite effectiveness
that equates effetiveness with the ability to expose failures, and argue that
exposing failure is the very purpose of a test suite (per Axiom 1).

o Differentiator Sets as a Basis for Modeling Subsumption. The original
definition of mutant subsumption is based on comparing the outcomes of
the execution of the base program and its mutants on selected inputs. This
definition assumes implicitly that program outcomes are always defined,
and can always be compared; but in practice neither of these assumptions
is legitimate. When a program execution diverges, it is not clear whether
we consider that the execution has no outcome or that divergence is itself
an outcome; also, when we execute two programs and one of them or both
of them diverge, it is unclear whether we consider the outcomes to be
comparable, and under what condition we consider them to be identical
or distinct. This is all the more important in mutation testing that several
mutation operators are prone to cause mutants to diverge even when the
original program converges.

In this paper we discuss three definitions of differentiator sets, which differ
by the way in which they define execution outcomes, the condition under
which they consider outcomes to be comparables, and the condition un-
der which they consider comparable outcomes to be identical or distinct.
These three definitions yield, in turn, three definitions of subsumption:
basic sumsumption, strict subsumption, and broad subsumption [3].

e Relative Correctness and Subsumption. Highlighting the analogy between
(strict) subsumption and relative (partial) correctness is interesting, be-
cause it enables researchers to share results and insights across two areas
of research that have proceeded concurrently but independently. Given
that subsumption was introduced to analyze program mutations and rel-
ative correctness was introduced to analyze program faults, this analogy
can be viewed as part of the ongoing discussion of the relationship between
mutations and faults [5, 4, 48, 29].

o Subsumption Graphs. Modeling subsumption as an inclusion relationship

43

between (differentiator) sets offers an opportunity to reason about the
shape of a subsumption graph without actually drawing it: We can ap-
ply statistical methods to estimate the number of arcs in the graph, and
the number of maximal nodes in the graph. Given K mutants My, Ms,
... My of some program P, we consider their differentiator sets 6(P, M),
§(P, Ms), ... §(P, M), which are all subsets of test suite T', and we ponder
the questions: what is the probability that any two non-empty differen-
tiator sets are in an inclusion relation? what is the estimated (mean)
number of such relationships? what is the estimated (mean) number of
differentiator sets that are maximal by inclusion? The answers to these
questions are useful in practice, as they enable us to predict the shape of
the subsumption graph, and in fact whether it is worthwhile to build the
graph at all (if the number of maximal mutants is not much smaller than
the total number of mutants, it may not be worthwhile).

8.3. Threats to Validity

In theory, it is possible to estimate the probability that two random subsets
of a set T are in a subset relation; applying this probability to differentiator sets
of mutants, we can estimate the number of arcs in a subsumption graph and the
number of maximal mutants in such a graph. When we apply this statistical
analysis to published subsumption graphs [34, 35, 22, 50, 53, 37, 30, 28, 34,
55, 49], we find that our estimate is much lower than reality. This seems to
shed doubt on our modeling assumption to the effect that differentiator sets of
mutants are statistically independent. If the differentiator sets of the mutants
of a given program are not statistically independent, then elucidating their
statistical relationships is certainly a very worthwhile research goal, and an
intriguing question.

Also, the formulas of mutant set effectiveness are based on a hierarchy of
modeling decisions pertaining to detector sets, semantic coverage, assured ef-
fectiveness, and potential effectiveness, each of which adds a layer of threats to
validity. These ought to be validated with analytical and empirical investiga-
tions.

Acknowledgements

The authors are very grateful to the anonymous reviewers for their care-
ful, thoughtful evaluation and their insightful feedback. This work is par-
tially support by the US National Science Foundation throught grant number
DGE2043104.

References

[1] Aaltonen, K., Thantola, P., Seppala, O., 10 2010. Mutation analysis vs. code
coverage in automated assessment of students’ testing skills. In: Companion
to the 25th Annual ACM SIGPLAN Conference on OOPSLA. Reno, NV,
pp- 153-160.

44

2]

[10]

[11]

[13]

[14]

AlBlwi, S., Ayad, A., Mili, A., April 2024. Mutation coverage is not strongly
correlated with mutation coverage. In: Proceedings, IEEE Conference on
Automated Software Testing. Lisbon, Portugal.

AlBlwi, S., Marsit, 1., Khaireddine, B., Ayad, A., Loh, J., Mili, A., July
2022. Generalized mutant subsumption. In: Proceedings, ICSOFT 2022.
Lisbon, Portugal.

Andrews, J., Briand, L., Labiche, Y., 01 2005. Is mutation an appropriate
tool for testing experiments? pp. 402—411.

Andrews, J., Briand, L., Labiche, Y., Siami Namin, A., 09 2006. Using
mutation analysis for assessing and comparing testing coverage criteria.
Software Engineering, IEEE Transactions on 32, 608—624.

Andrews, J. H., Briand, L. C., Labiche, Y., Namin, A. S., 2006. Using
mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32 (8), 608-624.

Avizienis, A., Laprie, J. C., Randell, B., Landwehr, C. E., 2004. Basic
concepts and taxonomy of dependable and secure computing. IEEE Trans-
actions on Dependable and Secure Computing 1 (1), 11-33.

Ayad, A., AlBlwi, S., Mili, A., 2024. Detecting faults vs. revealing failures:
Exploring the missing link. In: Proceedings, QRS 2024: 24th International
Conference on Software Quality, Reliability, and Security. Cambridge, UK.

Ball, T., 2004. A theory of predicate-complete test coverage and gener-
ation. In: International Symposium on Formal Methods for Components
and Objects. Springer, pp. 1-22.

Brinksma, E.; Stoelinga, M., Briones, L. B., 2006. A semantic version for
test coverage. Tech. rep., University of Twente.

Chen, T. Y., Kuo, F. C., Lu, H., Poon, P. L., Towey, D., Tse, T., Zhou,
Z. Q., 2018. Metamorphic testing: Challenges and opportunities. ACM
Computing Surveys 51 (1), 1-27.

Desharnais, J., Diallo, N., Ghardallou, W., Frias, M. F., Jaoua, A., Mili,
A., September 2015. Relational mathematics for relative correctness. In:
RAMICS, 2015. Vol. 9348 of LNCS. Springer Verlag, Braga, Portugal, pp.
191-208.

Diallo, N., Ghardallou, W., Mili, A., May 20-22 2015. Correctness and rel-
ative correctness. In: Proceedings, 37th International Conference on Soft-
ware Engineering, NIER track. Firenze, Italy.

Diallo, N.,; Ghardallou, W., Mili, A., June 2015. Program derivation by
correctness enhancements. In: Refinement 2015. Oslo, Norway.

45

[15]
[16]

[17]

Dijkstra, E., 1976. A Discipline of Programming. Prentice Hall.

Gazzola, L., Micucci, D., Mariani, L., January 2019. Automatic software
repair: A survey. IEEE Trans. on Soft. Eng. 45 (1).

Ghardallou, W., Diallo, N., Mili, A., Frias, M., April 2016. Debugging with-
out testing. In: Proceedings, International Conference on Software Testing.
Chicago, IL.

Gladisch, C., Nov 2008. Verification-based test case generation for full fea-
sible branch coverage. In: Software Engineering and Formal Methods, 2008.
SEFM ’08. Sixth IEEE International Conference on. pp. 159-168.

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A., Mari-
nov, D., 2015. Guidelines for coverage-based comparisons of non-adequate
test suites. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24 (4), 1-33.

Gopinath, R., Jensen, C., Groce, A., 05 2014. Code coverage for suite
evaluation by developers.

Gries, D., 1981. The Science of Programming. Springer Verlag.

Guimaraes, M. A., Fernandes, L., Riberio, M., d’Amorim, M., Gheyi, R.,
2020. Optimizing mutation testing by discovering dynamic mutant sub-
sumption relations. In: Proceedings, 13th International Conference on Soft-
ware Testing, Validation and Verification.

Hehner, E., 1993. A Practical Theory of Programming. Springer-Verlag.

Hemmati, H., 2015. How effective are code coverage criteria? In: 2015
IEEE International Conference on Software Quality, Reliability and Secu-
rity. IEEE, pp. 151-156.

Hoare, C., Oct. 1969. An axiomatic basis for computer programming. Com-
munications of the ACM 12 (10), 576-583.

Inozemtseva, L., Holmes, R., 2014. Coverage is not strongly correlated with
test suite effectiveness. In: Procedings, 36th International Conference on
Software Engineering. ACM Press.

Inozemtseva, L., Holmes, R., 05 2014. Coverage is not strongly correlated
with test suite effectiveness.

Jia, Y., Harman, M., September 2008. Constructing subtle faults using
higher order mutation testing. In: Proceedings, Eighth IEEE International
Working Conference on Software Code Analysis and Manipulation. Beijing,
China, pp. 249-258.

46

[29]

Just, R., Jalali, D., Inozemtseva, L., Ernst, M., Holmes, R., Fraser, G.,
2014. Are mutants a valid substitute for real faults in software testing? In:
Proceedings, FSE.

Kaufman, S., Featherman, R., Alvin, J., Kurtz, B., Ammann, P., Just, R.,
May 2022. Prioritizing mutants to guide mutation testing. In: Proceedings,
ICSE 2022. Pittsburgh, PA.

Khaireddine, B., Martinez, M., Mili, A., April 2019. Program repair at
arbitrary fault depth. In: Proceedings, ICST 2019. Xi’An, China.

Khaireddine, B., Mili, A., May 2021. Quantifying faultiness: What does
it mean to have n faults? In: Proceedings, FormaliSE 2021, ICSE 2021
colocated conference.

Khaireddine, B., Zakharchenko, A., Martinez, M., Mili, A., March 2023.
Toward a theory of program repair. Acta Informatica 60, 209-255.

Kurtz, B., Amman, P., Delamaro, M., Offutt, J., Deng, L., 2014. Mu-
tant subsumption graphs. In: Proceedings, 7th International Conference
on Software Testing, Validation and Verification Workshops.

Kurtz, B., Ammann, P., Offutt, J., 2015. Static analysis of mutant sub-
sumption. In: Proceedings, IEEE 8th International Conference on Software
Testing, Verification and Validation Workshops.

Li, N., Praphamontripong, U., Offutt, J., 05 2009. An experimental com-
parison of four unit test criteria: Mutation, edge-pair, all-uses and prime
path coverage. In: IEEE International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW 2009. pp. 220 — 229.

Li, X., Wang, Y., Lin, H., 2017. Coverage based dynamic mutant subsump-
tion graph. In: Proceedings, International Conference on Mathematics,
Modeling and Simulation Technologies and Applications.

Lingampally, R., Gupta, A., Jalote, P., 2007. A multipurpose code coverage
tool for java. In: 2007 40th Annual Hawaii International Conference on
System Sciences (HICSS’07). IEEE, pp. 261b—261b.

Lyu, M. R., Horgan, J., London, S., 1994. A coverage analysis tool for the
effectiveness of software testing. IEEE transactions on reliability 43 (4),
527-535.

Manna, Z., 1974. A Mathematical Theory of Computation. McGraw-Hill.
Mathur, A. P., 2014. Foundations of Software Testing. Pearson.

Mili, A., 2021. Differentiators and detectors. Information Processing Letters
169.

47

[43]

[44]

[45]

Mili, A., Frias, M., Jaoua, A., 2014. On faults and faulty programs. In:
Hoefner, P., Jipsen, P., Kahl, W., Mueller, M. E. (Eds.), Proceedings,
RAMICS 2014. Vol. 8428 of LNCS. pp. 191-207.

Mili, A., Tchier, F., 2015. Software Testing: Operations and Concepts.
John Wiley and Sons.

Mills, H., Dyer, M., Linger, R., 1987. Cleanroom software engineering.
IEEE Software 4 (5), 19-25.

Mills, H. D., Basili, V. R., Gannon, J. D., Hamlet, D. R., 1986. Structured
Programming: A Mathematical Approach. Allyn and Bacon, Boston, Ma.

Morgan, C. C., 1998. Programming from Specifications, Second Edition.
International Series in Computer Sciences. Prentice Hall, London, UK.

Namin, A. S., Kakarla, S., 2011. The use of mutation in testing experiments
and its sensitivity to external threats. In: Proceedings, ISSTA.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y. L., Harman, M.,
2019. Mutation testing advances: An analysis and survey. In: Advances in
Computers.

Parsai, A., Demeyer, S., September 4-5 2017. Dynamic mutant subsump-
tion analysis using littledarwin. In: Proceedings, A-TEST 2017. Paderborn,
Germany.

Shin, D., Yoo, S., Bae, D.-H., October 2018. A theoretical and empirical
study of diversity-aware mutation adequancy criterion. IEEE TSE 44 (10).

Someoliayi, K. E., Jalali, S., Mahdieh, M., Mirian-Hosseinabadi, S.-H.,
2019. Program state coverage: a test coverage metric based on executed
program states. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, pp. 584-588.

Souza, B., December 2020. Identifying mutation subsumption relations.
In: Proceedings, IEEE / ACM International Conference on Automated
Software Engineering. pp. 1388-1390.

Tengeri, D., Vidacs, L., Beszedes, A., Jasz, J., Balogh, G., Vancsics, B.,
Gyimothy, T., 04 2016. Relating code coverage, mutation score and test
suite reducibility to defect density. In: Proceedings, 2016 IEEE 9th In-
ternational Conference on Software Testing, Verification and Validation
Workshops. pp. 174-179.

Tenorio, M. C., Lopes, R. V. V., Fechina, J., Marinho, T., Costa, E., 2019.
Subsumption in mutation testing: An automated model based on genetic
algorithm. In: Proceedings, 16th International Conference on Information
Technology —New Generations. Springer Verlag.

48

[66] Wei, y., Meyer, B., Oriol, M., 01 2010. Is branch coverage a good measure
of testing effectiveness? Vol. 7007. pp. 194-212.

[57] Yao, X., Harman, M., Jia, Y., 2014. A study of equivalent and stubborn
mutation operators using human analysis of equivalence. In: Proceedings,
ICSE.

49

	Introduction: Distinctions and Differences
	Five Research Directions
	Analogies and Overlaps

	Relational Mathematics
	Sets
	Operations on Relations
	Properties of Relations

	Detector Sets and Correctness
	Program Functions
	Absolute Correctness
	Detector Sets
	Relative Correctness
	Detector Sets and Oracles

	Differentiator Sets and Mutant Subsumption
	Execution Outcomes
	Differentiator Sets
	Differentiator Sets and Mutant Subsumption
	Subsumption Graph Topology

	Relative Correctness and Subsumption
	Test Suite Effectiveness
	Defining Effectiveness
	Detecting Faults vs. Exposing Failures
	Requirements on Test Suite Effectiveness
	Design Principles
	Semantic Coverage
	Analytical Validation
	Monotonicity with Respect to the Test Suite
	Monotonicity with Respect to Relative Correctness
	Monotonicity with Respect to Refinement
	Monotonicity with Respect to the Standard of Correctness

	Mutant Set Minimization
	Mutant Set Effectiveness
	Mutant Set Minimization as An Optimization Problem
	Summary Illustration
	Mutant Set Minimization as an Optimization Problem

	Conclusion
	Summary
	Assessment and Critique: Practical Implications
	Threats to Validity

