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ABSTRACT

In this paper, we describe the experimental test-bed we are de-
veloping to evaluate the efficacy of computation offloading for
cooperative inference without in-depth architectural changes to
the models under consideration. We describe our test-bed design,
functionalities, and work in progress features. We demonstrate a
simple use case of the test-bed, consisting of the identification of
a split layer in an AlexNet for a particular hardware scenario and
the validation of those results.
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1 INTRODUCTION

Computation offloading is the “task of sending computation inten-
sive application components to a remote server" [1]. Computation
offloading from edge devices to cloud ensures that energy is not
excessively consumed and more powerful processors (on the cloud
server) are used in the computation. This is especially important
when one is performing intensive inference tasks using complex
prediction models (e.g., neural network) with a deep architecture.
The main challenge in computation offloading is the communication
latency between an edge device and the cloud server.
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The experimental test-bed described in this paper takes hints
from similar efforts such as “AloTBench” by Luo et. al [9], and aims
to facilitate the evaluation of computation offloading approaches
for deep neural network (DNN) models for cooperative inference
without underlying custom implementations of the models in evalu-
ation. It is our objective to be able to apply computational offloading
to pretrained models and to models normally not executable on
edge devices due to resource (e.g., power, storage, etc) constraints
by the use of this test-bed.

In Section 2, we describe computational offloading strategies
for cooperative inference. Section 3 describes in detail the test-
bed design, functionalities, and work in progress. In Section 4, we
demonstrate a simple use case of the test-bed. Finally, we describe
extension to the test-bed and future work in Section 5.

2 COMPUTATIONAL OFFLOADING FOR
COOPERATIVE INFERENCE

One main step in the offloading process is the division of the task
into offloadable and non-offloadable partitions such that the non-
offloadable part is on an edge device and the offloadable is on the
cloud server. With a deep learning prediction model the intuitive
approach is to divide the inference computation of the deep learning
model architecture at a layer which is easy to transfer to a cloud
server. Of the total layer sequence, k, with n layers and split point
Je, the early portion of the DNN, layers [1,j.) will be computed on
the edge device. The later portion, layers [j, n] will be computed
at the cloud server, typically including the final prediction mapping.
For such an offloading process, the inference accuracy (compared
to inference without computation offloading) is minimally affected
by changes in the environment, but there is no loss of information
due to encoding or compression.

Kang et. al[7] first proposed “Neurosurgeon” that identifies the
split in DNN model to minimize total latency or energy consump-
tion. Recent development of such offloading approach can be found
in [12]. A subdivision of these splits is the application of artificial
bottlenecks into models that do not present natural bottlenecks[11],
such as ResNet [5], though encoders or quantization[4][2]. In gen-
eral, the "offloaded" portion of the model does not need to be on a
true cloud server; any device with greater processing power could
serve the same purpose.

Beside layer-wise splitting of model, one can consider input
splitting (with overlaps)[13]. Another consideration in terms of the
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strategy employed for cooperative inference is the use of distributed
computation[10]. More discussions of offloading approaches can
be found in[3][6] (and herein).

There are two factors that one can optimize to maximize the effi-
ciency of the inference task when offloading is performed, namely:
communication latency (due to data transfer between an edge de-
vice and the server) and model computation time (due to limitation
of processing speed on edge devices). One selects the split point
so that the combined communication latency and the computation
time for the inference task is minimized.

Communication latency depends on: (1) size of output data from
the split point, and (2) network bandwidth. In deployed models, it
is difficult to control the network bandwidth available to the edge
device and data transfer to the cloud server, and thus many imple-
mentations are focused on the reduction of data to be transferred.
Computation time depends on the processing hardware on the edge
device and cloud server, and the characteristics of the model in use.

3 TEST-BED DESIGN AND FUNCTIONALITIES

3.1 Design Overview

The test-bed is designed to provide a high-level interface that sep-
arates the test designer from setup and maintenance tasks that
make it difficult to explore new techniques without manually re-
configuring each device’s environment, the local network, and the
benchmarking result collection process. The result is a system that
allows users to quickly define experiments in terms of which device
assumes which user-defined role, and which sequence of required
tasks is assigned to each device. Network configuration, runtime
environments, and benchmark collection are all handled by the
test-bed.

To accomplish this, the test-bed API interprets a user-provided
YAML (Yet Another Markup Language) file, serving as a mani-
fest for the experiment. Each custom service is distributed to a
temporary environment on each specified device to deploy the
Participating Nodes. Concurrently, an Observer Node is deployed
on the local machine to await the complete transfer of the test
setup, delegate tasks to the Participating Nodes, and finally send
a start signal to begin the experiment. During the test, intermedi-
ate tensors, parsed results, and gradients are shared through RPC
(Remote Procedure Call) as required by the Participating Nodes.
The Observer Node monitors the Participating Nodes through RPC,
and centrally gathers the test results for display, interpretation, and
further data process. Figure 1 provides a block diagram of how the
various elements of the test-bed interact.

Our current version of the test-bed aims to provide a testing
environment in which models can be evaluated for use or deploy-
ment without any code level modification to the model itself. This
flexibility allows for rapid development, in that custom sub-classes
of a particular model are not needed to begin testing candidacy
in edge computing. The current implementations support usage
of models without architecture modification, and with additional
development will be able to support some varieties of bottleneck
injection.
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Figure 1: Test-bed Design Overview

3.2 Observer Device

The core implementation of the test-bed runs on the Observer De-
vice. It is split into two distinct sub-packages: the experiment_design
package, providing base classes and helper functions designed to be
easily extend into custom test case components, and the app_api
package, which powers the test-bed itself and is not designed to be
adjusted by the user.

3.2.1 Experiment Design Package. This package is split into sub-
sections corresponding to each basic component that defines the
way a node behaves during testing:

e Datasets: How the node receives input data for processing

e Models: The model used for inference or training

o Services: The services exposed to other nodes at runtime

e Partitioners: How the node decides when to pass intermedi-
ary inference data to another node

e Records: How the observer compiles and saves benchmarks
upon completion

o Tasks: Which tasks may be assigned to participating nodes

Each of these subsections provide base modules for test design-
ers to extend, making it straightforward to implement custom be-
havior that is compatible with the test-bed. User classes can be
defined in the base module itself, or as a standalone module within
the corresponding subsection; the new classes are integrated into
the experiment_design package automatically for either method,
which means they can be assigned to nodes in an experiment man-
ifest with no further setup required.

3.2.2  App API Package. The test-bed itself is driven by an API
package written in Python. The user interface is implemented in
the main application file (app.py), which simply interprets the
commands and delegates them to one of three distinct sub-modules
in the APL:

o The Setup Module: Responsible for overseeing device setup
and health checks, managing user preferences, and configu-
ration files.

e The Device Module: Engages in the discovery and configura-
tion of participating devices, facilitates network communi-
cation, and conducts remote device health assessments.



o The Experiment Module: Administers the user’s experiment
specifications, controls experiment run-times, interprets and
applies experiment parameters, and saves performance met-
rics.

Though decoupled from the test-bed’s experiment design fea-
tures, the API is responsible for orchestrating multiple network
devices, each of which may use different architectures with differ-
ent requirements for their runtime environments. At a high level,
the primary function of the API is to keep the experiment designer
insulated from many of the low-level variables inherent in running
a distributed computing experiment so that experiments can be
designed and run in a platform-agnostic manner.

The test designer’s custom implementations are distributed to
each node over SSH within a temporary environment, and an RPC
service inheriting those custom implementations is deployed au-
tomatically. Meanwhile, the API also deploys an Observer node to
the local machine, waits for a "ready" signal from each Participat-
ing node, then delegates the user-defined tasks to the appropriate
nodes. A "start" signal is sent to the Observer, and the API collects
and displays updates from each node in real time. When the experi-
ment concludes, the Observer passes the collected benchmark data
to the API, and the data is formatted and saved according to the
user’s specifications. Finally, each participant node "self-destructs",
removing the temporary environment from the host machine.

User Interface Experiment Submodule [ Participant Devices

User executes command:
tracr exp run <name>

Observing Device

Start containerized test-bed session with persistent data mounted

Delegate experiment
tasks to appropriate
APl submodule

Validate and parse experiment specifications

Start RPC server and UDP registry server
with parameters from previous stage

Execute "start RPC"
command over SSH

Auto-register with
UDP registry server

Start inference task scheduler

Call RPC to start
inference task

Send UUIDs for
completed inferences

Save to
queue

Query for inferences
matching UUID
Respond with metrics

for matching image
Consolidate and save or display experiment metrics as report

Experiment Submodule § Participant Devices Observing Device

Figure 2: Sequence Diagram of Experiment Components

3.2.3 Test Definitions. Test cases are defined using a YAML mani-
fest file and code provided by the user to further extend the behavior
of the participating nodes that will be involved at experiment run
time. Here, we can think of a test case as an experiment with a
specific set of parameters applied.

The test-bed repository also contains the My_Datasets directory
for users to integrate their own datasets that may not be available
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through the standard avenues. Because these may be used by mul-
tiple experiments, they are not stored within the scope of a single
experiment.

When a user wishes to run an experiment via the user interface,
they will use the tracr experiment run command with positional
arguments to select which experiment is run, and with what pa-
rameters. The job of the manifest file is essentially to set the default
experiment parameters at runtime for anything that has not been
explicitly overwritten in the tracr experiment run command.

3.3 Participating Node

3.3.1  Environment. The test-bed is deployed by the observer setup
procedure within a virtual environment to isolate packages from the
existing python interpreter. When the test-bed modules are installed
they attempt to gather the latest versions for that platform, but we
do not intend to accidentally upgrades external packages on the
test device. Inside the environment are three main components; an
RPC node for communication, a model wrapper to accept pytorch
models, and a scheduling service to determine where model splits
will occur.

The main script for the environment handles interpretation of
the configuration, the running sequence, and links these modules
together as required. As a forward pass begins, it loads an image
from the specified generator, and creates a unique identifier for the
inference it triggers. Once that forward pass is completed, no matter
by which participating device, that environment script passes the
identifier to the Observer RPC. The Observer RPC then queries each
Node for its portion of the inference results, which are removed
from the Node to avoid potential memory constraints.

3.3.2  DNN Wrapper. The core of each Node is the DNN Wrapper.
Our test-bed is capable of testing models in a naive setup, in which
we make two assumptions: it can be loaded as a pytorch model, and
its’ layers are only processed once per forward pass. By using this
wrapper and a combination of pytorch hooks, any pytorch model
is able to be split apart and benchmarked in the computational
offloading test. We take two profiling passes of a wrapped model.
The first is performed by torchinfo, which we use to acquire
information regarding parameters and bytes involved at every depth
of the model for use in benchmarking. The second pass is performed
by our custom module, which marks layers at a specified depth
for splitting, and prepares the logging dictionary. These marked
layers are given a pre-hook and post-hook which trigger due to
the call implementation in pytorch. Both hooks track the progress
through the forward pass and record results. This profiling pass
also assembles all NN layers for use within the Partition Scheduler
(see Eq. 3).

The pre-hook for each layer handles when to inject a provided
Tensor input. As pretrained models are not able to be truly split
without customization, the layers before the injection point must
still be run to reach that point. The pre-hook recognizes this, and
provides correctly sized starting data at layer 1. When the injection
point is reached, the actual input tensor is swapped into place. Lay-
ers that occur before the requested injection point are not tracked
in bench-marking. This extends the duration of a test in real-time,
but is not included within test results.



Algorithm 1 Pseudocode for Wrapped Forward Pass

initialize sequence values

initialize benchmarking

for all module at depth in model do
module pre_hook
module forward pass
module post_hook

end for

exit handling

finalize benchmarking

A post-hook for a layer handles whether and when to exit from
the forward pass. Exiting a forward pass early is accomplished
by raising and handling an exception at the specified layer. The
remaining layers are not required to be run, unlike the extralayers at
the entry-point. A pseudo-code example of this structure is provided
in Algorithm 1.

Currently bench-marking depth must be correctly specified for
accurate results on skip connection models. In ResNet models, we
configure the depth of bench-marking to rest at the BasicBlock
class layer, not its sub-layers. If we went deeper, inference is still
performed, but the skip connection is not yet passed to the Cloud
Node and it would rely on the dummy data from the inference while
it advances to the injection layer.

3.3.3  Partition Scheduler. The partition scheduler determines at
which point the model will be split during the test. It acquires the
NN layers from the DNN Wrapper, and when called will return the
layer index it determines a split should occur.

At this time two different partition schedulers are implemented.

The first is a simple cyclic partitioner. It starts at the first allowed
layer index, repeats that layer index n times, and advances the
index one stage until the number of layers defined in the model is
reached, repeating infinitely. This is most useful to gather data on

each possible split point for a given input across an entire data-set.

These results can validate the performance of our next partitioner, a
Linear Regression partitioner in the style of Neurosurgeon[7]. The
execution time for layer j is approximated using a linear regression
model

Li(mj) =a*mj+b (1)
where a,b € R and m; is the number of bytes in a layer j.

The linear regression partitioner performs warm-up operations
on the Node during startup, and pulls the bench-marking data from
these to estimate the execution time using Eq. 1 based on the layer
type (e.g., convolution, pooling, etc). To accommodate possible
quantization, we compute m; the number of bytes in a layer j as

follows.
n
mj = Z P; + S;
i=1

where P; = precision of the elements of parameter i in bytes

@

Si = number of elements in a parameter i

n = number of parameters for the selected layer
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The computed m; are used to build our regression models in Eq. 1.
One linear regression model is created for each unique layer type
encountered within sequence k.

During setup, the Edge Node requests the dictionary of the regres-
sion models from the selected Cloud Node to utilizes in execution
time estimation. We use E; or C; in place of L; in Eq 3. We use
Inequality 3 as the criterion to select the best layer to split. If the
inequality is true for a layer jc, starting from layer 1, the index of
that layer, jc, is returned as the index a split should occur. If it is
false, j. increments and the inequality is re-evaluated.

% + Z Cj(mj) < Z Ej(mj)

J=Je J=Je

®)

where :
Cj = Execution time model of layer j on Cloud node
Ej = Execution time model of layer j on Edge node
ts = network speed in bytes per second
w = Number of layers in sequence k
Je = candidate layer for split point

Given the assumption that the Cloud device is more capable than
the initiating Edge device, if one layer can be completed more
rapidly at the Cloud, every following layer will also be completed
more quickly. With this, we simplify the criterion to Inequality 4
below.

)

3.34 Internal RPC Node. The internal RPC node handles calls
from the Observer device for information, as well as from other
participating nodes. Servers are instantiated as a singleton object to
ensure safety of operation with usage of their contained model. For
this baseline configuration, the image generating device registers
with the Registry server as an Edge device. Devices that are available
to complete an inference register as a Cloud device. Little is different
with these except for the internal alias, in anticipation of future
work.

RPC methods are written to serialize objects it passes. The un-
derlying package rpyc attempts to proxy objects that are passed by
reference, a feature that in this case we must avoid. For the bench-
marking required we must pass all models and tensors by value
to accurately measure timing and avoid overhead. General objects
such as the bench-marking dictionaries or small linear models only
require standard pickling is performed.

Tensor objects are orders of magnitude larger, and reducing
the serialized size is extremely important. When the RPC nodes
pass Tensor objects, they are compressed using the blosc2 python
package, which supports serialization of tensors out of the box. As
a Cloud RPC device receives a tensor to complete inference on, it
begins inference in a thread to avoid blocking the return of the RPC
method and disturbing bench-marking on the calling Node.

mj
t_ +Cj(mj) < Ej(mj)
s

4 AN EXPERIMENT EXAMPLE USING THE
TEST-BED

To demonstrate the test-bed’s utility, we replicated the results from
an experiment described in [7]. In this experiment, inferences are



made using [8] while partitioning at each possible split layer to
inspect the differences in overall performance across layers. These
results are then compared to the optimal split layer predicted with
the Neurosurgeon algorithm. Our experiment was conducted by
designing a test case that deploys an edge node to a Raspberry Pi
4B on the local network, while deploying the cloud and observer
nodes locally to a consumer GeForce GTX 1050 Ti. The edge node
employs the cyclic partitioner to initiate inference tasks at each
possible split layer. In this test, the network speed was pinned at
4MB/s to perform at average speeds expected from LTE networks
as in Neurosurgeon’s results. In our experiment on the test-bed,
we observed that the linear regression estimator selected layer 14
consistently in this test setup. To validate this result, the cumulative
results from the cyclic partitioning experiment are recorded in
Figure 3.
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Figure 3: Total Inference Time by Split Layer

As shown in Figure 3, we have highlighted with a black “1”
the layer selected by the Partition Scheduler described in Section
111, and the layer highlighted with the green “2” was reported in
[7] using the “Neurosurgeon” algorithm. The current PyTorch im-
plementation of Alexnet slightly differs from the Neurosurgeon
implementation. The lowest latency layer, "pool5’ identified there
best maps to our layer’s 13 & 14, which each perform a portion of
the originally implemented pooling. As pooling layers, they are fast
to process, and natural bottlenecks due to the reduction in internal
size. We believe the selection of either layer is valid for comparison,
though a split at 14 would allow cloud processing to begin slightly
faster.

5 CONCLUSIONS AND FUTURE WORK

Our highest priority for future work is evaluating the possibility
of support for skip connections. Skip connections are extremely
common, and essential for full depth evaluation of ResNet or Yolo
with its feature pyramid. To function in the naive testing scheme the
test-bed operates under, users must supply dependency information
for the inputs of various layers. This information can be used to
ensure the transfer time calculation from all dependant layers at
time of completion, rather than just the previous layer. Differently
implemented skip connections do not all use consistent storage
within the forward pass, so transfer of those outputs is not naively
implemented. Scoping of these outputs within the model will also
prove difficult to access. One possible solution for testing purposes
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only is to transfer the starting image in an untimed method, and
generating the initial data with that, only injecting the true input
to the layer at the specified point.

Second to this is the implementation of layer-wise bottleneck
injection. Quantization is well within scope, as it is robustly sup-
ported in pytorch as is, but on the fly adjustment is our goal to
accommodate differing network conditions. Direct manipulation
of layers could also allow us to directly link encoders instead of
simply adjusting precision.

Lastly, we intend to incorporate the zero-deploy methodology
implemented in rpyc. Connecting a blank slate device to the testing
network and configuring it to act as a participating node with
minimal setup will be highly beneficial for larger test networks.
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