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ABSTRACT
We observe that accurate and fast tracking in Internet of Things
(IoT) devices is still a challenging problem. Several deep learning
models have emerged which provide higher accuracy scores in ob-
ject detection and tracking, however, due to their computationally
expensive nature they are not useful in enabling real-time track-
ing at IoT devices. Correlation filters have emerged to show better
speed in real-time tracking and provide good tracking results in
cases of occlusion, rotation, illumination and other distractions. To
get better speed as well as accuracy we use combination of corre-
lation filter and deep learning methods. We propose a distributed
tracking and verifying (DTAV) framework. Specifically, we run two
object tracking algorithms, one on the client and another on the
server. The algorithm run on the client is referred to as the Tracker,
which is based on correlation filter and runs easily in real-time. The
server hosts the verifier algorithm which performs high accuracy
verification. Thus, while the client performs fast object tracking,
the server’s tracking algorithm verifies the output and corrects the
server whenever required tomaintain the accuracy of themodel.We
present our edge computing-based framework and discuss the mo-
tivation, system setup and series of experiments performed for the
framework and present our experimental results. DTAV achieved
7.78% improvement on accuracy and 15% improvement in FPS.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; • Computing methodologies→ Tracking;
• Computer systems organization → Client-server architectures.
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1 INTRODUCTION
Visual object tracking has a major role to play in video analytics.
However algorithms observe a trade off between speed, accuracy or
real time tracking. This is because object tracking can be challeng-
ing due to factors like object illumination, deformation, rotation
or pose variation. Object tracking is significantly used in fields
like surveillance, human computer interaction, traffic monitoring
and robot vision. In a given video we provide bounding box for
the object to be tracked in first frame. In real time, our algorithm
should be able to track this object across all frames in given video.
This brings in challenges due to presence of similar looking ob-
jects and background clutter. Some deep learning methods have
attempted to solve this issue and have obtained significantly higher
accuracy. However, these methods face challenges in real time track-
ing due to computationally expensive property of deep learning
models. IoT devices are often unable to host such computationally
expensive algorithms, since they have limited processing capacity,
limited memory and power supply. Moreover latency is also a issue.
Researchers are exploring light weight algorithms which can be
deployed on IoT devices. This helps the algorithms to be deployed
in embedded systems. However, the obstacle occurs in providing
both accuracy and speed.

To address real-time and high-accuracy dilemma in tracking, we
propose a distributed tracking and verifying (DTAV) framework,
inspired from the parallel tracking and verifying algorithm (PTAV)
framework [1]. DTAV uses a fast discriminative scale space track-
ing (fDSST) algorithm [2], called tracker, running in the IoT device,
and a more accurate Siamese network, called verifier, running at
the backend server, to verify the outputs generated by the fDSST.
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fDSST uses correlation filters since they are successful representa-
tive adaptive discriminative tracker to get real-time tracking results.
Emerging edge computing is proposed to address the processing
capacity of IoT devices and thus gain better speed and more accu-
racy.

Our objective is to provide real-time and high-accuracy visual
tracking with the proposed DTAV framework in IoT device with
emerging edge computing. In specific, we address the optimal con-
figuration optimization in various edge computing scenarios. If
the algorithms are not implemented in an optimised manner, edge
computing will lead to sub-optimal results. Therefore, to gain speed
in real time tracking, but at the same time we choose optimum pa-
rameters which provide boost to the accuracy scores. We perform
experiments by varying different network parameters in order to
reach the optimum network setup and accuracy. We optimize the
client server settings by optimizing the communication network
parameters like bandwidth, verification intervals and frames per
second (FPS).

Our contributions are summarized as follows.

• We present a distributed tracking and verifying framework
to visual object tracking by edge computing, which achieves
high accuracy and high speed visual tracking framework for
IoT at the same time.

• We present a scalable solution. Our framework can be ex-
tended to IoT devices such as mobile devices or drones. Thus,
we present a solution to achieve higher accuracy without
having to compromise on the speed in real time tracking.

• We validated the proposed DTAV approach, which obtained
accuracy of 86.90% and showed improvement of 7.78%.

2 RELATEDWORKS
In IoT applications [3], visual tracking has been widely employed
as cloud computing is not always feasible for real-time inference
due to poor latency and coverage. Generally, there is a trade-off
between speed/frame rate, accuracy, robustness and generality in
tracking algorithms.

In [4], the authors assessed the state-of-the-art in single object
tracking in a video, with an emphasis on the accuracy and the ro-
bustness of tracking algorithms. In short, for visual object tracking,
simple algorithms work effectively when the target is moving at
slow speed, and the background noise and clutter is significantly
less. However, in cases where the target moves fast or there are
distractions in background. Using deep learning algorithms which
have strong discriminative power might help increase the robust-
ness of the algorithm but greatly impacts the speed and hampers
real-time performance. Therefore, providing the benefits of both
simple and computationally expensive algorithms became a hot
area recently.

In recent years, there have been advances in improving the
deep learning inference time by splitting the Deep Neural Net-
work (DNN) between client and server or by distributing the DNN
on an IoT device cluster. Papers like Neurosurgeon [5], Deep Things
[6], DADS [7], QDMP [8], Auto-Split [9], DNN schedule [10], etc.,
have proposed different splitting/distribution techniques to perform
this edge cloud partitioning like layer-based splitting, graph-based
splitting, fused tile partitioning etc. The underlying motivation is

Figure 1: Object tracking performance comparison of fDSST
and Siamese network results on OTB 2015 dataset, where
the big bounding box is the fDSST algorithm result, and the
small bounding box is the Siamese network result.

the same across all techniques - reduce total inference time and
possibly bandwidth consumption by implementing some form of
dynamic partitioning framework over the network.

Parallel Tracking and Mapping (PTAM) algorithm [11] by split-
ting the role of tracking and its corresponding mapping algorithm
into two parallel threads. The mapping does not take place for every
frame. Taking inspiration from this work, PTAV framework was
further developed to perform verification only on certain frames.
Our work is closely related to and inspired by the PTAV framework
in [1], with the following major difference. We aim to implement
the framework in a distributed fashion - with a client-server ar-
chitecture and consisting of IoT/edge devices. Because we need
to communicate between client and server, another parameter of
network bandwidth gets introduced which wasn’t the case in PTAV
as it was run on two threads on the same machine.

3 PROBLEM STATEMENT
The objective of this paper is to build a real-time and high-accuracy
visual tracking system that works on IoT devices. Our proposed
method consists of two tracking algorithms. A fast but low-accurate
tracking algorithm called tracker does inference in real-time A high-
accurate but slow tracking algorithm, called verifier, verifies and
corrects the results of the tracker. As we see in Figure 1, the re-
sults obtained from the tracker may sometime need correction.
This is where the verifier contributes by providing its feedback.
The entire framework would run as a client-server based system,
with the tracker running on the client, which is an IoT/edge device
and the verifier running on a server. Tracking and verifying run
asynchronously as verifying is more expensive computationally
compared to tracking, so verifying is usually done at regular inter-
vals. The main challenges in such a system is to dynamically adjust
its configuration in different configurations like verification inter-
val, speed at which the client and server perform inference, network
bandwidth and observe their impact on the FPS and accuracy of
our framework.

The main challenges in such a system is to dynamically adjust its
configuration in different configurations like verification interval,
speed at which the client and server perform inference, network
bandwidth and observe their impact on the FPS and accuracy of
our framework.
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Figure 2: DTAV Overview
4 DISTRIBUTED TRACKING AND VERIFYING

(DTAV) METHOD
The overall design of DTAV is shown in Fig. 2. In DTAV, the tracker
maintains a buffer of frames which makes the tracing back efficient.
The verifier uses Siamese network to perform object tracking. We
initialise a threshold𝑇1. If the verification result from the tracker is
less than this threshold, then verifier will consider this as a tracking
failure. Now, the verifier performs object tracking and generates its
results. The frame is passed to the trained Siamese network which
tracks the object and produces output score. If the score for this
result is less than the threshold 𝑇2, then the tracking result is not
changed. Instead we decrease the verification interval. This helps
in increasing the local region to track the target. This process is
repeated until the verification score is greater than the threshold
𝑇2. These 𝑇1 and 𝑇2 values are taken as 1.0 and 1.6 respectively.
The original verification result is restored after this. If the object
tracking results generated by the fDSST algorithm on the client
side are close to the score generated by the Siamese network, then
the Server sides provides a positive feedback. In the other case, the
server’s feedback contains the corrected coordinates for the given
input frame.

However, deploying DTAV in an IoT setup is challenging because
we need to consider parameters such as heterogeneous client-server
speed, network environment etc. We perform a series of experi-
ments to decide the optimal parameters for our communication
channel. In a client-server setup it is critical to determine the net-
work parameters like communication frequency, bandwidth and
FPS.

First, the correct verification interval for communication be-
tween the client and server is very important. It is critical to deter-
mine the optimal verification interval for the setup. Larger verifi-
cation intervals can lead to decrease in the accuracy of the model.
This is because if an object is moving relatively faster in the video
frames, then having a larger verification interval may lead to skip
the object tracking verification. For example, consider a scenario

Algorithm 1 DTAV: Client side process
1: for every the x-th frame in video do
2: tracker algorithm processes xth frame
3: if msg received from server side : then
4: if verifier needs to correct tracker result for a frame :

then
5: trace back to the frame
6: correct results
7: resume tracking
8: end if
9: end if
10: if x%verification interval==0 : then
11: send the client side result and frame to server side for

verification
12: end if
13: end for

Algorithm 2 DTAV: Server side process
1: if request received from client side then
2: process the frame by verifier algorithm
3: if verification passed : then
4: send positive feedback to client
5: end if
6: if verification not passed : then
7: send correct tracking results as feedback to client
8: end if
9: end if

where client side verifies output with the server at every 20th frame,
but a tracker object appears and disappears from the frame before
20th frame. Thus, this object would skip the verification from the
server side. Additionally, a smaller verification interval would lead
to decrease in FPS which could affect the accuracy. It would de-
crease the speed of execution because smaller interval means more
frequent communication between client and server.

Second, how to update the verification interval is very important.
This is because, when the verifier provides its feedback to the client.
But, if the verification interval is too large, the verifier would not
be able to provide the correct score. Thus, we prefer to make the
verification interval adjustable. Depending upon the verification
score, the interval is kept on decreasing if required, till the score
generated by the verifier passes threshold𝑇2. This concept is further
discussed in the experimental setup section.

5 PERFORMANCE EVALUATION
In this section, we begin by describing our system implementation
followed by discussing the experiments performed. In order to
understand the efficiency of our approach, and to fit the correct
parameters we run the experiment in different scenarios and pick
the most optimum values.

5.1 System Implementation
We have implemented this client-network architecture using gRPC,
an open-source high-performance Remote Procedure Call (RPC)
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Figure 3: Verification Interval vs FPS vs Accuracy

framework developed by Google that can run in many environ-
ments such as C, Go, Python, Java etc. For simplicity and ease of
implementation, we have chosen a Unary RPC approach where the
client sends a single request and gets back a single response. The
client invokes a stub (server) method with a Request message object.
Once the server has the client’s request message, it does whatever
work is necessary to create and populate a response. The response(if
successful) is then returned to the client which completes the call
on the client side. Once the gRPC setup is done, we need to tune
our setup with optimum bandwidth, verification interval and client
and server speeds.

5.2 Experimental Setup
We performed a series of experiments to determine the optimum
network parameters to get best performance for the PTAV client
server setup. We varied the verification interval and observed the
changes in accuracy and bandwidth. Through these experiments
we were able to chose the optimum verification interval values.
Moreover, we run the experiment in different bandwidth settings to
simulate the performance of the network setup in different devices.
Further we also compare the performance of our proposed PTAV
with the default PTAV in client server setup.

5.3 Experimental Results
Effect of Verification Interval on Accuracy: As we discussed
in the previous section, the client sends frame to the server on
regular intervals which are predefined. Verification interval has a
significant role to play in determining the accuracy. This is because
the algorithm hosted by server, corrects and verifies the tracking
results obtained from the algorithm hosted by the client. Figure 3
shows the effect of verification interval on accuracy. We observe
that if the verification interval is too large, for example more than
20, then some of the real time tracking results will not be accurate.
Else, if the verification interval is small, for example less than 5,
then this would have effect on the real time tracking. FPS and hence
the real time tracking would be affected. We empirically derive the
optimum accurate verification interval to begin with, which is 10
from Figure 3.

Effect of Verification Interval on FPS: Verification interval
has effect on speed of the framework. Figure 3 shows the effect of
verification interval on FPS. We observe that smaller verification

Figure 4: Simulating different server speed
interval, has smaller FPS. This is because smaller verification inter-
val causes the algorithm to be computationally expensive. Larger
verification interval implies less communication between the client
and server which leads to faster FPS, but this reduces the accuracy.
From the graph, we also see that, FPS increases up to a certain value
depending upon the system limitations. In our case the highest FPS
achieved was 20 and then the value is constant, this is because of
system limitations.

Adjust Communication frequency vs non-adjustment:Client
and server communicate at fixed interval and exchange the ob-
ject tracking information. This fixed interval communication (non-
adjustment) has disadvantages. Running DTAV in non-adjusting
setup gave accuracy of 82% while running DTAV in adjusting setup
gave accuracy of 86.90%. This is because if the target appearance is
changing quickly, then a fixed verification interval will not be able
to adjust itself to capture it. Hence, a threshold is defined which
determines from accuracy score whether the verification interval
needs to be reduced. In such cases, the verification interval is de-
creased till the accuracy score is above the threshold. This helps in
sharing more details of the local region with the server (verfier).
After we obtain a valid result, the verification interval is restored.
Hence, the adjusting verification interval is implemented in the
algorithm.

Impact of Server Speed: We highlight the impact of server
speed on the accuracy. We simulate different client speeds, by using
sleep functionality. In Figure 4 we plot accuracy on y-axis and plot
the inverse of server sleep time on x-axis. As we expected, we
observe that efficient server can help achieve better accuracy. This
is because we run the Siamese network on the server side, which is
computationally heavier than the correlation based fDSST tracker
used on the client side.

Comparison of PTAV andDTAV:We compare our results with
the results of PTAV framework. While PTAV framework achieves
accuracy of 79.12% on OTB2015 dataset with highest 17 fps, our
framework obtains accuracy of 86.90 % with 20 fps. These results
were achieved with 18.8 Mbps bandwidth. Further, we compare the
PTAV approach versus the performance of DTAV. We observe that
the values and patterns derived from the series of experiments have
resulted in significant increase in the FPS and accuracy. Further,
our framework would be useful in deploying this algorithm on
embedded devices in different network setups. Different embedded
devices operate on different bandwidths. We choose to setup the
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Figure 5: Accuracy vs FPS for different Verification intervals
and different bandwidths

different bandwidths as CAT1 0.13 Mbps, 3G 1.1 Mbps, 4G 5.85
Mbps, Wi-Fi 18.88 (Mbps). We simulate different bandwidths to
check the performance of our algorithm on such devices. Moreover,
it is generally seen that the client speed is generally lesser than
the server speed. To setup such real world scenarios, we reduce
the speed of our client by 0.25x by adding latency in the Siamese
network verifier algorithm. In the Figure 5, we observe how the
change in bandwidths affect on the verification interval and accu-
racy. Moreover, in Figure 5 we also display the variations in FPS
with respect to the Verification interval. We observe that band-
widths 5.85 Mbps and 18.88 Mbps give nearly the same values in
the graph. For comparative study between the behavior of default
client server PTAV setup versus our proposed client server PTAV
setup, we compare their behaviors in 18.88 Mbps and 1.1 Mbps
bandwidth as shown in Table 1. From Table 1, it is clear that DTAV
outperforms DTAV in both tracking accuracy and tracking speed.
In particular, DTAV can improve 33% FPS in the best scenario.

6 CONCLUSION
In this paper we present a distributed approach to perform visual ob-
ject tracking. The distributed framework approach discussed in this
paper aims to address speed and accuracy trade off challenge faced
by other tracking algorithms. We run fDSST tracking algorithm on
the client side which communicates with the Siamese network algo-
rithm on the server to obtain accurate and faster results. We further
perform a series of experiments to determine the optimum band-
width and verification interval for our setup to provide better speed
and accuracy. The experimental results show that DTAV achieved
7.78% improvement on accuracy and 15% improvement in FPS. This
attributed approach is useful for efficient tracking algorithms to be
deployed on IoT devices like smartphones.
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2*Verification Interval Accuracy FPS
PTAV DTAV PTAV DTAV

2 72.40 81.20 5 10
4 73.71 81.67 5 12
6 74.12 82.78 8 12
8 74.13 85.01 10 12
10 76.09 83.09 12 14
12 73.89 83.71 12 14
14 73.72 83.94 15 16
16 75.76 86.90 15 20
18 76.59 83.12 16 20
20 79.12 82 17 20

2*Verification Interval Accuracy FPS
PTAV DTAV PTAV DTAV

2 65.49 69.17 5 10
4 66.02 70.23 5 12
6 67.12 71.39 8 12
8 68.98 72 10 12
10 69.11 74.90 12 14
12 71.21 75 12 14
14 72.67 76.13 15 16
16 73 77.21 15 20
18 75.34 79.32 16 20
20 76 79.29 17 20

Table 1: Comparison of DTAV method with PTAV method
with bandwidth 18.8 Mbps (First Table) and with bandwith
1.1 Mbps (Second Table)
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