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Abstract—In this demonstration paper, we present an innova-
tive framework for sustainable Electric Vehicles (EVs) charging,
dubbed EcoCharge, which utilizes an intelligent energy hoarding
approach. Particularly, EcoCharge employs a Continuous k-
Nearest Neighbor query, where the distance function is computed
using Estimated Components (ECs) (i.e., a query we term CkNN-
EC). An EC defines a function that can have a fuzzy value
based on some estimates. Specific ECs used in this work are:
(i) the (available clean) power at the charger, which depends
on the estimated weather; (ii) the charger availability, which
depends on the estimated busy timetables that show when the
charger is crowded; and (iii) the derouting cost, which is the
time to reach the charger depending on estimated traffic. Our
framework combines these multiple non-conflicting objectives
into an optimization task providing user-defined ranking means
through an intuitive spatial application. The algorithm utilizes
lower and upper interval values derived from ECs to recommend
the top ranked EV chargers and present them through a map
interface to users. We demonstrate EcoCharge using a complete
prototype system developed using the Leaflet - OpenStreetMap
library. In our demonstration scenario, attendees will have the
opportunity to observe through mobile devices the benefits of
EcoCharge by simulating its execution over various scheduled
trips with real data retrieved from API requests (i.e., ECs).

Keywords-Mobile Data Management, Green Mobility, Renew-
able Self-Consumption, Electric Vehicles, Charging.

I. INTRODUCTION

In recent years, the market penetration of electric vehicles

(EVs) has exponentially expanded due to their notable ad-

vantages in sustainable transportation and cost-effectiveness

compared to conventional internal combustion vehicles. Cities

play a pivotal role in the pursuit of climate neutrality by 2050,

a core objective of the European Green Deal1, as they bear

responsibility for over 65% of the world’s energy consumption

and contribute to 70% of global CO2 emissions. Lately, a

growing interest has been seen in the incorporation of Renew-

able Energy Sources (RES) into EV charging infrastructure,

such as wind turbines and photovoltaic panels (PV) [1], [2].

1EU Climate-Neutral Smart Cities, https://tinyurl.com/57tzjmyk

Fig. 1. EcoCharge application: An example of a moving vehicle and available
chargers (b) based on a scheduled trip (P ). The ranking selection is derived
from each EV charger’s rate and solar production curve at a certain time,
considering also the estimated time of arrival (ETA), and the return trip time.

People often engage in the practice of “energy hoarding”,

where they charge their EVs during periods of inactivity

(i.e., idle time), even when the battery is not substantially

depleted, to ensure that the vehicle will be charged for future

travel. Even though EVs are seen as a way to reduce CO2

emissions, thus, energy hoarding with non-renewable energy

sources is negating environmental benefits. In the U.S., the

energy demand for EV charging was estimated at 4.7 TWh

in 2020, with a projected increase to ≈107 TWh by 20352.

Current applications focus on allowing users know where

to recharge but do not list the environmental impact of the

charging process (i.e., energy coming from fossil fuel burning).

A renewable hoarding technique can be applicable in scenar-

ios with idle time (i.e., while an EV user is waiting or parked).

For example, consider the following real-life scenarios: (i)

electric taxis (e.g., Lyft, Uber, Bolt) during idle periods are

waiting to be called or booked online; (ii) parents waiting

2Statista-EV charging demand, https://tinyurl.com/mtc6w8nt
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in their idle EVs while their children attend after-school

activities; and (iii) an EV user going for groceries or clothing

shopping. Consequently, in all aforementioned scenarios, users

could stop at some nearby charging station to efficiently charge

their EVs using power generated from renewable sources, thus,

reducing the carbon footprint of their daily routine.

One technical challenge, is that the decision of where to sus-

tainably hoard depends on a variety of Estimated Components
(ECs) on where and when to charge (see Figure 1). Examples

of these estimations are: the (available clean) power at the
charger that depends on the estimated weather, the charger
availability that depends on the estimated busy timetables

showing when the charger is crowded, and the derouting cost
to reach the charger that depends on estimated traffic. To solve

this problem, a Continuous k-Nearest Neighbor (CkNN) query
[3] can be utilized to answer questions like which EV chargers

are closer regarding a path. However, CkNN does not consider

the estimation of various components. Our work falls under the

concept of renewable hoarding techniques exploiting ECs. The

objective is to optimize EV charging by utilizing only RES and

focusing solely on short-term traveling, ignoring multi-stop

planning and traffic scheduling (e.g., congestion balancing).

In this demo, we demonstrate an innovative renew-

able hoarding application for charging EVs, dubbed

EcoCharge3[4]. We model the problem as a new CkNN-EC
query that retrieves the k nearest neighbors of every point on

a path segment (e.g., “find all my nearest EV chargers during

my route from source to end-point.”), while considering ECs

by employing a distance function that can express a fuzzy

value. The demo will allow the audience to experience the in-
telligent renewable hoarding notion, which is integrated in our
EcoCharge framework, through an interactive demonstration
with visual maps.

In our previous publications, we have presented Energy
Planner (EP) and Green Planner (GP), integrated in a Home

Energy Management System called IMCF+ [5], [6]. Both, EP
and GP, adapted off-the-shelf AI algorithms (hill climbing

and simulated annealing), and focus on “long-term” planning,

meaning that they would compute a whole year plan by doing

less complex daily computations. Furthermore, we developed a

system called GreenCap [7], which refers to “daily” planning

as it attempts to find the best combination for allocating and

shifting appliances during a day by minimizing the imported

energy from the grid, while considering peak demand and high

energy production times.

II. THE ECOCHARGE OVERVIEW

In this section, we describe the architecture of a prototype

system that we have developed followed by our algorithm.

A. System Architecture

The core of our system resides in an EcoCharge Client
supported by a centralized server, which interacts with external

APIs to retrieve essential data (see Figure 2). Leveraging ex-

ternal APIs, our EcoCharge Information Server (EIS) acquires

3EcoCharge, https://ecocharge.cs.ucy.ac.cy/

Fig. 2. EcoCharge Architecture: the server takes as an input all available
EV chargers, weather forecast, availability, traffic data, and road network
information.

real-time weather forecast data, detailed road network infor-

mation, and a comprehensive list of all available EV charging

stations based on the user’s location. This centralized approach

allows the server to efficiently consolidate the required data

and distribute to individual clients as per request.

The service can be provided to the users with three modes of

operation: (i) Mode 1, where EcoCharge operates in a vehicle’s

embedded operating system (e.g., Automotive OS, Volkswa-

gen OS3); (ii) Mode 2, where EIS takes over EcoCharge

calculations centrally; and (iii) Mode 3, where EcoCharge

functionalities are managed by an edge device (e.g., smart

phone using Android Auto or Apple CarPlay).

B. EcoCharge Prototype

EcoCharge Information Server (EIS): EIS is designed using

the Laravel PHP Framework, ensuring a robust and organized

structure, and it is deployed with the high-performance Nginx

web server for efficient handling of HTTP requests. It effi-

ciently retrieves road network information by integrating with

OpenStreetMap4, which facilitates advanced functionalities

such as route planning, enabling users to obtain optimal direc-

tions and navigate seamlessly on a road network. PlugShare5

is used to gather information about EV stations based on

users’ location. To gauge environmental conditions such as

sunlight availability, we rely on data from OpenWeatherMap6,

an API service offering up-to-the-minute weather information

for diverse global locations.

EcoCharge Client: Upon receiving, through an API call,

the weather forecast, road network details, and EV charging

station information from the EIS, the client application takes

on the pivotal role of processing this data. Tasked with the

responsibility of hoarding optimization, the client application

employs a novel algorithmic approach to calculate the most

efficient route considering sustainable charging and derouting

4OpenStreetMap: https://www.openstreetmap.org/
5PlugShare-EV Charging Stations, https://www.plugshare.com/
6OpenWeatherMap, https://openweathermap.org/
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Fig. 3. EcoCharge Client Graphical User Interface - Prompts users to
add EC preferences and destination so that the framework provides a ranking
of the most sustainable chargers identified in each path segment of the trip.

cost based on the user’s scheduled trip. This process involves

dynamically identifying EV chargers along the route, consider-

ing factors such as real-time sunlight conditions, road network

intricacies, and availability.

EcoCharge Client, implemented in Python 3, leverages the

capabilities of the Folium library - a robust tool designed

for creating diverse Leaflet maps. The utilization of Folium

is integral to our system’s functionality, providing a dynamic

and interactive mapping component. Through the integration

of Leaflet, HTML, and JavaScript, we ensure that our system

not only delivers powerful functionality but also presents

information in a visually engaging and accessible manner.

Our mobile-based application enhances user experience by

integrating with the device’s location services. Through an

intuitive Graphical User Interface (GUI), users can easily set

their desired destination for a trip and receive comprehensive

route information, leveraging the application’s functionality for

efficient navigation (see Figure 3).

C. The EcoCharge Algorithm

This work aims to develop an intelligent technique facil-

itating sustainable EV charging through an energy hoarding

algorithm. By identifying charging stations that offer the most

green (i.e., clean) energy, users take advantage of RES self-

consumption, while reducing CO2 emissions.

The intention of the EcoCharge is to optimize an objective
function to achieve a trade-off between the vehicle’s sustain-
able charging level L, the chargers’ availability A, and the
derouting travel distance D to a charger.

In order to continuously monitor the result of kNN, the

CkNN-EC method necessitates partitioning the entire route

distance into separate segments, which are sequentially con-

sidered for the kNNs determination of the query object. The

partitioning procedure is responsible for dividing the scheduled

trip into segments (e.g., ≈5km each segment; can be modified

in settings as per preference). It is essential to note that the

road network distances between all chargers and the query

object (i.e., EV vehicle) have to be updated every time the

query object reaches a segment intersection of the scheduled

trip. For each segment, the process of finding the kNNs is

composed of two phases. The first one is called Filtering
phase, which is used to discard non-qualifying chargers. The

second phase is called Refinement, where an evaluation is

conducted to determine the eligibility of candidate chargers

as CkNN-EC.

According to the driver’s location, the Filtering phase ensures

that only the k most suitable chargers are considered, while

pruning all the rest. The particular phase loops through the

entire pool of EV chargers and examines each one based on

the following Estimated Components (ECs):
Sustainable Charging Level (L): Each EV charging station

b has a different charging rate and power generation levels st
depending on time and location. Further, the weather forecast

(e.g., sunny, cloudy) is retrieved by a cloud service (e.g.,

OpenWeather, Windy, WindFinder), which utilizes weather

models like Global Forecast System (GFS) and European

Centre for Medium-Range Weather Forecasts (ECMWF), both

with an accuracy of 95–96% for up to 12 hours and 85–95%

for three days. L consists of lower and upper estimation values,

thus, the final result is an interval Lmin to Lmax.

L(B) = max{sbt | ∀ b ∈ B } (1)

Availability (A): Each EV charger’s availability is estimated

using a third-party service (e.g., Google Maps POI busy

timetables), enabling the determination of real-time accessi-

bility on a given time t. Therefore, an interval is produced

Amin to Amax.

A(B) = max{Ab | ∀ b ∈ B } (2)

Derouting Cost (D): A route path from starting point v0 to tar-

get charger vk is a sequence of nodes P =< v0, v1, ..., vk >,

where every edge represents a weight w in terms of CO2

emissions and is calculated based on the additional energy an

EV needs to travel. The derouting considers real-time traffic

information (e.g., congestion) at a given time and location

retrieved from a cloud Geographic Information System service

(e.g., Google Maps, Waze, HERE Maps), thus, D consists of

lower and upper estimation values. Therefore, the final result

is an interval Dmin to Dmax. The minimum derouting cost

for a segment p of the path P to all chargers B is:

D(B) = min{
|p|∑

i=0

wvi,b ∗ distance(vi, b) | vi ∈ p, ∀ b ∈ B}
(3)

Each charging station selected in the pool of filtered candi-

dates undergoes through the Refinement Phase to evaluate its

Sustainability Score (SC). In this work, we evaluate SC as a

weighted sum function, where w1 is the weight of Sustainable
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Charging Level (L) objective, w2 is the weight of Availability
(A) objective, and w3 is the weight of the Derouting Cost (D)

objective, respectively. Using CkNN with SC as the distance

function, EcoCharge produces two result-sets, one based on

SCmin and another on SCmax, until the final output of their

intersection consists of k chargers.

SCmin = (Lmin∗w1)+(Amin∗w2)+((1−Dmin)∗w3) (4)

SCmax = (Lmax∗w1)+(Amax∗w2)+((1−Dmax)∗w3) (5)

SC(B) = sort(SCmax(b) ∩ SCmin(b)), ∀b ∈ B (6)

III. DEMONSTRATION SCENARIO

During the demonstration, the conference attendees will get

the chance to appreciate the key elements of EcoCharge, its

adaptability as well as our proposition performance.

A. Case Scenario

An instance of our real prototype system has been deployed

in Nicosia, Cyprus, surrounded by approximately 50 EV

charging stations. Through the EcoCharge GUI, a test user

configured the k parameter to 3 (i.e., retrieve 3 nearest/most

sustainable chargers). The user wanted to do some shopping,

thus, a scheduled trip was set up starting at 18:00 o’clock

from the city center and ending up at the city’s mall (i.e.,

≈22-25 minutes travel time). During the trip, the user received

multiple recommendations for EV chargers generated by the

proposed framework, occurring every ≈5 minutes. However,

the user preferred to utilize the idle time of their EV at the final

destination for charging while shopping. The EcoCharge’s

performance was measured with respect to the Sustainability
Score (SC) and time. Considering the ECs retrieved from EIS
mentioned in Section II-C (e.g., availability at current time,

traffic, weather conditions), the application produced a set of

3 EV chargers nearby the mall, in a reasonable response time

t ≈ 0.5 seconds, with the following scores: (i) SCChargerA =

98% and 14 meters from destination; (ii) SCChargerB = 80%

and 57 meters from destination; (iii) SCChargerC = 72% and

3.2km from destination. Consequently, the user saved time by

having multiple available options for parking spots where they

could sustainably charge their vehicle.

B. Demo Plan

The conference attendees will have the opportunity to inter-

actively engage with the EcoCharge application interface by

configuring preferences and setting up a scheduled trip using

a tablet or smartphone. A number of synthetic preference con-

figurations will be pre-loaded to several demo user accounts

through the application’s back-end. A demonstration will take

place over real road network maps to graphically expose the

applicability of the EcoCharge algorithm in real-time.

The main objective of our approach is to enable EV

users to sustainably charge their vehicles through a renewable

hoarding process, by leveraging renewable energy sources,

optimizing charging strategies, and reducing operational costs.

To showcase the advantages of our technique to the audience,

we will provide visual representations to help them gain a

clear insight into the performance benefits. These visuals will

illustrate the increasing levels of sustainability charging and

the corresponding improvements in self-consumption observed

during our experiments.
As part of the demonstration, we will hand out to attendees

three mobile devices that will act like real EV users, each

one with a different scheduled trip in the road network of

California. Participants will have the opportunity to view on

their smartphone displays the status of the simulated moving

EV vehicles and the recommended chargers, which will appear

every few seconds (i.e., in every segment of the scheduled

trip) sorted based on SC. The three cases will vary since

different locations and times will be adjusted on the scheduled

trips, such as weather conditions, chargers’ availability, and

traffic congestion. The EC values are going to be based

on real life data retrieved by EIS. The aforementioned case

scenarios will be based on 25, 35, and 45 minutes scheduled

trips, respectively. Therefore, the execution time will be fast-

forwarded so that the audience can observe the updates of

charger recommendations throughout the trip.
Furthermore, participants will have the opportunity to form

custom scheduled trips through the mobile application. Our hy-

pothesis is that data engineering practitioners and researchers

would like to compose their own user preference profiles,

as opposed to be restricted within the boundaries of the

well-defined provided templates. Particularly, we will provide

attendees with the possibility to set up scheduled trips based on

various times throughout the day to notice the impact during

peak-demand periods. The goal will be to clearly describe the

EcoCharge and the intelligent renewable hoarding approach

employed, which makes our implementation an environmen-

tally friendly alternative to traditional charging methods.
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