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Abstract. The support vector machine (SVM) is a supervised learning algorithm that finds a maximum-margin
linear classifier, often after mapping the data to a high-dimensional feature space via the kernel trick.
Recent work has demonstrated that in certain sufficiently overparameterized settings, the SVM
decision function coincides exactly with the minimum-norm label interpolant. This phenomenon of
support vector proliferation (SVP) is especially interesting because it allows us to understand SVM
performance by leveraging recent analyses of harmless interpolation in linear and kernel models.
However, previous work on SVP has made restrictive assumptions on the data/feature distribution
and spectrum. In this paper, we present a new and flexible analysis framework for proving SVP
in an arbitrary reproducing kernel Hilbert space with a flexible class of generative models for the
labels. We present conditions for SVP for features in the families of general bounded orthonormal
systems (e.g., Fourier features) and independent sub-Gaussian features. In both cases, we show that
SVP occurs in many interesting settings not covered by prior work, and we leverage these results to
prove novel generalization results for kernel SVM classification.
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1. Introduction. Recent empirical and theoretical efforts in supervised machine learning
have discovered a wide range of surprising phenomena that arise in the modern overparam-
eterized regime (i.e., where the number of free parameters in the model is much larger than
the number of training examples [13, 6]). For example, after it was observed that deep neural
networks can perfectly fit noisy training data and still generalize well to new data (see, e.g.,
[35, 43]), several theoretical efforts demonstrated that this “harmless interpolation” phenom-
enon can in fact occur even in the simpler settings of linear and kernel regressions [8, 7, 4]. A
separate, but equally surprising, observation in this overparameterized regime is that training

*Received by the editors May 5, 2023; accepted for publication (in revised form) April 15, 2024; published
electronically August 14, 2024.
https://doi.org/10.1137/23M1568764
Funding: The first author was supported under the NSF Graduate Research Fellowship DGE-2039655. The
second and third authors were supported by the NSF grants DMS-2134037 and CCF-2107455. The fourth author
was supported by the NSF (under CAREER award CCF-239151 and award 11S-2212182), an Adobe Data Science
Research Award, an Amazon Research Award, and a Google Research Colabs award.
TSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA
(ckaushik7@gatech.edu, mdav@gatech.edu).
Hnstitute of Mathematics, EPFL, Lausanne, Switzerland (andrew.mcrae®@epfl.ch).
§School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA,
and School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA
(vmuthukumar8@gatech.edu).

761

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/23M1568764
mailto:ckaushik7@gatech.edu
mailto:mdav@gatech.edu
mailto:andrew.mcrae@epfl.ch
mailto:vmuthukumar8@gatech.edu

Downloaded 09/01/24 to 24.126.199.250 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

762 KAUSHIK, McRAE, DAVENPORT, AND MUTHUKUMAR

procedures that optimize different loss functions can still yield similar test performance. For
example, the empirical studies of [36, 22, 26, 16] demonstrate that kernel machines and deep
neural networks trained using the squared loss, which is traditionally reserved for regression
problems with continuous labels, can result in classification performance comparable to that
of machines and networks trained with the more popular cross-entropy loss.

Motivated by these observations, recent work has sought to deepen theoretical under-
standing of the impact of the loss function in overparameterized classification tasks, starting
with linear models. The hard-margin support vector machine (SVM) [12] is one popular clas-
sification algorithm which, given n linearly separable training samples (x;,7;) € R? x {—1,1},
aims to find a decision function f(z) = (f,z) by solving the convex program
0 =argmin||f]|, s.t. 50 z;>1fori=1,...,n.

feR?

Equivalently, this solution maximizes the smallest distance from the hyperplane {z: f(z) =0}
to any training example. It was first shown in [33] that, in overparameterized settings, the
SVM decision function can coincide exactly with the minimum norm interpolant of the training
data (i.e., that the learned 0 = arg mingega ||0]], results in f(z;) =y; for all i =1,...,n). This
phenomenon, termed support vector proliferation (SVP), has several important implications.
First, since it is known that these two solutions can be obtained via gradient descent on
the squared and logistic losses, respectively, this gives theoretical support to the empirical
observation that different loss functions can lead to similar behavior in overparameterized
settings [36, 22]. This equivalence has also been exploited in several works (e.g., [33, 42, 41])
to study the gemeralization performance of the SVM by understanding the minimum-norm
interpolant of the discrete labels, which can be more easily analyzed via a convenient closed-
form solution. This approach can in fact be leveraged to prove classification consistency results
for the SVM in settings which classical generalization bounds do not cover, as discussed in
[33, 21].

Despite considerable subsequent progress in our understanding of SVP [21, 1, 42, 41, 10],
current characterizations crucially depend on strong distributional assumptions on the data
or features. Specifically, conditions under which SVP occurs have only been given in settings
where the features have Gaussian or independent sub-Gaussian entries. Thus, these conditions
are essentially applicable only when a linear model is learned directly on input data which is
itself high-dimensional. By contrast, in the more general setting of kernel SVM, the training
data 2 € R is often first transformed (either explicitly or implicitly, using the kernel trick)
via some feature map ¢: RY — RP, and the SVM solution described above learns a function
of the form f(z) = (,¢(x)). For essentially any choice of kernel or nonlinear feature map,
the entries of ¢(x;) are not independent. Indeed, in many common learning settings, D > d;
i.e., training data of low or fized dimension (or effectively low, e.g., from a low-dimensional
manifold) are mapped to some higher-dimensional or even infinite-dimensional features which
are intricately dependent on one another. As a case study, SVP was first empirically observed
in the experiments of [33], which used 1-dimensional data and a Fourier feature map whose
entries have considerable structure. Existing theoretical results do not apply in such settings.

1.1. Contributions. In this paper, we study SVP for kernel methods (i.e., for general
classes of feature maps) and provide precise nonasymptotic conditions under which it occurs.
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We consider a generative label model for classification of the form n*(z) =2P(y=1|z) — 1,
where 7* is a function in an arbitrary RKHS (reproducing kernel Hilbert space) and represents
a natural affine transformation of the classification conditional probability. Our results are
briefly summarized below.

SVP for general bounded features. Under the label model described above, we provide
sufficient conditions on the spectrum of the kernel integral operator and training examples
under which the minimum RKHS-norm interpolant of the training data is identical to the
decision function learned by the kernel SVM. In section 3.1 we formally provide the main
assumptions under which our result holds. At a high level, we only require that the leading
kernel eigenfunctions comprise a bounded orthonormal system (BOS), and we leverage recent
conditions from the literature for harmless interpolation of noise to ensure that the minimum-
norm interpolant is close to an attenuated version' of n*. Then, in section 3.2 we characterize
the settings in which SVP occurs under these assumptions. Compared to previous work, our
requirements on the feature map and kernel spectrum are considerably weaker and allow us to
show that SVP can occur in general RKHS settings without independence or sub-Gaussianity
of features. Our proof techniques for these results depart significantly from prior literature
that assumes worst-case labels [33, 21, 42, 41, 10, 1] and make novel conceptual connections
between SVP and tools for sharp error analysis of interpolating methods. This allows us to
leverage a few key insights from the harmless interpolation literature [31] to obtain refined
bounds. Nevertheless, our proofs depart from these results in a few key respects. Unlike the
Lo-norm bounds developed for generalization analysis, our approach relies on a combination
of a “leave-one-out” technique (originating in [21]) and the derivation of fine-grained bounds
on the function evaluation of an estimator at a specific point. Especially when features are not
sub-Gaussian, this often requires careful handling and results in some unusual decompositions
(e.g., Lemma 4.4) that do not follow from existing bounds in the kernel regression literature.

Refined bounds for independent, sub-Gaussian features. In section 3.3, we specialize and
sharpen our results to the case where the features are independent and sub-Gaussian. Notably,
unlike in prior works, our use of a probabilistic generative label model and weaker spectral
assumptions allows us to show that SVP can occur even when the minimum-norm interpolant
generalizes well for the regression task. To the best of our knowledge, this is the first instance
in which SVP has been established for such cases.

Generalization of the kernel SVM in new regimes. As in previous work on SVP, our results
can be combined with analysis of the minimum-norm interpolant to analyze the generaliza-
tion performance of the SVM. In section 3.4, we show that our analysis can be used to prove
asymptotic classification consistency of the kernel SVM in new settings which are too (effec-
tively) high-dimensional for classical generalization bounds to be informative. Compared to
prior works on SVP which consider linear models on the input data, our results demonstrate
that the kernel SVM can generalize well for a range of interesting kernels that correspond to
more structured feature mappings.

1.2. Related work. We organize our discussion of related work into two categories.
Support vector proliferation. The empirical observation that the squared and cross-entropy
losses result in comparable classification performance in modern deep learning and kernel

!Specifically, we define an operator S and require that 7~ Sn* and that S be an L, contraction operator.
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models [36, 22, 26, 16] has led to increased theoretical interest in the phenomenon of support
vector proliferation [33, 21, 1, 10, 42, 41] and, more generally, equivalences between the solu-
tions obtained by various loss functions [27]. In particular, since the SVM and minimum-norm
interpolant can be obtained by gradient descent on the cross-entropy (or similar exponential-
tailed) [37, 24, 23, 18, 25] and squared losses, SVP provides an avenue for understanding the
types of overparameterized settings in which this loss function equivalence can occur.

Prior works provide conditions (typically in terms of the data covariance and/or the signal-
to-noise ratio) under which the phenomenon of SVP occurs with high probability, for an arbi-
trary (i.e., worst-case) choice of labels. However, these results all require strong assumptions
on the data distribution and dimensionality. SVP was first shown under Gaussian design
in [33], and sufficient conditions were given in [21] for independent sub-Gaussian and Haar
design, along with a converse result for the Gaussian case. Furthermore, the authors of [1]
provided a converse result for SVP for anisotropic sub-Gaussian data and proved that a data
dimension d = O(nlogn) is needed for SVP in the isotropic case. We provide a more detailed
contextualization between our upper bounds and the converse results of [1] in section 3.2.1.
The work of [42, 10, 41] develops similar results under Gaussian and sub-Gaussian mixture
models for the binary, multiclass, and one-versus-all SVM settings. In our work, we focus on
a particular generative model for binary labels and do not explicitly make sub-Gaussian tail
assumptions on the covariate distribution in our main result. A second key difference between
our results and existing literature is that, because of our probabilistic generative model on the
labels, we obtain results under weaker random matrix conditions (and hence conditions on
the spectrum of the kernel integral operator). These spectral conditions are similar to those
used in analyses of minimum-norm interpolants (e.g., [4, 34, 39, 32, 31]) and highlight a novel
connection between SVP and harmless interpolation of noise.

Generalization analysis of classifiers in overparameterized settings. Classical bounds on the
generalization error of the SVM rely on sample compression (e.g., [17, 15]) or Rademacher
complexity (e.g., [5, 30]), which typically yields upper bounds on the test error in terms
of the fraction of training samples which are support vectors or the margin achieved by
the learned hyperplane on the training set, respectively. Moreover, the fraction of support
vectors in the SVM was shown to be o(1) in a range of settings where the number of training
points is proportional to or much greater than the data dimension [14, 9, 29], implying good
generalization. When the data or feature dimension is much larger than the number of training
points, however, these results no longer apply. In fact, it has recently been shown that the SVM
decision function can interpolate the training labels in highly overparameterized settings (i.e.,
that every point becomes a support vector) and that, as a result, traditional bounds become
vacuous, in the sense that they are no better than a constant with high probability [33, 21].

Recent analyses of benign overfitting in linear and kernel regression models have pro-
vided an alternative path to studying the behavior and generalization of overparameterized
classifiers. These results have been exploited” to provide error bounds in a signed Gaussian
model [33], high-dimensional linear discriminant analysis [11], and Gaussian and sub-Gaussian

2We note that there is a wide body of work on asymptotic error analysis and general £,-regularizers and
accordingly restrict our discussion to the most relevant setting, i.e., nonasymptotic error analyses of the SVM
with £a-regularization.
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mixture models [42, 41, 10]. Most of these works (with the exception of [11], which also re-
quires very high-dimensional data) explicitly use SVP to link the performance of a classifier
to that of an interpolating regression task, which is easier to analyze. Hence, these results
only apply in the restrictive settings in which SVP has been shown to hold.

By contrast, our approach most closely resembles that of [31], which gives a bound for the
classification loss of the label interpolant obtained by minimizing the squared loss in a general
RKHS setting. The analysis tools provided in [31] in turn have some precedent in the approach
of [20, 44], which considered explicitly regularized kernel regression under random design and
minimal assumptions on the features. Notably, our results for bounded orthonormal systems
are also stated in terms of spectral conditions on the kernel integral operator rather than
particular properties of the data distribution. The resultant error expressions are not as
sharp as those obtained via Gaussian or sub-Gaussian assumptions, but they apply for more
general choices of kernel and feature map.

2. Background and setup. Our main results build on the analytic framework for kernel
regression and classification in [31]. We summarize the main components of this framework
here. Specifically, we introduce important concepts related to the spectral properties of repro-
ducing kernel Hilbert spaces and set up the supervised learning framework under which we will
study the equivalence of the support vector machine (SVM) and minimum-norm interpolation
(MNI) classification problems.

2.1. Notation. For a probability space (X,u) and f: X — R, we define the norms
1, == (Bamyl f@)P)? and fl,_ i= ess sup,|f(z)l. For u € R, |lull,, or lul, is
the Euclidean norm. More generally, for a function f in a Hilbert space H, | fl|;, is the
Hilbert norm. We define Lo(X, ) to be the Hilbert space of square-integrable functions
f+ X — R with inner product (f,9);, = Ez~puf(z)g(z). We denote the f2 and H inner
products by (-, ) ¢, and (*-)4, respectively. We will write the operator norm of an operator
T: Hy — Ho (for distinct Hilbert spaces H1, He2) with respect to the H; and Hg norms as
1T Mgy, 30, = Sup|| |, <1 I T fll3, or, when T': Hy — Ha, simply as ||T|,,,. For a subspace A
of a Hilbert space H, we denote the orthogonal projection operator onto A as P4, and for
an operator T' on H, we denote T4 := TP4. Let diagh(Z) denote the projection of a matrix
Z onto the set of matrices with zero diagonal. The identity operator is denoted by Z (or I
when it is an ordinary matrix). The notation e; denotes the ith canonical basis vector in R".
Finally, the notation a < b means a < Cb for some universal constant C' > 0, a < b means a < b
and b Sa, and a < b means a < c¢b for some (sufficiently small) constant ¢ > 0.

2.2. Reproducing kernel Hilbert spaces. Let H be a reproducing kernel Hilbert space
(RKHS) of real-valued functions on a probability space (X, u). We denote the reproducing
kernel of H as k: X x X — R. By definition, k satisfies the property that, for any x € X and
feMn, f(x) = (ks f)y, and ky :=k(z,-) is the unique element in H with this property.

Our results rely crucially on the spectral properties of the kernel used during the learning
process. To this end, we first assume that samples of X are drawn according to the probability
measure u. Then, the kernel integral operator T : Lo(X, 1) — Lo(X, 1) is given by

TH() = /X k() (0)duly).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/24 to 24.126.199.250 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

766 KAUSHIK, McRAE, DAVENPORT, AND MUTHUKUMAR

Assuming k is continuous, Mercer’s theorem yields
oo
E(o,y) =Y Aeve(z)ve(y),
/=1

where {A¢}72, and {v,}7°, are the eigenvalues and eigenfunctions of 7', respectively (a discus-
sion of the relatively weak conditions under which such a decomposition holds can be found
in [38]). Furthermore, the eigenfunctions {v;}72; form an orthonormal basis for La(X, ).
Without loss of generality, we will assume the eigenvalues are sorted so that A\ > Ao >--- > 0.
For some index p, which we can select in our analysis, let G := span(v1,...,vp) be the subspace
of Lo(X,u) corresponding to the largest p eigenvalues, and let Tg be the restriction of the
kernel integral operator to G.

2.3. Classification setting. Assume we observe a training set {x;,y;};" ,, consisting of
i.i.d. (independent and identically distributed) copies of (x,y), where x ~ p and y € {—1,1}.
We assume the relationship between x and y is governed by the regression function
(2.1) n'(x):=Ely|z]=2P(y=1]|z) -1
for some n* € G.? In other words, given z, y equals 1 with probability % and equals —1
otherwise. Equation (2.1) constitutes a natural generative model for classification through
performing regression on (an affine transformation of) the classification conditional probabil-
ity; similar models appear in the literature on plug-in classifiers (e.g., [2]), albeit with slightly
different regularity assumptions on n*. Accordingly, we consider classification procedures
which yield an estimator 7 of n* and predict the label of a new point x € X via g = sign(7(x)).
It is often convenient to consider our binary observations as being of the form y; = n*(x;) + &,
where &; :=y; —n*(z;) is interpreted as observation noise and satisfies E[¢ | ] =0. We collect
the observations y; and the noise &; into vectors y and &, respectively; it will be clear from the
context whether these symbols refer to the scalar random variables or the vector of observed
values.

Given a data set of the form described above, we let A : H — R"™ denote the sampling
operator on H, i.e., the operator such that (Af); = f(x;). The adjoint A*: R™ — H of the
sampling operator with respect to the H and ¢y inner products is characterized by A*f =
iy Bikg,, for any B € R™. Finally, we denote the Gram matrix corresponding to the data
set as K := AA* € R"™". The entries of this matrix are given by K;; = k(z;,x;).

For our analysis, we also split the sampling operator into its components which act on G
and G, denoted Ag :=C and R := Ay, respectively. We let C* = ’7'G_1.AZ~ be the adjoint
operator of Ag corresponding to the inner product (-,-) 1,- Finally, the excess classification
risk of an estimator 7} is defined as

E(M) =Py #y) — Py #sign(n)).

3The assumption that n* lies in the subspace G is stated for convenience and to simplify the statement of
our main assumption and theorems. It can be relaxed at the expense of an extra term in our error expressions.
This is made explicit in section 5.
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2.4. Ridgeless kernel regression. The ridgeless kernel regression, or minimum-norm
interpolation (MNTI), procedure solves the problem

7) = argmin [|7[|,,
(2.2) neH
s.t. n(z;)=y; foralli=1,...,n.

This problem admits a closed-form solution 7(z) = > ;" ; Bik(z,x;), where = K~1y. The
properties of such estimators have been studied extensively in several recent works (e.g.,
[28, 4, 19, 32, 31]). At a high level, most of these works decompose the learned estimate as
f= A (AA*) Ly = A*(AA*) T A + AT (AAY) 71

=€

(2.3)

>
S

and then, under various assumptions, characterize when (i) the first term approximates n* and
(ii) the second term is negligible. Most central to our analysis, [31] shows that, under certain
spectral conditions on the kernel, the estimate satisfies /) ~ Sn*, where S = n7Tg (aZg + n’T(;)_l
is the idealized survival operator," which represents how well the true function is recovered
by MNI. We will see below that SVP can occur in a variety of settings where S uniformly
attenuates n* in the L..-norm.

2.5. Kernel SVM. The hard-margin kernel support vector machine (SVM) pro-
cedure aims to find a linear classifier that maximizes the training data margin in the space
‘H. Particularly, the primal and dual forms of this problem can be written as

A . A 1
f) = arg min||n||4 B=argmaxy' B—=-BTKp
(2.4) neH = BeR™ 2
st yin(xi) >1fori=1,...,n. s.t. y;8;>0fori=1,...,n,

with =", szm Observing the dual form, we note here that the estimators 7 obtained
by the MNI and SVM learning procedures both have a representation as a linear combination
(with coefficients given in the vector [3) of the input features k,,, for i = 1,...,n. As was
originally noted in the discussion of [33, 21], it is readily verified that the choice B =Ky
(which characterizes the solution to (2.2)) also maximizes the dual objective function of (2.4);
however, this choice may not satisfy all of the additional constraints of the SVM. Our main
results in the following section aim to characterize when the estimators 7 obtained by solving
these two problems coincide ezxactly. Since the support vectors are the training points which
satisfy 7(x;) = +1 (and hence for which the primal constraints are active), this equivalence
implies that every training point is a support vector in the learned SVM.

3. Main results. In this section, we provide our main results characterizing SVP in the
RKHS setting described above. After describing our main assumptions and defining the key
quantities which appear in our results, in section 3.2 we state a theorem for general bounded
feature families and provide an example of a bilevel feature design which exhibits SVP. Then, in
section 3.3 we use our analysis framework to strengthen our results in the case of independent,

4We will formally define @ in Assumption 3.1.
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sub-Gaussian features, hence showing that SVP can occur in a more strictly expanded regime
than that provided by the main results of [21] under our generative label model. Finally, we
demonstrate that our result immediately implies good generalization (in the sense of statistical
consistency) of the kernel SVM in new overparameterized settings.

3.1. Feature model and sampling conditions. We consider kernels for which the eigen-
functions of the kernel integral operator vy(x) satisfy one of the following two properties:

1. Bounded orthonormal system on G (BOS): The eigenfunctions of 7 satisfy
>P_, v}(z) < Cp with probability 1 over x for some constant C' > 1.

2. Independent sub-Gaussian (SG): For = ~ p, the {vy(x)},>1 are independent, zero-
mean, sub-Gaussian random variables.

The BOS condition on G is satisfied by several common feature families, such as Fourier
features, certain orthonormal polynomial families, discrete orthonormal systems, etc. Notably,
in many of these cases, the features are far from independent.

Our analysis considers the setting where the sampling locations in the training set are
drawn independently from the distribution p and satisfy certain properties with high prob-
ability (which can be separately verified via concentration bounds stated in Appendix A)
The first two properties are equivalent to those in Theorem 1 of [31]. The last condition is
a property of our analysis and is satisfied for a variety of choices of features and n*. After
listing our main assumption below, we provide a brief interpretation and discussion of when
it is satisfied.

Assumption 3.1. For some 0 < § < 1/2, the training samples =, ... ,:pni'iifi',u satisfy all of
the following with probability at least 1 — 4:
1. (Residual Gram matrix concentration.) There exist constants ay, < oy > 0 for which
the residual Gram matrix satisfies

aorl, <K RR* < ayl,.

2. (Feature covariance concentration on G.) Let C\; be the sampling operator on G for
the leave-one-out data set {z1,...,Zi—1,Tit1,...,2n} with Lo-adjoint CQ. Then, for
all i€ {1,...,n}, the following holds for some ¢ < %:

ay — A, 2 *
o + EHC\iC\i —nZglg, <c

3. (Lo control on expected recovered signal.) Let @ be the harmonic mean of a7, and ag.
Let S :=nTg (g + nTg)fl be the idealized survival operator, and let B :=Zg — S
be the idealized bias operator. Then

bi=Bn"llo $1 =187 |-

The first condition of residual Gram matrix concentration is needed to ensure harmless
interpolation of noise in MNI and has been shown to hold with high probability in many
situations, such as in the case of sub-Gaussian features [4, 39] and in settings where the leading
eigenspace satisfies a hypercontractivity condition [32]. We provide relevant concentration
bounds in Appendix A which can be used to verify this condition in both the BOS and SG
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cases. Note that unlike previous results on SVP which are label-agnostic and depend crucially
on concentration of the entire Gram matrix to a multiple of identity (including [33, 21]), we
only require this concentration property for the residual component.

The second condition requires covariance concentration on G. The full-sample version of
this assumption is standard in regression. Our leave-one-out version holds with high prob-
ability for BOS features when n 2 plogn (see, e.g., Lemma A.3) and for SG features when
n 2 p (Lemma A.4).

The third condition requires that the idealized survival operator S shrinks n* (approxi-
mately) uniformly. Although this condition seems rather unusual at first glance, it turns out
to provide the flexibility necessary to cover previously studied regimes while also allowing us
to show that SVP occurs in new settings (by leveraging the dependence on 7*). For instance,
it is satisfied in any of the following cases:

e Heavier-tailed eigenvalues: In general, if @ > n);, then Sp* will shrink to-
wards 0 while Bn* approaches 7*, and sufficient shrinkage coupled with bounded v,
yields the desired Lo, control. This condition is quite generic and covers most set-
tings in which SVP has previously been studied—mnote the similarity to the condition
Zle Ai > Ainlogn from [21]. Special cases include slow polynomial decay (studied in
the supplementary material (SVM_SIMODS_supplement.pdf [local/web 255KB])) and
the isotropic finite-dimensional case (where d>>n, \y =1 for £ <d, and 0 otherwise).

e Identical leading eigenvalues: The leading p eigenvalues of 7 are identically equal
to some A > 0. Then, S = ag\w\IG and B = %I@, and the fact that ||n*| <1
implies that the assumption holds (with the constant in the < being exactly 1). We
explore this scenario in section 3.2.1.

e l-sparse target function: We obtain the same result without identical leading
eigenvalues if * is in the span of a single leading eigenvector, i.e., n* = yv, for some
1 < /¢ <p and constant ~.

3.2. General conditions for SVM equivalence. Our main result provides sufficient con-
ditions under Assumption 3.1 for every training point to be a support vector and hence for
MNI and SVM to yield identical solutions. The proof of this result is given in section 4.

Theorem 3.2 (SVP in bounded orthonormal systems). Consider the classification setting
described in section 2 with BOS features. Suppose Assumption 3.1 is satisfied for n* € G.
Then, with probability at least 1 —6 — %, the solutions of the MNI procedure (2.2) and the SVM
procedure (2.4) coincide if

(3.1) 2\/p12gn+aU_aL(Vk;gn+\/ﬁ)+c2\/ﬁ<<1.

ay + oy,

Our result depends, in a nuanced manner, on the idealized bias term b, the number of
samples n, the dimension p of G, the concentration of our residual Gram matrix RR*, and
(through the constant ¢) the sample covariance concentration on G. This result shows that
SVP can occur more generally in kernel settings without sub-Gaussian or independent features
(including the Fourier feature setting in [33], where this phenomenon was originally observed).
Note that, unlike the results of [33, 21], our analysis assumes a particular model for the labels

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://epubs.siam.org/doi/suppl/10.1137/23M1568764/suppl_file/SVM_SIMODS_supplement.pdf

Downloaded 09/01/24 to 24.126.199.250 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

770 KAUSHIK, McRAE, DAVENPORT, AND MUTHUKUMAR

and does not allow for adversarial label selection. However, our results apply under much
weaker assumptions on the features, as we discuss in the next section.

3.2.1. Implications for the bilevel ensemble. As a concrete example, we now introduce
the overparameterized bilevel ensemble as defined in [33, 31]. This example is useful for
understanding the types of settings in which SVP can occur and is parameterized by a tuple
(n,B,q,7), where 3>1,0<r <1, and ¢ <3 —r. Here, d=n” is the number of features used
for training, the first p =n" features correspond to larger eigenvalues, and

</ <
(3.2) A£={1_5+T+q for 1 =£=p.
n for p< ¥ <d.

Note that ¢ < § — r (with equality representing the isotropic case) is required for correct
eigenvalue ordering, and r < 1 ensures p < n. Here, ¢ can be interpreted as controlling the
“effective overparameterization,” i.e., the separation between the leading and residual eigen-
values. This type of featurization was inspired by spiked covariance models [33] and has the
useful property that it permits harmless interpolation of noise in linear regression throughout
its permissible range of parameters, making it a natural setting in which to explore the phe-
nomenon of SVP. While we specialize our results to this ensemble for better comparison to
prior works, it is important to note that our main theorem is stated in considerable generality
and holds for any feature map with relatively heavy-tailed eigenvalues (see also the discus-
sion after Assumption 3.1). In the supplementary material (SVM_SIMODS supplement.pdf
[local/web 255KB]), we provide analogous results for the case of polynomial decay of eigen-
values (which was considered for benign overfitting in [4]) . Below we specialize the result of
Theorem 3.2 to the case of bounded features under the bilevel ensemble. The proof is provided
in Appendix B.

Corollary 3.3 (SVP in BOS: Bilevel ensemble). Consider the bilevel ensemble with param-
eters (n,B,q,7) and bounded features {W(%)}}Ll- Suppose n* € G as in the classification
setting of section 2 and sup, | pr(\w(:n)]Z -1 nstL. Then, as n— oo, SVP occurs with
probability — 1 if 8>3, ¢ > 1—5”, and r < %

This corollary demonstrates that SVP occurs in this setting as long as the degree of effec-
tive overparameterization (controlled by § and ¢) is sufficiently high. Notably, this permits
situations where the features are highly structured. In fact, we only assume the vy are bounded
and satisfy the thin-shell type condition sup,, ‘pr(h/g(x) 2 — 1)’ < n%TL, which ensures that
k(x,x) does not vary too much and is necessary for concentration of the residual Gram matrix
(similar requirements are given in related works which study this concentration phenomenon,
such as [32, 3]) This can be easily verified to hold for many structured feature families, includ-
ing Fourier features, for which |vy(x)|? = 1 uniformly for all z. We further note that, although
we state asymptotic results under the bilevel model for clarity of exposition, Theorem 3.2
(and the proof in Appendix B) allows us to obtain finite-sample guarantees that hold with
high probability in a wide range of settings with nonuniform eigenvalues.

3.3. Improvement in the independent, sub-Gaussian case. We now consider the case
in which the features {v¢(x)}, are independent and sub-Gaussian random variables. This is
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the setting which was considered in earlier works on support vector proliferation [21, 33].
These works generally do not assume a particular label model and state conditions in terms
of certain notions of “effective rank” of the entire feature covariance. In a comparison to this
line of work, we also state results in the independent, sub-Gaussian case. Our results apply to
a more specific label model, which implicitly imposes an additional distributional assumption
compared to previous work, since n*(x) (which is a linear combination of {v;(x)}!_;) must be
uniformly bounded in our model. However, our analysis framework allows us to recover many
existing results while also showing that SVP can occur in a broader range of settings. The

proof of this theorem is given in section 4.5.

Theorem 3.4 (SVP for independent, sub-Gaussian features). Consider the classification set-
ting described in section 2. Suppose that Assumption 3.1 is satisfied for n* € G and that the
features {ve(x)}p=1 are zero-mean, independent, and sub-Gaussian. Then, with probability at
least 1 — & —ne P — 3 the solutions of the MNI procedure (2.2) and the SVM procedure (2.4)
coincide if

1 [pl —ag 1 Xp1nl
(3.3) gw/p(;gnqLaU aL cl))gn+ prIV OB | . flogn < 1.

ay +ajg, ar,

We can see that the last two terms are much sharper than the corresponding terms in
the BOS case (e.g., cy/logn instead of ¢?,/p). This improved bound, coupled with the faster
concentration rates of the operators RR* and C*C for sub-Gaussian features, can be shown
to weaken the conditions for SVP under the bilevel ensemble. We state this condition in the
following corollary, proved in Appendix B.

Corollary 3.5 (SVP for independent, sub-Gaussian case: Bilevel ensemble). Consider the
bilevel ensemble with parameters (n, 3,q,r) and independent, zero-mean, sub-Gaussian features
{ve(z)}4_,. Suppose n* € G in the classification setting of section 2. Then, as n — oo, SVP
occurs with probability — 1 if > max (1,3 — 2r — 2q) and q > 1—7

This corollary is consistent with the results of [21], which show that SVP occurs in the
bilevel model for ¢ > 1 —r and 5> 1 for arbitrary labels y;. We recover this result under our
label model while also finding that SVP can occur in the range 12i <g<1l—r aslongas 8
is sufficiently large (i.e., as long as there is sufficient overparameterization). Unlike previous
settings in which SVP was shown to occur, this is a regime in which the MNI procedure turns

out to be regression-consistent, that is, it can recover n* exactly in the limit as n — oo [33].

3.4. Generalization of the kernel SVM in new settings. In settings where support vec-
tor proliferation occurs, the equivalence between the MNI and the kernel SVM provides an
approach for characterizing the generalization error of the SVM classifier. Specifically, we can
use the MNI, which has a closed-form solution and has been analyzed extensively in recent
literature, to understand the generalization of the kernel SVM. Indeed, as noted in [21], tradi-
tional SVM generalization bounds are often based on the fraction of support vectors and hence

5We note here that [1] showed that SVP is unlikely to happen (on sub-Gaussian data) for the regime
(2121)‘3')2 (EjZI /\j)2
DIPEPY by
parameterization of the bilevel ensemble, as we always have d2, < dan. Our results apply to a different regime
in which we allow dso < n and still show that SVP can hold.

where ds := < nlogn and d%, = 2> don. However, this regime is not captured by any
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become uninformative in the types of overparameterized settings where SVP occurs (and this
fraction approaches 1). Nevertheless, the equivalence to MNI can be used to demonstrate that
the kernel SVM can indeed generalize well (in the sense of asymptotic consistency) even in
highly overparameterized settings where every training point is a support vector. Previously,
such results were shown for linear models on Gaussian and independent-sub-Gaussian data
[33, 21, 42, 41, 10]. We now demonstrate that such results can also be shown for general kernel
methods under the bilevel ensemble, addressing in part an open question raised in [33]. Recall
that under this ensemble, classical margin bounds can be used to show that the kernel SVM
is classification-consistent for ¢ < 1 —r. By leveraging generalization results for the MNI from
[31], we show below that SVP can be used to show that the kernel SVM is also consistent in
some cases where ¢ > 1 — r, i.e., where there is a high degree of overparameterization.

Corollary 3.6 (generalization of kernel SVM in the bilevel ensemble). Consider the bilevel
ensemble with parameters (n,3,q,r). Suppose n* € G in the classification setting of section 2.
Then, the following hold:

1. BOS case: Under the conditions of Corollary 3.3, the excess classification risk of the
kernel SVM satisfies

1
£< (max(l, n' ) (”(H)/ 4 ”(1_5)/2) R ”q_%(l_r)> 7l

with probability — 1 as n — oco. Hence, E =0 if B> 3,r< %, and0 < g < %(1 —r).
2. 8G case: Under the conditions of Corollary 3.5, the excess classification risk of the
kernel SVM satisfies

log . \
£ 5 (max(1n071) (nlr =72 4192 ) o055 gt )

with probability — 1 as n — 0o. Hence, € —0 if 0 <g<min (1l —r+ %, %(1 —r)).

We note that the part 2 of Corollary 3.6 is very similar to the condition implied by
the works [33, 21] while requiring a slightly stronger condition on ¢q. However, these prior
results assume that the true function is 1-sparse and linear; by contrast, we consider a flexible
classification setting where the target function n* is assumed to belong to the subspace G
of H, and the y; follow the label model described in section 2. Furthermore, the part 1
of Corollary 3.6 applies to a broad range of nonindependent feature families with possibly
heavier-tailed distributions. In the supplementary material (SVM_SIMODS supplement.pdf
[local/web 255KB]), we provide an analogous result for kernels with slow polynomial eigenvalue
decay.

4. Proofs of main theorems. In this section, we provide proofs of our main results. We
begin by describing our overall proof technique before considering the main components of
the analysis separately, deferring the proofs of useful technical lemmas to Appendix A.

4.1. Overview of analysis. Our results are built off of the deterministic conditions for
support vector proliferation provided in [21]. For self-containment, we first restate this result
for the kernel setting with the notation introduced in section 2.

Proposition 4.1 (Lemma 1 in [21]). For a kernel k(x,y) corresponding to RKHS H, let the
minimum-norm label interpolant 7 be given by the formula
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A(z) =Y zik(z, i),
=1

where z =K1y, and K = [k(zi,x;)]ij is the kernel Gram matriz, assumed to be nonsingular.
Furthermore, let 7)\; be the minimum-norm label interpolant constructed using the leave-one-
out data set consisting of points {(x;,y;)}]_1 j4-

Then, the following conditions are equivalent:

1. Every data point (x;,y;) is a support vector for the maz-margin SVM, i.e., the SVM

boundary and the binary label interpolant are identical.
2. For every i€ {1,...,n}, zjy; >0, i.e., z; #0 and sign(z;) = y;.
3. For every i€ {1,...,n}, yin(v;) <1.

Our analysis aims to give conditions under which [#\;(z;)| <1 for all i. When this occurs,
Proposition 4.1 immediately implies that all training points are support vectors. Recalling
the decomposition (2.3), we can write

i (i) < levi(@) | + [Parin,o(@i)| + [Paino(x:) — S0 ()| + [Sn7 ().
By Assumption 3.1, 1 — |Sn*(x;)| = b, so the above bound will be strictly less than 1 when
vl | [Pesiio(@)] | [Painio(@:) = Sn*(wi)]

<1
(4.1) b b b ~
~———
A B C

for all 7. Term A represents the interpolation of label noise. Terms B and C' represent
how well the noiseless estimate 7),;( is approximated at z; by the idealized survival Sn*: B
represents the component orthogonal to G, and C is the component in GG. In the following
three subsections, which focus on the BOS feature case, we bound these three terms separately,
yielding general conditions under which the condition (4.1) is satisfied (Theorem 3.2). Then,
in section 4.5 we consider the case of independent, sub-Gaussian features and obtain sharper
bounds for terms B and C' (yielding Theorem 3.4).

4.2. Noise error. To bound term A in (4.1), first observe that the noise variables £ are
bounded with [£;| <2 for all i <n. Hence, the vector £ is sub-Gaussian in the following sense:
For any fixed vector z € R", (z,¢) is a sub-Gaussian random variable with sub-Gaussian norm
of ||z||, within a constant. This means that, for any fixed z € R", with probability at least

1 — & with respect to &, |(2,€)| < ||z|l,v/logd’~!. So, since
le(@)] = |{ka, A" (AA") 716y = [((AA") ™ Ay, )],
it suffices to bound ||(AA*) "1 Ak,||,. We leverage this observation in the following lemma.

Lemma 4.2 (upper bound on the noise term). Let x € X be independent of the training
data, and suppose Assumption 3.1 holds. Then, with probability at least 1 — #,

plogn 1
le(@)] S/ = = + = IRkl logn,

(07

where & = “LEC and k= Pgrk,.
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Proof of Lemma 4.2. Let x € X be independent of the data. We have
e(@) = (kg, A (AA") 7€) g, = (AA") T AR, £).

With respect to the randommness in &, this is a sub-Gaussian random variable whose sub-
Gaussian norm is within a constant of ||(AA*) "t Ak,||,. By Lemma 8 of [31], we have

[ (AA") L AR, ||y = (AA") N AT, + AcAL) (AT, + AcAL) Ak
<2 (2 41) et + Aoty Akl
S @l + AcAG) T AGKS [l + (@1 + AcAG) T RE 5,
where & = O‘“‘%, and kf and kf denote Pgk, and Pg. k,, respectively. For the first of these
terms, we have
(@ + AcAG) " Acky [l = IC(6Ze + TeC*C) ™ kS |l
=lc@tst + ¢ 0) T kNl
<€l gy TG €)M g, 176 K,
1
Svn (n) Vp= %

Here, the last inequality holds from the assumption on the concentration of C*C and the fact
that HTG_lkgHi =[>7 Ug(av)ng%2 =P vi(z) < p by Parseval’s identity and the BOS
assumption. For the second term, we have

~ * 0\ — ~ * 0\ — 1
(@l + AcAG) ™ REL Nl < [[(61n + AcAG) T IREL N, < Z [RE .

Applying a sub-Gaussian tail bound yields the result.
We also note here that for independent, sub-Gaussian features, the above argument also
applies, except here we use the fact that

» 1/2
176 kS, = <ZU?($)> SV
(=1

with probability at least 1 — e™P (see, e.g., [40, Theorem 3.1.1]); note that this inequality
holds deterministically in the BOS case. So, the final result holds with probability at least
1—e™?— # rather than 1 — # We will use this fact in section 4.5. |

Now, we apply this lemma to the leave-one-out training set corresponding to index ¢ and
let © = x;. In this case, |R\;kE |, = [diag™ (RR*)eilly, < [[(RR* — arly)eill, < ay — ar.
Recalling the definition of @, this yields

plogn ay —ar,
(2| < ]
vl S 4 2+ S0 o

L. We can then take a union bound over the n leave-one-out

with probability at least 1 — -5
sets and divide by b to obtain the final bound on term A: with probability at least 1 — %, for

alli=1,...,n,

1 plogn 1 ay—ar
4.2 AS -4/ - V1 .
(4.2) ~ o +b au + oL ogn
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4.3. Bias error due to G*. For term B in (4.1),

Parinio(zi)| = (K Ak (2, 20) | < || K Aun®
\ \ 2

by the Cauchy—Schwarz inequality. The following lemma bounds the first of these terms.

diagt (RR")e;

2

Lemma 4.3 (useful bound for G term). Under Assumption 3.1 and the classification model
described in section 2, || K1 An*||ly < b&/f.

Proof of Lemma 4.3. Recall the decomposition K = AgAf, +RR*. Then, by the push-
through identity,
[(RR* + AgAc) ™ An*[ly = [(RR*) " Ac(Ze + AL(RRY) 1 Aq) 'y
= [I(RR*) " AcBr*(l,
<NRR*) g, se, Ml pme, 1B,
51\/ﬁb<1+6) <bvn
o, 1—c

ar,

In the last line, we use the fact that || Ag||;, _,, = /IIC*C|l, < v/n by part 2 of Assump-

tion 3.1. Furthermore, we have denoted B:= (Zg + AL (RR*) ' Ag) ™! and used Lemma A.5
to bound this “bias gperator” by the “idealized bias operator” defined in Assumption 3.1:
1Bn*[|, < L+ =) 1B, < (L+ $£)b- u

Using this lemma, noting (as in the previous section) that ”dlag (RR*)e H
and dividing by b, we conclude that term B is bounded (within a constant) b y (5¢

Ay —Qqp,
aytar

U — o,

Svis

QI\J

n.

4.4. Bias error in G. For term C, we first note that |Pgij; o(x;) — Sn*(x;)| corresponds
to the absolute error between the predictions of the G-projected estimator and its “idealized”
version, given by Sn*. In Lemma 4.4, we prove a high probability bound for [P (x)—Sn*(z)|,
where z is independent of all training points.

Lemma 4.4 (error of the G-projected estimator). Let € X be independent of the training
data, and suppose Assumption 3.1 holds. Then, with probability at least 1 — =5,

1 . = . logn
5 [Pain(@) = Sn*(@)| S 4/ P + VPt 4 .

n aU+a

Proof of Lemma 4.4. First, note that we can write |Pgjo(z) — Sn*(x)] —B)n
where B = (Zg + AE(RR*)*lAg)*l =:(Zg+M)"! and B= (IG -+ Z’Tg)*l To+ M)~ L
Then note that

B—B=BM— M)B=B(M - M)B+B(M - M)(B-B).

[Paiio(x) — Sn*(z)] < [(BM = M)Bry™) ()| + [(B(M — M)(B - B)n")(x)|
B(M By*)(@)| + [[BIM = M)(B = B)n*|l,._-
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We then use the decomposition
wi n * *\—1 n 1 * * 1 *)—1
M—MngG—AG(RR) Ac;:a TG—E.Ag.AG + A 5[,1—(7373) Ag,
which, applied to the first term, yields
(4.3)
A~ ok -1 1 * 12, %
Pain(e) - 10| < | (B2 (T - 1 Asda ) Br) 2)
— 1 -
+ ‘ <BAZ <a1n—(7z7z*)—1> Aan*> ()
= 1 * TR *
o n

+ HBA& (;In - (RR*)_l) AcBn*

+HIBM = M)(B=B)y’|l,

oo

+||B(M — M) (B —B)n*HLoo :

oo

We obtain the desired bound by separately bounding each of the three terms in (4.3).
For the first term, note that

_ 1 _ -1 1
B-Z (TG - Az;AG> B=" (IG n QTG) (TG - AgAG> B
« n « n

[

_ -1
1 —
= <O‘TG1 +Ig> (IG - c*c> B.
n n
Rather than bounding an L., norm, we directly analyze the application of this operator to

n*. Let D := (%Tgl —{—Ig)_l; note that D is a contraction on G (i.e., [|Df|, < [|flly, for
f € G). Furthermore, let 5§ = 7'51]{? Then, for fixed f € G and x € X, we have

(ofee- )

which is a sum of independent zero-mean random variables. Specifically, each of the variables
f(2:)(DsS ) (z) — (Df)(x) is zero-mean and has variance

%Z(f(azi)Dég (x) - (Df)(x))

=1

)

Ey, |f (2:)(D3g ) (@) — (Df)(@)* < B | f(2:) (DS (2)* < I I3 IDSFNT, S pIlFII%s

where we use the fact that D is a contraction and the BOS assumption in the last inequality.
Moreover, each term is bounded as |f(2;)(D3S)(z) — (Df)(z)| S || flloop- So, Bernstein’s
inequality (e.g., [40, section 2.8]) gives, with probability at least 1 — %,

(2 (20 1e¢) 1) @) Sy P21 + 2B 11 5 /2B 1),

n n n

We bound the first term by applying this with f = Bn* and recalling that ||Bn*|| = b.
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For the second term of (4.3), it is proved in Lemma 7 of [31] (which we state as Lemma A.5)
that

HBAE <;In _ (RR*)—1> A

oy — Qo 1 oy — o
<t L <1+||C*C—n:fc||L2) <=2
L, Qu-tar n oy + o,

where the last expression follows by the part 2 of Assumption 3.1. Recall that, by the BOS
assumption, for all f € G, ||f|l,_ < v/?llfllz,- So, applying this to f = Bn* and noting that
1By, <b, we get

ay — OJL

HBAE <;In _ (RR*)_1> AcBr|

i

ay + oy, b.

To bgugl the third term, note that B(M—M) is precisely the operator Q from Lemma A.5.
Hence,||B(M — M)||;, < c. Furthermore, we have (again using the result of Lemma A.5)

be
HBW || ?'

(4.4) 1B =B)n*ll., _iHBn Iz, < 1

_1

Now, using the BOS assumption, the third term in (4.3) can be bounded as

62
BV~ M)(B =Byl < V5 B ~ Ml 1B~ Byl < 7 v

Combining all of the above bounds, we finally arrive at

— 1
[Paiio(@) = S (2)] S | P b+ S02L b+ b fp

OéU-i—aL

with probability at least 1 — % |

To bound term C in (4.1), we can apply this lemma to the n leave-one- out training sets
and take a union bound to get the final bound, with probability at least 1 — . Combining
the bounds on terms A, B, and C in the previous three subsections yields Theorem 3.2.

4.5. Proofs for sub-Gaussian features. Suppose that instead of satisfying the BOS con-
dition, the features vy(z) are sub-Gaussian and independent. In this case, we first note that
for all f € H, f(x) = (kz, f)# is a sub-Gaussian random variable with norm at most ||f||,_,
up to constants. Using this observation, we can obtain sharp bounds for each term in (4.1).

For term A, we note that the statement of Lemma 4.2 also holds in the independent,
sub-Gaussian case, with probability at least 1 — % — e~ P (this fact is verified in the proof of
the lemma). So, after applying Lemma 4.2 to each of the n leave-one-out sets, we obtain the
same upper bound for term A as in the BOS case, with probability 1 — ne™? — %

For term B we note that the term [Pgify;o(7)| is sub-Gaussian with norm at most

| P A* (AAS) L AR 1,- We bound this in the following lemma.
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Lemma 4.5 (G error term for sub-Gaussian features). Suppose Assumption 3.1 holds for
independent, sub-Gaussian features. Then,

nApt1

|Pae A" (AA) A, S b.

ar,
Proof of Lemma 4.5. We proceed in a similarly to the proof of Lemma 4.3.
[Pee A (AA") A <N Za gy 1, IR (AAT) ™A |y,
= 1Z 13y, IR*(RR* + AgAl) ™ Al
= 1Za+ s 1, IIR*(RR*) "L A Bi* I3,
< HIGLHH%LJ’R*(RR ) HleymsnilAGH s, 1B,

*

nAp+1

< m \f b= b.
ar
In the second-to-last-line, we used the result of Lemma A.5 to bound |Bn*||, . [ ]

Using a sub Gaussian tail bound, term B is thus bounded by 4/ w with probability

at least 1 — =5. We then apply thls to each of the n leave-one-out sets to obtain the bound
on term B Wlth probability 1 — ﬁ
For term C, we note, as in the proof of Lemma 4.4, that

[Peiio(x) — Sn™ ()] =1((B - B)n") ()],

where B := (Zg+AgL(RR*) "L Ag) ! (this follows from the definition of 7) and the push-through
identity). This term hence has sub-Gaussian norm at most

— . be
1(B=B)n"l, < 1% Sbe,

where we have used the result of Lemma A.5. So, using a tail-bound, we have that

[Peiio(x) — Sn*(x)] < bey/logn

with probability at least 1 — % (so this holds for all the leave-one-out sets with probability
1-— %) Combining the above bounds yields Theorem 3.4.

5. SVP with general regression functions. In the above results, we have assumed that
n* € G to facilitate clean analysis (and we note that some prior works on harmless interpolation
in regression and classification make such assumptions in either an exact or approximate sense
[33, 39]). However, this assumption can be relaxed in a straightforward way, resulting in an
additional term in our main theorems. We consider in particular n* € H (so, more explicitly,
In*|l% < o0). This bounded-RKHS-norm assumption is commonplace in classical kernel ridge
regression analysis. In this case, we can decompose the MNI into the part that fits Pgn™ and
& and the part that fits Pgirn®™ as follows:

i = A (AAY) L AcPen® + A (AA*) e+ A*(AAY) ' RPgun*.

=fa.e =L
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Now, based on Proposition 4.1, a sufficient condition for SVP is that for all 4,

|(ae i) + (g \i(@i) | < 1.

Our main theorems give conditions under which the first of these terms is small. So, to extend
to general n* € H, it suffices to give a condition for the second term, i.e., the contribution
of the component of n* orthogonal to G on 7}, to be much less than 1. This is done in the
following lemma.

Lemma 5.1. Let x ~ p be independent of the training data. Then, the following bounds
hold for the MNI:
1. BOS assumption:

~ O[Up 1 R > *
L N — + RE Pa .
o (@) (22 + T2 IRKELL ) 1P

2. SG assumption: With probability at least 1 — #,

. A1vVna .
e (z)| S (1 + )\p+1> | Pa=n*|l4/logn,

64+n)\1

where & = L5 and kF = Pgok,.

Proof.
1. BOS: Observe that

i ()] = [(A"(AA") T RPGn’" ko )y
= |(RPgLn™, (AA*)_lAkm>£2|
< [RPge* [l | (AA™) ™ Ak
<RI Pl I (AAT) ™ Ak

. p 1
S vaulPoun (/2 + IR ).

where the bound on ||(AA*) "1 Ak,||, in the last inequality is derived in the proof of
Lemma 4.2.
2. SG: Since k, is a zero-mean sub-Gaussian, with probability at least 1 — #,

g ()] S |A*(AAY) " RPan |,/ logn
= |A*(al, + AgAgx) Y al, + AgAg*)(AAY) 'R P n*llL,/1ogn
S IIA™(adn + AGAG*)AH&HM 1R3¢, [IParn*[l3/1ogn,

where the last inequality follows from Lemma 8 of [31]. Now,
G (aLn + AcAc) " g, or, = (@l + Ac * Ac) T AG 1,
= (@75 +C*C)7C Iy,
<_Vn

~ ~ — bl
a)\11+n
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by part 3 of Assumption 3.1. Also,

i _ 1 Api1
IR (6L + AcAc) ™ rpr, < 5 IR, S 4 2

Combining the above yields, with probability at least 1 — #,

axt+n

A
|<A*<AA*>1RPGLn*,kx>Hr§< L f;jl)@npam*umogn. 2

Applying the above lemma to each of the leave-one-out data sets and recalling that

HR\ikﬁ o < ay — ar, we obtain the following additional sufficient condition for SVP:
1. BOS:
ayp | ay — o «
+ Pa < 1.
(/2 22 ) [Pl
2. SG:

A vVna .
(1 + \/)\p+1) | Paen®|l4/logn < 1.

O~J+TL)\1

Note that this condition is quite mild in the sub-Gaussian case, and it is always satisfied for
large enough n under the bilevel ensemble (with the exception of the isotropic case ¢ = —r,
for which the covariance is no longer bilevel). So, in this case we still have SVP as long as there
exists an r < 1 such that Pgn* satisfies Assumption 3.1. This is consistent with the results of
earlier works, which do not assume any label-generating process for sub-Gaussian data. In the
BOS case, this condition is somewhat more restrictive but still allows for nontrivial regimes
in which SVP can occur for n* ¢ G, e.g., in the bilevel ensemble when (1 —7)/2<g¢<1—2r
(implicitly needing r <1/3) and 8>2+ 71 +q.

6. Simulations and discussion. To verify our theoretical findings, we now perform simu-
lations of the MNI and SVM procedures under the bilevel model. We consider the case where
the input space X is the interval [0, 1] with the uniform measure. Furthermore, we consider
the Fourier featurization, specified by the eigenfunctions® v(z) = €727 for £ = —d, ..., d. Per-
forming MNI or SVM with these features and the bilevel weighting on features corresponds
to the kernel function

d d
k($ay) = Z )\gvg(x)vg(y) = z )\g€j2ﬂ—e($_y)’
t=—d (=—d

where the Ay are given as in (3.2) for £ > 0 and A_y = \y. For all experiments, we use a
training size of n =100 (note that the choice of n affects the kernel eigenvalues).

SFor simplicity, we use complex exponential eigenfunctions, but we will always use complex-conjugate—
symmetric coefficients, resulting in real functions. We could use purely real sines and cosines as our eigenfunc-
tions at the expense of somewhat more complicated notation.
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We first generate a random ground-truth function n* as a linear combination of {Ug}:g:fg,
with standard normal coefficients, scaled so that n*(z) € [-1,1]. For each z; in the training
set, we generate y; according to the rule P(y; = 1) = an(m) We then compute and plot
the MNI and SVM estimates for three choices of bilevel parameters, (3,r,q) = (3.2,0.4,—0.4),
(3.2,0.4,0.4), and (3.2,0.4,0.8), corresponding to different levels of effective overparameteri-
zation. The results are shown in Figure 1. Based on Corollary 3.3, the two estimates should
coincide with high probability when ¢ > # = 0.3. Indeed, from Figures 1b and lc, we
see that this is the case for the second and third choices of parameters. Our results do not
draw any conclusions about the occurrence of SVP in the range g < 0.3, but we see that in
this example, SVP does not occur for a very low degree of effective overparameterization, as
shown in Figure 1a.

To measure the effect of the bilevel ensemble parameters, we also plot a heatmap of
SVP occurrence for various values of r (the number of favored features) and ¢ (the effective
overparameterization). Here, we fix n = 100, f = 3.2, and the ground-truth function n*
(generated as in Figure 1), and we plot the proportion of trials (out of 25) in which SVP
occurs for each (r,q). A heatmap of these results is provided in Figure 2 along with an overlay

== True function
—— MNI estimate

== True function
—— MNI estimate

== True function
—— MNI estimate

-1-= . $ —--- SVM estimate -1 - ---- SVM estimate -1-= ---- SVM estimate
I'. f ® Sample points ® Sample points ® Sample points
1 ! 1 1 1 1 1 1 1 1
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
(a) g=—-0.4 (b) =04 (c) g=0.8

Figure 1. SVM and MNI solutions with Fourier features in the bilevel ensemble for various levels of effective
overparameterization.

1.0
0.8
0.6
0.4

0.2

0.0

0.4 0.6 0.8
r

Figure 2. Heatmap showing the proportion of trials (out of 25) in which SVP occurs for varying parameter
choices in the Fourier bilevel ensemble, and overlay of the SVP regime predicted by our results.
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of the regime for which Corollary 3.3 predicts SVP. We note that, at least for the case of
Fourier features, there exist values of (r,q) for which SVP occurs but which are not predicted
by our theoretical results; understanding SVP in these regimes, e.g., % < r <1 (and, more
generally, providing sharp lower bounds) is an interesting and important direction for future
work.

Appendix A. Concentration bounds and technical lemmas. In this appendix we state
some useful concentration bounds which can be used to verify the operator concentration
conditions in Assumption 3.1. These inequalities and their proofs appear in [31]. Similar
concentration bounds for sub-Gaussian/independent features can also be found in [4, 39].

Lemma A.1 (general residual Gram matrix concentration). Let kf'(z,y) be the restriction of
the kernel k to G+. Then,

E|RR* — (trTgu ) Lo ||> SnPtr(TEL) + |kR(, ) — trToe |4,
where [[k7(-,+) — t1Tg1 || oo = sup {[k™ (2, 2) — tr To |}

Lemma A.2 (residual Gram matrix concentration for independent, sub-Gaussian features).
Suppose the features {ve(z)}e>1 are zero-mean, independent, and sub-Gaussian. Then, for
t >0, with probability at least 1 — e ?,

IRR* — (trTge ) || S o/ (n+t)tr (TGQJ + (n+ 1) Aps1-

Lemma A.3 (sampling operator concentration on GG in a BOS). Suppose the kernel features

{ve(z)}e>1 satisfy the BOS condition with constant C > 1. Then, for t >0, with probability at

least 1 —e~t,

1 t+1 t+1
Ljere el < Cp( Zogp) L onl J;logp)'

Lemma A.4 (sampling operator concentration on G for independent, sub-Gaussian features).
Suppose the features {ve(x)}s>1 are zero-mean, independent, and sub-Gaussian. Then, with

probability at least 1 — et
1 +1 +1
~[lcC T, S/ +
n n n

We next state the following approximation result, proven in [31], which we use frequently
to prove various technical lemmas.

Lemma A.5 (Lemma 7 in [31]). Let B:=(Zg+ AL(RR*) "' Ag)™! and B= (Ig + %Tg)_l.
Then, under the conditions of Assumption 3.1,

k=1
for Q := (7'(;1 + %Ig)_l(c*(RR*)_lc — 21c) satisfying ||Qllp, < c. Here, c <1 is an upper

bound on the quantity “C—9L %HC*C —nZgllp,-

aytoar
Note that by applying the formula for the sum of an infinite geometric series, the above
result implies that [|(B — B)n*|,, < 151180l and ||Bn*||,, < (1+ :5)1B0"| 1, -

— 1—c
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Appendix B. Proofs for the bilevel ensemble.

Proof of Corollary 3.3. We bound each term for the bilevel ensemble as in [31, Corollary
1]. First, note that

n /tr(TgJ - ((nﬁ —n") .n—2/3+2r+2q)1/2 — pl-5trta.

By the thin-shell assumption that sup, pr(vg(x)z — 1)’ < nfl2

sup |[k®(x, z) — trTge | = sup Z)\g(w(m)2 —1)|=n"P+*sup Z(W(w)Q -1)
r * >p r >p
< BHTHa B/24+1 _ ) 1-B/24r+q

so Lemma A.l implies that in the limit as n — oo, we can choose ar = Apin(RR*) and
ay = Amaz(RR*) with ay,ap,a@ < n"™? as long as 1 — g + 71+ q < r+ g, which is true by
our assumption that 8 > 2. More precisely, Lemma A.l gives us an expectation bound, which
we can then use with Markov’s inequality to get a high-probability bound. We can obtain
the stated bounds within factors of n€ for arbitrarily small € > 0, and the probability of these

bounds holding goes to 1 as n — co. We can now bound the term ¢ from Assumption 3.1.

Lemma A.1 implies that
ay — « 1
UL < —ny/tr(T2.) =n'"2.
ay +oar T«

Then, applying Lemma A.3 for each of the n leave-one-out sets allows us to bound c as

2 r—1
+ EHC\:'C\Z' — nI(;HL2 < nl=% +nz y/logn.

vl

o< QUL

~ay+arp
Now, note that for the bilevel ensemble, we have b = || =% Zan*|| .. = 55 17" .. < 555 =
min{1,n"T4~1}. We consider the following two cases (ignoring log factors, which are negligible
compared to powers of n as n — 0o):

1. If g>1—7, bx<1, so the conditions for SVP from Theorem 3.2 can be written as
n(rfl)/2 +n175/2n1/2 + (n27,8 +nr71)nr/2 < 1.

One can easily check that this holds as n — co when r < 2/3 and > 3.
2. If g<1 —r, then b<xn"t97! 5o the condition is

R e (e R e S U A S B

This holds as n — oo for r < 2/3, ¢ > I;QT, and (3> 3.
Combining the above two cases yields the result. |

Proof of Corollary 3.5. The proof of this statement is similar to that of Corollary 3.3,
but it uses sharper concentration bounds from Lemmas A.2 and A.4 for independent, sub-
Gaussian features. Again, we first bound the quantities ay — ay, and ¢. Lemma A.2 implies
that with probability at least 1 —n~!,

IRR* — (trTge ) In|| < n/2B/27+4 4 pl=Brta,
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Since 8 > 1, we can again choose o = Apin(RR*) and ay = A\pazr(RR*) with ap,ap, @ <
n” T4, Furthermore,

w=oL o L a-pperg 082,
ay +ap, ' nrta

and Lemma A.4 (again applied as a union bound over the n leave-one-out sets) implies that
r—1

we can take ¢ xn1=A/2 4 n5 > ok + 2||Cr.C\; —nZa| 1, We again consider the following

two cases from the previous corollary (again omitting log factors):

1. If ¢>1—r, bx1, the conditions for SVP from Theorem 3.4 can be written as

n—B+r+q+1

n(r=1/2 4 p(1=A)/2 4 (2 <
n'4

Here, the left-hand side is always decreasing in n for 5> 1 and r < 1.
2. If <1 —r, then b<xn"t9"1 5o the condition is

. —B4r+q+1 r—1
p I H—r—a | pler—a ,(1-8)/2 \/T+ (n(lfﬁ)/2 +nz )<l

In this case, the left-hand side is decreasing for g > 1%7“, and 8>3 —2r —2q.
Combining the above two cases, we arrive at the desired result. |

Proof of Corollary 3.6. To prove this corollary, we first characterize the range of parameters
(n,,q,r) for which the excess classification risk of the MNI solution goes to 0 in the limit as
n — oco. In the BOS case, it was proven in Corollary 1 of [31] that this occurs in the following
two settings (the full finite-sample bound for the MNI is given in [31]):

1. ¢<1—r, f>2 (for which regression is also consistent).
2. 1-r<q<2(1—r) and B > 2(r—+gq) (for which classification is consistent but regression
is not).

Combining these with the conditions for SVP in bounded orthonormal systems from Corol-
lary 3.3, we can immediately conclude that the SVM solution is classification-consistent in the
regime where both conditions hold (i.e., when SVP occurs and when the MNI is consistent).
Part 1 of Corollary 3.6 follows.

Now, to prove part 2 of the corollary, we modify the proof for the BOS case by using
sharper concentration bounds for independent, sub-Gaussian features. We first recall the

following expression of the excess risk from [31]: £ < Hnrs”Lz, where s > 0 is a parameter we
can choose, and 1 = sn* + 7.
Note that the idealized survival operator in the bilevel ensemble is given by § = =74 =<

n+ao
Ly < min(1,n'~""9)Zg. So, we will apply the above bound on the excess classification

risk with the choice s =min(1,n'~"~9). Then, by definition, %, = € + flp — Sn*, so
e, < Nell, + N0 = 807,
The first term can be bounded by Theorem 2 of [31], which yields
1/2

2 —28+2r+2¢\ 1/2
P e | ey (IR TERANGE s aes)e

(Z N 2 2By —2B+2r+2q )
{>p f)

where we have used the scaling derived in the proof of Corollary 3.5.

lellz, <

~
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Furthermore, we can bound ||7jp — Sn*||;,, with Lemma 6 of [31] as follows:

“ = & n\ +1 . a a *
70 —Sn*lly, S| e+ —=— | min | A1, —=, /= | [7*]l%
V= /A
N (n(l_ﬂw +n7 + n(l_ﬁ)/Q) min (Ln’“*q_l,n(”q_l)ﬂ) 1711,

< (n(lfﬁ)ﬂ n n*) min (1,7 F71) ||| ..

So, we can obtain the risk bound
& S max(L,w171) (nC=D/2 4 0092 4 (-2 L5 ) i (14 11) ) .

From this we obtain the following:

1. If g<1—r, then £ — 0 (and, in fact, s — 1).

2.ifg>1—r, then8—>0ifq<%(1—r) andq<1+%—r.
Combining this range of allowable parameters with the conditions for SVP in Corollary 3.5
yields the part 2 of the corollary. Again, the case of ¢ < l—gr < 1 —r is covered by previous
results as discussed in [21]. [ ]
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