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Abstract

Overparameterized models that achieve zero training error are observed to generalize well on average,
but degrade in performance when faced with data that is under-represented in the training sample.
In this work, we study an overparameterized Gaussian mixture model imbued with a spurious feature,
and sharply analyze the in-distribution and out-of-distribution test error of a cost-sensitive interpolating
solution that incorporates ”importance weights”. Compared to recent work |1, [27], our analysis is
sharp with matching upper and lower bounds, and significantly weakens required assumptions on data
dimensionality. Our error characterizations also apply to any choice of importance weights and unveil a
novel tradeoff between worst-case robustness to distribution shift and average accuracy as a function of
the importance weight magnitudeﬂ

1 Introduction

Overparameterized models are ubiquitous in machine learning theory and practice today because of their
state-of-the-art generalization guarantees (in the sense of low test error) even while perfectly fitting the
training data [30, [7]. However, this “good generalization” property does not extend to test data that is
distributed differently from training data, termed out-of-distribution (OOD) data |20, 21, [29]. A particularly
acute scenario arises when the data is drawn as a mixture from multiple groups (each with a different
distribution) and some groups are very under-represented in training data |2]. Under such models, the
worst-group generalization error can be significantly degraded with respect to the average generalization
error on all groups |1, [27} |21} |20].

The effect of distribution shift on generalization has been sharply characterized in a worst-case/minimax
sense, e.g. |16, |12} 19]. However, distribution-shift arising from practical inequities in group representation
is often much more structured. Of particular interest is distribution shift induced by spurious correlations
present in the training dataset, which is a scenario that commonly arises on real-world image and language
datasetsﬂ Here, the shifted distribution removes or reverses these correlations, degrading performance.
Recent work (27, |1} 120] has examined the ramifications of training overparameterized models in the presence
of spurious correlations and proposed several strategies to mitigate their harmful effects on worst-group
error. For example, (27, |1, 11, [14] introduce novel loss functions with adjustment weights that upweight
the importance of minority group examples. On the other hand, group distributionally robust optimization
(DRO) techniques |20} |10, [L3] adaptively optimize examples from the worst group during training. Despite
these efforts, a tight characterization of the impact of overparameterization, number of examples and training
loss function on OOD generalization remains missing, even in this special setting.

Our contributions: In this paper, we provide sharp matching upper and lower bounds on the group-
wise generalization error of the overparameterized linear model on data drawn from the Gaussian Mixture
Model (GMM) data distribution imbued with a spurious feature: this model was first introduced in [21]

LA short version of this work will be presented at IEEE ISIT 2024.
2For example, the Waterbirds dataset [28] overwhelmingly features landbirds on land and waterbirds on water; in this
dataset, the background of the image is a spurious feature.



and studied in [1]. We study, in particular, a form of cost-sensitive minimum-norm interpolation (¢cMNT)
wherein minority examples are “upweighted” by an adjustment weight 1/A_ (our bounds also carry over
to the cost-sensitive support-vector-machine (SVM) via a corollary of [1]). Our results (Theorem [l and
Proposition |1)) characterize the precise role of the number of majority and minority training examples, the
model dimension, and the upweighting factor on both ID and OOD generalization. Our tight bounds uncover
an interesting robustness-accuracy tradeoff (Table : while a smaller upweighting factor (larger A_) results
in higher average accuracy and worse robustness (i.e. higher worst-group error), a larger upweighting factor
(larger A4 ) results in improved robustness at the cost of average accuracy. We also demonstrate that explicit
regularization in the form of a ridge penalty does not change our bounds except for universal constant factors,
nor does it change the nature of this robustness-accuracy tradeoff.

At a technical level, to achieve matching upper and lower bounds we deviate significantly from the related
analyses [1, 27], which study the regularization path of gradient descent on the training error objective
directly, and require strong assumptions on the dimensionality of the data. We instead leverage techniques
from benign overfitting in binary and multiclass classification [26, 25] and apply them to a careful and
delicate analysis of the cost-sensitive estimators.

Organization of paper: The rest of this paper is organized as follows. Section [I.1] contextualizes our
approach and results with the most closely related work. Section [2] presents our main results, Section [3] is
overall proof, and Section [4] provides a brief conclusion. The proofs of technical and auxiliary lemmas are
deferred to the appendices.

1.1 Related work

The problem of generalizing to out-of-distribution (OOD) data has been studied in a vast body of work
through two lenses. First, the goal of domain adaptation, or generalizing to an unseen domain, has been
studied from a minimax perspective in statistics, e.g. [12} [19] and learning theory, e.g. [16]. Such minimax
bounds are often pessimistic and do not reflect real-world distribution shifts that may be more structured in
nature. An alternative and increasingly popular model for distribution shift consists of a mizture model in
which data comes from one of a finite set of pre-defined groups, each of which possesses a very different data
distribution. Typically, some groups (designated as minority groups) are under-represented in the training
data, and a natural type of distribution shift would entail the minority groups being more prevalent, or
“upsampled”, in test data. Under this model, it suffices to minimize the worst-group error to achieve
robustness to distribution shift. To model further structure, [21] introduced the Gaussian mixture model
with a spurious feature. Here, the data is partitioned into two groups depending on the sign of the spurious
feature. Such spurious features are often present in real-world datasets and induce spurious correlations
between input and output due to imbalance in the representation of the two groups [21]. A related setting
with class imbalance was also studied by [27]. For this setting, researchers have proposed specially designed
group-aware loss functions to alleviate the impact of OOD data during training, as seen in |11} (15} 27} |3} [17].
Notably, |11] introduced the vector-scaling loss (VS-loss) and demonstrated both theoretical and empirical
benefits in using this loss function for worst-group error |1]. The implicit bias of the VS-loss turns out to align
with the cost-sensitive minimum-norm solution that we study in this work for high-dimensional data [1]. This
makes our findings directly applicable to estimators derived using the VS-loss. Finally, while our work as
well as the above discussion focused on unregularized empirical risk minimization with the gradient descent
algorithm, numerous studies utilize adaptive/robust optimization methods [20} |10, 22]. These methods aim
to minimize the worst-case error within predefined groups instead.

Compared to our work, the upper bound on worst-group error of [1] is more loose (in particular in its
dependence on the number of minority examples); on the other hand, its assumptions on data dimensionality
and signal strength are slightly less stringent. [27] studied the effect of importance weighting on an interpo-
lating classifier trained with a polynomial loss function, and showed that a similar worst-class error scaling is
possible to our Theorem [I] for a specific case of the importance weights. However, the assumptions on data
dimensionality made in |27] are significantly more stringent. Moreover, neither of these papers provides a



matching lower bound on the worst-group risk or theoretically characterizes the impact of importance weight
magnitude on ID and OOD error, nor do these papers characterize the impact of explicit ridge regularization.
Simulations conducted in [27] do highlight a robustness-accuracy tradeoff as a function of the magnitude of
the importance weight that we uncover mathematically in our work. See Table[I]for a brief contextualization
of our results with these closely related papers.

Our approach is quite different from that taken in in |27, [1], which both apply the proof strategy proposed
in [5] which derives bounds between gradient updates of data examples in gradient descent. While that
approach is generally applicable to a variety of training loss functions and label noise models, it requires larger
data dimension requirements that can be removed by other analyses even for ID model generalization [26,
18]. We instead take the approach of benign overfitting in classification of binary/multiclass GMM |26, |25,
4], which is known to provide sufficient and necessary conditions for ID generalization (i.e. in the absence
of spurious features). The introduction of spurious features and unequal weights on training examples
introduces new technical challenges in the analysis even for binary classification. We discuss in detail how
we tackle these challenges in Appendix [A]

Finally, we wish to mention that our in-depth contextualization above has focused on the impact of
distribution shift in the spurious feature setup with distinct groups, and on classification error. A parallel
question of the impact of covariate shift on regression error in the overparameterized regime has also received
sizable recent interest; see, e.g. |24} [23, [8]. This work predominantly studies random-feature models and the
impact of overparameterization on robustness.

1.2 Notation

We use lower-case boldface (e.g. ) to denote vector notation and upper-case boldface (e.g. X) to denote
matrix notation. We use ||-||, to denote the fo-norm of a vector and the operator norm of a matrix. We
use A\ (X) to denote the k-th largest eigenvalue of matrix X for X € R™*" and 1 < k < n. We use the
shorthand notation [n] to denote the set of natural numbers {1,...,n}. We use C,Cy,Cy,... > 0 to denote
universal and finite constants independent of all problem parameters, that can change line to line.

Table 1: Comparison of our results with related work

‘ Roupst (W) ‘ Assumed lower bound on d ‘ Assumed lower bound on R ‘
Wang et al. [27] O(R%in_/d) Q(n3log(n/s)) Q(n?log(n/d))
Behnia et al. |1] O(R2/d) Q(nZlog(n/d)) Q(log(n/d))
Our result (A, = 2¢) | O(Rin_/d) Q(n?log(n/s)) Q(nlog(n/d))

2 QOur group-wise error characterizations

Data distribution. We use the setup in [1], i.e. a binary classification problem with data possessing
spurious features which incorrectly correlate with its label. We denote € R? as a feature and y € {+1, -1}
as a label which is equal to 1 with probability 741 and —1 with probability m_;. Finally, we denote a €
{+1,—1} as the attribute of the data, meaning that the case a # y indicates that the example possesses
spurious features. Accordingly, b =y x a € {+1, —1} partitions the data into two groups distinguishing the
presence of spurious features (b = +1) or not (b = —1). We consider a product distribution on the features,
labels and attributes, i.e. P = P, x P, x P,. We assume that the feature distribution is a Gaussian mizture
model (GMM) such that x is a Gaussian vector conditioned on y and a with mean vector p = [yp,; apy] € RY
and covariance is I, where we denote p, as the “correct” class mean vector and g is the “spurious” class



mean vector. We also denote i, := [p.;0] € R? and 1, := [0; u,] € RY. More formally, we have:

2ly.a~ N ({Zﬁj ,1d> , 1)

_ YK, o -~
o= [N] 2=y, + o, + 2, 2)
where z ~ N (0,1,). We also denote the mean vector for each group as p, = yp = [p.;bp,]. Finally,
we denote the total signal strength as Ry = ||p||5 = [|@.||5 + ||2,]|5 and the signal strength difference as

_ 2 — 2
R = lpclly = llasl:

Training dataset. We consider a dataset {wi,yi,ai}?zl where each example is drawn i.i.d. from the
distribution P. We consider the number of minority examples (i.e. where b; = —1) to be n_ and the number
of magjority examples (i.e. where b; = +1) to be is n, =n —n_. We also denote X € R"*? as the training
data matrix (where each row in X is a data point), y € R™ as the label vector, a € R™ as the attribute
vector. The definition of x in Eq. gives us

X =yp. +ap] +Q, (3)

where Q € R"*? and each row in Q follows A (0, ;).

Assumptions on data. We first make some mild assumptions: a) we operate in the overparameterized
regime (d > n) in which the dataset is linearly separable almost surely; b) the number of majority examples
exceeds the minority examples (n4 > %), and c) the strength of the correct features exceeds the strength
of the spurious features (R— > 0). Next, we introduce our stronger assumptions on the dataset that are
required to sharply analyze the group-wise classification error. These assumptions are considerably weaker
than those made in [27] and mostly identical to those made in [I], with the exception of Assumption [I[B)
which is slightly stronger.

Assumption 1. For a target failure probability &, there exists a large enough constant C > 0 such that
A) n>Clog (1/9), C) d > CR4n,

B) ||ﬂc||§ > Cnlog (n/d), D) d > Cn?log (n/s).

Estimators. We deploy a linear model w € RY that solves empirical risk minimization (ERM) with ridge

regularization, i.e. min R (w) =13 0 (yi, (w, ;) +7 Hw||§ , where /£ is the loss function and 7 > 0. Note
weR

that when 7 = 0, we recover the special case of unregularized ERM, which will result in an interpolating
solution. We begin our analysis with the squared loss with adjusted labels for this classification problem,
lsg (y,2) = (A‘ly — 2)2, where 0 < A < 1 is the adjustment weight of the label (also commonly called
importance weight). Typically, we adjust the weights A differently for majority and minority examples to
mitigate spurious correlations. Accordingly, we denote Ay and A_ as the adjustment weight for majority
examples and minority examples. This results in the closed-form cost-sensitive ridge estimator

—1
Wrigge = X | (XXT n TI) Ay, (4)

where A € R"*"™ is the diagonal matrix of adjustment weights, i.e. A;; = Ap,. Since d > n and we assume
Gaussian covariates, X is almost surely full-rank. Therefore, in the special case where 7 = 0, solving the



unregularized ERM with gradient descent (initialized at 0) would yield the cost-sensitive minimum-norm
interpolation (cMNI) of the adjusted labels, i.e.

Wepny = argmin [jw]|, (5)
w
s.t. Ay, (w,x;) = y; for all i € [n], (6)

This solution turns out to be expressible in closed form as:
-1
ﬁ’cMNI = )(—r (XXT) A_ly. (7)

Note that decreasing the adjustment weight A, would induce a larger margin on the example x; in Eq. @,
which could alleviate at least in part the harmful effect of spurious correlations. On the other hand, very
low adjustment weights could also increase the variance of the cMNI estimator. As a final remark, we note
that under Assumption [1} [1] shows that the cost-sensitive support-vector-machine (cSVM) solution (arising
from gradient descent run on a logit-adjusted loss [11]) exactly coincides with the ¢MNTI solution presented
in Eq. . Therefore, our forthcoming characterization of the cMNI estimator also automatically applies to
the ¢cSVM estimator, which is more popular in practice [11].

Generalization error. For a fresh (test) sample (z,y,a), we can calculate the expected 0-1 error risk as
R (w)=FE []l (y # g})] =Pr {yﬁ)—rm < O} . Further, we consider the worst-group error, defined below as

~ o AN AT -
Rust (W) = max Ry (w) = max Pr|yw x <O0Oly xa= b} . (8)

Our main focus in this work is deriving tight upper and lower bounds for Eq. .

2.1 Error analysis results
We present our main result, an upper bound for the group-wise generalization error, in Theorem [I| below.

Theorem 1. Under Assumption |l the generalization error for each group b € {+1,—1} is upper bounded

as
(aJngnJr + a,RQ_bn,)
Ry (@) < exp | ~Cy ) , ©)
‘ . ne /AL na/AY
with probability at least 1 — &, where we defined ot = = = = Tha and we have 0 < ay < 1.
aZ TAZ
7Tz

Notice that Theorem [1| characterizes the group-wise error as a function of: a) the number of majority
and minority examples ny,n_, b) the total and difference of signal strength R;, R_, c¢) the number of
features d, and d) the parameter ay which is a functional of the adjustment weights Ay (and n4,n_). The
forthcoming Proposition [I] shows that this rate is sharp up to a universal constant factor in all of these
problem parameters.

Proposition 1. Under Assumption the generalization error for each group b € {+1,—1} is lower bounded

as
(a+R§n+ + oz_R%bn_>
Ry (w) > Carexp | —C3 yi ; (10)
ny /A2 nt /A2
where o4 = niJri == £ and 0 < a4 < 1.
Ai AZ



It is instructive to consider a few special cases of Theorem [1| and Proposition First, if there is no
spurious feature in the data (i.e. m, = 0), it is easy to verify that we recover the in-distribution error rate
for overparameterized binary GMM in . Second, if the magnitude of the correct and spurious means are

2
near-identical, i.e. |||l = ||ft4]|, or R— ~ 0, we obtain the rates R; (W) < exp 7@ . Therefore,

decreasing Ay, increasing total signal strength R, or increasing n, would improve the error rate. Second, we
note that the ridge regularization parameter 7 only affects the bound through its influence on the constants
C1 and Cs, and 0 < Cq,C3 < oo for all values of 7. Therefore, the non-asymptotic dependence of the bound
on the parameters d,ny, Rp, ap is, interestingly, unaffected by explicit ridge regularization. All the same,
Figure[l|shows that the empirical worst-group error decreases with an increase in 7. This phenomenon is not
captured by our proof technique, as we do not provide exact asymptotic characterizations of the test errorﬂ

Corollary [I] below discusses sufficient and necessary conditions under which we would obtain vanishing error,
i.e. consistency for out-of-distribution generalization.
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Figure 1: The left panel plots group-wise error as a function of A_. We fix d = 10%, n = 200, n_ = 10,
Ry =d*%/4, p,=p, = /R /2e; (asin ), A, = " and make A_ decrease from %+ to Z=. Observe that
the worst-group error decreases when A_ decreases until A_ = "T’, below which the worst-group becomes
the majority group, whose error increases with decreased A_. The right panel plots the worst-group error
as a function of n fixing d = 2n?, n_ = 0.04n, Ry = d*®/4, p. = p, = \/Ry/2e1, Ay = ny/n. Observe
that increasing the ridge regularization parameter 7 improves the worst-group error rate, but only up to a

constant factor in the error exponent. These simulations were obtained by averaging over 10 trials, and error
bars are small enough to not be visible.

Corollary 1. Consider the case where R_ = 0. Then, under the conditions of Assumptionm the general-

ization error for group b vanishes to 0 as n% — 00 if and only if R2 = Q (abdnb).

S ) ensures that the total signal strength is sufficiently large,
which reduces test error. Corollary [I] further shows how the adjustments A, through their influence on
the fractions «; (and therefore the adjustments Ay) can affect the condition on total signal strength for
achieving vanishing group-wise test error. The implications of Corollary [I] are summarized in Table [2] for two
extreme choices of adjustment weights: a) AL =1 (i.e. no adjustments) and b) Ay =

weighting). If we choose Ay = 1, we get a = ny/n and we need R2 = Q

Intuitively, the condition on Ri =04

n4 . .

—= (i.e. importance
Z—Z to have vanishing error.
Then, since ny > 5, the majority group generalization error vanishes iff R? = Q(%), which matches the

optimal rate of the case without spurious features . However, the condition for vanishing minority-group

3We do expect that our non-asymptotic bounds would be tighter for higher values of 7, meaning that C; would increase

with 7 and C3 would decrease with 7 — but we do not conduct a detailed formal investigation of the exact impact of 7 on the
constants in our bounds in this paper.




error becomes much more stringent, and in the worst case yields R2 = Q(dn) when n_ is a constant.
Thus, A+ = 1 yields optimal majority-group error but highly suboptimal worst-group error. On the other
hand, if we use AL = ny/n, we get ap < n_p/n and can show that both the majority-group error and
worst-group error would vanish iff R2 = Q n% . As a result, this choice improves worst-group error but
worsens majority-group error. Thus Table

highlights an interesting tradeoff between average accuracy
and worst-group robustness as a function of the adjustment weight magnitudes. We briefly explore this

tradeoff empirically in Figure [2] which shows a sharp contrast in the rates of decrease of majority-group and

minority-group error as a function of Rf_ for two choices of the importance weights AL. This supports the
scalings provided in Table

Table 2: A4 changes the conditions for R, — 0
| | Ar=1 | Ay =na/n |
Re = exp (—Cn%Ri/dn) = exp (—Cnbn_bRi/dn)
Rt (W) = 0 RZ = Q(d/n) RZ = Q(d/n_)
R_1(w) =0 | RZ =Q(dn/n?) RZ = Q(d/n_)
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Figure 2: The left panel plots the majority-group and minority-group error as a function of the total signal
strength squared (Ri) when the importance weights are set to be equal, i.e. AL = 1. We see that while

R .1 (W) approaches 0 when R? = %, R_1 (W) is greater than 0.1 until R = z;l . The right panel also plots

group-wise error for the alternative choice Ay = “=. In this case, as expected, both R (w) and R_; ()

decay to 0 at similar rates. For both plots, we fix d = 105, n = 200, n_ = 10, p, = p, = /Ry /2e;. These
simulations were obtained by averaging over 10 trials, and error bars are small enough not to be visible.

3 Proof of Theorem (1

In this section, we present the proof of Theorem in four steps. (Note that the lower bound in Proposition
follows via a matching sequence of steps and uses the matching exponential lower bound of the Q-function [6];
the full proof is in Appendix @) We first present the upper bound of the worst group generalization error
in analytical form. In step 2, we characterize the Gram matrix X X ' and its inverse recursively. Next,
to simplify calculations, we define “primitive” quadratic terms and derive their bounds in step 3. Finally,
we substitute these bounds on the primitive terms in the generalization error upper bound to complete the

upper bound proof (Theorem . We note that steps 2 & 3 introduce new technical challenges, which we
discuss in Appendix [A]



Step 1. We restate [26, Lemma 1] below which upper bounds the worst group generalization error.

Lemma 1. Consider a classification problem under GMM with a linear classifier w, the worst group risk is

Ryt (1) = max Q ( %) Specifically, if @' g, > 0, then
2
(")

Rust (W) < };Ieli}i exp T Ten'w | (11)

AT 2
According to Eq. , it is sufficient to derive a sharp lower bound on (1; £ bh) for each b € £1. Next,

we substitute the closed form interpolation of the ridge estimator (Eq. ) into ﬁ)uq. to get

(ﬁ)T/‘/b)Q ) (yTA—l (XXT + TI) - X,,Lb)

AT A~ - -1 —1 .
20 W gy TA! (XXT + TI) xx"' (XXT + TI) Aly

2

(12)

Step 2. In order to analyze and lower bound Eq. 7 we first analyze the Gram matrix X X T and its
inverse. Recalling the definition of X in Eq. , we define

M:=XX"+7I=(vajag +vija] +Q)(voftg +via] +Q)" + 71,

where we denote vy = a, vy ==y, [i; = [y, by = [, as shorthand. The presence of core and spurious
mean vectors (along with the standard Wishart matrix QQT) in the expression for X X " makes analyzing its
inverse challenging, even for binary labels. Inspired by the idea in [25] (which was introduced for multiclass
classification), we can decompose the data matrix X as

XO Z:Q7 Xl Z:’Ul/jl,I+X0, X = XQZ’UQIJ,;+X1.
Then, for £k = 1,2, we denote M = XOX(—)r +7I=QQ" +7I and

.
M = X X +71 = (vk.ﬂ,j +Xk_1) (vkﬂZ +Xk_1> + I

Il o]
=M1+ [l ve, di, vi] ’U;_Cr ) (13)
::Lk dk
=Ry

where Ly, Ry, are defined in the above display, and we define dy, :== X;_1ft, = Q. Next, as in [25], we
apply the recursive Woodbury identity [9] to break the matrix inversion calculation into recursive steps as
below:

-1 -1

M= (XOXJ +7‘I) - (QQT + TI)

M;'=M;' -~ M ' LA, 'R, M ", (14)
where A .= I + Rle;llLk for k =1,2. As a result, we can represent the kth order inverse Gram matrix

-1
(X X Z + 71 ) as a constant multiple of the lower-order inverse Gram matrices. Ultimately, this shows

—1 -1
that (X X" 4+7I ) is a constant multiple of the Oth order inverse Wishart matrix (QQT +7I ) .

-1
Step 3. Inspired by [26} |25], we define several “primitive” quadratic terms involving (X X z +7I ) for

k =0,1,2. In Step 4 of the proof we will see that Eq. can be characterized entirely as a function of
these primitives.



Definition 1. Fori,j = 1,2 and order k = 0,1,2, we define the following basic primitives:

k -1 k -1 k -1
s =] (XkX; + TI) vy, " —dl (XkXQ + TI) d;, W = d] (XkX{ + TI) v;,
—1

—1 -1
s&k% =u' (Xng + TI) u, sffz) =u' (XkX; + TI) v, hgku) = d;r (Xng + TI) u,
where we let w € R™ be an arbitrary unit vector, i.e. ||ull, = 1.

Definition 2. Fori,j = 1,2 and order k = 0,1,2, we define the following adjusted primitives:

E?J =v; A7 (Xng +TI) v, hgkj)A =d; (XkXII +TI) Ay,
—1
Sgi),m =v AT (Xk:X;— +TI) Ay,
-1 _1
o) =] AT (XkaT + TI) X X[ (ka,j + TI) A,

—1
Using the ideas in Step 2, these primitives consisting of quadratic forms on (X X ; + 71 ) can be

characterized sharply as quadratic forms on (QQT + 71 )_ Then, we can apply sharp concentration

inequalities on the inverse Wishart matrix QQT to characterize the primitives. These bounds are

presented in Lemma and Lemma [3] below; the proofs of these lemmas are contained in Appendix [A]

Henceforth, we define C,,, = %, C = % for universal constants C,, > 1.

Lemma 2. We have the following upper and lower bounds for the basic primitives (Def. :

—_ 2

Cin < < Cln’ {8 < Con || ;5
d+T7 YT d4T b d+T7

oA ny A M <3(k)< A Mg n_

— — Cs —C3
e R Y FI R
_Can il Mol i o Com Ul 1ol

2

d+ 7 d+T1
Gl _ e Conlil,
d+T7 J d+T1
Cs < gl Cs _07\/77 SR < Cryv/n

)
d+71 W= d 47’ d—i—T* “17d+7

_Gsvnllaill, o o Csvnllally
d+T1 - v = d+T1

Lemma 3. We have the following upper and lower bounds for the adjusted primitives (Def. @)

(CQ Clo) (Zﬁ—’_%) <s(k) _ (09—'—0%0) (Zi—i—i)

d+T1 ast = d+T7
o/ LSRN VS I oo (e e 1 (ny 4 no
() (), O 5)cdi(Een)
d+ 7 = Tl = d+T1

Crina <s® < Cruina
d+T7 tasta d+T1
Cray/nna || f[ < < Cray/mna ||y
d+ T bia — d+ T
Cianad (k) C’13nAd
2 S OzA in —
(d+71) ’ (d +7)%
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AZ

where we define na = 3 +

4+

Step 4. Finally, we can write Eq. entirely as a function of the primitives in Step 3. We show the
derivation for the case b = +1 (b = —1 follows by an identical set of calculations):

(ﬁ}TN_H)Q (yTAl (XXTJrTI)_lXM_H)Q

AT A —1 —1
20 W gy TA! (XXT n TI) o dl (XXT n TI) A ly

-1
(vJA—l (X2X2T + rI) (veirg +vip{ + Q) (g + pl))

—_1 —1
2wl A <X2X2T+TI) XoXJ (X2X2T+TI) Ay,

2
— 2 (2 — 2 (2 2 2
(Naall3 582 o + N 13 582 4 + nE3, +R(3, )
- e . (15)

2a,2a

Above, the second equality follows by the definition of p,; = @, + f, and the definition of X; the last
equality substitutes the adjusted primitives from Def. [2] We also define the following auxiliary lemma that
helps us identify lower-order terms that can be removed up to constant factors. The proof of Lemma [4] is
deferred to Appendix

Lemma 4. For some C > C? > 0, if Assumption (B) holds, or n_ is a factor of n such that n_ = an for
0 < o < 1/2 is satisfied, we have % (Z—i + Z—:) 5]l > Ciy/nna.

We proceed to introduce the primitive bounds from Lemma into Eq. (lower bounding the numerator
terms and upper bounding the denominator terms) to get:

(Cocls) (555

eo(3-5) -2 (52+5) ¢ : :
Poa ) en\aitas) | covimalle), | Cevensa |,
d+1

_ o2 _ 2
22212 d+r + a5 d+r P
" = Cisnad
(d+7)?
2
A = 2 ||ﬁ2||§+“ﬂ1||2 n4 n_ A — 2 (ny n_ _ _
Co llglly — 122l ) (R 4 2= ) 4 Gyl (5% — £=) = Crayma (il + 1))
a é1gnAd '

(16)
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Next, since R— > 0, i.e. ||y > || f21]l, We get

2
N e vz 2|l n_ A = 12 _ _
«@wu—%&ﬂg+Lwawm@yqu%ﬁmm%>
01371Ad

2
n n_ A — 2 (n n_
- 62 Il (5 + 32) + Gollma 3 (32 - 5) )
0137’LAd

( 5””2”2 "* t 4+ i )Jréls I 5 (Z:Z))Q
(€

(16) >

vV

v

ClgnAd
2 A2 pa i o op2nt
1sR+A +CisR- 7) . 015R+T2++015R—E

> : : (17)
ClgnAd ClgnAd

where the second inequality follows by Lemma [4] with a large enough constant C14 > Cio. Finally, we define

oy = ni/ x , noting that 0 < ax <1 and a4 +a_ = 1. Eq. ( . ) becomes

2
~ T ~
(w H+1> - Ci (a4 R2ny +a_R%n_)

2w w d

Plugging the above into Lemma [I] completes the proof. O

4 Conclusion

In this work, we provide a sharp rate on the worst-group error of cost-sensitive interpolating or ridge-
regularized classifiers as well as SVM classifiers, and further show that this rate is tight up to universal
constants. Our rate explicitly characterizes the role of the adjustment weights Ay, through which we
identify a new robustness-accuracy tradeoff for this class of estimators. An intriguing question that remains
is whether this tradeoff is information-theoretically optimal under this data model in the overparameterized
regime, or whether an estimator with an inductive bias that is fundamentally different from the f5-norm
might improve it.
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A Proofs of primitive lemmas (Lemmas |2/ and

In this section, we present the proofs of bounds on the primitives. There are two essential techniques that
we use throughout these proofs. First, in a manner similar to [25], we use the recursive Woodbury identity
to characterize the Gram matrix inverse (X X T4rr )~! (and, thereby, the second-order primitives) in terms

-1
of the zero-th order primitives involving the inverse Wishart matrix (QQT +7I ) . We note that, unlike

in [25] (which assumed orthogonal label vectors across classes), the label vector and the attribute vector
are not orthogonal here; therefore, a new technique is required to characterize the second-order primitives
in terms of zeroth order primitives up to multiplicative constants. Second, due to the presence of the
label vector y and attribute vector a, we are required to bound several “cross terms” in the primitives, for

-1
which naive variational characterizations of the inverse Wishart matrix (QQT +7I ) will not suffice. The
analysis uses concentration bounds on quadratic forms of inverse Wishart matrices that are sharp even in
their multiplicative constant, facilitating a tight analysis of these cross terms. Finally, special care is taken
to sharply characterize the role of the label adjustment matrix A™! in the analysis.
—1
To begin with, we recall the definition of XkX; and (XkaT + TI) in Eq. and Eq. for

k =0,1,2. Meanwhile, we write A in terms of the primitives as below:

_ 2 (k-1 _ k—1 _ k—1
L iy see Al B0 gl s
_ k—1 k—1 k—1
Ay = H“k”Qsl(ck ) 1+h1(¢,1§ ) Slgk ) )
_ k—1 k—1 k—1
||/J’k||2hl(q,k ) tgc,k 1+hl(c,k )
its determinant as
2
k—1 2 k—1 k—1
det(Ay) = s (Iell3 = 257) + (5 +1) (18)

and its adjugate matrix adj(Ag) in column format as

k—1 2 k—1),(k—1
(hgc,k' )+1) _Sl(c,lc )tl(c,k )

_ _ k-1
adj(Ay); — — gl 55"

_ k—1),(k—1 k—1 k—1)2
[l £ Il <S}(~ck )tl(c}k ) - hé,k ) hl(c,k ) )
_ k—1),(k—1 k—1 k—1)2

2l <Sz(<;k )tl(c,k )~ hé,k ) h’l(c,lc )

adj(Ap)2 = D 1 gl s )

2, (k—1)2 k—1 2 (k-1
[ T )<1+||/1'k”25§c,k ))

_ k—1
[l s

adj(Ay)s = —si
k—1 _ 2 (k—1
h/(f,k )+1+||Nk||251(c,k )

Next, we will need the following inverse Wishart concentration lemma from [1§].

Lemma 5 (|18, Lemma 21). Let A ~ Wishart(d,I,) and d’(n) == d—n+ 1. For any vector u € S~ and
any t > 0, we have

Pr [uTAlu >d'(n)+ /2t -d(n)+2t] <et (19)
Pr |:Tl_1 < d/(n) — 2t - d’(n)} < eft, (20)
u' A" u
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provided that d'(n) > 2maz{t, 1}.

The following corollary further characterizes the eigenvalues of an inverse ridge-regularized inverse Wishart
matrix.

Corollary 2. Let A ~ Wishart(d,I,,) and d'(n) :=d—n+1. For anyt >0, and 7 > 0, we have

(@) s (@ern ) € g )

1
d'(n) + /2t -d'(n) + 2t + 7
with probability at least 1 — e, provided that d'(n) > 2max{t,1}.
Proof. We first show the upper bound
1 1 1 1

-1\ _ _ —
)\1 (<A+TI) ) o >\n (AJFTI) B )\n (A)+T - )\1(;*1) tT = d/(n) - Zt‘d/(n)—’_T’

where the inequality follows by Eq. with probability at least 1 —e~t. Similarly, for the lower bound, we
have
1 1 1

-1\ _ o _ !
(A4 ?) = S S S e A L ENC R IR

where the inequality follows by Eq. with probability at least 1 — e~*.

A.1 Proof for Lemma 2| (without adjustment weight)

Proof. (Lemma [2) We prove the lemma by induction. We first show the bounds for the order k = 0 (base
case). Then, we assume that the bounds are true for order k¥ = k and we show the bounds for order k = k+1.
The proof for the base case k = 0 resembles the primitive proofs in [25]. Note that the indexing of constants
in the proof below does not match the indexing of constants in the main statement of Lemma

Bounds for order k£ = 0.

1 —1
) _ v] (XOX(—)r —I—TI) v, = v, (QQT +TI) v; for i = 1,2. Based on Corollary let

1,1

t =/2log (n/§). Then, we have with probability at least 1 — 2—2,

We have o s

(0)
Sii < < = ,
LT ) - friog (nfo) @) w1 d) (1- )+ am+ (2 G Jdtr

ol . " dC = (Gr1)
)T

where the second inequality follows by Assumption D) such that -z > 105,((%5). Similarly,

2
S0 > il < n - <C1 —1> n_
7 d’(n)—l—\/410g(n/5)-d’(n)+4log(n/6)+7 d'(n) (1+%+%>+T G d+7

~1 ~1
° sg?% = v/ (XOX(T + TI) vy =y (QQT + TI) a. Note that this is a “cross-term” primitive. We
apply the parallelogram law to get

350% =y (QQT +7'I>71a = i (vl (QQT +TI>71v+ —v! (QQT —1—71)71 'u_> ,
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where we denote vy = y + a. It is easy to verify that ||’U+H§ = 4n, and ||v,||§ = 4n_. Hence, again
applying Corollary [2] gives us

dng _ dn_
d'(n) — \/4log (n/6) -d'(n)+7 d(n)+ \/4log (n/d) - d'(n) +4log (n/d) + 7

n4 . n_—
dn) (1- 25)+7 a0 (1+ 25+ ok ) +7
Co+1\ ny Co—1\ n_ A Ny S
< - =: - .
_< Cs )d+T ( Cs >d—|—7‘ 03d+7 C3d+7'

dng dn_

0
1

IA
A~

IN

1
4 d'(n) + \/410g (n/d) - d'(n) +4log (n/6) +7 d'(n) — \/410g (n/d) -d'(n)+7

> ny . n_
~d'(n) (1 + TQ*nQ + ﬁ) +7  d(n) (1 - —%) +T
> Co—1\ np  (Co+1\ no & Ny e n-_
Cy d+T1 Cy d+T1 d+T1 d+T1
(0) T T -1 T T -1 ; :
ot,; =d, (XOXO + TI) d;, =d, (QQ + TI) d;, for i = 1,2. Note that the lemma in [26][Corollary
8.1] gives ||d;||, < Cv/n || @;]5, we have

2 — 2 — 2
Il L CnlmlE_ Conll?

19 < < -
d'(n) — \/410g (n/g) d'(n)+71  d(n) (1 _ Jﬁ?) T d+ 7

1,0 —

0) _ 4T T -t T T -t e :
oti,=d,; (XOXU + TI) dy=d, (QQ + TI) ds. By the sub-multiplicative property of the matrix

norm, we get

- Cn|p Iz Csn || Iz
tg(g CANCAR (QQT+TI) < [ llo 1ol < 23 ||d1||2|| 2||2.
2 d’(n)f\/410g(n/6)~d’(n)+7 tT
- —Csn|p Iz
1) = ~ il ol | (QQT + 1) || » Il el
2

—1 -1
. hg?j) = d;r (XOX(T —|—7'I) v; = d;r (QQT —I—TI) v;, for 7,5 = 1,2. Hence,

h Cn i Cin ||,
n®) < il v, | (@QT +71) | < n ), . Cun W?
2 d'(n)— \/410g (n/5) d'(n)+7 T
—1 70 ,i
W% > —ldilly ||vs]l, (QQT —I—TI) 2 > %.
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-1 -1
° SSJ,L =ul (XOX(T + TI) u=u' (QQT + TI) u. By Corollary [2| and setting t = /2log (n/é), we

have with probability at least 1 — 2—2,

s, < ! - 1 <<c5+1) L
d/(n)_\/410g(n/§)'d/(n)+7‘ d’(n)(l—\/%n)JrT Cs d+T1

: 1 n <C5—1> 1
u,uZ > > .
d’(n)—i—\/4log(n/6)-d’(n)+410g(1/5)+7’ d'(n) (1—%—%—1—%)—&-7 Cs Jd+7

-1 -1
050 = 4T (XOXJ —|—7-I) u=u' (QQT —|—7'I) u for ¢ = 1,2. Again, by Corollary we have

-1 Cy/n Cev/n
S < Jull, il | (@QT +71) | < v < Govn,
2 d’(n)—\/4log(n/5)~d/(n)+7' T
“1| _ —Cey/n
s\ 2 = ully [oill, | (QQT +71) || = =V,
2
©) _ 47 T ! T T -1 .
® h’i,u =d, (XOXO +7'I) u = d, (QQ —|—7'I) u, for i = 1,2. Hence,
- OV ) O/t s
h < il ull, | (QQT +71) | < 2 < SR
2 d’(n)—\/4log(n/5) ~d'(n)+ T T
1 =Crv/mlla)
O > _id; T T > TV IHGll
2 = il e | (@QT +71) | > =

Thus, we have characterized all of the zeroth-order primitives. Next, we assume that the bounds for order
k = k are true, and we show the bounds for order k = k+ 1. The key idea is that the higher order primitives
are a constant fraction of the previous-order primitives. The following lemma, whose proof is deferred to
Appendix |B] details the recursive calculation that shows this.

Lemma 6. For a function fa, : R* = R such that

L, Ly _ . ||ﬁkH2xc
fAk (LE ’x ’> = I:HIJ’]CHQ:EG) Ty, xa] ad](Ak) T
cybd -

= (Hﬂk”; — t;j;”) TaXe + (1 + hgfk_l)) (xoxgq + TpTL) — s,(c]fk_l)xba:d,
we have the absolute value upper bound
LayThy
fAk <.Tc, Zd >

The following lemma provides an upper and lower bound for det(Ay). The proof of this lemma can be
found in Appendix

— 2
< Nl |2al ] +

k— 1
S’(ﬁk 1)‘ |xp| |za] + <1 + Cl) (|xa| |xal + |z |17C|) .

Lemma 7. For k =1,2, we have

Cl S det(Ak) S él,

Crn—1
C .

m

for some C; > 1 and C,, == % and Cy, =
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We can now complete the proof of Lemma [2. We only present the calculation of primitive s(’C Y due to

page limitations; the proofs of the other primitives follow the same idea and are presented in Appendlx [C
Bounds for order k =k +1
o s for j = 1,2.

1,7

i,
-1

S(k+1) ZT (Xk+1X;+1 + TI)
j (Xka + TI) Lk+1A;_~1_1Rk+1 (XkXZ + TI) v;

—1
:’UiT (Xsz—l-TI) v; —

" adj(Ak+1) ||Mk+1||2 1k+1

_ . (k) (k) )
=Sii — [Hl"k+1H2 Sik+1 hk+1 ir Si k-&-l} x det(Apyr) z(lic)Jrl
hk+1,i

k k k k k
81(',1') det(Axt1) — fa,., (31(',13“’ hl(c+)1,iv sz(',k)+17 hgﬁzu)
det(Ag41) '

Thus, we can apply Lemma [0] to get

)|+ ‘ (59, s A, )
(k+1) ( k+1) fAk+l ik+10 k41,0 z k410 "Yk41,40
1 i det(Ak+1)
1 4(k) (k)
< —— | det(A ‘ ‘
= Tty ( et(Agy1) |8 | i k1| |Si k41
1 (k k) (k (k k) k)
+ (1 + C1> ( 8 /c)+1’ ‘hl(c-ﬁ-l,i + ’hmzm 5i,/~c)+1’ + ’5/(c+1 k+1’ ’hkﬂ,i hl(c+1 i
_ 2 _ _ 2
< 1 Co+1 n C3+1 HHkHHQnZ + C4+1C5H“k+1||2712 06H“1€+1||2n
“det(Apy1) | C2 d+7 O3 (d+7) Cy (d+71)° (d+7)°
Cr+1 n
Cr d+ T’

where in the third inequality we apply lower bound of det(Ag41) in Lemma and primitive bounds in order
k, and in the last inequality, we apply Assumption C) such that d > CR4n. Similarly,

k k k k k
. sz(.ﬂ) det(Apy1) — 'fA,c+1 ( Ek)-&-l’ h,(ﬂzl i l(k)H,hiJZl z)
Sz( i+1) >
, det(Ag1)
L k) T 2| (k) (k)
> ———| det(A (k) _ ( ‘ ’
~ det(Agy1) ( et(Ap+1)si (HNkHHQ Sikt1| |Sik+1
K k k k k k k

(0 ) (2 2] 2 ) + o 2 2] )

_ 2 B ) )
> 1 Co—1 m Cs + 1 ||y [l 7? Gy +1GCs figa ]|, _ Cs ||y lly
Tdet(Aen) | GoddT G @rr)? G (@) (d+r)°

C7 —1 n
Cr d+71

This completes the proof of the lemma.
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A.2 Proof for Lemma (3| (with adjustment weights)

Proof. (Lemma [3)) Before we start the proof of Lemma [3] we need the following auxiliary lemma, whose
proof we defer to Appendix

Lemma 8. For % <AL <1and Ay > A_, we have

for some C > 144, and C > 2.

Similar to the proof of Lemma [2] we prove by induction.
Bounds for base case k = 0:

-1 —1
o sV —yTA! (XOXOT n TI) v, = v] A (QQT n ﬂ) v;, fori = 1,2. Applying the parallelogram

TA LT
law gives

(0)

= i <(A1vi —l—'ui)T (QQT +7'I)_1 (A,LUZ, +v,»> — (A*lvi _ 'vi)T (QQT +TI)_1 (AJW _ vi)) '

Next, we have

2 2
2 14 1 (14 1 +2n++n++ n_ +n_
= —_— n —_— n_=n+—
2 Ay) T A A, AT T AL T AZY

1)° 1)° 2ny | oy 2n- | no
1—— 1—— _= — ———+ -
(om) rer(oa) S

Applying Corollary |2[ with ¢ = 2log (n/ 6), we have, with probability at least 1 — 25,

HA_l’Ui + v;

2
HAil’Ui — V; =
2

2n Qn, 2n 2n_ n_
(0) 1 n+ ++ +A2 B n— ++7—E+E
i = —\/410g (n/o) -d'(n)+7 d’(n)+\/4log (n/d) - d'(n) + 4log (n/8) + 7
N EEE itk =t it Th b ke
— 4 d’(n)( fﬁ>+7 d'(n) (1+ﬁ+ci2)+7
2 n n_ 1 1 n n_
(1+Cn2)(j+A)+(ﬁn+0n2)(n+§++2_
2 2 4
@(n) (1- 22) (14 2 + o) +7
I+ &) (zE+53 )+ A (n+xF+ 72
cnz) \ Ay T AC Vel Az T Az
- d+T1
() (e d) (B2 (e E)
- d+T1 B d+T1 ’

where the second inequality follows by Assumption D) such that d’(n) > Cn?log(n/d), and the last
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inequality follows by Lemma [8] Next, we have the lower bound:

2n n 2n_ n_ 2n n 2n_ n_
S('O)v>1 n+ﬁ+£+f+g B n*AI+A£*T+E
A d’(n)—l—\/410g(n/5)-d’(n)+4log(n/5)+r d’(n)—\/4log(n/5)-d’(n)+7'
2n n 2n_ n_ 2n n 2n_ n_
>1 n+ﬁ+ﬁ+A_+E_niA:+%iA_+Ai
4 d'(”)<1+¢%n+ciz)+7 dln)(l—%)ﬁ-T
2 n n_— 1 1 n n_
N (1+cn2)(ﬁ+T)_(\@n+cn2) (n+A§+A2>
- 2 2 4
&'(n) (1 Cn) (1+E+0n2)+7
2 n n— 2 n n_
(1+cn2)(ﬁ+ﬁ)_\/6n (”+A§+A2>
- d+ T
2 1 n n— Ci1—1 1 n n_
g (meE) (58 (2eE)
d+T1 N d+7 ’

where the second inequality follows by Assumption D) such that d’'(n) > Cn%log(n/d), and the fourth
inequality follows by Lemma

-1 -1
(0) JA™! (XOXJ + TI) vi=y Al (QQT + TI) a. Applying the parallelogram law gives

® So,1 = U2
0=t (o ee) (00 o) (8 wea) - (a0-) 0@ ) (a0 a))

Next, we have

2 2
HA 1y+aH — 1+L n++ l_i n7:n+2n7++n7+_2n; n-
Ay A_ Ay TA2 AL T A?
2 1)\? 1)\? 2n n 2n_ n_
Alszlf— 14— ) n_=n- 2+ I+
H y—a A, ny + +A7 n A++A2++A +A2

2 2n_ n_ 27 7 2n_ _
o 1 n+ XA ATt aT B s vl Bl el vy
2A,1 =
a4 d’(n)—\/4log(n/5) d'(n) + 7 d’(n)+\/4log(n/6)-d’(n)+4log(n/5)+r
2n n 2n_ _ 2n n 2n_ n_
1 n+AI+A—§—%+Z—3_n—A—I+A—§+%+A—3
4 d'(n) (1— QCR)JFT d'(n) (1+7¢2€n+%)+7
2 n n_— 1 1 n n_
(1+C712)(%77,)+(\/5n+0n2) (n+A§+A2>
<
d/(n)(l— én) <1+ QCH+C‘;2>+T
(1+20) (3 - 5) + o (n+ 3+ 57
<
- d+T1
2 n n_ 1 n n_ Ci1+1 n n_ 1 n n_
(1+cn2)(f—z)+5(f+f) (él)(i+ A,)+5(f+z)

d+T1 d+T1



(0)

2ny ny 2n_
S 1 n + Ay + A2
Soa1 Z

n_ 2n n 2n_ n_
A~ A tar n-artartastaz
4 d'(n) + \/4log (n/d) - d'(n) +4log (n/d) +7  d'(n) — \/4log (n/d) -d'(n)+7
2n n 2n_ n 2n n 2n_ n_
>1 TL+TI+A%*T+E_TL*TI+E+A7+A2
T ) (14 o+ )+

(25 + 37
d+ T
I+ (RE-5)-3(2+5) (382)(-2)-t(2+%)
- d+71 d+71
° S,EA))iA fori=1,2,
SZ(-Z)JA

— v A (QQT n TI)_1 Al

Based on Corollary let t = 4/2log (n/ 5). The variational characterization of eigenvalues gives us, with
probability at least 1 — &

n2o

O

. 1Al (G &+ i
inia = d'(n) — \/410g (n/5) d'(n)+T - Cq d+T1
ng 4o
ROJES A v,]f5 - (Cl - 1) AT T AT
T Q)+ fHlog (n/8) - dn) + dlog (n/8) 47 N O )T
° hg?j)a = diT (XOXOT ‘|'TI) A_lvj = diT (QQT +TI) A_l'vj for 4,7 = 1,2. Hence,
Cm Il
-1 * - Cy/nna || i;
WO < dil, [ Al (QQT+TI> < - 1\/d+ Iy
2 d’(n)—\/4log (n/d)-d'(n)+r T
JAONES —Ciynna ||ﬁz||2
via = d+ 1
k
° O’EA)7iA
bound

o8

iaia T

—1 —1
= v;.'_A_l (X,CX—r -|—7I> Xng (XkX;r + TI) A~ Yy, fori= 1,2. We start with the upper

—1 -1
—o] AT (XX 4 1) X X[ (X X[ +7D) A,

<\ (XkX[) H (XkaT + 71)7
<\ (ka;) H (XkXZ + TI)_l

1 2
Ail’Ui

2

2 . 2
HA v;
2

)
2
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where the first inequality follows by the variational characterization of eigenvalues, and the second inequality
applies the sub-multiplicative property of the matrix norm. Next, we focus on analyzing the eigenvalues of
X X[} and X, X, +7I. We have

2

= (XX ) A ((XkXZ + TI)_1>2 At

N2
)\1<(XkXZ+TI) )

= HAil’UZ‘

An ((XkX;)_1>

where the inequality follows by applying the primitive bounds of sg’“& in Lemma [2| Similarly, for the lower
bound we have

R 2
2 < (Cl/ (d+7')) ny n no ) _ é?)nAd
2 Cy/d A2 A% B (d—|—7)2,

(k)
Oinyia

—1 —1
N (XkXZ + TI) Xu X[ (XkXQ + TI) A1y,

>\ ((XkX; + TI)_l X X[ (kaz + TI)_1> HA‘lvi z

2
HAil’Ui

_ 2
A ((XkXZ + TI) (kag)‘l (XkXQ + ﬂ))

2

1 2 . (23)
A ((kag)_ > At (XkXQ + ﬂ)

HAil’l}i

v

Next, we have

An <(XkX[ +7’I>11)2 HA‘lvi
At ((kag) )

Finally, we show the inductive step from & — k4 1. The calculation is identical to the one that we did for
the proof of Lemma EI, since we reuse the fa, , function in Lemma @ and only the input variables change.
(The full proof of the inductive step is provided in Appendix |C|for completeness.) This completes the proof
of the lemma. O

23) =

2>(Cvl/5d+7))<”+ ") _ Canad
2 Cg/d

AL AL (d+r)?

B Proofs of auxiliary lemmas (Lemmas , @, and

In this section, we provide the proofs of auxiliary technical lemmas used in Appendix [A]
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B.1 Proof of Lemma [4]
We have

1 (n+ n_> _ 1 [n2  n%
2\A; A 272\ A2 A2 2

_ 2 -
— 7’),7_;,_ n4 HIJ’CHQ + Tl; n— ||/J’c||2
A% 4 A% 4
2
nllBelly | (e P
4 A2 A%
(nCnlog(n/é)) g P
4 A% A2

ny n_—
=Ci n|l-—5+-—=| =Civ/nna,
(Ai A2_> v

Y

Y

where the second inequality follows by A_ < A, the third inequality follows via the assumptions made
in the lemma, and the last equality follows by the choice C; = 4/ M > 1. On the other hand, if

n_ = an, we can pick C = \/a% This completes the proof of the lemma.
O

B.2 Proof of Lemma

According to the definition of fa,, we can compute the function value based on the definition of adjugate
matrix of Ay, by a series of algebraic steps. To upper bound |fa,|, we apply the bounds on the (k — 1)-th
order primitives to get

fA Lg, Tp,
k Te, Tq

= ‘ (HﬂkIIE - t;:;;”) TaTe + (1 + hé’f{”) (Tqrq + 2pTL) — S;(fk_l)xwd

(k—1)

— 2 k—1 k—1
< |3 = 5 Kol el + [1 4 B | (el leal + Lo foel) + [sf

st Lo |zl

2 k—1 Cin || g |
< gl el e+ 5 b+ (1 0L (1 )

1 _
— 2 k—1
< el ool e + (14 & ) (bl oal + aa] o) + s ool o]

where we introduce the primitive bounds in the second inequality, and apply Assumption C) in the last
inequality. O

B.3 Proof of Lemma [Tl
According to the definition of det(Ay) in Eq. , we have

2
k—1 — k—1 k—1
det(Ay) = s (Iell3 —t57) + (5 +1)
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Thus, we introduce the upper bound on the (k — 1)th order primitive to yield

n —_ Con ||| ’
derlan) < ( el + (el

Cr+1 g 1 2
< — 41
( Ol >d+7_||l‘l'k||2+<c3+ )
Cyi+1 Cs+1
<
) (2 Il + S

— 05 )
where the second and third inequality follow by applying Assumption C), ie

<1

c-

det(Ay) > (! QLH- 25 (ZCerdelz P (G-t
VE\Tar ) ar d+r o )

This completes the proof of the lemma. O

Similarly,

B.4 Proof of Lemma

Since Ay < 1, we have

a1 i
2 - Ag 2 A?I:
— 1+ = 442 ! A
AZ ~2AL AL F
<~ ng + L ) i—A
=T AZ T 2AL AL F
Then, we have
n++A2 +n_ +A _n+A2+A2

<o (d o)) i (e (5-2)
(s w55 ) (12( )

where the last inequality comes from A_ < A,. Hence, it is sufficient to show ‘F" (4 +2 (Tl, — A,) )

\
[\
>

+

To this end, we have

2 2
1 1 4 16 9 Cn?
_—— < _— = _— _ —
<4+2(A_ A)) < <4+2<A_)> 16+ 33 + 7~ < <z

for some =5 > 36 since .- < A_ < 1. This completes the proof of the lemma. O

C Omitted calculations in proofs of Lemmas [2| and

In this section, we provide the detailed calculations of the inductive step, i.e. going from k — k + 1, in the
proofs of Lemmas [2] and

24



C.1 Inductive step for Lemma [2| (without adjustment weight)

. sg’kfl) for i =1,2: We have

0,1
-1

sEFD T (X,MX{+1 + TI)
1
j <XkX + TI) Lk+1A];_~1_1Rk+1 (XkXZ + TI) v;

-1
:'UiT (XkXZ—FTI) v; —

i (k)
adj(Agy1) Hukﬂ(ﬂf i k41

s OISO

[H“k+1H2 Sidt1r Met1,io Sz‘,k+1] " det(Appr) S
hk+1,i

k k k (k) k
Sz(',i) det(Ag+1) — fa, ., (51(',k)+1a hl(c+)1 ir5i k+17 hl(ﬁ31 z)
et(Ax+1) '

Thus, we can apply Lemma [6] to get

(k) (k) (k) (k)
(AkJrl)‘ + ‘fAk+1 ( i,k+17 hk+1 i S0 k410 hk+1 z)

(k+1)
S: <
R det(Apy1)
L k) T 2| (k) (k)
<—— [ det(A ‘ (k ‘ ( ‘ ( ‘
- det(Ak+1)< et(Ar+1) [siy | + H“kHHz Sikt1| |Sik+1
k k k k k k k
+@+)(m4wgvpwuzg@+;¢mw@u@$J
_ 2 5 ~ ) B 9
< 1 Cotl n O3 +1 || llyn +C4+105 Pl 7? | Co |l llom
Tdet(Ain) \ G dibr T G @)’ T G (@) @+
<C7+1 n ’
- Cr d+T

where in the third inequality we apply the lower bound on det(A1) (Lemma[7)) and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C), i.e. d > CRyn. Similarly,

k k k (k) k
g,i) det(Ag41) — )fAkJrl ( Ek)+17 h1(<:+)1 ir5i k+17hl(cJ21 7,)

G(k+D) >
i det(Ag 1)
1 (k) - 2| (k) (k)
>——| det(A (k) _ ( ’
- det(Ak+1) ( € ( k+1)51al <H“k+1H2 Sz,k-l—l zk+1
(k k) (k (k k) k k)
() (2] 2 ) + o 2 2] )
_ 2 B - 9

v (e il o Gllmaln®  Collln

~ det(Agt1) Cy d+ Cs (d + T)Q C, (d+ 7)2 (d+ 7_)3

> 07 -1 n .

- Cr d+T
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° sglgl): We have

-1
s — o] (X,MXL1 ¥ TI) s
1 -1
— o] (XkXQ + TI) vs — ] (Xka + TI) Ly A;l Ripy (XkXQ n TI) s

* L) ) H“k+1|’252 k+1

di
81 |:HNk+1H2 S1 k1o eyt (1]1 i| X a J(

det(Api1) 8% 1;+1
hk+1,2

k k k k k
s 2)det(Ak+1) fai (Sg,lz-s-lv h;(fﬁl,pSé,;iHa hl(g-szm)

det(Ak+1)

Thus, we can apply Lemma [0] to get

k k k k
s et + | s (820 105812, )

(k+1) <
det(Ak+1)

< Gorcary | et s8]+ el s s8[54
= det(AkH)( et(Agt1) S1,2 +H“k+1’|2 St | |52,k | T Skt bt | |Tegrn| | Pegr2

1 k k k k
() (8 ] 20 2 )

1 <02+1(03—|—1 ny C3—1 TL_>

< _
T det(Agy1) \ Co Cs d+7 Cz d+r1

+C’4+1 (054-1 ny O —1 no )Hl_‘k+1|‘§n+06’|ﬁk+1uzn
Cy Cs d+r Cs d+r d+T1 (d+7‘)3

+c7+1<<08+1 ny  Cs—1 n_ )CgHﬁk+1H2n+C10‘|,]k+1H2n2>>

Cr Cs d+T1 Cs d+r d+T (d_|_7-)2

Cll+1 n4 _011*1 n_
Cii d+T1 Ci1 d+T1’
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where in the third inequality we apply the lower bound on det( A1) (Lemmal7)) and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C), ie. d > CRyn. Similarly,

k k k k k
o s§2’ det(Ap41) — ‘fAM ( 5zz+17hé£1,173§,11+17h§c£1,2>
>
Sz 0= det(Apr1)

1 (k) (k) (k) (k) (k)
= det(Agy1) (det(Ak+1)51, <H“k+1H2 ‘51 k+1‘ ’ $3, k+1‘ + ‘Sk+1,k+1‘ ‘hkﬂ,l‘ )hkﬂ’z‘

1 k
() (b ] 20 2 )

> 1 Cy—1/C3—-1 ny _03+1 n_
- det(Ak+1) Cy Cs d+r Cs3 d+r

_Gi+1 <C5+1 ny  Cs—1 n_ >||“k+1’|§n_06||“k+1||;n
Cy Cs d+r Cs d+7 d+T1 (d-|—7-)‘3
Co((Gtn Gt )Gl Colllr
Cr Cs d+7 Cs d+T d+T (d+1)°

011—1 ny _011+1 n_
011 d+T Cll d+’7'.

° tz(‘,k?l) for i« = 1,2: We have

-1
5 —dl (X X[+ 1) dy
-1 —1 -1
—d’ (XkX,I + TI) d; —d; (XkXQ + TI) Ly Al Riiy (XkXQ + TI) d;

(k) () (k) (k) adj(Ag+1) Hﬂkﬂ(u)? hgfck)ﬂ
=t - [H'akﬂuﬂi,kﬂ’ bk hi,kJrJ " det(Agyr) ZL(iicI§+1
ik+1

k k k k k
tg,i) det(AkH) - fAk+1 (hf k)+17t§ Ic)+17 hz( k)+17t5 /c)+1>
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Thus, we can apply Lemma [0] to get

k k k k k
2 det ()| + | (R0t 042

(k+1)
k)
hio = det(Agi1)
1 (k) 2 (k) (k) (k) (k)
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1 k k k k
(0 ) (a2 2] 12 )

~ _ 2 2
< 1 C’Q—i—IC’g,nHuiH; C4HHk+1H2||Hi||2”2
~ det(Ag+1) | Co d+ 7 (d+7)?

Cs B2 s |lon®  Co |2 || s ||, 2
(d+7)° (d+7)°

_ 2
_ Conll?
- d+T

)

where in the third inequality we apply the lower bound on det(Agy1) (Lemma and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C), ie.d>CRyn.

. tf;l): We have
—1
WY = dl (Xen X1 +71)  do
-1 —1 —1
—d] (XkXZ + TI) ds —d] (XkX{ n TI) Ly Al Riiy (XkX; + TI) ds

Hﬂk-HHz hélf12+1
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k k k k k
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a det(Ak+1) ’
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Thus, we can apply Lemma [0] to get

k k k k k
6 det(Arcn)| + [ s (B0 1 15,

det(Ak_H)

(k+1)
tl 2 <

1 (k) S 2]y (k) (k) (k) (k)
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where in the third inequality we apply the lower bound on det( A1) (Lemma and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C), ie. d > CRyn. Similarly,

k k k k k
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. hg?rl) = d;r (X;H_lX;_l + TI) v;, for 7,5 = 1,2: We have

—1
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—d] (XX +71) v —d] (Xe X[ +71) Lin AL R (XoX[ +71) v,
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Thus, we can apply Lemma [0] to get

k k k k
()| |acss (00

det(Ak+1)

hgkjﬂ) <

1
< G | det A A3 st + st |50 2
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< Crn ||l
- d+T

)

where in the third inequality we apply the lower bound on det(Ag1) (Lemma and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C), i.e. d > CRyn. Similarly,
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Thus, we can apply Lemma [0] to get

k k k k k
B e e ey e o R
)<
Sun © = det(Ajt1)

1
< - -
ct(Ap 1)<det(Ak+1)

(k)
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where in the third inequality we apply the lower bound on det( A1) (Lemma and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C) such that d > CR;n. Similarly,
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° sgf;rl) for i = 1,2: We have
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Thus, we can apply Lemma [0] to get

k k k k
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where in the third inequality we apply the lower bound on det(Ag1) (Lemma and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C) such that d > CRyn. Similarly,
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Thus, we can apply Lemma [0] to get
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where in the third inequality we apply the lower bound on det( A1) (Lemmal7)) and the k-th order primitive
bounds, and in the last inequality, we apply Assumption C) such that d > CR;n. Similarly,
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C.2 Inductive step for Lemma |3| (with adjustment weight)
° sgiﬁl) for i = 1,2: We have

1

sEED — T A (X,mx;“ n TI) v,
1 -1 -1

N (XkX[ + TI) v; —v] AL (XkX,I + TI) L1 Al Ry (XkaT + TI) v,

(2

adJ(A ) ||#k+1||2 zk+1

— sk ” || (k) s
= Sin LRSI zA,k+1’ k+1,in’ Zin,k+1 det(A 1) z(lic)Jrl
hk+1z

k k k k
EA % det(AkH) fAk+1 (SEA),ker hz(€+)1 A Ek)+17 hz(cll 1)

det(Ag+1)

Thus, we can apply Lemma [0] to get

k k k
) ’EA)l det(AkJrl ‘fAk+l ( in,k+1 h,(Cle in>Si k+1’ hgcJZl z)
<
ZA) det(Ak+1)
k _ 2| (k) k) k) (k
< det(Ayi1) (det(AkJrl) stai| + sl SEAJV‘H-‘ £k+1‘ + ’51(€+1 k+1’ ‘thrl in ‘hkﬁl i
k) k
() (el 2l i ]
A 1 n n_
el ()
- det(AkH) Cy d+ 7
n_— _ 2 _ 2
LGl (Cﬁ + 07) ( t A ) |£iillzm O +1 Co ||l n*vima
+ 3
Cs d+1 d+1 Cs (d+7)
A 1 n _ _
Cro+1((Cutds) (B +5) Cunlliaally | Cunyina [l
—+ + 2 )
Cio d+r d+7 (d+7)
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where in the last inequality, we apply Assumption C)7 i.e. d > CRyn. Similarly,
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Thus, we can apply Lemma [0] to get
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where in the third inequality we apply the lower bound on det(Ag1) (Lemmal(7]) and the k-th order primitive
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where in the last inequality, we apply Assumption C)7 i.e. d > CRyn. Similarly,
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Thus, we can apply Lemma [0] to get
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where in the last inequality, we apply Assumption C)7 i.e. d > CRyn. Similarly,
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o BB for i,7 = 1,2: We have
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where in the last inequality, we apply Assumption C)7 i.e. d > CRyn. Similarly,
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D Proof of Proposition

In this section, we provide the proof of Proposition [I} The proof steps mostly resemble those in the proof of
Theorem [, We show the derivation for the case b = +1, noting that the case b = —1 follows by an identical
set of calculations.

First of all, we use the matching exponential lower bound on the Q-function [6], which yields

2
. ﬁ’THH ('EUT'“H)
W' W 2w

Therefore, it is sufficient to show an upper bound on % to lower bound Eq. (24]). We first reproduce
the equivalent expression in terms of adjusted primitives (Eq. (15 . ), and then apply the bounds on these
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primitives (provided in Lemma [3]) to get the following upper bound:
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where the second 1nequality follows from Lemma[d] applied with a large enough constant C14 > C42. Finally,
we define a4 = i/ x , noting that 0 < ax < 1 and a4 + a— = 1. Then, Eq. . ) becomes

~ T 2
(w l‘+1) Cis (a+Rin+ + a_RQ_n_)
2w W = d '

Plugging the above into Eq. completes the proof. O
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