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Abstract

The literature on “benign overfitting” in overparameterized models has been mostly restricted to
regression or binary classification; however, modern machine learning operates in the multiclass
setting. Motivated by this discrepancy, we study benign overfitting in multiclass linear classification.
Specifically, we consider the following training algorithms on separable data: (i) empirical risk
minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector
machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm
interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. First, we provide a simple
sufficient deterministic condition under which all three algorithms lead to classifiers that interpolate
the training data and have equal accuracy. When the data is generated from Gaussian mixtures or
a multinomial logistic model, this condition holds under high enough effective overparameterization.
We also show that this sufficient condition is satisfied under “neural collapse”, a phenomenon that is
observed in training deep neural networks. Second, we derive novel bounds on the accuracy of the
MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under
sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible
for SVM solutions beyond the realm in which typical margin-based bounds apply.

1 Introduction

Modern deep neural networks are overparameterized (high-dimensional) with respect to the amount
of training data. Consequently, they achieve zero training error even on noisy training data, yet
generalize well on test data [ZBH+17]. Recent mathematical analysis has shown that fitting of
noise in regression tasks can in fact be relatively benign for linear models that are sufficiently high-
dimensional [BLLT20, BHX20, HMRT19, MVSS20, KLS20]. These analyses do not directly extend
to classification, which requires separate treatment. In fact, recent progress on sharp analysis of
interpolating binary classifiers [MNS+21, CL21, WT21, CGB21] revealed high-dimensional regimes in
which binary classification generalizes well, but the corresponding regression task does not work and/or
the success cannot be predicted by classical margin-based bounds [SFBL98, BM03].

In an important separate development, these same high-dimensional regimes admit an equivalence of
loss functions used for optimization at training time. The support vector machine (SVM), which arises
from minimizing the logistic loss using gradient descent [SHN+18, JT19], was recently shown to satisfy
a high-probability equivalence to interpolation, which arises from minimizing the squared loss [MNS+21,
HMX21]. This equivalence suggests that interpolation is ubiquitous in very overparameterized settings,
and can arise naturally as a consequence of the optimization procedure even when this is not explicitly
encoded or intended. Moreover, this equivalence to interpolation and corresponding analysis implies
that the SVM can generalize even in regimes where classical learning theory bounds are not predictive.
In the logistic model case [MNS+21] and Gaussian binary mixture model case [CL21, WT21, CGB21],
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it is shown that good generalization of the SVM is possible beyond the realm in which classical
margin-based bounds apply. These analyses lend theoretical grounding to the surprising hypothesis that
squared loss can be equivalent to, or possibly even superior, to the cross-entropy loss for classification
tasks. Ryan Rifkin provided empirical support for this hypothesis on kernel machines [Rif02, RK04];
more recently, corresponding empirical evidence has been provided for state-of-the-art deep neural
networks [HB20, PL20a].

These perspectives have thus far been limited to regression and binary classification settings. In
contrast, most success stories and surprising new phenomena of modern machine learning have been
recorded in multiclass classification settings, which appear naturally in a host of applications that
demand the ability to automatically distinguish between large numbers of different classes. For example,
the popular ImageNet dataset [RDS+15] contains on the order of 1000 classes. Whether a) good
generalization beyond effectively low-dimensional regimes where margin-based bounds are predictive is
possible, and b) equivalence of squared loss and cross-entropy loss holds in multiclass settings remained
open problems.

This paper makes significant progress towards a complete understanding of the optimization and
generalization properties of high-dimensional linear multiclass classification, both for unconditional
Gaussian covariates (where labels are generated via a multinomial logistic model), and Gaussian mixture
models. Our contributions are listed in more detail below.

1.1 Our Contributions

Data arising from GMM or MLM,

sufficient overparameterization

zc�(X>X)�1zc > 0

for all c 2 [k]
<latexit sha1_base64="yKPIdAAquTm3TaF+FBwdOzHR25I="></latexit><latexit sha1_base64="M/ncwQEPAnpxQol5+bCKqQ7jAoQ="></latexit><latexit sha1_base64="M/ncwQEPAnpxQol5+bCKqQ7jAoQ="></latexit><latexit sha1_base64="M/ncwQEPAnpxQol5+bCKqQ7jAoQ="></latexit>

Multiclass/OvA SVM 
constraints are active

Both SVMs equal,

interpolate training data

Theorems 2 and 3

Theorem 1

Pe(WSVM) = Pe(WOvA) = Pe(WMNI)
<latexit sha1_base64="d17wGe5ycqLf1XconoZHhph1I7s="></latexit><latexit sha1_base64="BBdJasryyaU0vB7sMNizBjMgJtk="></latexit><latexit sha1_base64="BBdJasryyaU0vB7sMNizBjMgJtk="></latexit><latexit sha1_base64="BBdJasryyaU0vB7sMNizBjMgJtk="></latexit>

Pe(WMNI)  (Theorem 5)
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Corollaries 3 and 4:

Benign overfitting of SVM and MNI under GMM and MLM

Corollary 1

(Theorems 4 and 5)

Features that exhibit the 

neural collapse phenomenon

Corollary 2

Figure 1: Contributions and organization.

• We establish a deterministic suf-
ficient condition under which the
multiclass SVM solution has a very
simple and symmetric structure:
it is identical to the solution of a
One-vs-All (OvA) SVM classifier
that uses a simplex-type encoding
for the labels (unlike the classical
one-hot encoding). Moreover, the
constraints at both solutions are
active. Geometrically, this means
that all data points are support
vectors, and they interpolate the
simplex-encoding vector represen-
tation of the labels. See Figure
2 for a numerical illustration con-
firming our finding.
• This implies a surprising equivalence between traditionally different formulations of multiclass SVM,
which in turn are equivalent to the minimum-norm interpolating (MNI) classifier on the one-hot label
vectors. Thus, we show that the outcomes of training with cross-entropy (CE) loss and squared loss are
identical in terms of classification error.
• Next, for data following a Gaussian-mixtures model (GMM) or a Multinomial logistic model (MLM),
we show that the above sufficient condition is satisfied with high-probability under sufficient “effective"
overparameterization. Our sufficient conditions are non-asymptotic and are characterized in terms
of the data dimension, the number of classes, and functionals of the data covariance matrix. Our
numerical results show excellent agreement with our theoretical findings. We also show that the sufficient
condition of equivalence of CE and squared losses is satisfied when the “neural collapse” phenomenon
occurs [PHD20].
• Finally, we provide novel non-asymptotic bounds on the error of the MNI classifier for data generated
either from the GMM or the MLM, and identify sufficient conditions under which benign overfitting
occurs. A direct outcome of our results is that benign overfitting occurs under these conditions regardless
of whether the cross-entropy loss or squared loss is used during training.

Figure 1 describes our contributions and their implications through a flowchart. To the best of our
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knowledge, these are the first results characterizing a) equivalence of loss functions, and b) generalization
of interpolating solutions in the multiclass setting. The multiclass setting poses several challenges over
and above the recently studied binary case. When presenting our results in later sections, we discuss in
detail how our analysis circumvents these challenges.

1.2 Related Work

Multiclass classification and the impact of training loss functions There is a classical body of
work on algorithms for multiclass classification, e.g. [WW98, BB99, DB95, CS02, LLW04] and several
empirical studies of their comparative performance [RK04, F0̈2, ASS01] (also see [HYS16, GCOZ17,
KS18, BEH20, DCO20, HB20, PL20a] for recent such studies in the context of deep nets). Many
of these (e.g. [RK04, HB20, BEH20]) have found that least-squares minimization yields competitive
test classification performance to cross-entropy minimization. Our proof of equivalence of the SVM
and MNI solutions under sufficient overparameterization provides theoretical support for this line of
work. This is a consequence of the implicit bias of gradient descent run on the CE and squared losses
leading to the multiclass SVM [SHN+18, JT19] and MNI [EHN96] respectively. Numerous classical
works investigated consistency [Zha04, LLW04, TB07, PGS13, PS16] and finite-sample behavior, e.g.,
[KP02, CKMY16, LDBK15, Mau16, LDZK19, MR16] of multiclass classification algorithms in the
underparameterized regime. In contrast, our primary focus lies in the highly overparameterized regime,
where conventional techniques of uniform convergence are inadequate. In Section IV, we elaborate
on why classical training-data-dependent bounds based on margin or Rademacher complexity, are
insufficient in this regime and cannot yield conclusions about benign overfitting. Recently, in [AGL21],
the authors have studied the problem of feature selection in high-dimensional multiclass classification,
identifying an intriguing phase transition as the number of classes increases with dimensions. Our work
differs from theirs in that our bounds are relevant to CE minimization without explicit regularization,
whereas [AGL21] focuses on CE loss minimization with sparsity penalties to achieve feature selection.

Binary classification error analyses in overparameterized regime The recent wave of analyses of
the minimum-ℓ2-norm interpolator (MNI) in high-dimensional linear regression (beginning with [BLLT20,
BHX20, HMRT19, MVSS20, KLS20]) prompted researchers to consider to what extent the phenomena
of benign overfitting and double descent [BHMM19, GJS+20] can be proven to occur in classification
tasks. Even the binary classification setting turns out to be significantly more challenging to study owing
to the discontinuity of the 0-1 test loss function. Sharp asymptotic formulas for the generalization error
of binary classification algorithms in the linear high-dimensional regime have been derived in several
recent works [Hua17, SC19, MLC19, SAH19, TPT20, TPT21, DKT21, MRSY19, KA21, LS20, SAH20,
AKLZ20, Lol20, DL20]. These formulas are solutions to complicated nonlinear systems of equations
that typically do not admit closed-form expressions. A separate line of work provides non-asymptotic
error bounds for both the MNI classifier and the SVM classifier [CL21, MNS+21, WT21, CGB21];
in particular, [MNS+21] analyzed the SVM in a Gaussian covariates model by explicitly connecting
its solution to the MNI solution. Subsequently, [WT21] also took this route to analyze the SVM
and MNI in mixture models, and even more recently, [CGB21] provided extensions of this result to
sub-Gaussian mixtures. While these non-asymptotic analyses are only sharp in their dependences on
the sample size n and the data dimension p, they provide closed-form generalization expressions in
terms of easily interpretable summary statistics. Interestingly, these results imply good generalization
of the SVM beyond the regime in which margin-based bounds are predictive. Specifically, [MNS+21]
identifies a separating regime for Gaussian covariates in which corresponding regression tasks would
not generalize. In the Gaussian mixture model, margin-based bounds [SFBL98, BM03] (as well as
corresponding recently derived mistake bounds on interpolating classifiers [LR21]) would require the
intrinsic signal-to-noise-ratio (SNR) to scale at least as ω(p1/2) for good generalization; however, the
analyses of [WT21, CGB21] show that good generalization is possible for significantly lower SNR
scaling as ω(p1/4). The above error analyses are specialized to the binary case, where closed-form error
expressions are easy to derive [MNS+21]. The only related work applicable to the multiclass case is
[TOS20], which also highlights the numerous challenges of obtaining a sharp error analysis in multiclass
settings. Specifically, [TOS20] derived sharp generalization formulas for multiclass least-squares in
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underparameterized settings; extensions to the overparameterized regime and other losses beyond
least-squares remained open. Finally, [KT21] recently derived sharp phase-transition thresholds for the
feasibility of OvA-SVM on multiclass Gaussian mixture data in the linear high-dimensional regime.
However, this does not address the more challenging multiclass-SVM that we investigate here. To
summarize, our paper presents the first generalization bounds for the multiclass-SVM classifier that
establish conditions for benign overfitting in the high-dimensional regime. In the process, we establish
a connection between multiclass-SVM and multi-class MNI, which poses unique challenges due to the
non-uniqueness of defining support vectors in multiclass settings. Our work highlights the richness of the
multiclass setting compared to the binary setting, as we demonstrate the equivalence not only for GMM
and MLM data but also for data following a simplex equiangular tight-frame (ETF) structure. This
geometry structure is only relevant in multiclass settings and arises when training deep-net classifiers
with CE loss beyond the zero-training error regime [PHD20].

Other SVM analyses The number of support vectors in the binary SVM has been characterized
in low-dimensional separable and non-separable settings [DOS99, BG01, MO05] and scenarios have
been identified in which there is a vanishing fraction of support vectors, as this implies good gen-
eralization1 via PAC-Bayes sample compression bounds [Vap13, GHST05, GLL+11]. In the highly
overparameterized regime that we consider, perhaps surprisingly, the opposite behavior occurs: all
training points become support vectors with high probability [DOS99, BG01, MO05, MNS+21, HMX21].
In particular, [HMX21] provided sharp non-asymptotic sufficient conditions for this phenomenon for
both isotropic and anisotropic settings. The techniques in [MNS+21, HMX21] are highly specialized to
the binary SVM and its dual, where a simple complementary slackness condition directly implies the
property of interpolation. In contrast, the complementary slackness condition for the case of multiclass
SVM does not directly imply interpolation; in fact, the operational meaning of “all training points
becoming support vectors” is unclear in the multiclass SVM. Our proof of deterministic equivalence
goes beyond the complementary slackness condition and uncovers a surprising symmetric structure by
showing equivalence of multiclass SVM to a simplex-type OvA classifier. The simplex equiangular tight
frame structure that we uncover is somewhat reminiscent of the recently observed neural collapse phe-
nomenon in deep neural networks [PHD20]; indeed, Section 3.3 shows an explicit connection between our
deterministic equivalence condition and the neural collapse phenomenon. Further, [MNS+21, HMX21]
focus on proving deterministic conditions for equivalence in the case of labels generated from covariates;
the mixture model case (where covariates are generated from labels) turns out to be significantly
more involved due to the anisotropic data covariance matrix resulting from even from isotropic noise
covariance [WT21, CGB21]. As we explain further in Section 3.2, the mean vectors of the mixture
model introduce an additional rank-k component that complicates the analysis and requires new ideas.

1.3 Organization

The paper is organized as follows. Section 2 describes the problem setting and sets up notation.
Section 3 presents our main results on the equivalence between the multiclass SVM and MNI solutions
for two data models: the Gaussian mixture model (GMM) and the multinomial logistic model (MLM).
In the same section, we also show the equivalence under the Neural Collapse phenomenon. Section 4
presents our error analysis of the MNI solution (and, by our proved equivalence, the multiclass SVM)
for the GMM and the MLM, and Section 5 presents consequent conditions for benign overfitting of
multiclass classification. Finally, Section 6 presents proofs of our main results; auxiliary proofs are
deferred to the appendices. Please refer to the table of contents (before the appendices) for a more
detailed decomposition of results and proofs.

Notation For a vector v ∈ Rp , let ∥v∥2 =
√∑p

i=1 v
2
i , ∥v∥1 =

∑p
i=1 |vi|, ∥v∥∞ = maxi{|vi|}.

v > 0 is interpreted elementwise. 1m / 0m denote the all-ones / all-zeros vectors of dimension m

1In this context, the fact that [MNS+21, WT21, CGB21] provide good generalization bounds in the regime where
support vectors proliferate is particularly surprising. In conventional wisdom, a proliferation of support vectors was
associated with overfitting but this turns out to not be the case here.
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and ei denotes the i-th standard basis vector. For a matrix M, ∥M∥2 denotes its 2 → 2 operator
norm and ∥M∥F denotes the Frobenius norm. ⊙ denotes the Hadamard product. [n] denotes the set
{1, 2, ..., n}. We also use standard “Big O” notations Θ(·), ω(·), e.g. see [CLRS09, Chapter 3]. Finally,
we write N (µ,Σ) for the (multivariate) Gaussian distribution of mean µ and covariance matrix Σ, and,
Q(x) = P(Z > x), Z ∼ N (0, 1) for the Q-function of a standard normal. Throughout, constants refer
to strictly positive numbers that do not depend on the problem dimensions n or p.

2 Problem setting

We consider the multiclass classification problem with k classes. Let x ∈ Rp denote the feature
vector and y ∈ [k] represent the class label associated with one of the k classes. We assume that the
training data has n feature/label pairs {xi, yi}ni=1. We focus on the overparameterized regime, i.e.
p > Cn, and we will frequently consider p ≫ n. For convenience, we express the labels using the
one-hot coding vector yi ∈ Rk, where only the yi-th entry of yi is 1 and all other entries are zero, i.e.
yi = eyi . With this notation, the feature and label matrices are given in compact form as follows:
X =

[
x1 x2 · · · xn

]
∈ Rp×n and Y =

[
y1 y2 · · · yn

]
=
[
v1 v2 · · ·vk

]T ∈ Rk×n, where we
have defined vc ∈ Rn, c ∈ [k] to denote the c-th row of the matrix Y.

2.1 Data models

We assume that the data pairs {xi, yi}ni=1 are independently and identically distributed (IID). We
will consider two models for the distribution of (x, y). For both models, we define the mean vectors
{µj}kj=1 ∈ Rp, and the mean matrix is given by M :=

[
µ1 µ2 · · · µk

]
∈ Rp×k.

Gaussian Mixture Model (GMM) In this model, the mean vector µi represents the conditional
mean vector for the i-th class. Specifically, each observation (xi, yi) belongs to to class c ∈ [k] with
probability πc and conditional on the label yi, xi follows a multivariate Gaussian distribution. In
summary, we have

P(y = c) = πc and x = µy + q, q ∼ N (0,Σ). (1)

In this work, we focus on the isotropic case Σ = Ip. Our analysis can likely be extended to the more
general anisotropic case, but we leave this to future work.

Multinomial Logit Model (MLM) In this model, the feature vector x ∈ Rp is distributed as
N (0,Σ), and the conditional density of the class label y is given by the soft-max function. Specifically,
we have

x ∼ N (0,Σ) and P(y = c|x) = exp(µT
c x)∑

j∈[k] exp(µ
T
j x)

. (2)

For this model, we analyze both the isotropic and anisotropic cases.

2.2 Data separability

We consider linear classifiers parameterized by W =
[
w1 w2 · · · wk

]T ∈ Rk×p. Given input feature
vector x, the classifier is a function that maps x into an output of k via x 7→ Wx ∈ Rk (for simplicity,
we ignore the bias term throughout). We will operate in a regime where the training data are linearly
separable. In multiclass settings, there exist multiple notions of separability. Here, we focus on (i)
multiclass separability (also called k-class separability) (ii) one-vs-all (OvA) separability, and, recall
their definitions below.

Definition 1 (multiclass and OvA separability). The dataset {xi, yi}i∈[n] is multiclass linearly separable
when

∃W : (wyi −wc)
Txi ≥ 1, ∀c ̸= yi, c ∈ [k], and ∀i ∈ [n]. (3)

5



The dataset is one-vs-all (OvA) separable when

∃W : wT
c xi

{
≥ 1 if yi = c

≤ −1 if yi ̸= c
, ∀c ∈ [k], and ∀i ∈ [n]. (4)

Under both data models of the previous section (i.e. GMM and MLM), we have rank(X) = n almost
surely in the overparameterized regime p > n. This directly implies OvA separability. It turns out that
OvA separability implies multiclass separability, but not vice versa (see [BM94] for a counterexample).

2.3 Classification error

Consider a linear classifier Ŵ and a fresh sample (x, y) generated following the same distribution as the
training data. As is standard, we predict ŷ by a “winner takes it all strategy", i.e. ŷ = argmaxj∈[k] ŵ

T
j x.

Then, the classification error conditioned on the true label being c, which we refer to as the class-wise
classification error, is defined as

Pe|c := P(ŷ ̸= y|y = c) = P(ŵT
c x ≤ max

j ̸=c
ŵT

j x). (5)

In turn, the total classification error is defined as

Pe := P(ŷ ̸= y) = P(argmax
j∈[k]

ŵT
j x ̸= y) = P(ŵT

y x ≤ max
j ̸=y

ŵT
j x). (6)

2.4 Classification algorithms

Next, we review several different training strategies for which we characterize the total/class-wise
classification error in this paper.

Multiclass SVM Consider training W by minimizing the cross-entropy (CE) loss

L(W) := − log

(
ew

T
yi
xi∑

c∈[k] e
wT

c xi

)
with the gradient descent algorithm (with constant step size η). In the separable regime, the CE
loss L(W) can be driven to zero. Moreover, [SHN+18, Thm. 7] showed that the normalized iterates
{Wt}t≥1 converge as

lim
t→∞

∥∥Wt

log t
−WSVM

∥∥
F
= 0,

where WSVM is the solution of the multiclass SVM [WW98] given by

WSVM := argmin
W

∥W∥F sub. to (wyi −wc)
Txi ≥ 1, ∀i ∈ [n], c ∈ [k] s.t. c ̸= yi. (7)

It is important to note that the normalizing factor log t here does not depend on the class label; hence,
in the limit of GD iterations, the solution Wt decides the same label as multiclass SVM for any test
sample.

One-vs-all SVM In contrast to Equation (7), which optimizes the hyperplanes {wc}c∈[k] jointly, the
one-vs-all (OvA)-SVM classifier solves k separable optimization problems that maximize the margin
of each class with respect to all the rest. Concretely, the OvA-SVM solves the following optimization
problem for all c ∈ [k]:

wOvA,c := argmin
w

∥w∥2 sub. to wTxi

{
≥ 1, if yi = c,

≤ −1, if yi ̸= c,
∀i ∈ [n]. (8)

In general, the solutions to Equations (7) and (8) are different. While the OvA-SVM does not have an
obvious connection to any training loss function, its relevance will become clear in Section 3. Perhaps
surprisingly, we will prove that in the highly overparameterized regime the multiclass SVM solution is
identical to a slight variant of (8).
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Min-norm interpolating (MNI) classifier An alternative to the CE loss is the square loss
L(W) := 1

2n∥Y −WX∥22 = 1
2n

∑n
i=1 ∥Wxi − yi∥22. Since the square loss is tailored to regression, it

might appear that the CE loss is more appropriate for classification. Perhaps surprisingly, one of
the main messages of this paper is that under sufficient effective overparameterization the two losses
actually have equivalent performance. Our results lend theoretical support to empirical observations of
competitive classification accuracy between the square loss and CE loss in practice [Rif02, HB20, PL20a].

Towards showing this, we note that when the linear model is overparameterized (i.e. p > n) and
assuming rank(X) = n (e.g this holds almost surely under both the GMM and MLM), the data can
be linearly interpolated, i.e. the square-loss can be driven to zero. Then, it is well-known [EHN96]
that gradient descent with sufficiently small step size and appropriate initialization converges to the
minimum-norm -interpolating (MNI) solution, given by:

WMNI := argmin
W

∥W∥F , sub. to XTwc = vc, ∀c ∈ [k]. (9)

Since XTX is invertible, the MNI solution is given in closed form as WT
MNI = X(XTX)−1YT . From

here on, we refer to (9) as the MNI classifier.

3 Equivalence of solutions and geometry of support vectors

In this section, we show the equivalence of the solutions of the three classifiers defined above in certain
high-dimensional regimes.

3.1 A key deterministic condition

We first establish a key deterministic property of SVM that holds for generic multiclass datasets (X,Y)
(i.e. not necessarily generated by either the GMM or MLM). Specifically, Theorem 1 below derives
a sufficient condition (cf. (12)) under which the multiclass SVM solution has a surprisingly simple
structure. First, the constraints are all active at the optima (cf. (13)). Second, and perhaps more
interestingly, this happens in a very specific way; the feature vectors interpolate a simplex representation
of the multiclass labels, as specified below:

ŵT
c xi = zci :=

{
k−1
k , c = yi

− 1
k , c ̸= yi

for all i ∈ [n], c ∈ [k]. (10)

To interpret this, define an adjusted k-dimensional label vector ỹi := [z1i, z2i, . . . , zki]
T for each training

sample i ∈ [n]. This can be understood as a k-dimensional vector encoding of the original label yi that
is different from the classical one-hot encoding representation yi; in particular, it has entries either
−1/k or 1− 1/k (rather than 0 or 1). We call this new representation a simplex representation, based
on the following observation. Consider k data points that each belong to a different class 1, . . . , k,
and their corresponding vector representations ỹ1, . . . , ỹk. Then, it is easy to verify that the vectors
{0, ỹ1, . . . , ỹk} are affinely independent; hence, they form the vectices of a k-simplex.

Theorem 1. For a multiclass separable dataset with feature matrix X = [x1,x2, . . . ,xn] ∈ Rp×n and
label matrix Y = [v1,v2, . . . ,vk]

T ∈ Rk×n, denote by WSVM = [ŵ1, ŵ2, . . . , ŵk]
T the multiclass SVM

solution of (7). For each class c ∈ [k] define vectors zc ∈ Rn such that

zc = vc −
1

k
1n, c ∈ [k]. (11)

Let (XTX)+ be the Moore-Penrose generalized inverse2 of the Gram matrix XTX and assume that the
following condition holds

zc ⊙ (XTX)+zc > 0, ∀c ∈ [k]. (12)

2Most of the regimes that we study are ultra-high-dimensional (i.e. p ≫ n), and so XTX is invertible with high
probability. Consequently, (XTX)+ can be replaced by (XTX)−1 in these cases.
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Figure 2: Inner products WSVMxc ∈ R4 for features xi that each belongs to the c-th class for c ∈ [k]
and k = 4 total classes. The red lines correspond to the values (k − 1)/k = 3/4 and −1/k = −1/4 of
the simplex encoding described in Theorem 1. Observe that the inner products WSVMxc match with
these values, that is, Equation (10) holds.

Then, the SVM solution WSVM is such that all the constraints in (7) are active. That is,

(ŵyi − ŵc)
Txi = 1, ∀c ̸= yi, c ∈ [k], and ∀i ∈ [n]. (13)

Moreover, the features interpolate the simplex representation. That is,

XT ŵc = zc, ∀c ∈ [k]. (14)

For k = 2 classes, it can be easily verified that Equation (12) reduces to the condition in Equation (22)
of [MNS+21] for the binary SVM. Compared to the binary setting, the conclusion for the multiclass
case is richer: provided that Equation (12) holds, we show that not only are all data points support
vectors, but also, they satisfy a set of simplex OvA-type constraints as elaborated above. The proof
of Equation (14) is particularly subtle and involved: unlike in the binary case, it does not follow
directly from a complementary slackness condition on the dual of the multiclass SVM. A key technical
contribution that we provide to remedy this issue is a novel reparameterization of the SVM dual. The
complete proof of Theorem 1 and this reparameterization is provided in Section 6.1.

We make a few additional remarks on the interpretation of Equation (14).
First, our proof shows a somewhat stronger conclusion: when Equation (12) holds, the multiclass

SVM solutions ŵc, c ∈ [k] are same as the solutions to the following simplex OvA-type classifier (cf.
Equation (8)):

min
wc

1

2
∥wc∥22 sub. to xT

i wc

{
≥ k−1

k , yi = c,

≤ − 1
k , yi ̸= c,

∀i ∈ [n], (15)

for all c ∈ [k]. We note that the OvA-type classifier above can also be interpreted as a binary cost-
sensitive SVM classifier [IMSV19] that enforces the margin corresponding to all other classes to be
(k − 1) times smaller compared to the margin for the labeled class of the training data point. This
simplex structure is illustrated in Figure 2, which evaluates the solution of the multiclass SVM on
a 4-class Gaussian mixture model with isotropic noise covariance. The mean vectors are set to be
mutually orthogonal and equal in norm, with SNR ∥µ∥2 = 0.2

√
p. We also set n = 50, p = 1000 to

ensure sufficient effective overparameterization (in a sense that will be formally defined in subsequent
sections). Figure 2 shows the inner product ŵT

c x drawn from 8 samples. These inner products are
consistent with the simplex OvA structure defined in Equation (14), i.e. ŵT

c xi = 3/4 if yi = c and
ŵT

c xi = −1/4 if yi ̸= c.
Second, Equation (14) shows that when Equation (12) holds, then the multiclass SVM solution

WSVM has the same classification error as that of the minimum-norm interpolating solution. In other
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words, we can show that the minimum-norm classifiers that interpolate the data with respect to either
the one-hot representations yi or the simplex representations ỹi of (10) have identical classification
performance. This conclusion, stated as a corollary below, drives our classification error analysis in
Section 4.

Corollary 1 (SVM=MNI). Under the same assumptions as in Theorem 1, and provided that the
inequality in Equation (12) holds, it holds that Pe|c(WSVM) = Pe|c(WMNI) for all c ∈ [k]. Thus, the
total classification errors of both solutions are equal: Pe(WSVM) = Pe(WMNI).

The corollary follows directly by combining Theorem 1 with the following lemma applied with the
choice α = 1, β = −1/k. We include a detailed proof below for completeness.

Lemma 1. For constants α > 0, β, consider the MNI-solution wα,β
c = X(X⊤X)+(αvc + β1), c ∈

[k] corresponding to a target vector of labels αvc + β1n. Let Pα,β
e|c , c ∈ [k] be the class-conditional

classification errors of the classifier wα,β. Then, for any different set of constants α′ > 0, β′, it holds
that Pα,β

e|c = Pα′,β′

e|c , ∀c ∈ [k].

Proof. Note that wα=1,β=0
c = wMNI,c, c ∈ [k] and for arbitrary α > 0, β, we have: wα,β

c = αwMNI,c +
βX(X⊤X)+1. Moreover, it is not hard to check that w⊤

MNI,cx ≤ maxj ̸=cw
⊤
MNI,jx if and only if

(αwMNIc + b)⊤x ≤ maxj ̸=c(αwMNI,j + b)⊤x, for any b ∈ Rp. The claim then follows by choosing
b = βX(X⊤X)+1 and noting that α > 0, β were chosen arbitrarily.

3.2 Connection to effective overparameterization

Theorem 1 establishes a deterministic condition that applies to any multiclass separable dataset as
long as the data matrix X is full-rank. In this subsection, we show that the inequality in Equation (12)
occurs with high-probability under both the GMM and MLM data models provided that there is
sufficient effective overparameterization.

3.2.1 Gaussian mixture model

We assume a nearly equal-energy, equal-prior setting as detailed below.

Assumption 1 (Nearly equal energy/prior). We assume that the norms of the mean vectors are at the
same order, i.e. for some large enough constants {Ci}4i=1, there exists a vector µ such that the mean
vectors satisfy (1− 1

C1
)∥µ∥2 ≤ ∥µc∥2 ≤ (1 + 1

C2
)∥µ∥2, ∀c ∈ [k] (equivalently, we have C1 ≤ ∥µc∥2

∥µc′∥2
≤ C2

for all c, c′ ∈ [k] and large enough constants C1, C2 > 0). Moreover, the class priors are also at the
same order, i.e. they satisfy (1− 1

C3
) 1k ≤ πc ≤ (1 + 1

C4
) 1k ,∀c ∈ [k] (equivalently, we have C3 ≤ πc

πc′
≤ C4

for all c, c′ ∈ [k] and large enough constants C3, C4 > 0).

Theorem 2. Assume that the training set follows a multiclass GMM with Σ = Ip, Assumption 1 holds,
and the number of training samples n is large enough. There exist constants c1, c2, c3 > 1 and C1, C2 > 1

such that Equation (12) holds with probability at least 1− c1
n − c2ke

− n
c3k

2 , provided that

p > C1k
3n log(kn) + n− 1 and p > C2k

1.5n
√
n∥µ∥2. (16)

Theorem 2 establishes a set of two conditions under which Equation (12) and the conclusions of
Theorem 1 hold, i.e. WSVM = WMNI. The first condition requires sufficient overparameterization
p = Ω(k3n log(kn)), while the second one requires that the signal strength is not too large. Intuitively,
we can understand these conditions as follows. Note that Equation (12) is satisfied provided that the
inverse Gram matrix (XTX)−1 is “close” to identity, or any other positive-definite diagonal matrix.
Recall from Equation (1) that X = MY +Q =

∑k
j=1µjv

T
j +Q where Q is a p× n standard Gaussian

matrix. The first inequality in Equation (16) (i.e. a lower bound on the data dimension p) is sufficient
for (QTQ)−1 to have the desired property; the major technical challenge is that (XTX)−1 involves
additional terms that intricately depend on the label matrix Y itself. Our key technical contribution is
showing that these extra terms do not drastically change the desired behavior, provided that the norms
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Figure 3: Fraction of training examples satisfying Equation (14) (also called “support vectors”) in the
GMM case. The error bars show the standard deviation. Figure (a) considers k = 4 and 7, and Figure
(b) considers k = 3 and 6. On the legend, “(4) 0.3” corresponds to k = 4 and ∥µ∥2/√p = 0.2. Observe
that the curves nearly overlap when plotted versus k1.5n1.5∥µ∥2/p as predicted by the second condition
in Equation (16) of Theorem 2.

of the mean vectors (i.e. signal strength) are sufficiently small. At a high-level we accomplish this with
a recursive argument as follows. Denote X0 = Q and Xi =

∑i
j=1µjv

T
j +Q for i ∈ [k]. Then, at each

stage i of the recursion, we show how to bound quadratic forms involving
(
XT

i Xi

)−1 using bounds
established previously at stage i− 1 on quadratic forms involving

(
XT

i−1Xi−1

)−1. A critical property
for the success of our proof strategy is the observation that the rows of Y are always orthogonal, that
is, vT

i vj = 0, for i ̸= j. The complete proof of the theorem is given in Section 6.2.
We first present numerical results that support the conclusions of Theorem 2. (In all our figures, we

show averages over 100 Monte-Carlo realizations, and the error bars show the standard deviation at
each point.) Figure 3(a) plots the fraction of support vectors satisfying Equation (14) as a function of
training size n. We fix dimension p = 1000 and class priors π = 1

k . To study how the outcome depends
on the number of classes k and signal strength ∥µ∥2, we consider k = 4, 7 and three equal-energy
scenarios where ∀c ∈ [k] : ∥µc∥2 = ∥µ∥2 = µ

√
p with µ = 0.2, 0.3, 0.4. Observe that smaller µ results in

larger proportion of support vectors for the same value of n. To verify our theorem’s second condition
(on the signal strength) in Equation (16), Figure 3(a) also plots the same set of curves over a re-scaled
axis k1.5n1.5∥µ∥2/p. The six curves corresponding to different settings nearly overlap in this new scaling,
showing that the condition is order-wise tight. In Figure 3(b), we repeat the experiment in Figure 3(a)
for different values of k = 3 and k = 6. Again, these curves nearly overlap when the x-axis is scaled
according to the second condition on signal strength in Equation (16). We conjecture that our second
condition on the signal strength is tight up to an extra

√
n factor, which we believe is an artifact of the

analysis3. We also believe that the k3 factor in the first condition can be relaxed slightly to k2 (as in
the MLM case depicted in Figure 4, which considers a rescaled x-axis and shows exact overlap of the
curves for all values of k). Sharpening these dependences on both k and n is an interesting direction
for future work.

3.2.2 Multinomial logistic model

We now consider the MLM data model and anisotropic data covariance. Explicitly, the eigendecomposi-
tion of the covariance matrix is given by Σ =

∑p
i=1 λiuiu

T
i , where λ = [λ1, · · · , λp]. We also define the

effective dimensions d2 := ∥λ∥21/∥λ∥22 and d∞ := ∥λ∥1/∥λ∥∞. The following result contains sufficient
conditions for the SVM and MNI solutions to coincide.

Theorem 3. Assume n training samples following the MLM defined in (2). There exist constants c
and C1, C2 > 1 such that Equation (12) holds with probability at least (1− c

n) provided that

d∞ > C1k
2n log(kn) and d2 > C2(log(kn) + n). (17)

3Support for this belief comes from the fact that [WT21] shows that p > C2∥µ∥2n is sufficient for the SVM =
interpolation phenomenon to occur in the case of GMM and binary classification.
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Figure 4: Fraction of training examples satisfying equality in the simplex label representation in
Equation (14) in the MLM case with Σ = Ip. The middle plot shows that the curves overlap when
plotted versus k2n log(kn)/p as predicted by Equation (18).

In fact, the only conditions we require on the generated labels is conditional independence.
For the isotropic case Σ = Ip, this implies that Equation (12) holds with probability at least (1− c

n)
provided that

p > C1k
2n log(kn). (18)

The sufficient conditions in Theorem 3 require that the spectral structure in the covariance matrix
Σ has sufficiently slowly decaying eigenvalues (corresponding to sufficiently large d2), and that it is not
too “spiky” (corresponding to sufficiently large d∞). When Σ = Ip, the conditions reduce to sufficient
overparameterization. For the special case of k = 2 classes, our conditions reduce to those in [HMX21]
for binary classification. The dominant dependence on k, given by k2, is a byproduct of the “unequal”
margin in Equation (10). Figure 4 empirically verifies the sharpness of this factor.

The proof of Theorem 3 is provided in Appendix B. We now numerically validate our results in
Theorem 3 in Figure 4, focusing on the isotropic case. We fix p = 1000, vary n from 10 to 100 and
the numbers of classes from k = 3 to k = 6. We choose orthogonal mean vectors for each class with
equal energy ∥µ∥22 = p. The left-most plot in Figure 4 shows the fraction of support vectors satisfying
Equation (14) as a function of n. Clearly, smaller number of classes k results in higher proportion
of support vectors with the desired property for the same number of measurements n. To verify the
condition in Equation (18), the middle plot in Figure 4 plots the same curves over a re-scaled axis
k2n log(kn)/p (as suggested by Equation (18)). We additionally draw the same curves over kn log(kn)/p
in the right-most plot of Figure 3. Note the overlap of the curves in the middle plot. We now numerically
validate our results in Theorem 3 in Figure 4, focusing on the isotropic case. We fix p = 1000, vary n
from 10 to 100 and the numbers of classes from k = 3 to k = 6. We choose orthogonal mean vectors for
each class with equal energy ∥µ∥22 = p. The left-most plot in Figure 4 shows the fraction of support
vectors satisfying Equation (14) as a function of n. Clearly, smaller number of classes k results in
higher proportion of support vectors with the desired property for the same number of measurements
n. To verify the condition in Equation (18), the middle plot in Figure 4 plots the same curves over a
re-scaled axis k2n log(kn)/p (as suggested by Equation (18)). We additionally draw the same curves
over kn log(kn)/p in the right-most plot of Figure 3. Note the overlap of the curves in the middle plot.

3.3 Connection to Neural Collapse

In this section, we provide a distinct set of sufficient conditions on the feature vectors that guarantee
Equation (12), and hence the conclusions of Theorem 1 hold. Interestingly, these sufficient conditions
relate to the recently discovered, so called neural-collapse phenomenon that is empirically observed in
the training process of overparameterized deep nets [PHD20] (see also e.g. [ZDZ+21, MPP20, HPD21,
LS22, FHLS21a, FHLS21b, PL20b, GHNK21] for several recent follow-ups).

Corollary 2. Recall the notation in Theorem 1. Assume exactly balanced data, that is |{i : yi = c}| =
n/k for all c ∈ [k]. Also, assume that the following two conditions hold:

• Feature collapse (NC1): For each c ∈ [k] and all i ∈ [n] : yi = c, it holds that xi = µc, where
µc ≜

k
n

∑
i:yi=c xi is the “mean” vector of the corresponding class.
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• Simplex ETF structure (NC2): The matrix of mean vectors M := [µ1, . . . ,µk]p×k is the
matrix of a simplex Equiangular Tight Frame (ETF), i.e. for some orthogonal matrix Up×k (with
UTU = Ik) and α ∈ R, it holds that

M = α

√
k

n
U

(
Ik −

1

k
11T

)
. (19)

Then, the sufficient condition (12) of Theorem 1 holds for the Gram matrix XTX.

Proof. For simplicity, denote the sample size of each class as m := n/k. Without loss of generality
under the corollary’s assumptions, let the columns of the feature matrix X be ordered such that
X = [M,M, . . . ,M] = M⊗ 1T

m. Accordingly, we have zc = (ec ⊗ 1m)− 1
k (1k ⊗ 1m) where ec is the

c-th basis vector in Rk. Then, the feature Gram matrix is computed as

XTX =
(
MTM

)
⊗
(
1m1Tm

)
=

α2

m

(
Ik −

1

k
1k1

T
k

)
⊗
(
1m1Tm

)
. (20)

Observe here that we can write
(
Ik − 1

k1k1
T
k

)
= VVT for V ∈ Rk×(k−1) having orthogonal columns

(i.e. VTV = Ik−1) and VT1k = 0k. Using this and the fact that (VVT )+ = (VVT ), it can be checked
from (20) that

(XTX)+ =
1

α2m

(
Ik −

1

k
1k1

T
k

)
⊗
(
1m1Tm

)
. (21)

Putting things together, we get, for any c ∈ [k], that

(XTX)+zc =
1

α2m

((
Ik −

1

k
1k1

T
k

)
⊗
(
1m1Tm

))
(ec ⊗ 1m) =

1

α2

(
ec −

1

k
1k

)
⊗ 1m =

1

α2
zc.

Therefore, it follows immediately that

zc ⊙M+zc =
1

α2
zc ⊙ zc > 0,

as desired. This completes the proof.

It might initially appear that the structure of the feature vectors imposed by the properties NC1
and NC2 is too specific to be relevant in practice. To the contrary, [PHD20] showed via a principled
experimental study that these properties occur at the last layer of overparameterized deep nets across
several different data sets and DNN architectures. Specifically, the experiments conducted in [PHD20]
suggest that training overparameterized deep nets on classification tasks with CE loss in the absence
of weight decay (i.e. without explicit regularization) results in learned feature representations in
the final layer that converge4 to the ETF structure described by NC1 and NC2. Furthermore, it
was recently shown in [GHNK21] that the neural collapse phenomenon continues to occur when the
last-layer features of a deep net are trained with the recently proposed supervised contrastive loss (SCL)
function [KTW+20] and a linear model is independently trained on these learned last-layer features. (In
fact, [GHNK21, KTW+20] showed that this self-supervised procedure can yield superior generalization
performance compared to CE loss.)

To interpret Corollary 2 in view of these findings, consider the following two-stage classification
training process:

• First, train (without weight-decay and continuing training beyond the interpolation regime) the
last-layer feature representations of an overparameterized deep-net with either CE or SCL losses.

• Second, taking as inputs those learned feature representations of the first stage, train a linear
multiclass classifier (often called the “head” of the deep-net) with CE loss.

4Here, “convergence” is with respect to an increasing number of training epochs. Since the architecture is overparame-
terized, it can perfectly separate the data. Hence, the training 0-1 error can be driven to zero. Nevertheless, training
continues despite having achieved zero 0-1 training error, since the CE loss continues to drop. [PHD20] refers to this
regime as the terminal phase of training (TPT). In sum, [PHD20] show that neural collapse is observed in TPT.
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Then, from Corollary 2, the resulting classifier from this two-stage process interpolates the simplex
label representation, and the classification accuracy is the same as if we had used the square loss in the
second stage of the above training process. Thus, our results lend strong theoretical justification to
the empirical observation that square-loss and CE loss yield near-identical performance in large-scale
classification tasks [Rif02, RK04, HB20, PL20a].

4 Generalization bounds

In this section, we derive non-asymptotic bounds on the error of the MNI classifier for data generated
from both GMM and MLM, as well as a natural setting in which the class means follow the simplex-ETF
geometry.

4.1 Gaussian mixture model

We present classification error bounds under the additional assumption of mutually incoherent means.

Assumption 2 (Mutually incoherent means). Let M = maxi ̸=j
|µT

i µj |
∥µi∥2∥µj∥2

be the mutual coherence of
mean vectors. Then, we assume that there exists a large absolute constant C > 0 such that M ≤ 1/C.

We remark that mutual incoherence assumptions have appeared in a completely different context,
i.e. across feature vectors, in the compressive sensing literature (e.g. for sparse signal recovery) [DET05,
Tro06]. There, the number of feature vectors is typically greater than the dimension of each feature
vector and so the mutual incoherence suffers from fundamental lower bounds [Wel74]. In our setting,
the incoherence assumption applies to the class-mean vectors. Note that the number of mean vectors
(k) is always smaller than the dimension of each vector (p) and so Welch’s lower bound does not apply,
making our assumption reasonable.

Theorem 4. Let Assumptions 1 and 2, as well as the condition in Equation (16) hold. Further assume
constants C1, C2, C3 > 1 such that

(
1 − C1√

n
− C2n

p

)
∥µ∥2 > C3min{

√
k,
√
log(2n)}. Then, there exist

additional constants c1, c2, c3 and C4 > 1 such that both the MNI solution WMNI and the multiclass
SVM solution WSVM satisfy

Pe|c ≤ (k − 1) exp

−∥µ∥22

((
1− C1√

n
− C2n

p

)
∥µ∥2 − C3min{

√
k,
√
log(2n)}

)2
C4

(
1 + kp

n∥µ∥22

)
 (22)

with probability at least 1− c1
n − c2ke

− n
c3k

2 , for every c ∈ [k]. Moreover, the same bound holds for the
total classification error Pe.

For large enough n, Theorem 4 reduces to the results in [WT21] when k = 2 (with slightly
different constants). There are two major challenges in the proof of Theorem 4, which is presented in
Appendix C.1. First, in contrast to the binary case the classification error does not simply reduce to
bounding correlations between vector means µc and their estimators ŵc. Second, just as in the proof
of Theorem 2, technical complications arise from the multiple mean components in the training data
matrix X. We use a variant of the recursion-based argument described in Section 6.2 to obtain our
final bound.

4.1.1 A possible extension to anisotropic noise covariances

Up to this point, we have concentrated on GMM data with isotropic noise, i.e. the noise covariance
matrix in Equation (1) is such that Σ = Ip. It is crucial to note that, even in the case of isotropic
noise, the entire data covariance matrix E[xxT ] for GMM data is anisotropic, as it exhibits spikes in the
direction of the mean vectors. Thus, it already models highly correlated features. This already makes
the analyses challenging both at the level of establishing equivalence of SVM to MNI as well as deriving
generalization bounds for the MNI (analogous to the challenges faced in the initial analyses of benign
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overfitting for regression [BLLT20, HMRT19]). Based on this, we now make a brief comment on the
possibility of extending Theorem 4 to anisotropic GMM data. Although a comprehensive examination
is beyond the scope of this paper, we provide evidence that our analysis can serve as a foundation for
such extensions.

As a starting point, we note that the necessary and sufficient equivalence conditions of Theorem 1
still hold (as they are deterministic and require no assumptions on the data). We sketch here a possible
proof argument to work from Theorem 1 and prove a variant of Theorem 2 for anisotropic noise
covariance. Let Σ = VΛVT be the covariance eigen-decomposition, where V is orthogonal and Λ is
diagonal with entries given by the eigenvalues {λj}pj=1. With this, we can project the mean vectors µc

of the GMM to the space spanned by the eigenvector basis vj , j ∈ [p] (aka columns of V). Concretely,
we can express µc as

∑p
j=1 βjvj . Then, we may use this decomposition to prove a variant of Lemma

2. Recall that to prove the higher-order terms in Lemma 2, we need to start from deriving bounds
for 0-order terms in Lemma 7. When Σ is anisotropic, the bounds in Lemma 7 will have two main
changes. First, the bounds will involve signal strength in the direction of Σ defined as

∑p
j=1 λjβ

2
j . This

is the result of projecting the mean vectors to the space spanned by the eigenvectors of Σ. Second,
the bounds will include effective ranks, e.g. rk := (

∑p
i>k λi)/λk+1 and Rk := (

∑p
i>k λi)

2/(
∑p

i>k λ
2
i ).

Effective ranks play important role in benign overfitting and the equivalence between SVM and MNI
[BLLT20, MNS+21]. Lemma 4 in [WT21] provides bounds for the 0-order terms in Lemma 7 under
anisotropic covariance. We show one examples here to see the adjustment. The upper bound for t

(0)
jj

changes from C1n∥µ∥22
p to

C2n
∑p

j=1 λjβ
2
j

∥λ∥1 , where λ is the vector with λi as entries. Note that
n
∑p

j=1 λjβ
2
j

∥λ∥1

becomes n∥µ∥22
p when Σ = Ip. Similar changes apply to other terms in Lemma 7. The 0-order bounds in

Lemma 7 can then be used to derive higher-order bounds in Lemma 2. Similar to the binary results in
[MNS+21, WT21], the equivalence between MNI and SVM requires large effective ranks and benign
overfitting requires large signal strength in the direction of Σ. However, a detailed analysis of this
general setting is beyond the scope of this paper.

4.2 Multinomial logistic model

In this section, we present our error analysis of the MNI classifier when data is generated by the
MLM. Importantly, for this case we consider more general anisotropic structure in the covariance
matrix Σ := UΛU⊤. We begin by carrying over the assumptions made from the binary-case analysis
in [MNS+21], beginning with a natural assumption of s-sparsity.

Assumption 3 (s-sparse class means). We assume that all of the class means µc, c ∈ [k] are s-sparse
in the basis given by the eigenvectors of Σ. In other words, we have

U−1µc,j = 0 if j > s.

This s-sparse assumption is also made in corresponding works on regression (e.g. for the results for
the anisotropic case in [HMRT19]) and shown to be necessary in an approximate sense for consistency
of MSE of the minimum-ℓ2-norm interpolation arising from bias [TB20]. Next, we make a special
assumption of bi-level structure in the covariance matrix.

Assumption 4 (Bi-level ensemble). We assume that the eigenvalues of the covariance matrix, given by
λ, have a bilevel structure. In particular, our bi-level ensemble is parameterized by (n,m, q, r) where
m > 1, 0 ≤ r < 1 and 0 < q < (m− r).We set parameters p = nm, s = nr and a = n−q. Then, the
eigenvalues of the covariance matrix are given by

λj =

{
λH := ap

s , 1 ≤ j ≤ s

λL := (1−a)p
p−s , otherwise.

We will fix (m, q, r) and study the classification error as a function of n. While the bi-level ensemble
structure is not in principle needed for complete statements of results, it admits particularly clean
characterizations of classification error rates as well as easily interpretable conditions for consistency5.

5See [MNS+21] for additional context on the bi-level ensemble and examples of its manifestation in high-dimensional
machine learning models.
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Assumption 4 splits the covariance spectrum in a small set of large eigenvalues λH and the remaining
large set of small eigenvalues λL. The bi-level ensemble is friendly to consistency of the MNI solution
for three reasons: a) the number of small eigenvalues is much larger than the sample size, b) the
ratio between the large-valued and small-valued eigenvalues grows with the sample size n, and c) the
number of large-valued eigenvalues is exponentially small relative to the sample size n. Note that
condition a) facilitates benign overfitting of noise (as first pointed out in the more general anisotropic
case by [BLLT20]), while conditions b) and c) facilitate signal recovery. To verify these conditions
more quantitatively, note that: a) the number of small eigenvalues is on the order of p ≫ n, b) the
ratio between the large-valued and small-valued eigenvalues can be verified to be on the order of
nm−q−r which grows with n, and c) the number of large-valued eigenvalues is equal to s = nr, which is
exponentially smaller than n.

Finally, we imbue the above assumptions with an equal energy and orthogonality assumption, as
in the GMM case. These assumptions are specific to the multiclass task, and effectively subsume
Assumption 3.

Assumption 5 (Equal energy and orthogonality). We assume that the class means are equal energy,
i.e. ∥µ∥2 = 1/

√
λH for all c ∈ [k], and are orthogonal, i.e. µ⊤

i µj = 0 for all i ̸= j ∈ [k]. Together with
Assumptions 3 and 4, a simple coordinate transformation gives us

µc =
1√
λH

ejc for some jc ∈ [s], jc ̸= jc′ for all c ̸= c′ ∈ [k], and

Σ = Λ

without loss of generality. The normalization by the factor 1√
λH

is done to ensure that the signal strength
is equal to 1, i.e. E[(x⊤µc)

2] = 1 for all c ∈ [k].

Under these assumptions, we state our main result for the total classification error of MLM. Our
error bounds will be on the excess risk over and above the Bayes error rate incurred by the optimal
classifier {ŵc = µc}c∈[k], which we denote by Pe,Bayes.

Theorem 5. Under Assumptions 4 and 5, there is a universal constant ck (that may depend on k, but
not n or p) such that the total excess classification error of WMNI and WSVM under the MLM model is
given by

Pe − Pe,Bayes ≤ k2
(
1

2
− 1

π
tan−1(SNR(n))

)
, where (23)

SNR(n) ≥ ck(log n)
−1/2 · n

min{(m−1),(2q+r−1),(2q+2r−3/2)}
2

+(1−r)−q, q > (1− r)

for q > 1− r.

The proof of Theorem 5 is presented in Section 6.3. We will show in the subsequent Section 5 that,
although the rate in Equation (23) is worse in its dependence on q and r than for the equivalent binary
classification problem, the conditions for benign overfitting turn out to coincide in the regime where we
keep k constant with respect to n.

4.3 Means following the simplex-ETF geometry

Next, we derive generalization bounds under an entirely different assumption on the geometry of mean
vectors. Specifically, we consider the setting in which the mean vectors follow the simplex ETF geometry
structure that was discussed in Section 3.3. Recall, this setting is particularly interesting and relevant
to practice, as the ETF geometry describes the geometry of learnt class-mean embeddings of deep-nets
when trained with the CE loss to completion (i.e., beyond achieving zero 0− 1 training error) [PHD20].

Theorem 6. Let the nearly equal energy/prior Assumption 1 and the conditions in Equation (16) hold.
Additionally, assume the means form a ETF structure, i.e. µT

i µi = −(k − 1)µT
i µj, for i ̸= j. Further

assume constants C1, C2, C3 > 1 such that
(
1− C1√

n
− C2n

p

)
∥µ∥2 > C3min{

√
k,
√
log(2n)}. Then, there
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exist additional constants c1, c2, c3 and C4 > 1 such that both the MNI solution WMNI and the multiclass
SVM solution WSVM satisfy

Pe|c ≤ (k − 1) exp

−∥µ∥22

((
1− C1√

n
− C2n

p

)
∥µ∥2 − C3min{

√
k,
√
log(2n)}

)2
C4

(
1 + kp

n∥µ∥22

)
 (24)

with probability at least 1− c1
n − c2ke

− n
c3k

2 , for every c ∈ [k]. Moreover, the same bound holds for the
total classification error Pe.

The proof of this theorem is provided in Appendix C.2. The non-zero inner products between µT
i

and µj contribute “negatively” to the signal µT
i µi. This negative contribution can be negated because

of the simplex ETF structure µT
i µi = −(k − 1)µT

i µj , hence the bounds in Theorem 4 still hold.

5 Conditions for benign overfitting

Thus far, we have studied the classification error of the MNI classifier under the GMM data model
(Theorem 4), and shown equivalence of the multiclass SVM and MNI solutions (Theorems 1, 2 and
Corollary 1). Combining these results, we now provide sufficient conditions under which the classification
error of the multiclass SVM solution (also of the MNI) approaches 0 as the number of parameters p
increases. First, we state our sufficient conditions for harmless interpolation under the GMM model —
these arise as a consequence of Theorem 4, and the proof is provided in Appendix C.3.

Corollary 3. Let the same assumptions as in Theorem 4 hold. Then, for finite number of classes
k and sufficiently large sample size n, there exist positive constants ci’s and Ci’s > 1, such that the
multiclass SVM classifier WSVM in (7) satisfies the simplex interpolation constraint in (14) and its
total classification error approaches 0 as

( p
n

)
→ ∞ with probability at least 1− c1

n − c2ke
− n

c3k
2 , provided

that the following conditions hold:
(1). When ∥µ∥22 > kp

n ,

n

C1k
∥µ∥22 > p > max{C2k

3n log(kn) + n− 1, C3k
1.5n1.5∥µ∥2}.

(2). When ∥µ∥22 ≤ kp
n ,

p > max{C2k
3n log(kn) + n− 1, C3k

1.5n1.5∥µ∥2,
n∥µ∥22

k
},

and ∥µ∥42 ≥ C4

( p
n

)α
, for α > 1.

When n is fixed, the conditions for benign overfitting for WSVM become ∥µ∥2 = Θ(pβ) for β ∈ (1/4, 1).

Note that the upper bound on ∥µ∥2 comes from the conditions that make SVM=MNI in Theorem 2;
indeed, a distinct corollary of Theorem 4 is that WMNI overfits benignly with sufficient signal strength
∥µ∥2 = Ω(p1/4). We can compare our result with the binary case [WT21]. When k and n are both
finite, the condition ∥µ∥2 = Θ(pβ) for β ∈ (1/4, 1) is the same as the binary result.

Next, we state our sufficient and necessary conditions for harmless interpolation under the MLM
model.

Corollary 4. Let the same assumptions as in Theorem 5 hold. Then, for finite number of classes k,
the following parameters of the bilevel ensemble (Assumption 4) ensure that the total classification error
of WSVM approaches 0 as n → ∞:

p > 1 and q < (1− r) +
(m− 1)

2
. (25)

Further, when q > (1− r), the same conclusion holds for WMNI.
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(a) k = 4
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(b) k = 6

Figure 5: Evolution of total classification error and fraction of support vectors as a function of p in the
GMM case. Figure (a) considers k = 4 and Figure (b) considers k = 6. We consider the energy of all
class means to be ∥µ∥2 = µ

√
p, where µ = 0.2, 0.3 and 0.4. Observe that the total classification error

approaches 0 and the fraction of support vectors approaches 1 as p gets larger.

Proof. We work from Equation (23) of Theorem 5. For Pe − Pe,Bayes → 0 as n → ∞, we require the
exponent
min{(m−1),(2q+r−1),(2q+2r−3/2)}

2 + (1 − r) − q ≥ 0. If 2q + 2r − 3/2 is the minimizer, we would have
q + r − 3/4 + 1− r − q = 1/4, in which case the inequality is satisfied. If 2q + r − 1 is the minimizer,
we would have q + r/2 − 1/2 + 1 − r − q = 1−r

2 > 0, in which case the inequality is again satisfied.
Otherwise, we have m−1

2 + 1− r − q > 0, which implies q < (1− r) + (m−1)
2 .

We can again compare our result with the binary case [MNS+21]: when k is finite, the conditions
in Equation (25) are identical to those for the binary case. We also note that while Theorem 5 only
provides an upper bound on MLM classification error, [MNS+21] provides lower bounds for the binary
case that automatically apply to the MLM for the special case k = 2. While there is a gap between the
non-asymptotic rates, the necessary conditions for consistency coincide with Equation (25). Therefore,
Equation (25) encapsulates sufficient and necessary conditions for consistency when k is kept constant
with respect to n. Moreover, as [MNS+21] show, the condition q ≤ (1− r) would be requirement for a
corresponding regression task to generalize; consequently, Corollary 4 shows that multiclass classification
can generalize even when regression does not.

We particularly note that, Corollaries 3 and 4 imply benign overfitting in regimes that cannot
be explained by classical training-data-dependent bounds based on the margin [SFBL98]. While the
shortcomings of such margin-based bounds in the highly overparameterized regime are well-documented,
e.g. [DR17], we provide a brief description here for completeness. For the MLM, [MNS+21, Section 6]
shows (for the binary case) that margin-based bounds could only predict harmless interpolation if we
had the significantly stronger condition q ≤ (1− r) (also required for consistency of the corresponding
regression task). For the GMM, we verify here that the margin-based bounds could only predict
benign overfitting if we had the significantly stronger condition β ∈ (1/2, 1) (see also [WT21, Section
9.1]): in the regime where SVM = MNI, the margin is exactly equal to 1. The margin-based bounds
(as given in, e.g. [BM03]), can be verified to scale as O

(√
trace(Σun)
n||Σun||2

)
with high probability, where

Σun := E
[
xx⊤] denotes the unconditional covariance matrix under the GMM. In the case of the binary

GMM and isotropic noise covariance, an elementary calculation shows that the spectrum of Σun is given
by
[
∥µ∥22 + 1 1 . . . 1

]
; plugging this into the above bound requires ∥µ∥22 ≫ p

n for the margin-based
upper bound to scale as o(1). This clearly does not explain benign overfitting when SVM = MNI, which
we showed requires ∥µ∥22 ≤ p

n .
Finally, we present numerical illustrations validating our benign overfitting results in Corollary 3.

In Figure 5(a), we set the number of classes k = 4. To guarantee sufficient overparameterization, we
fix n = 40 and vary p from 50 to 1200. We simulate 3 different settings for the mean matrices: each
has orthogonal and equal-norm mean vectors ∥µ∥2 = µ

√
p, with µ = 0.2, 0.3 and 0.4. Figure 5 plots

the classification error as a function of p for both MNI estimates (solid lines) and multiclass SVM
solutions (dashed lines). Different colors correspond to different mean norms. The solid and dashed
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curves almost overlap as predicted from our results in Section 3. We verify that as p increases, the
classification error decreases towards zero. Observe that the fraction of support vectors approaches 1
as p gets larger. Further, the classification error goes to zero very fast when µ is large, but then the
proportion of support vectors increases at a slow rate. In contrast, when µ is small, the proportion of
support vectors increases fast, but the classification error decreases slowly. Figure 5(b) uses the same
setting as in Figure 5(a) except for setting k = 6 and n = 30. Observe that the classification error
continues to go to zero and the proportion of support vectors continues to increase, but both become
slower as the number of classes is now greater.

6 Proofs of main results

In this section, we provide the proofs of Theorems 1, 2 and 5. The proof techniques we developed for
these results convey novel technical ideas that also form the core of the rest of the proofs, which we
defer to the Appendix.

6.1 Proof of Theorem 1

Argument sketch. We split the proof of the theorem in three steps. To better convey the main ideas,
we first outline the three steps in this paragraph before discussing their details in the remaining of this
section.

Step 1: The first key step to prove Theorem 1 is constructing a new parameterization of the dual of
the multiclass SVM, which we show takes the following form:

max
βc∈Rn,c∈[k]

∑
c∈[k]

βT
c zc −

1

2
∥Xβc∥22 (26)

sub. to βyi,i = −
∑
c ̸=yi

βc,i, ∀i ∈ [n] and βc ⊙ zc ≥ 0,∀c ∈ [k].

Here, for each c ∈ [k] we let βc = [βc,1, βc,2, . . . , βc,n] ∈ Rn. We also show by complementary slackness
the following implication for any optimal β∗

c,i in (26):

zc,iβ
∗
c,i > 0 =⇒ (ŵyi − ŵc)

Txi = 1. (27)

Thus, to prove Equation (13), it will suffice showing that zc,iβ
∗
c,i > 0, ∀i ∈ [n], c ∈ [k] provided that

Equation (12) holds.
Step 2: To do this, we prove that the unconstrained maximizer in (26), that is β̂c = (XTX)+zc, ∀c ∈

[k] is feasible, and therefore optimal, in (26). Now, note that Equation (12) is equivalent to zc⊙ β̂c > 0;
thus, we have found that β̂c, c ∈ [k] further satisfies the n strict inequality constraints in (27) which
completes the proof of the first part of the theorem (Equation (13)).

Step 3: Next, we outline the proof of Equation (14). We consider the simplex-type OvA-classifier
in (15). The proof has two steps. First, using similar arguments to what was done above, we show
that when Equation (12) holds, then all the inequality constraints in (15) are active at the optimal.
That is, the minimizers wOvA,c of (15) satisfy Equation (14). Second, to prove that Equation (14) is
satisfied by the minimizers ŵc of the multiclass SVM in (7), we need to show that wOvA,c = ŵc for
all c ∈ [k]. We do this by showing that, under Equation (12), the duals of (7) and (15) are equivalent.
By strong duality, the optimal costs of the primal problems are also the same. Then, because a) the
objective is the same for the two primals, b) wOvA,c is feasible in (15) and c) (7) is strongly convex, we
can conclude with the desired.

Step 1: Key alternative parameterization of the dual. We start by writing the dual of the
multiclass SVM, repeated here for convenience:

min
W

1

2
∥W∥2F sub. to (wyi −wc)

⊤xi ≥ 1, ∀i ∈ [n], c ∈ [k] : c ̸= yi. (28)
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We have dual variables {λc,i} for every i ∈ [n], c ∈ [k] : c ̸= yi corresponding to the constraints on the
primal form above. Then, the dual of the multiclass SVM takes the form

max
λc,i≥0

∑
i∈[n]

(∑
c∈[k]
c ̸=yi

λc,i

)
− 1

2

∑
c∈[k]

∥∥∥ ∑
i∈[n]:yi=c

( ∑
c′∈[k]
c′ ̸=yi

λc′,i

)
xi −

∑
i∈[n]:yi ̸=c

λc,ixi

∥∥∥2
2
. (29)

Let λ̂c,i, i ∈ [n], c ∈ [k] : c ̸= yi be maximizers in Equation (29). By complementary slackness, we have

λ̂c,i > 0 =⇒ (ŵyi − ŵc)
⊤xi = 1. (30)

Thus, it will suffice to prove that λ̂c,i > 0, ∀i ∈ [n], c ∈ [k] : c ̸= yi provided that (12) holds.
It is challenging to work directly with Equation (29) because the variables λc,i are coupled in the

objective function. Our main idea is to re-parameterize the dual objective in terms of new variables
{βc,i}, which we define as follows for all c ∈ [k] and i ∈ [n]:

βc,i =

{∑
c′ ̸=yi

λc′,i , yi = c,

−λc,i , yi ̸= c.
(31)

For each c ∈ [k], we denote βc = [βc,1, βc,2, . . . , βc,n] ∈ Rn. With these, we show that the dual objective
becomes ∑

c∈[k]

β⊤
c zc −

1

2

∑
c∈[k]

∥∥∥∑
i∈[n]

βc,ixi

∥∥∥2
2
=
∑
c∈[k]

β⊤
c zc −

1

2
∥Xβc∥22. (32)

The equivalence of the quadratic term in β is straightforward. To show the equivalence of the linear
term in β, we denote A :=

∑
i∈[n]

(∑
c∈[k],c ̸=yi

λc,i

)
, and simultaneously get

A =
∑
i∈[n]

βyi,i and A =
∑
i∈[n]

∑
c̸=yi

(−βc,i),

by the definition of variables {βc,i} in Equation (31). Then, we have

A =
k − 1

k
·A+

1

k
·A =

k − 1

k

∑
i∈[n]

βyi,i +
1

k

∑
i∈[n]

∑
c ̸=yi

(−βc,i)

(i)
=
∑
i∈[n]

zyi,iβyi,i +
∑
i∈[n]

∑
c ̸=yi

zc,iβc,i

=
∑
i∈[n]

∑
c∈[k]

zc,iβc,i =
∑
c∈[k]

β⊤
c zc.

Above, inequality (i) follows from the definition of zc in Equation (11), rewritten coordinate-wise as:

zc,i =

{
k−1
k , yi = c,

− 1
k , yi ̸= c.

Thus, we have shown that the objective of the dual can be rewritten in terms of variables {βc,i}. After
rewriting the constraints in terms of {βc,i}, we have shown that the dual of the SVM (Equation (7)) can
be equivalently written as in Equation (26). Note that the first constraint in (26) ensures consistency
with the definition of βc in Equation (31). The second constraint guarantees the non-negativity
constraint of the original dual variables in (29), because we have

βc,izc,i =
λc,i

k
for all i ∈ [n], c ∈ [k] : c ̸= yi.
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Consequently, we have

βc,izc,i ≥ 0 ⇐⇒ λc,i ≥ 0 (33)

for all c ∈ [k] and i ∈ [n] : yi ≠ c. In fact, the equivalence above also holds with the inequalities replaced
by strict inequalities. Also note that the second constraint for c = yi yields k−1

k

∑
c′ ̸=yi

λc′,i ≥ 0, which
is automatically satisfied when Equation (33) is satisfied. Thus, these constraints are redundant.

Step 2: Proof of Equation (13). Define

β̂c := (X⊤X)+zc, ∀c ∈ [k].

This specifies an unconstrained maximizer in (26). We will show that this unconstrained maximizer
β̂c, c ∈ [k] is feasible in the constrained program in (26). Thus, it is in fact an optimal solution in (26).

To prove this, we will first prove that β̂c, c ∈ [k] satisfies the n equality constraints in (26). For
convenience, let gi ∈ Rn, i ∈ [n] denote the i-th row of (X⊤X)+. Then, for the i-th element β̂c,i of β̂c,
it holds that β̂c,i = g⊤

i zc. Thus, for all i ∈ [n], we have

β̂yi,i +
∑
c ̸=yi

β̂c,i = g⊤
i

(
zyi +

∑
c̸=yi

zc

)
= g⊤

i

(∑
c∈[k]

zc

)
= 0,

where in the last equality we used the definition of zc in (11) and the fact that
∑

c∈[k] vc = 1n, since each
column of the label matrix Y has exactly one non-zero element equal to 1. Second, since Equation (12)
holds, β̂c, c ∈ [k] further satisfies the n strict inequality constraints in (26).

We have shown that the unconstrained maximizer is feasible in the constrained program (26). Thus,
we can conclude that it is also a global solution to the latter. By Equation (33), we note that the
corresponding original dual variables {λ̂c,i} = {k β̂c,izc,i} are all strictly positive. Now recall that under
strong duality, any pair of primal-dual optimal solutions satisfies the KKT conditions. Hence the
primal-dual pair

(
{ŵc}, {λ̂c,i}

)
satisfies the complementary slackness condition of Equation (30). This

together with the positivity of {λ̂c,i} complete the proof of the first part of the theorem, i.e. the proof
of Equation (13).

Step 3: Proof of Equation (14). To prove Equation (14), consider the following OvA-type classifier:
for all c ∈ [k],

min
wc

1

2
∥wc∥22 sub. to x⊤

i wc

{
≥ k−1

k , yi = c,

≤ − 1
k , yi ̸= c,

∀i ∈ [n]. (34)

To see the connection with Equation (14), note the condition for the constraints in (34) to be active
is exactly Equation (14). Thus, it suffices to prove that the constraints of (34) are active under the
theorem’s assumptions. We work again with the dual of (34):

max
νc∈Rk

− 1

2
∥Xνc∥22 + z⊤c νc sub. to zc ⊙ νc ≥ 0. (35)

Again by complementary slackness, the desired Equation (14) holds provided that all dual constraints
in (35) are strict at the optimal.

We now observe two critical similarities between (35) and (26): (i) the two dual problems have the
same objectives (indeed the objective in (26) is separable over c ∈ [k]); (ii) they share the constraint
zc ⊙ νc ≥ 0

/
zc ⊙ βc ≥ 0. From this observation, we can use the same argument as for (26) to show

that when Equation (12) holds, β̂c is optimal in (35).
Now, let OPT(28) and OPTc

(34) be the optimal costs of the multiclass SVM in (28) and of the
simplex-type OvA-SVM in (34) parameterized by c ∈ [k]. Also, denote OPT(26) and OPTc

(35), c ∈ [k]

the optimal costs of their respective duals in (26) and (35), respectively. We proved above that

OPT(26) =
∑
c∈[k]

OPTc
(35). (36)
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Further let WOvA = [wOvA,1, . . . ,wOvA,k] be the optimal solution in the simplex-type OvA-SVM in
(35). We have proved that under Equation (12) wOvA,c satisfies the constraints in (34) with equality,
that is X⊤wOvA,c = zc, ∀c ∈ [k]. Thus, it suffices to prove that WOvA = WSVM. By strong duality
(which holds trivially for (34) by Slater’s conditions), we get

OPTc
(34) = OPTc

(35), c ∈ [k] =⇒
∑
c∈[k]

OPTc
(34) =

∑
c∈[k]

OPTc
(35)

(36)
=⇒

∑
c∈[k]

OPTc
(34) = OPT(26)

(34)
=⇒

∑
c∈[k]

1

2
∥wOvA,c∥22 = OPT(26). (37)

Again, by strong duality we get OPT(26) = OPT(28). Thus, we have∑
c∈[k]

1

2
∥wOvA,c∥22 = OPT(28).

Note also that WOvA is feasible in (28) since

X⊤wOvA,c = zc, ∀c ∈ [k] =⇒ (wOvA,yi −wOvA,c)
⊤xi = 1, ∀c ̸= yi, c ∈ [k], and ∀i ∈ [n].

Therefore, WOvA is optimal in (28). Finally, note that the optimization objective in (28) is strongly
convex. Thus, it has a unique minimum and therefore WSVM = WOvA as desired.

6.2 Proof of Theorem 2

In this section, we provide the proof of Theorem 2. First, we remind the reader of the prescribed
approach outlined in Section 3.2.1 and introduce some necessary notation. Second, we present the key
Lemma 2, which forms the backbone of our proof. The proof of the lemma is rather technical and
is deferred to Appendix A.1 along with a series of auxiliary lemmas. Finally, we end this section by
showing how to prove Theorem 2 using Lemma 2.

Argument sketch and notation. We begin by presenting high-level ideas and defining notation that
is specific to this proof. For c ∈ [k], we define

Ac := (Q+

c∑
j=1

µjv
T
j )

T (Q+

c∑
j=1

µjv
T
j ).

Recall that in the above, µj denotes the jth class mean of dimension p, and vj denotes the n-dimensional
indicator that each training example is labeled as class j. Further, recall from Equation (1) that the
feature matrix can be expressed as X = MY +Q, where Q ∈ Rp×n is a standard Gaussian matrix.
Thus, we have

XTX = Ak and QTQ = A0.

As discussed in Section 3.2.1, our goal is to show that the inverse Gram matrix A−1
k is “close” to a

positive definite diagonal matrix. Indeed, in our new notation, the desired inequality in Equation (12)
becomes

zcie
T
i A

−1
k zc > 0, for all c ∈ [k] and i ∈ [n]. (38)

The major challenge in showing inequality (38) is that Ak = (Q +
∑k

j=1µjv
T
j )

T (Q +
∑k

j=1µjv
T
j )

involves multiple mean components through the sum
∑c

j=1µjv
T
j . This makes it challenging to bound

quadratic forms involving the Gram matrix A−1
k directly. Instead, our idea is to work recursively
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starting from bounding quadratic forms involving A−1
0 . Specifically, we denote P1 = Q+ µ1v

T
1 and

derive the following recursion on the A0,A1, . . . ,Ak matrices:

A1 = PT
1 P1 = A0 +

[
∥µ1∥2v1 QTµ1 v1

] ∥µ1∥2vT
1

vT
1

µT
1 Q

 ,

A2 = (P1 + µ2v
T
2 )

T (P1 + µ2v
T
2 ) = A1 +

[
∥µ2∥2v2 PT

1 µ2 v2

] ∥µ2∥2vT
2

vT
2

µT
2 P1

 , (39)

and so on, until Ak (see Appendix F.1 for the complete expressions for the recursion). Using this
trick, we can exploit bounds on quadratic forms involving A−1

0 to obtain bounds for quadratic forms
involving A−1

1 , and so on until A−1
k . Note that because of the nearly equal-energy Assumption 1, the

order of adding mean vectors in A will not change the results. In other words, including µ1 first, then
µ2, in (39) will produce the same result as including µ2 first, then µ1 in the same equation.

There are two key ideas behind this approach. First, we will show how to use a leave-one-out
argument and the Matrix Inversion Lemma to express (recursively) the quadratic form eTi A

−1
k zc in (38)

in terms of simpler quadratic forms, which are more accessible to bound directly. For later reference,
we define these auxiliary forms here. Let dc := QTµc, for c ∈ [k] and define the following quadratic
forms involving A−1

c for c, j,m ∈ [k] and i ∈ [n]:

s
(c)
mj := vT

mA−1
c vj ,

t
(c)
mj := dT

mA−1
c dj ,

h
(c)
mj := vT

mA−1
c dj , (40)

g
(c)
ji := vT

j A
−1
c ei,

f
(c)
ji := dT

j A
−1
c ei.

For convenience, we refer to terms above as quadratic forms of order c or the c-th order quadratic forms,
where c indicates the corresponding superscript. A complementary useful observation facilitating our
approach is the observation that the class label indicators are orthogonal by definition, i.e. vT

i vj = 0,
for i, j ∈ [k]. (This is a consequence of the fact that any training data point has a unique label and we
are using here one-hot encoding.) Thus, the newly added mean component µc+1v

T
c+1 is orthogonal to

the already existing mean components included in the matrix Ac (see Equation (39)). Consequently,
we will see that adding new mean components will only slightly change the magnitude of these these
quadratic forms as c ranges from 0 to k.

Identifying and bounding quadratic forms of high orders. Recall the desired inequality (38).
We can equivalently write the definition of zc in Equation (11) as

zc =
k − 1

k
vc +

∑
j ̸=c

(
−1

k

)
vj = z̃c(c)vc +

∑
j ̸=c

z̃j(c)vj , (41)

where we denote

z̃j(c) =

{
− 1

k , if j ̸= c
k−1
k , if j = c

.

Note that by this definition, we have z̃yi(c) := zci. This gives us

zcie
T
i A

−1
k zc = z2cie

T
i A

−1
k vyi +

∑
j ̸=yi

zciz̃j(c)e
T
i A

−1
k vj ,

= z2cig
(k)
yii

+
∑
j ̸=yi

zciz̃j(c)g
(k)
ji . (42)
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Note that this expression (Equation (42)) involves the k-th order quadratic forms g
(k)
ji = eTi A

−1
k vj .

For each such form, we use the matrix inversion lemma to leave the j-th mean component in Ak out
and express it in terms of the leave-one-out versions of quadratic forms that we defined in (40), as
below (see Appendix F.1 for a detailed derivation):

g
(k)
ji = eTi A

−1
k vj =

(1 + h
(−j)
jj )g

(−j)
ji − s

(−j)
jj f

(−j)
ji

s
(−j)
jj (∥µj∥22 − t

(−j)
jj ) + (1 + h

(−j)
jj )2

. (43)

Specifically, above we defined s
(−j)
jj := vT

j A
−1
−jvj , where A−j denotes the version of the Gram matrix Ak

with the j-th mean component left out. The quadratic forms h
(−j)
jj , f (−j)

ji , g(−j)
ji and t

(−j)
jj are defined

similarly in view of Equation (40).
Specifically, to see how these “leave-one-out” quadratic forms relate directly to the forms in Equation

(40), note that it suffices in (43) to consider the case where j = k. Indeed, observe that when j ̸= k we
can simply change the order of adding mean components, described in Equation (39), so that the j-th
mean component is added last. On the other hand, when j = k the leave-one-out quadratic terms in
(43) involve the Gram matrix Ak−1. Thus, they are equal to the quadratic forms of order k − 1, given
by s

(k−1)
kk , t

(k−1)
kk , h(k−1)

kk , g(k−1)
ki and f

(k−1)
ki .

The following technical lemma bounds all of these quantities and its use is essential in the proof of
Theorem 2. Its proof, which is deferred to Appendix A, relies on the recursive argument outlined above:
We start from the quadratic forms of order 0 building up all the way to the quadratic forms of order
k − 1.

Lemma 2 (Quadratic forms of high orders). Let Assumption 1 hold and further assume that p >
Ck3n log(kn) + n − 1 for large enough constant C > 1 and large n. There exist constants ci’s and
Ci’s > 1 such that the following bounds hold for every i ∈ [n] and j ∈ [k] with probability at least
1− c1

n − c2ke
− n

c3k
2 ,

C1 − 1

C1
· n

kp
≤s

(−j)
jj ≤ C1 + 1

C1
· n

kp
,

t
(−j)
jj ≤C2n∥µ∥22

p
,

−ρ̃n,k
C3n∥µ∥2√

kp
≤h

(−j)
jj ≤ ρ̃n,k

C3n∥µ∥2√
kp

,

|f (−j)
ji | ≤C4

√
n∥µ∥2
p

,

g
(−j)
ji ≥

(
1− 1

C5

)
1

p
, for j = yi,

|g(−j)
ji | ≤ 1

C6k2p
, for j ̸= yi,

where ρ̃n,k = min{1,
√
log(2n)/k}. Observe that the bounds stated in the lemma hold for any j ∈ [k]

and the bounds themselves are independent of j.

Completing the proof of Theorem 2. We now show how to use Lemma 2 to complete the proof of
the theorem. Following the second condition in the statement of Theorem 2, we define

ϵn :=
k1.5n

√
n∥µ∥2
p

≤ τ, (44)

where τ is a sufficiently small positive constant, the value of which will be specified later in the proof.
First, we will show that the denominator of Equation (43) is strictly positive on the event where
Lemma 2 holds. We define

det−j := s
(−j)
jj (∥µj∥22 − t

(−j)
jj ) + (1 + h

(−j)
jj )2.
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By Lemma 2, the quadratic forms s
(−j)
jj are of the same order Θ

(
n
kp

)
for every j ∈ [k]. Similarly, we

have t
(−j)
jj = O

(
n
p∥µ∥22

)
and |h(−j)

jj | = ρ̃n,kO
(

ϵn
k2

√
n

)
for j ∈ [k]. Thus, we have

n∥µ∥22
C1kp

(
1− C2n

p

)
+

(
1− C3ϵn

k2
√
n

)2

≤ det−j ≤
C1n∥µ∥22

kp
+

(
1 +

C3ϵn
k2
√
n

)2

, (45)

with probability at least 1 − c1
n − c2ke

− n
c3k

2 , for every j ∈ [k]. Here, we use the fact that t−j
jj ≥ 0

by the positive semidefinite property of the leave-one-out Gram matrix A−1
−j . Next, we choose τ in

Equation (44) to be sufficiently small so that C3τ ≤ 1/2. Provided that p is sufficiently large compared
to n, there then exist constants C ′

1, C
′
2 > 0 such that we have

C ′
1 ≤

det−m

det−j
≤ C ′

2, for all j,m ∈ [k],

with probability at least 1 − c1
n − c2ke

− n
c3k

2 . Now, assume without loss of generality that yi = k.
Equation (45) shows that there exists constant c > 0 such that det−j > c for all j ∈ [k] with high
probability provided that p/n is large enough (guaranteed by the first condition of the theorem). Hence,
to make the right-hand-side of Equation (42) positive, it suffices to show that the numerator will be
positive. Accordingly, we will show that

z2ci
(
(1 + h

(−k)
kk )g

(−k)
ki − s

(−k)
kk f

(−k)
ki

)
+ Czci

∑
j ̸=k

z̃j
(
(1 + h

(−j)
jj )g

(−j)
ji − s

(−j)
jj f

(−j)
ji

)
> 0, (46)

for some C > 1.
We can show by simple algebra that it suffices to consider the worst case of zci = −1/k. To see

why this is true, we consider the simpler term z2cig
(−yi)
yii

− |∑j ̸=yi
zciz̃j(c)g

(−j)
ji |. Clearly, Equation (46)

is positive only if the above quantity is also positive. Lemma 2 shows that when zci = −1/k, then
z2cig

(−yi)
yii

≥
(
1− 1

C1

)
1

k2p
and |zciz̃j(c)g(−j)

ji | ≤ 1
C2k3p

, for j ̸= yi. Hence

z2cig
(−yi)
yii

− |
∑
j ̸=yi

zciz̃j(c)g
(−j)
ji | ≥

(
1− 1

C3

)
1

k2p
.

Here, zci = −1/k minimizes the lower bound z2cig
(−yi)
yii

− |∑j ̸=yi
zciz̃j(c)g

(−j)
ji |. To see this, we first drop

the positive common factor |zci| in the equation above and get |zci|g(−yi)
yii

− |∑j ̸=yi
z̃j(c)g

(−j)
ji |. If we

had zci = −1/k, then |z̃j(c)| is either (k − 1)/k or 1/k. In contrast, if we consider zci = (k − 1)/k, then
we have |z̃j(c)| = 1/k for all j ̸= yi and so the term |zci|g(−yi)

yii
− |∑j ̸=yi

z̃j(c)g
(−j)
ji | is strictly larger.

Using this worst case, i.e. zci = −1/k, and the trivial inequality |z̃j(c)| < 1 for j ̸= yi together with
the bounds for the terms s

(−j)
jj , t

(−j)
jj , h

(−j)
jj and f

(−j)
ji derived in Lemma 2 gives us

(46) ≥ 1

k2

((
1− C1ϵn

k2
√
n

)(
1− 1

C2

)
1

p
− C3ϵn

k1.5n
· n

kp

)
− k · 1

C4k

((
1 +

C5ϵn
k2
√
n

)
1

k2p
− C6ϵn

k1.5n

n

kp

)
≥ 1

k2

(
1− 1

C9
− C10ϵn

k2
√
n
− C11ϵn

k2
− C12ϵn

)
1

p

≥ 1

k2p

(
1− 1

C9
− C10τ

)
, (47)

with probability at least 1− c1
n −c2ke

− n
c3k

2 for some constants Ci’s > 1. Above, we recalled the definition
of ϵn and used from Lemma 2 that h

(−j)
jj ≤ ρ̃n,k

C11ϵn
k2

√
n

and |f (−j)
ji | ≤ C12ϵn

k1.5n
with high probability. To

complete the proof, we choose τ to be a small enough constant to guarantee C10τ < 1 − 1/C9, and
substitute this in Equation (47) to get the desired condition of Equation (46).
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6.3 Proof of Theorem 5

Challenges and notation. We begin by highlighting the two main non-trivialities introduced in the
analysis of the multiclass setting. We compare them to the binary-error analysis in [MNS+21] and we
sketch our approach to each one of them:

• The multitude of signal vectors: The generative model for the MLM involves k distinct (high-
dimensional) signal vectors µ1, . . . ,µk, and the classification error is a complicated functional
of all k recovered signal vectors (denoted by ŵ1, . . . , ŵk respectively). This functional has to
be dealt with carefully compared to the binary case, where there is only one signal vector. In
particular, direct plug-ins of the survival signal and contamination factor for each recovered signal
vector (here, we follow the terminology in [MVSS20]) do not provide sufficiently sharp expressions
of the multiclass classification error to predict separation between classification-consistency and
regression-consistency. We circumvent this issue by directly analyzing survival and contamination
factors of the pairwise difference signal between two classes, and showing in Lemmas 4 and 5
that they scale very similarly to the single-signal case. We note that while the survival and
contamination factors of this pairwise difference signal scale identically to the single-signal case,
the proofs do not follow as a corollary of the corresponding lemmas in [MNS+21]; in particular,
the difference of label vectors turns out to depend not only on a single “difference" feature but all
the top k features. This requires a much more complex leave-k-out analysis, as opposed to the
simpler leave-one-out analysis carried out in [BLLT20, MNS+21].

• Covariate-dependent label noise in the MLM: The error analysis provided in [MNS+21] critically
leverages that the cross-correlation between the logit and the binary label of a training example is
lower bounded by a universal positive constant. This is relatively straightforward to show when
the relationship between the logit and the label is one of constant-label-noise where the event of
label error is independent of the covariate. On the other hand, the MLM involves label errors
that are highly depend on the covariate, and these cross-correlation terms need to be handled
much more carefully. We provide an elegant argument based on Stein’s lemma to handle the more
complex MLM-induced label noise.

Before proceeding we set up some notation for important quantities in the analysis. Note that
Assumption 5 directly implies that µc,jc = 1 for all c ∈ [k]. For any two classes c1 ̸= c2, we define the
true difference signal vector as

∆c1,c2 := µc1 − µc2 = µc1,jc1
ejc1 − µc2,jc2

ejc2 ,

where the last step follows from Assumption 5. Correspondingly, the recovered difference signal vector
is defined as ∆̂c1,c2 := ŵc1 − ŵc2 .

Identifying the survival and contamination terms. We state and prove our main lemma that
characterizes the classification error in MLM as a function of effective survival and contamination terms.

Lemma 3. The excess classification risk is bounded by

Pe − Pe,Bayes ≤
∑
c1<c2

(
1

2
− 1

π
tan−1

(
SU(∆̂c1,c2 ,∆c1,c2)

CN(∆̂c1,c2 ,∆c1,c2)

))
, (48)

where we define for any two classes c1 ̸= c2 ∈ [k]:

SU(∆̂c1,c2 ,∆c1,c2) :=
∆̂

⊤
c1,c2Σ∆c1,c2

∥Σ1/2∆c1,c2∥2
and

CN(∆̂c1,c2 ,∆c1,c2) :=

√√√√√∆̂c1,c2 −
∆̂

⊤
c1,c2Σ∆c1,c2

∥Σ1/2∆c1,c2∥22
∆c1,c2

⊤

Σ

∆̂c1,c2 −
∆̂

⊤
c1,c2Σ∆c1,c2

∥Σ1/2∆c1,c2∥22
∆c1,c2

.
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Proof. We consider a fixed x, and (following the notation in [TOS20]) the k-dimensional vectors

g :=
[
x⊤ŵ1 x⊤ŵ2 . . . x⊤ŵk

]
h :=

[
x⊤µ1 x⊤µ2 . . . x⊤µk

]
Further, we define the multinomial logit variable Y (h) such that

P [Y (h) = j] =
exp{hj}∑k

m=1 exp{hm}
.

Recall that Pe = P (argmax(g) ̸= Y (h)), where the probability is taken both over the fresh test sample
x and the randomness in the multinomial logit variable. We note that for there to be a classification error
conditioned on x, at least one of the following two events needs to hold: a) argmax(g) ̸= argmax(h), or
b) Y (h) ̸= argmax(h). To see this, note that if neither a) nor b) held, we would have argmax(g) = Y (h)
and we would not have a classification error conditional on the covariate being x. Thus, applying a
union bound gives us

Pe ≤ Pe,0 + Pe,Bayes where
Pe,0 := P (argmax(g) ̸= argmax(h)) and

Pe,Bayes := P (argmax(h) ̸= Y (h)) .

Thus, it suffices to provide an upper bound on Pe,0 as defined. We note that for there to be an error of
the form argmax(g) ̸= argmax(h), there needs to exist indices c1, c2 ∈ [k] (whose choice can depend
on x) such that x⊤µc1 ≥ x⊤µc2 but x⊤ŵc1 < x⊤ŵc2 . In other words, we have

Pe,0 ≤ P
(
x⊤µc1 ≥ x⊤µc2 and x⊤ŵc1 < x⊤ŵc2 for some c1 ̸= c2

)
≤
∑
c1 ̸=c2

P
(
x⊤µc1 ≥ x⊤µc2 and x⊤ŵc1 < x⊤ŵc2

)
=
∑
c1<c2

P
(
x⊤∆c1,c2 · x⊤∆̂c1,c2 < 0

)
.

Now, we consider whitened versions of the difference signal vectors: Ec1,c2 := Σ1/2∆c1,c2 , Êc1,c2 :=

Σ1/2∆̂c1,c2 . We also define the generalized survival and contamination terms of the difference signal
vector as

SU(∆̂c1,c2 ,∆c1,c2) :=
Ê

T

c1,c2Ec1,c2

∥Ec1,c2∥2

CN(∆̂c1,c2 ,∆c1,c2) :=

√√√√
∥Êc1,c2∥22 −

(
Ê

T

c1,c2Ec1,c2

)2
∥Ec1,c2∥22

Recall that x ∼ N (0,Σ). Then, the rotational invariance property of the Gaussian distribution and
Gaussian decomposition yields:

P
(
x⊤∆c1,c2 · x⊤∆̂c1,c2 < 0

)
= PG∼N (0,I)

(
G⊤Ec1,c2 ·G⊤Êc1,c2 < 0

)
= PG∼N (0,1)

H∼N (0,1)

(
∥Ec1,c2∥2G ·

(
SU(∆̂c1,c2 ,∆c1,c2)G+ CN(∆̂c1,c2 ,∆c1,c2)H

)
< 0
)

= PG∼N (0,1)
H∼N (0,1)

((
SU(∆̂c1,c2 ,∆c1,c2)G

2 + CN(∆̂c1,c2 ,∆c1,c2)H G
)
< 0
)

=
1

2
− 1

π
tan−1

(
SU(∆̂c1,c2 ,∆c1,c2)

CN(∆̂c1,c2 ,∆c1,c2)

)
. (49)

For the last equality in Equation (49), we used the fact that the ratio H/G of two independent standard
normals follows the standard Cauchy distribution. This completes the proof.
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Bounding the survival and contamination terms. Next, we provide characterizations of SU(∆̂c1,c2 ,∆c1,c2)

and CN(∆̂c1,c2 ,∆c1,c2). We abbreviate these by SUc1,c2 and CNc1,c2 respectively for brevity. These
characterizations address two new aspects of the MLM: the multiclass setting, and label noise generated
by the logistic model. We start with the characterization of survival.

Lemma 4 (Survival terms). There exist positive universal constants L1, L2, U1, U2, C such that

SUL(n) ≤ SUc1,c2(n) ≤ SUU (n), where

SUL(n) :=

{
ck(1 + L1n

q−(1−r))−1, 0 < q < 1− r

ckL2n
(1−r)−q, q > 1− r.

SUU (n) :=

{
ck(1 + U1n

q−(1−r))−1, 0 < q < 1− r

ckU2n
(1−r)−q, q > 1− r.

with probability at least 1− Ck3e−C
√
n. Above, ck > 0 is a fixed strictly positive constant that depends

on k but not on n.

Lemma 4 constitutes a nontrivial extension of Lemma 11 of [MNS+21] to deal with intricacies in
the new pairwise-difference signal vector and the covariate-dependent label noise induced by the MLM.
Its proof is provided in Appendix D.1.

Next, we provide an upper-bound characterization of contamination.

Lemma 5 (Contamination terms). There exists a universal constant Ck that depends only on k such
that

CNc1,c2(n) ≤ Ck

√
log n · n−min{m−1,2q+r−1,2q+2r−3/2}

2 , q > 1− r

with probability at least 1− Ck
nc for some constant 0 < c ≤ 1.

Lemma 5 extends Lemma 13 of [MNS+21] for binary classification, and its proof is provided in
Appendix D.2. As with the analysis of survival, the dependency of the label difference vector on the top
k features requires an intricate leave-k-out analysis Accordingly, several technical lemmas established in
the proof of Lemma 4 are also used in this proof.

Plugging Lemmas 4 and 5 into Lemma 3 directly gives us the desired statement of Theorem 5.

7 Conclusion and future work

Our work provides, to the best of our knowledge, the first results characterizing a) equivalence of loss
functions, and b) generalization of interpolating solutions in multiclass settings. We outline here some
immediate as well as longer-term future directions. First, in Section 4.1.1, we discussed in detail the
potential for extending our techniques to anisotropic scenarios for GMM data. However, the formal
details of such extensions require further work that is beyond the scope of this paper. Another important
area for future research is the extension of our results to situations where the number of classes (k) scales
with the problem dimensions (n, p). This is particularly intriguing as past research (e.g. [AGL21]) has
shown, albeit under differing assumptions and with distinct training algorithms, that there is a different
generalization error behavior between small and large numbers of classes. Despite our research’s focus
on the condition where k is constant, our results provide a mathematical basis for such extensions.
A key contribution of our work is the establishment of deterministic equivalence conditions between
multiclass SVM and MNI, which not only remain valid but also serve as a basis for analyzing any
probabilistic data model and any scaling regime of k. In fact, after the initial release of this paper, the
authors of [SAS22, WS23] leveraged our equivalence result and expanded our generalization bounds for
the case of MLM data to the case where k can grow with n and p, which requires new technical insights.

More generally, our fine-grained techniques are tailored to high-dimensional linear models with
Gaussian features. Furthermore, we believe the results derived here can extend to kernel machines
and other nonlinear settings; formally showing these extensions is of substantial interest. It is also
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interesting to investigate corresponding lower bounds for our results — for example, studying the
sharpness of our conditions for equivalence of SVM to MNI in Section 3.2, analogous to [ASH21] for
the binary case. Also, we have limited attention to balanced datasets throughout, i.e. we assumed
that each class contains equal number of training samples. We would like to investigate the effect of
data imbalances on our results extending our analysis to CE modifications tailored to imbalanced data
recently proposed in [CWG+19, MJR+20, KPOT21]. Finally, we have established a tight connection of
our findings regarding the geometry of support vectors under overparameterization with the neural
collapse phenomenon. Nevertheless, many questions remain open towards better explaining what leads
the learnt feature representations of overparameterized to have the observed ETF structure. It is a
fascinating research direction further exploring the geometry of learnt features and of support vectors
in nonlinear settings.
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A Lemmas used in the proof of Theorem 2

A.1 Auxiliary Lemmas

In this section, we state a series of auxiliary lemmas that we use to prove Lemma 2. The following
result shows concentration of the norms of the label indicators vc, c ∈ [k] under the nearly equal-priors
assumption (Assumption 1). Intuitively, in this nearly balanced setting there are Θ(n/k) samples for
each class; hence, Θ(n/k) non-zeros (in fact, 1’s) in each label indicator vector vc.

Lemma 6. Under the setting of Assumption 1, there exist large constants C1, C2 > 0 such that the
event

Ev :=
{(

1− 1

C1

)
n

k
≤ ∥vc∥22 ≤

(
1 +

1

C1

)
n

k
, ∀c ∈ [k]

}
, (50)

holds with probability at least 1− 2ke
− n

C2k
2 .

Next, we provide bounds on the “base case” 0-th order quadratic forms that involve the Gram matrix
A−1

0 . We do this in three lemmas presented below. The first Lemma 7 follows by a direct application
of [WT21, Lemma 4 and 5]. The only difference is that we keep track of throughout the proof is the
scaling of O(1/k) arising from the multiclass case in the vj ’s. For instance, the bound of the term
h
(0)
mj := vT

mA−1
0 dj involves a term ρ̃n,k = min{1,

√
log(2n)/k} compared to the binary case. The other

two Lemmas 8 and 9 are proved in Section A.3.

Lemma 7 (0-th order Quadratic forms, Part I). Under the event Ev, there exist constants ci’s and Ci’s
> 1 such that the following bounds hold with probability at least 1− c1ke

− n
c2 .

t
(0)
jj ≤ C1n∥µ∥22

p
for all j ∈ [k],

|h(0)mj | ≤ ρ̃n,k
C2n∥µ∥2√

kp
for all m, j ∈ [k],

|t(0)mj | ≤
C3n∥µ∥22

p
for all m ̸= j ∈ [k],

∥dj∥22 ≤ C4n∥µ∥22 for all j ∈ [k],

max
i∈[n]

|f (0)
ji | ≤ C5

√
log(2n)∥µ∥2

p
for all j ∈ [k].

To sharply characterize the forms s
(0)
ij we need additional work, particularly for the cross-terms

where i ̸= j. We will make use of fundamental concentration inequalities on quadratic forms of inverse
Wishart matrices. Note that the term t

(0)
jj originally depends on the norm ∥µj∥22. Due to the nearly

equal energy Assumption 1, we can write ∥µj∥22 in term of the “reference vector" norm ∥µ∥22 (which is
defined in Assumption 1). Consequently, we will see this “reference norm" ∥µ∥22 in all our higher order
terms. The following lemma controls these quadratic forms, and shows in particular that the s

(0)
ij terms

for i ̸= j are much smaller than the corresponding terms s
(0)
jj . This sharp control of the cross-terms is

essential for several subsequent proof steps.

Lemma 8 (0-th order Quadratic forms, Part II). Working on the event Ev defined in Equation (50),
assume that p > Cn log(kn) + n− 1 for large enough constant C > 1 and large n. There exist constants
Ci’s > 1 such that with probability at least 1− C0

n , the following bound holds:

C1 − 1

C1
· n

kp
≤s

(0)
jj ≤ C1 + 1

C1
· n

kp
, for j ∈ [k],

−C2 + 1

C2
·
√
n

kp
≤s

(0)
ij ≤ C2 + 1

C2
·
√
n

kp
, for i ̸= j ∈ [k].
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The proof of Lemma 8 for the cross terms with i ̸= j critically uses the in-built orthogonality of the
label indicator vectors {vc}c∈[k]. Finally, the following lemma controls the quadratic forms g

(0)
ji .

Lemma 9 (0-th order Quadratic forms, Part III). Working on the event Ev defined in Equation (50),
given p > Ck3n log(kn) + n− 1 for a large constant C, there exist large enough constants C1, C2, such
that with probability at least 1− 2

kn , we have for every i ∈ [n]:(
1− 1

C1

)
1

p
≤g

(0)
(yi)i

≤
(
1 +

1

C1

)
1

p
,

− 1

C2
· 1

k2p
≤g

(0)
ji ≤ 1

C2
· 1

k2p
, for j ̸= yi.

A.2 Proof of Lemma 2

In this section, we provide the full proof of Lemma 2. We begin with a proof outline.

A.2.1 Proof outline

As explained in Section 6.2, it suffices to consider the case where j = k, since when j ̸= k we can
simply change the order of adding mean components, described in Equation (39), so that the j-th mean
component is added last. For concreteness, we will also fix i ∈ [n], yi = k and define as shorthand
m := k − 1. These fixes are without loss of generality. The reason why we fix j = k and m = k − 1 is
that when we do the proof, we want to add the k − 1-th and k-th components last. This is for ease of
reading and understanding.

For the case j = k, the leave-one-out quadratic forms in Lemma 2 are equal to the quadratic forms
of order k − 1, given by s

(k−1)
kk , t

(k−1)
kk , h(k−1)

kk , g(k−1)
ki and f

(k−1)
ki . We will proceed recursively starting

from the quadratic forms of order 1 building up all the way to the quadratic forms of order k − 1.
Specifically, starting from order 1, we will work on the event

Eq := {all the inequalities in Lemmas 7, 8 and 9 hold}, (51)

Further, we note that Lemma 9 shows that the bound for g(0)yii
is different from the bound for g(0)ji when

j ̸= yi. We will show the following set of upper and lower bounds:(
C11 − 1

C11

)
n

kp
≤ s

(1)
kk ≤

(
C11 + 1

C11

)
n

kp
,

−
(
C12 + 1

C12

) √
n

kp
≤ s

(1)
mk ≤

(
C12 + 1

C12

) √
n

kp
,

t
(1)
kk ≤ C13n∥µ∥22

p
,

|h(1)mk| ≤ ρ̃n,k
C14n∥µ∥2√

kp
,

|t(1)mk| ≤
C15n∥µ∥22

p
,

∥dk∥22 ≤ C16n∥µ∥22,

|f (1)
ki | ≤ C17

√
n∥µ∥2
p

,(
1− 1

C18

)
1

p
≤ g

(1)
(yi)i

≤
(
1 +

1

C18

)
1

p
, and

− 1

C19k2p
≤ g

(1)
mi ≤

1

C19k2p

(52)

with probability at least 1− c
kn2 . Comparing the bounds on the terms of order 1 in Equation (52) with

the terms in Lemmas 7, 8 and 9 of order 0, the key observation is that they are all at the same order.
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This allows us to repeat the same argument to now bound corresponding terms of order 2, and so on
until order k − 1. Note that for each j ∈ [k], we have n terms of the form g

(1)
ji , corresponding to each

value of i ∈ [n]. Thus, we will adjust the final probabilities by applying a union bound over the n
training examples.

A.2.2 Proofs for 1-st order quadratic forms in Equation (52)

The proof makes repeated use of Lemmas 7, 8 and 9. In fact, we will throughout condition on the event
Eq, defined in Equation (51), which holds with probability at least 1− c1

n − c2e
− n

c0k
2 . Specifically, by

Lemma 7 we have

h
(0)
mj ≤ ρ̃n,k

C1ϵn
k2
√
n
, max

i∈[n]
|f (0)

mi | ≤
C2ϵn
k1.5n

, and
s
(0)
mj

s
(0)
kk

≤ C√
n

for m, j ̸= k, (53)

where we recall from Equation (44) the notation ϵn := k1.5n
√
n∥µ∥2
p . Also, recall that we choose ϵn ≤ τ

for a sufficiently small constant τ .
In order to make use of Lemmas 7, 8 and 9, we need to relate the quantities of interest to

corresponding quadratic forms involving A0. We do this recursively and make repeated use of the
Woodbury identity. The recursions are proved in Appendix F.1. We now provide the proofs for the
bounds on the terms in Equation (52) one-by-one.
Bounds on s

(1)
mk. By Equation (102) in Appendix F.1, we have

s
(1)
mk = s

(0)
mk −

1

det0
(⋆)(0)s , (54)

where we define

(⋆)(0)s := (∥µ1∥22 − t
(0)
11 )s

(0)
1k s

(0)
1m + s

(0)
1mh

(0)
k1 h

(0)
11 + s

(0)
1k h

(0)
m1h

(0)
11 − s

(0)
11 h

(0)
k1 h

(0)
m1 + s

(0)
1mh

(0)
k1 + s

(0)
1k h

(0)
m1 and

det0 := s
(0)
11 (∥µ1∥22 − t

(0)
11 ) + (1 + h

(0)
11 )

2.

(55)

The essential idea is to show that | (⋆)
(0)
s

det0
| is sufficiently small compared to |s(0)mk|. We first look at the

first term given by
(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k s

(0)
1m

)
/det0. By Lemmas 7, 8 and the definition of det0, we have

∣∣∣ 1

det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k s

(0)
1m

)∣∣∣ ≤ (∥µ1∥22 − t
(0)
11 )|s

(0)
1k s

(0)
1m|

s
(0)
11 (∥µ1∥22 − t

(0)
11 )

=
∣∣∣s(0)1k s

(0)
1m

s
(0)
11

∣∣∣ ≤ C1√
n
· C2 + 1

C2
·
√
n

kp
,

where we use det0 ≥ s
(0)
11 (∥µ1∥22 − t

(0)
11 ) and s

(0)
mj/s

(0)
kk ≤ C/

√
n for all m, j ̸= k. Now, we upper bound

the other two dominant terms |s(0)1mh
(0)
k1 / det0 | and |s(0)1k h

(0)
m1/det0 |. Note that the same bound will apply

to the remaining terms in Equation (55) because we trivially have |h(0)ij | = O(1) for all (i, j) ∈ [k].
Again, Lemmas 7 and 8 give us∣∣∣s(0)1mh

(0)
k1

det0

∣∣∣ ≤ |s(0)1mh
(0)
k1 |

(1 + h
(0)
11 )

2
≤ ρ̃n,kC3ϵn(

1− C5ρ̃n,kϵn
k2

√
n

)2
k2
√
n
· C2 + 1

C2
·
√
n

kp
.

The identical bound holds for |s(0)1k h
(0)
m1|. Noting that |s(0)mk| ≤ C2+1

C2
·
√
n

kp , we then have

|s(1)mk| ≤ |s(0)mk|+
∣∣∣(⋆)(0)s

det0

∣∣∣
≤

1 +
C6√
n
+

C7ρ̃n,kϵn(
1− C5ρ̃n,kϵn

k2
√
n

)2
k2
√
n

 C2 + 1

C2
·
√
n

kp

≤ (1 + α) · C2 + 1

C2
·
√
n

kp
, (56)
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where in the last inequality, we use that ϵ ≤ τ for sufficiently small constant τ > 0, and defined

α :=
C6√
n
+

C7τ(
1− C5τ

k2
√
n

)2
k2
√
n
.

Now, we pick τ to be sufficiently small and n to be sufficiently large such that (1 + α)C2+1
C2

≤ C8+1
C8

for
some constant C8 > 0. Then, we conclude with the following upper bound:

|s(1)mk| ≤
C8 + 1

C8
·
√
n

kp
.

Bounds on s
(1)
kk . Equation (103) in Appendix F.1 gives us

s
(1)
kk = s

(0)
kk − 1

det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k

2
+ 2s

(0)
1k h

(0)
k1 h

(0)
11 − s

(0)
11 h

(0)
k1

2
+ 2s

(0)
1k h

(0)
k1

)
.

First, we lower bound s
(1)
kk by upper bounding 1

det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k

2)
. Lemmas 7 and 8 yield

1

det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k

2)
≤ (∥µ1∥22 − t

(0)
11 )s

(0)
1k

2

s
(0)
11 (∥µ1∥22 − t

(0)
11 ) + (1 + h

(0)
11 )

2
≤ (∥µ1∥22 − t

(0)
11 )s

(0)
1k

2

s
(0)
11 (∥µ1∥22 − t

(0)
11 )

≤ C1

n
· n

kp
.

It suffices to upper bound the other dominant term |s(0)1k h
(0)
k1 |/ det0. For this term, we have∣∣∣s(0)1k h

(0)
k1

det0

∣∣∣ ≤ |s(0)1k h
(0)
k1 |

(1 + h
(0)
11 )

2
≤ C3ρ̃n,kϵn(

1− C4ρ̃n,kϵn
k2

√
n

)2
k2
√
n
· C2 + 1

C2
·
√
n

kp
.

Thus, we get

s
(1)
kk ≥

1− C1

n
− C5ρ̃n,knϵn(

1− C4ρ̃n,kϵn
k2

√
n

)2
k2
√
n

 C6 − 1

C6
· n

kp
≥ (1− α) · C6 − 1

C6
· n

kp
.

Next, we upper bound s
(1)
kk by a similar argument, and get

s
(1)
kk ≤ |s(0)kk |+

1

det0

∣∣∣2s(0)1k h
(0)
k1 h

(0)
11 + s

(0)
11 h

(0)
k1

2
+ 2s

(0)
1k h

(0)
k1

∣∣∣
≤

1 +
C7ρ̃n,kϵn(

1− C4ρ̃n,kϵn
k2

√
n

)2
k2
√
n

 C8 + 1

C8
· n

kp
≤ (1 + α′)

C8 + 1

C8
· n

kp
,

where we used 1
det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k

2)
> 0 in the first step. As above, we can tune ϵ and n such that

(1 + α′)C8+1
C8

≤ C9+1
C9

and (1− α)C6−1
C6

≥ C9−1
C9

for sufficiently large constant C9 > 0.

Bounds on h
(1)
mk. Equation (104) in Appendix F.1 gives us

h
(1)
mk = h

(0)
mk −

1

det0
(⋆)

(0)
h ,

where we define

(⋆)
(0)
h = (∥µ1∥22 − t

(0)
11 )s

(0)
1mh

(0)
1k + h

(0)
m1h

(0)
1k h
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11 + h

(0)
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(0)
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(0)
1mt

(0)
k1 + s

(0)
1mt
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k1 h

(0)
11 − s

(0)
11 t

(0)
k1 h

(0)
m1.

We focus on the two dominant terms ((∥µ1∥22 − t
(0)
11 )s

(0)
1mh

(0)
1k )/ det0 and s

(0)
1mt

(0)
k1 /det0. For the first

dominant term ((∥µ1∥22 − t
(0)
11 )s

(0)
1mh

(0)
1k )/det0, Lemmas 7 and 8 yield∣∣∣ 1

det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1mh

(0)
1k
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(0)
11 )|s
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s
(0)
11 (∥µ1∥22 − t

(0)
11 )

≤
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1k

s
(0)
11

∣∣∣ ≤ C1√
n
|h(0)1k | ≤
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√
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For the second dominant term s
(0)
1mt

(0)
k1 / det0, we have

1

det0
s
(0)
1mt

(0)
k1 ≤ |s(0)1mt
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k1 |
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(0)
11 )
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√
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≤ C5ϵn(
1− C4ρ̃n,kϵn

k2
√
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k1.5

√
n
· ρ̃n,kϵn
k2
√
n
,

where we use the fact 1/
√
k < ρ̃n,k for k > 1. Thus, we get

|h(1)mk| ≤ |h(0)mk|+
∣∣∣ 1

det0
(⋆)
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,

and there exists constant C8 such that (1 + α)C7 ≤ C8, which shows the desired upper bound.
Bounds on t

(1)
kk . Equation (106) in Appendix F.1 gives us

t
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kk = t
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We only need an upper bound on t
(1)
kk . The first dominant term s

(0)
11 t

(0)
1k

2
/det0 is upper bounded as

follows:
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(0)
11 t

(0)
1k

2

det0
≤ s

(0)
11 t

(0)
1k

2

(1 + h
(0)
11 )

2
≤ C6n

3∥µ∥42(
1− C3ρ̃n,kϵn

k2
√
n

)2
kp3

≤ C7ϵ
2
n(

1− C3ρ̃n,kϵn
k2

√
n

)2
pk4n

· n∥µ∥
2
2

p
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Next, the second dominant term, t(0)1k h
(0)
1k / det0, is upper bounded as

t
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Combining the results above gives us

t
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This shows the desired upper bound.
Bounds on t

(1)
mk. Equation (105) in Appendix F.1 gives us
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Again, we only need an upper bound on t
(1)
mk. As in the previously derived bounds, we have
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The other dominant term t
(0)
1mh

(0)
1m/ det0 is upper bounded as:
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Combining the results above yields
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Note that both t
(0)
kk and t

(0)
mk are much smaller than ∥µ∥22. The above upper bound shows that this

continues to hold for t
(1)
kk and t

(1)
mk since p ≫ n.

Bounds on f
(1)
ki . Consider i ∈ [n] and fix yi = k without loss of generality. Equation (107) in

Appendix F.1 gives us
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We only need an upper bound on f
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where, in the last two steps, we used the upper bound C
√
n∥µ∥2/p for |f (0)

ji | and previously derived

bounds on |h(0)1k | and |s(0)11 t
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1k |. Thus, we have

|f (1)
ki | ≤ |f (0)

ki |+
∣∣∣ 1
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(⋆)
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f

∣∣∣
≤
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√
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)2
k2
√
n
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√
n∥µ∥2
p

≤ (1 + α)
C10ϵn
k1.5n

,
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and we have (1 + α)C10 ≤ C11 for a large enough positive constant C11. This shows the desired upper
bound.
Bounds on g

(1)
ki and g

(1)
mi . Equation (108) in Appendix F.1 gives

zcie
T
i A

−1
1 uk = |zci|2

(
eTi A

−1
0 vk −

1

det0
(⋆)

(0)
gk

)
= |zci|2

(
g
(0)
ki − 1

det0
(⋆)

(0)
gk

)
, (59)

where we define

(⋆)
(0)
gk = (∥µ1∥22 − t

(0)
11 )s

(0)
1k g

(0)
1i + g

(0)
1i h

(0)
11 h

(0)
k1 + g

(0)
1i h

(0)
k1 + s

(0)
1k f

(0)
1i + s

(0)
1k h

(0)
11 f

(0)
1i − s

(0)
11 h

(0)
k1 f

(0)
1i .

Lemmas 7, 8 and 9 give us

(∥µ1∥22 − t
(0)
11 )|s

(0)
1k g

(0)
1i |

det0
≤ (∥µ1∥22 − t

(0)
11 )|s

(0)
1k g

(0)
1i |

(∥µ1∥22 − t
(0)
11 )s

(0)
11

≤ C1√
n
· 1

C2k2p
,

|h(0)k1 g
(0)
1i |

det0
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1i |
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11 )

2
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√
n

)2
k2
√
n
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, and

|s(0)1k f
(0)
1i |

det0
≤ |s(0)1k f

(0)
1i |

(1 + h
(0)
11 )

2
≤ C5ϵn(
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√
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)2√
k
√
n
· 1

C2k2p
.

We then have

g
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det0
|(⋆)(0)gk | ≥

(
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C
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p
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ki ≤ g
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1

det0
|(⋆)(0)gk | ≤

(
1 +

1
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√
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C7ϵn(
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√
n
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p
≤
(
1 +

1

C

)
1 + α

p
,

where for large enough n and positive constant C9, we have (1+α)C+1
C ≤ C9+1

C9
and (1−α)C−1

C ≥ C9−1
C9

.
Similarly, for the case m ̸= k, we have

zcie
T
i A

−1
1 um = |zci|2

(
eTi A

−1
0 vm − 1

det0
(⋆)(0)gm

)
= |zci|2

(
g
(0)
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1

det0
(⋆)(0)gm

)
, (60)

where we define

(⋆)(0)gm = (∥µ1∥22 − t
(0)
11 )s

(0)
1mg

(0)
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11 f

(0)
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11 h

(0)
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As a consequence of our nearly equal energy and priors assumption (Assumption 1), we can directly
use the bounds of the terms in (⋆)

(0)
gk to bound terms in (⋆)

(0)
gm. We get

|g(1)mi | ≤
1

C

1 +
C1√
n
+

C8ϵn

(1− (
C4ρ̃n,kϵn
k2

√
n

))2
√
k
√
n

 1

k2p
≤ 1

C
· 1 + α

k2p
.

Finally, there exists a sufficiently large constant C10 such that (1 + α)/C ≤ 1/C10. This shows the
desired bounds.

A.2.3 Completing the proof for k-th order quadratic forms

Notice from the above analysis that the 1-st order quadratic forms exhibit the same order-wise
dependence on n, k and p as the 0-th order quadratic forms, e.g. both s

(0)
mk and s

(1)
mk are of order

Θ(
√
n

kp ). Thus, the higher-order quadratic forms that arise by including more mean components will not

42



change too much6. By Equation (39), we can see that we can bound the 2-nd order quadratic forms by
bounding quadratic forms with order 1. We consider s

(2)
mk as an example:

s
(2)
mk = s

(1)
mk −

1

det1
(⋆)(1)s ,

where

(⋆)(1)s := (∥µ2∥22 − t
(1)
22 )s

(1)
2k s

(1)
2m + s

(1)
2mh

(1)
k2 h

(1)
22 + s

(1)
2k h

(1)
m2h

(1)
22 − s

(1)
22 h

(1)
k2 h

(1)
m2 + s

(1)
2mh

(1)
k2 + s

(1)
2k h

(1)
m2,

det1 := s
(1)
22 (∥µ2∥22 − t

(1)
22 ) + (1 + h

(1)
22 )

2.

We additionally show how f
(2)
ki relates to the 1-st order quadratic forms:

f
(2)
ki = f

(1)
ki − 1

det1
(⋆)

(1)
f ,

where we define

(⋆)
(1)
f = (∥µ2∥22 − t

(1)
22 )h

(1)
2k g
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(1)
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(1)
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(1)
2k f

(1)
2i + h

(1)
2k h

(1)
22 f

(1)
2i − s

(1)
22 t

(1)
2k f

(1)
2i .

Observe that the equations above are very similar to Equations (54) and (55) (for s), and Equations (57)
and (58) (for f), except that the quadratic forms are in terms of Gram matrix A1. We have shown that
the quadratic forms with order 1 will not be drastically different different from the quadratic forms
with order 0. Hence, we repeat the above procedures of bounding these quadratic forms k − 1 times
to obtain the desired bounds in Lemma 2. The only quantity that will change in each iteration is α,
which nevertheless remains negligible7.

Our analysis so far is conditioned on event Eq. We define the unconditional event Eu := {all the
inequalities in Lemma 2 hold}. Then, we have

P(Ec
u) ≤ P(Ec

u|Eq) + P(Ec
q ) ≤ P(Ec

u|Eq) + P(Ec
q |Ev) + P(Ec

v)

≤ c1
kn

+
c2
n

+ c3k(e
− n

c4 + e
− n

c5k
2 )

≤ c6
n

+ c7ke
− n

c5k
2 ,

for constants ci’s > 1. This completes the proof.

A.3 Proofs of Auxiliary lemmas

We complete this section by proving the auxiliary Lemmas 6, 8 and 9, which were used in the proof of
Lemma 2.

A.3.1 Proof of Lemma 6

Our goal is to upper and lower bound ∥vc∥22, for c ∈ [k]. Note that every entry of vc is either 1 or 0,
hence these entries are independent sub-Gaussian random variables with sub-Gaussian parameter 1
[Wai19, Chapter 2]. Recall that under the nearly equal-prior Assumption 1, we have (1−(1/C1))(n/k) ≤
E[∥vc∥22] ≤ (1+(1/C2))(n/k) for large enough constants C1, C2 > 0. Thus, a straightforward application
of Hoeffding’s concentration inequality on bounded random variables [Wai19, Chapter 2] gives us

P
(∣∣∥vc∥22 − E[∥vc∥22]

∣∣ ≥ t
)
≤ 2 exp

(
− t2

2n

)
.

We complete the proof by setting t = n
C3k

for a large enough constant C3 and applying the union bound
over all c ∈ [k].

6There are several low-level reasons for this. One critical reason is the aforementioned orthogonality of the label
indicator vectors {vc}c∈[k], which ensures by Lemma 8 that the cross-terms |s(j)mk| are always dominated by the larger
terms |s(j)kk |. Another reason is that h

(0)
mk, which can be seen as the “noise” term in our analysis, is small and thus does not

affect other terms.
7To see this, recall that in the first iteration we had α1 := α = C1√

n
+ C2τ

(1−(C5τ/(k2
√
n)))2k2

√
n

for the first-order terms.
Thus, even if we repeat the procedure k − 1 times, then we have αk ≤ Ckα1, which remains small since we consider
n ≫ k.
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A.3.2 Proof of Lemma 8

We use the following lemma adapted from [MNS+21, Lemma 2] to bound quadratic forms of inverse
Wishart matrices.

Lemma 10. Define p′(n) := (p − n + 1), and consider matrix M ∼ Wishart(p, In). For any unit
Euclidean norm vector v and any t > 0, we have

P
( 1

vTM−1v
> p′(n) +

√
2tp′(n) + 2t

)
≤ e−t and P

( 1

vTM−1v
< p′(n)−

√
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)
≤ e−t,

provided that p′(n) > 2max{t, 1}.

We first upper and lower bound s
(0)
cc for a fixed c ∈ [k]. Recall that we assume p > Cn log(kn)+n−1

for sufficiently large constant C > 1 and this can be obtained by assuming p′(n) > Cn log(kn). Let
t = 2 log(kn). Working on the event Ev defined in (50), Lemma 10 gives us
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√
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with probability at least 1− 2
k2n2 . Here, the last inequality comes from the fact that p is sufficiently

large compared to n and C is large enough. Similarly, for the lower bound, we have
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Now we upper and lower bound s
(0)
cj for a fixed choice j ̸= c ∈ [k]. We use the parallelogram law to

get
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Because of the orthogonality of the label indicator vectors (vT
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√
4 log(kn)p′(n) + 4ñ log(kn)
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where in the last step we use the fact that C > 1 is large enough. To lower bound s
(0)
cj , we get
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(p′(n)−
√

4 log(kn)p′(n))

)

≥ 1

4
· −2ñ
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We finally apply the union bound on all pairs of c, j ∈ [k] and complete the proof.

A.3.3 Proof of Lemma 9

We first lower and upper bound g
(0)
(yi)i

. Recall that we assumed yi = k without loss of generality. With
a little abuse of notation, we define ∥vk∥22 = ñ and u :=
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√
ñ)
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where in the last step we use the fact that C,C2, C3 > 1 are large enough. To upper bound g
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We now upper and lower bound g
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ji for a fixed j ̸= yi. As before, we have
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Since eTi vj = 0, we now have ∥u+ vj∥22 = ∥u− vj∥22 = 2ñ. We apply Lemma 10 with t = 2 log(kn) to
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where in the last step we use the fact that C,C2, C3 > 1 are large enough. To lower bound g
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ij , we

have with probability at least 1− 2
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where in the last step we use the fact that C,C2, C3 > 1 are large enough. We complete the proof by
applying a union bounds over all k classes and n training examples.

B Proof of Theorem 3

In this section, we provide the proof of Theorem 3, which was discussed in Section 3.2.2. After having
derived the interpolation condition in Equation (12) for multiclass SVM, the proofs is in fact a rather
simple extension of the arguments provided in [MNS+21, HMX21] to the multiclass case. This is unlike
the GMM case that we considered in Section 6.2, which required substantial additional effort over and
above the binary case [WT21].

For this section, we define A = XTX as shorthand (we denoted the same quantity as Ak in
Section 6.2). Recall that the eigendecomposition of the covariance matrix is given by Σ =

∑p
i=1 λiviv

T
i =

V ΛV T . By rotation invariance of the standard normal variable, we can write A = QTΛQ, where the
entries of Q ∈ Rp×n are IID N (0, 1) random variables. Finally, recall that we denoted λ =

[
λ1 · · · λp

]
and defined the effective dimensions d2 =

∥λ∥21
∥λ∥22

and d∞ = ∥λ∥1
∥λ∥∞ . Observe that Equation (12) in Theorem 1

is equivalent to the condition

zcie
T
i A

−1zc > 0, for all c ∈ [k] and i ∈ [n]. (61)

We fix c ∈ [k] and drop the subscript c, using z to denote the vector zc. We first provide a deterministic
equivalence to Equation (12) that resembles the condition provided in [HMX21, Lemma 1]. Our proof
is slightly modified compared to [HMX21, Lemma 1] and relies on elementary use of block matrix
inversion identity.

Lemma 11. Let Q ∈ Rp×n = [q1, · · · ,qn]. In our notation, Equation (12) holds for a fixed c if and
only if:

1

zi
zT\i

(
QT

\iΛQ\i

)−1
QT

\iΛqi < 1, for all i = 1, · · · , n. (62)

Above, z\i ∈ R(n−1)×1 is obtained by removing the i-th entry from vector z and Q\i ∈ Rd×(n−1) is
obtained by removing the i-th column from Q.
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Proof. By symmetry, it suffices to consider the case i = 1. We first write

A =

[
qT
1 Λq1 qT

1 ΛQ\1
QT

\1Λq1 QT
\1ΛQ\1

]
≜

[
α bT

b D

]
.

By Schur complement [Ber09], we have

A ≻ 0 iff either
{
α > 0 and D− bbT

α
≻ 0

}
or
{
D ≻ 0 and α− bTD−1b > 0

}
.

Since the entries of Q are drawn from a continuous distribution (IID standard Gaussian), both A and
D = QT

\1ΛQ\1 are positive definite almost surely. Therefore, α− bTD−1b > 0 almost surely.
Thus, by block matrix inversion identity [Ber09], we have

A−1 =

[
(α− bTD−1b)−1 −(α− bTD−1b)−1bTD−1

−D−1b(α− bTD−1b)−1 D−1 +D−1b(α− bTD−1b)−1bTD−1

]
.

Therefore,eT1 A−1 = (α− bTD−1b)−1
[
1 −bTD−1

]
. Hence we have

z1e
T
1 A

−1z = (α− bTD−1b)−1(z21 − bTD−1(z1z\1)),

where we use the fact that z1 = z1. Since α− bTD−1b > 0 almost surely, we have

z1e
T
1 A

−1z > 0 ⇐⇒ (α− bTD−1b)−1(z21 − bTD−1(z1z\1)) > 0

⇐⇒ 1

z1
bTD−1z\1 < 1.

Recall that bT = qT
1 ΛQ\1 and D = QT

\1ΛQ\1. This completes the proof.

Next, we define the following events:

1. For i ∈ [n], Bi :=
{

1
zi
zT\iA

−1
\i Q

T
\iΛqi ≥ 1

}
.

2. For i ∈ [n], given t > 0, Ei(t) :=
{
∥(zT\iA−1

\i Q
T
\iΛ)T ∥22 ≥ 1

t

}
.

3. B := ∪n
i=1Bi.

We know all the data points are support vectors i.e. Equation (61) holds, if none of the events Bi

happens; hence, B is the undesired event. We want to upper bound the probability of event B. As in
the argument provided in [HMX21], we have

P(B) ≤
n∑

i=1

(
P(Bi|Ei(t)c) + P(Ei(t))

)
. (63)

The lemma below gives an upper bound on P(Bi|Ei(t)c).

Lemma 12. For any t > 0, P(Bi|Ei(t)c) ≤ 2 exp
(
− t

2ck2

)
.

Proof. On the event Ei(t)c, we have ∥(zT\iA−1
\i Q

T
\iΛ)T ∥22 ≤ 1

t . Since, by its definition, | 1zi | ≤ k,
we have 1

zi
zT\iA

−1
\i Q

T
\iΛqi is conditionally sub-Gaussian [Wai19, Chapter 2] with parameter at most

ck2∥(zT\iA−1
\i Q

T
\iΛ)T ∥22 ≤ ck2/t. Then the sub-Gaussian tail bound gives

P(Bi|Ei(t)c) ≤ 2 exp

(
− t

2ck2

)
, (64)

which completes the prof.
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Next we upper bound P(Ei(t)) with t = d∞/(2n). Since ∥z\i∥2 ≤ ∥y\i∥2, we can directly use
[HMX21, Lemma 4].

Lemma 13 (Lemma 4, [HMX21]). P
(
Ei
(
d∞
2n

))
≤ 2 · 9n−1 · exp

(
−c1min

{
d2
4c2

, d∞c

})
.

The results above are proved for fixed choices of i ∈ [n] and c ∈ [k]. We combine Lemmas 12 and 13
with a union bound over all n training examples and k classes to upper bound the probability of the
undesirable event B over all k classes by:

kn9n−1 · exp
(
−c1min

{
d2
4c2

,
d∞
c

})
≤ exp

(
−c1min

{
d2
4c2

,
d∞
c

}
+ C1 log(kn) + C2n

)
and 2kn · exp

(
− d∞
2ck2n

)
≤ exp

(
−c2d∞
ck2n

+ C3 log(kn)

)
.

Thus, the probability that every data point is a support vector is at least

1− exp

(
−c1min

{
d2
4c2

,
d∞
c

}
+ C1 log(kn) + C2n

)
− exp

(
−c2d∞
ck2n

+ C3 log(kn)

)
.

To ensure that exp
(
−c1min

{
d2
4c2

, d∞c

}
+ C1 log(kn) + C2n

)
+ exp

(
− c2d∞

ck2n
+ C3 log(kn)

)
≤ c4

n , we

consider the conditions c1min
{

d2
4c2

, d∞c

}
− C1 log(kn)− C2n ≥ log(n) and c2d∞

ck2n
− C3 log(kn) ≥ log(n)

to be satisfied. These are equivalent to the conditions provided in Equation (17). This completes the
proof. Note that throughout the proof, we did not use any generative model assumptions on the labels
given the covariates, so in fact our proof applies to scenarios beyond the MLM.

C Classification error proofs for GMM

In this section, we provide the proofs of classification error under the GMM (Theorem 4 and Theorem 6).

C.1 Proof of Theorem 4

C.1.1 Proof strategy and notations

The notation and main arguments of this proof follow closely the content of Section 6.2.
Our starting point here is the lemma below (adapted from [TOS20, D.10]) that provides a simpler

upper bound on the class-wise error Pe|c.

Lemma 14. Under GMM, Pe|c ≤ ∑
j ̸=cQ

(
(ŵc−ŵj)

Tµc

∥ŵc−ŵj∥2

)
. In particular, if (ŵc − ŵj)

Tµc > 0, then

Pe|c ≤
∑

j ̸=c exp

(
− ((ŵc−ŵj)

Tµc)
2

4(ŵT
c ŵc+ŵT

j ŵj)

)
.

Proof. [TOS20, D.10] shows Pe|c is upper bounded by
∑

j ̸=cQ
(
(ŵc−ŵj)

Tµc

∥ŵc−ŵj∥2

)
. Then if (ŵc−ŵj)

Tµc > 0,
the Chernoff bound [Wai19, Ch. 2] gives

Pe|c ≤
∑
j ̸=c

exp

(
−((ŵc − ŵj)

Tµc)
2

2∥ŵc − ŵj∥22

)
≤
∑
j ̸=c

exp

(
− ((ŵc − ŵj)

Tµc)
2

4(ŵT
c ŵc + ŵT

j ŵj)

)
,

where the last inequality uses the identity aTb ≤ 2(aTa+ bTb).

Thanks to Lemma 14, we can upper bound Pe|c by lower bounding the terms

((ŵc − ŵj)
Tµc)

2

(ŵT
c ŵc + ŵT

j ŵj)
, for all c ̸= j ∈ [k]. (65)
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Our key observation is that this can be accomplished without the need to control the more intricate
cross-correlation terms ŵT

c ŵj for c ̸= j ∈ [k].
Without loss of generality, we assume onwards that c = k and j = k − 1 (as in Section 6.2).

Similar to Section 6.2, the quadratic forms introduced in Equation (40) play key role here, as well. For
convenience, we recall the definitions of the c-th order quadratic forms for c, j,m ∈ [k] and i ∈ [n]:

s
(c)
mj := vT

mA−1
c vj ,

t
(c)
mj := dT

mA−1
c dj ,

h
(c)
mj := vT

mA−1
c dj ,

g
(c)
ji := vT

j A
−1
c ei,

f
(c)
ji := dT

j A
−1
c ei.

Further, recall that ŵc = X(XTX)−1vc and X =
∑k

j=1µjv
T
j +Q. Thus,

ŵT
c µc = ∥µc∥22vT

c (X
TX)−1vc +

∑
m ̸=c

µT
mµcv

T
m(XTX)−1vc + vT

c (X
TX)−1dc and

ŵT
j µc = ∥µc∥22vT

j (X
TX)−1vc + µT

j µcv
T
j (X

TX)−1vj +
∑

m ̸=c,j

µT
mµcv

T
m(XTX)−1vj + vT

j (X
TX)−1dc.

(66)

Additionally,

ŵT
c ŵc = vT

c (X
TX)−1vc, and ŵT

j ŵj = vT
j (X

TX)−1vj .

To lower bound ŵT
c µc − ŵT

j µc, we first focus on the dominant terms of Equation (66),

∥µc∥22vT
c (X

TX)−1vc + vT
c (X

TX)−1dc − ∥µc∥22vT
c (X

TX)−1vj − vT
j (X

TX)−1dc. (67)

The above terms dominate the bound because, according to Assumption 2, the inner products between
different mean vectors are small compared to the norms of mean vectors.

We now lower bound Equation (67) divided by (ŵT
c ŵc + ŵT

j ŵj). Using the leave-one-out trick in
Section 6.2 and the matrix-inversion lemma, we show in Appendix C.1.5 that

(67)
(ŵT

c ŵc + ŵT
j ŵj)

=
D1

D2
, (68)

D1 =

∥µc∥22s
(j)
cc − s

(j)
cc t

(j)
cc + h

(j)
cc

2
+ h

(j)
cc − ∥µc∥22s

(j)
jc − h

(j)
jc − h

(j)
jc h

(j)
cc + s

(j)
jc t

(j)
cc

detj

2

,

D2 =

(
s
(j)
cc

detj
+

s
(−j)
jj

det−j

)
,

where detj = (∥µc∥22 − t
(j)
cc )s

(j)
cc + (h

(j)
cc + 1)2. Note that detj = det−c when c = k and j = k − 1.

Next, we will prove that

(68) ≥ ∥µ∥22

((
1− C1√

n
− C2n

p

)
∥µ∥2 − C3min{

√
k,
√
log(2n)}

)2
C6

(
∥µ∥22 + kp

n

) . (69)

C.1.2 Proof of Equation (69)

We will lower bound the numerator and upper bound the denominator of Equation (68). We will work
on the high-probability event Ev defined in Equation (50) in Appendix A.1. For quadratic forms such
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as s
(j)
cc , t

(j)
cc and h

(j)
cc , the Gram matrix A−1

j does not “include” the c-th mean component because we
have fixed c = k, j = k − 1. Thus, we can directly apply Lemma 2 to get

C1 − 1

C1
· n

kp
≤s(j)cc ≤ C1 + 1

C1
· n

kp
,

t(j)cc ≤C2n∥µ∥22
p

,

−ρ̃n,k
C3n∥µ∥2√

kp
≤h(j)cc ≤ ρ̃n,k

C3n∥µ∥2√
kp

,

on the event Ev. We need some additional work to bound s
(j)
jc = vjA

−1
j vc and h

(j)
jc = vjA

−1
j dc, since

the Gram matrix A−1
j “includes” vj . The proof here follows the machinery introduced in Appendix

A.2 for proving Lemma 2. We provide the core argument and refer the reader therein for additional
justifications. By Equation (102) in Appendix F.1 (with the index j − 1 replacing the index 0), we first
have

s
(j)
jc = s

(j−1)
jc − 1

detj−1
(⋆)(j−1)

s ,

where we define

(⋆)(j−1)
s = (∥µj∥22 − t

(j−1)
jj )s

(j−1)
jj s

(j−1)
jc + s

(j−1)
jc h

(j−1)
jj

2
+ s

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj h

(j−1)
jc ,

and detj−1 = (∥µj∥22 − t
(j−1)
jj )s

(j−1)
jj + (h

(j−1)
jj + 1)2. Further, we have

|s(j)jc | =

∣∣∣∣∣∣
1−

(∥µj∥22 − t
(j−1)
jj )s

(j−1)
jj + h

(j−1)
jj

2

detj−1

 s
(j−1)
jc − 1

detj−1
(s

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj h

(j−1)
jc )

∣∣∣∣∣∣
≤ 1

C
|s(j−1)

jc |+ 1

detj−1
|(s(j−1)

jc h
(j−1)
jj + s

(j−1)
jj h

(j−1)
jc )|.

We focus on the dominant term |s(j−1)
jj h

(j−1)
jc |. Using a similar argument to that provided in Ap-

pendix A.2, we get

|s(j−1)
jj h

(j−1)
jc |

detj−1
≤

|s(j−1)
jj h

(j−1)
jc |

(1 + h
(j−1)
jj )2

≤ C1(
1− C2ρ̃n,kϵn

k2
√
n

)2 · n

kp
· ρ̃n,kϵn
k2
√
n

≤ C3ρ̃n,kϵn(
1− C2ρ̃n,kϵn

k2
√
n

)2
k2

·
√
n

kp
.

Thus, we have

|s(j−1)
jc | ≤ C4 + 1

C4
·
√
n

kp
.

Similarly, we bound the remaining term h
(j)
jc . Specifically, by Equation (104) in Section F.1, we have

h
(j)
jc = h

(j−1)
jc − 1

detj−1
(⋆)

(j−1)
h ,

where we define

(⋆)
(j−1)
h = (∥µj∥22 − t

(j−1)
jj )s

(j−1)
jj h

(j−1)
jc + h

(j−1)
jc h

(j−1)
jj

2
+ h

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj t

(j−1)
jc .

51



Furthermore,

|h(j)jc | =

∣∣∣∣∣∣
1−

(∥µj∥22 − t
(j−1)
jj )s

(j−1)
jj + h

(j−1)
jj

2

detj−1

h
(j−1)
jc − 1

detj−1
(h

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj t

(j−1)
jc )

∣∣∣∣∣∣
≤ 1

C
|h(j−1)

jc |+ 1

detj−1
|(h(j−1)

jc h
(j−1)
jj + s

(j−1)
jj t

(j−1)
jc )|.

We again consider the dominant term |s(j−1)
jj t

(j−1)
jc |/detj−1 and get

|s(j−1)
jj t

(j−1)
jc |

detj−1
≤

|s(j−1)
jj t

(j−1)
jc |

(1 + h
(j−1)
jj )2

≤ C1(
1− C2ρ̃n,kϵn

k2
√
n

)2 · n

kp
· n∥µ∥

2
2

p

≤ C3ϵn(
1− C2ρ̃n,kϵn

k1.5
√
n

)2
k2
√
n
· ρ̃n,kn∥µ∥2√

kp
.

Thus, we find that

|h(j−1)
jc | ≤ ρ̃n,k

C4n∥µ∥2√
kp

.

We are now ready to lower bound the RHS in Equation (68) by lower bounding its numerator and
upper bounding its denominator.

First, for the numerator we have the following sequence of inequalities:

∥µc∥22s(j)cc − s(j)cc t
(j)
cc + h(j)cc

2
+ h(j)cc − ∥µc∥22s(j)jc − h

(j)
jc − h

(j)
jc h

(j)
cc + s

(j)
jc t

(j)
cc

≥∥µc∥22s(j)cc − ∥µc∥22s(j)jc − s(j)cc t
(j)
cc + s

(j)
jc t

(j)
cc + h(j)cc − h

(j)
jc − h

(j)
jc h

(j)
cc

≥C1 − 1

C1
· ∥µ∥

2
2n

kp
− C2 + 1

C2
· ∥µ∥

2
2

√
n

kp
− C3n

p
· ∥µ∥

2
2n

kp
− C4n

p
· ∥µ∥

2
2

√
n

kp
− C5ρ̃n,kn∥µ∥2√

kp
.

Above, we use the fact that the terms |h(j)cc |, |h(j)jc | ≤ Cϵ/(k2
√
n) are sufficiently small compared to 1.

Consequently, the numerator is lower bounded by(
C1 − 1

C1
· ∥µ∥

2
2n

kp
− C2 + 1

C2
· ∥µ∥

2
2

√
n

kp
− C3n

p
· ∥µ∥

2
2n

kp
− C4n

p
· ∥µ∥

2
2

√
n

kp
− C5ρ̃n,kn∥µ∥2√

kp

)2/
det2j .

(70)

Second, we upper bound the denominator. For this, note that under the assumption of nearly equal
energy and equal priors on class means (Assumption 1), there exist constants C1, C2 > 0 such that
C1 ≤ detj / det−j ≤ C2. (In fact, a very similar statement was proved in Equation (45) and used in the
proof of Theorem 2). Moreover, Lemma 2 shows that the terms s

(j)
cc and s

(−j)
jj are of the same order, so

it suffices to upper bound s
(j)
cc

detj
. Again applying Lemma 2, we have

s
(j)
cc

detj
≤ C6

detj
· n

kp
(71)

on the event Ev. Then, combining Equations (70) and (71) gives us

(68) ≥ n

C0kp
· 1

detj

(
(1− C1√

n
− C2n

p
)∥µ∥22 − C3min{

√
k,
√
log(2n)}∥µ∥2

)2

≥ n

C0kp
· 1
C4∥µ∥22n

kp + 2 +
C5n2∥µ∥22

kp2

((
1− C1√

n
− C2n

p

)
∥µ∥22 − C3min{

√
k,
√
log(2n)}∥µ∥2

)2

≥ ∥µ∥22

((
1− C1√

n
− C2n

p

)
∥µ∥2 − C3min{

√
k,
√
log(2n)}

)2
C6

(
∥µ∥22 + kp

n

) , (72)
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where the second inequality follows from the following upper bound on detj on the event Ev:

detj = (∥µc∥22 − t(j)cc )s
(j)
cc + (h(j)cc + 1)2 ≤ ∥µc∥22s(j)cc + 2(h(j)cc

2
+ 1) ≤ C4∥µ∥22n

kp
+ 2 +

C5n
2∥µ∥22
kp2

.

C.1.3 Bounding the remaining terms in (66)

The previous sections of the proof bounded the dominant terms in Equation (66). Now, we turn
to bounding the remaining terms µT

mµcv
T
m(XTX)−1vc and µT

j µcv
T
j (X

TX)−1vj . Under the nearly
equal energy and priors assumption, the vT

j (X
TX)−1vj terms have the same bound for every j ∈ [k]

except for some constants. Similarly, the vT
j (X

TX)−1vm terms also have the same bound for all
j ̸= m ∈ [k] except for some constants. An upper bound on classification error can then be derived
in terms of the inner products between the mean vectors. Specifically, we need to include the bounds
of
∑

m ̸=cµ
T
mµcv

T
m(XTX)−1vc, µT

j µcv
T
j (X

TX)−1vj and
∑

m̸=c,j µ
T
mµcv

T
m(XTX)−1vj . Recall that in

Appendix C.1.4 we show that vc(X
TX)−1vj = (s

(j)
cj + s

(j)
cj h

(j)
cc − s

(j)
cc h

(j)
jc )/detj and vj(X

TX)−1vj =

s
(−j)
jj /det−j . We also show that the bound for s

(j)
cc (also s

(−j)
jj ) is at the order of O(n/(kp)) and the

bound for s
(j)
cj is at the order of O(

√
n/(kp)) when c ̸= j, which is significantly smaller than O(n/(kp))

when n is large. Additionally, the bound for |h(j)jc | is sufficiently small. Combining these results and
the assumption of mutually incoherent means, we can see that the bounds for these additional terms
included are still much smaller than the bound of ∥µ∥22vT

c (X
TX)−1vc, which is the dominant term.

Therefore, they will not change the generalization bound of (68) except up to constant factors.

C.1.4 Completing the proof

Because of our assumption of nearly equal energy on class means and equal priors, the analysis above
can be applied to bound ((ŵc−ŵj)

Tµc)
2

(ŵT
c ŵc+ŵT

j ŵj)
, for every j ̸= c and c ∈ [k]. We define the unconditional event

Eu2 :=
{
((ŵc − ŵj)

Tµc)
2

(ŵT
c ŵc + ŵT

j ŵj)
is lower bounded by (72) for every j ̸= c

}
.

We have

P(Ec
u2) ≤ P(Ec

u2|Ev) + P(Ec
v)

≤ c4
n

+ c5k(e
− n

c6 + e
− n

c7k
2 ) ≤ c4

n
+ c8ke

− n
c7k

2

for constants ci’s > 1. Thus, the class-wise error Pe|c is upper bounded by

(k − 1) exp

−∥µ∥22

((
1− C1√

n
− C2n

p

)
∥µ∥2 − C3min{

√
k,
√

log(2n)}
)2

C4

(
∥µ∥22 + kp

n

)


with probability at least 1− c4
n − c8ke

− n
c7k

2 . This completes the proof.

C.1.5 Proof of Equation (68)

Here, using the results of Section F.1, we show how to obtain Equation (68) from Equation (65). First,
by [WT21, Appendix C.2] (with y replaced by vm), we have

vm(XTX)−1vm =
s
(−m)
mm

det−m
, for all m ∈ [k],

where det−m = (∥µm∥22 − t
(−m)
mm )s

(−m)
mm + (h

(−m)
mm + 1)2. Then [WT21, Equation (44)] gives

∥µc∥22 · vc(X
TX)−1vc + vc(X

TX)−1dc =
∥µc∥22s

(j)
cc − s

(j)
cc t

(j)
cc + h

(j)
cc

2
+ h

(j)
cc

detj
,
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where detj = (∥µ∥22 − t
(j)
cc )s

(j)
cc + (h

(j)
cc + 1)2. Note that detj = det−c when c = k and j = k − 1.

For vc(X
TX)−1vj and vj(X

TX)−1dc, we can again express the k-th order quadratic forms in terms
of j-th order quadratic forms as follows:

vc(X
TX)−1vj =

s
(j)
cj + s

(j)
cj h

(j)
cc − s

(j)
cc h

(j)
jc

detj
,

vj(X
TX)−1dc =

∥µ∥22s
(j)
cc h

(j)
jc − ∥µ∥22s

(j)
cj h

(j)
cc + h

(j)
cc h

(j)
jc + h

(j)
jc − s

(j)
cj t

(j)
cc

detj
.

Thus, we have

∥µc∥22vc(X
TX)−1vj + vj(X

TX)−1dc =
∥µc∥22s

(j)
jc + h

(j)
jc + h

(j)
jc h

(j)
cc − s

(j)
jc t

(j)
cc

detj
.

This completes the proof.

C.2 Proof of Theorem 6

In this section we prove Theorem 6. The simplex ETF setting for the class means gives us ∥µ∥22 = −(k−
1)µT

mµc for m ̸= c. Therefore, following the analysis above, the additional term
∑

m ̸=cµ
T
mµcv

T
m(XTX)−1vc

is upper bounded by ∥µ∥22maxm,c |vT
m(XTX)−1vc|. Since the dominating term in vT

m(XTX)−1vc is
s
(j)
cj , which has a much smaller upper bound than the dominating term in vT

c (X
TX)−1vc, and the term

µT
j µcv

T
j (X

TX)−1vj in ŵT
j µc has a positive contribution to ŵT

c µc − ŵT
j µc under the simplex ETF

setting, the final generalization bound does not change except up to constant factors.

C.3 Proof of Corollary 3

We now prove the condition for benign overfitting provided in Corollary 3. Note that following Theorem
2, we assume that

p > C1k
3n log(kn) + n− 1 and p > C2k

1.5n1.5∥µ∥2. (73)

We begin with the setting where ∥µ∥22 > C kp
n , for some C > 1. In this case, we get that

Equation (72) is lower bounded by 1
c

((
1− C3√

n
− C4n

p

)
∥µ∥2 − C5

√
k
)2

, and we have((
1− C3√

n
− C4n

p

)
∥µ∥2 − C5

√
k

)2

> ∥µ∥22 − 2∥µ∥22
C3√
n
− 2∥µ∥22

C4n

p
− 2C5

√
k∥µ∥2

>

(
1− 2C3√

n

)
kp

n
− 2∥µ∥22

C4n

p
− 2C5

√
k∥µ∥2. (74)

Then Equation (73) gives

(74) >
(
1− 2C3√

n

)
kp

n
−
( p

k1.5n1.5

)2 C6n

p
− C7

√
kp

k1.5n1.5

=
kp

n

(
1− 2C3√

n
− C6

k4n
− C7

k2
√
n

)
, (75)

which goes to +∞ as
( p
n

)
→ ∞.

Next, we consider the case ∥µ∥22 ≤ kp
n . Moreover, we assume that ∥µ∥42 = C2

( p
n

)α
, for α > 1. Then,

Equation (72) is lower bounded by n
ckp∥µ∥42

((
1− C3√

n
− C4n

p

)
− C5

√
k

∥µ∥2

)2
, and we get

n

kp
∥µ∥42

((
1− C3√

n
− C4n

p

)
− C5

√
k

∥µ∥2

)2

>

(
1− 2C3√

n

)
n

kp
∥µ∥42 −

C6n
2

kp2
∥µ∥42 −

C7n√
kp

∥µ∥32

≥
(
1− 2C3√

n

)
1

k

( p
n

)α−1
− C6

k

( p
n

)α−2
− C7√

k

( p
n

)0.75α−1
,

(76)
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where the last inequality uses Equations (73) and condition ∥µ∥22 ≤ kp
n . Consequently, the RHS of

Equation (76) will go to +∞ as
( p
n

)
→ ∞, provided that α > 1. Overall, it suffices to have

p > max

{
C1k

3n log(kn) + n− 1, C2k
1.5n1.5∥µ∥2,

n∥µ∥22
k

}
,

and ∥µ∥42 ≥ C8

( p
n

)α
, for α ∈ (1, 2].

All of these inequalities hold provided that ∥µ∥2 = Θ(pβ) for β ∈ (1/4, 1/2] for finite k and n. This
completes the proof.

D Main lemmas used in error analysis of MLM

In this section, we collect the proofs of the main lemmas that are used in the error analysis of MLM
(proof of Theorem 5, provided in Section 6.3). We first introduce notation that is specific to these
proofs.

For two indices ℓ, j ∈ [k], we use the Kronecker delta notation δℓ,j = I[ℓ ̸= j]. For a diagonal
covariance matrix Σ and ℓ ≥ 1, we define the leave-ℓ-out covariance matrix Σ−1:ℓ as Σ with the first ℓ
rows and columns removed. For an arbitrary PSD matrix M ∈ Rd×d with eigenvalues λ1, . . . , λd and
any index k ∈ {0, . . . , d− 1}, the effective rank of the first kind (in the sense of [BLLT20]) is defined as

rk(M) :=
1

λk+1
·

d∑
ℓ=k+1

λℓ. (77)

Additionally, we state our convention for constants for this proof. Hereafter, we let c, C . . . > 0
denote positive absolute constants in lower and upper bounds respectively. We also use ck, Ck > 0 in
a similar manner to denote constants that may only depend on the number of classes k. To simplify
exposition in the proof, the values of these constants may be changing from line to line without explicit
reference. Finally, by “large enough" n we mean that n ≥ Ck for some universal constant Ck that
depends only on k.

D.1 Proof of Lemma 4

The proof of Lemma 4 follows similarly to the proof of Theorem 4 in Appendix D.3 and Lemma 11 in
Appendix E of [MNS+21], with the two important and nontrivial extensions mentioned above: one, to
the multiclass case involving k signal vectors, and two, considering the logistic model for label noise.
Without loss of generality8, we assume for simplicity that jc = c for all c ∈ [k], and consider classes
c1 = 1, c2 = 2 for the argument. First, we consider the following adjusted orthonormal basis

ẽ1 =
(µ1 − µ2)

∥µ1 − µ2∥2
, ẽ2 =

(µ1 + µ2)

∥µ1 − µ2∥2
, ẽj = ej for all j ≥ 3.

This orthonormal basis together with the bilevel ensemble structure in Definition 4 then gives us

SU1,2 =

√
λH

∥µ1 − µ2∥2
· (µ1 − µ2)

⊤(ŵ1 − ŵ2) =
√
λH · ẽ⊤1 X(X⊤X)−1(v1 − v2)

=
√
λH · ẽ⊤1 X(X⊤X)−1y1.

where in the second line we introduce the shorthand y1 := v1 − v2 . Next, we define

A := X⊤X =

p∑
j=1

λjzjz
⊤
j ,

8The reason this is without loss of generality is because we can carry out the same analysis otherwise with the
appropriate permutation of the index labels.

55



with zj := 1√
λj
X⊤ẽj , j = 1, . . . , p and note that zj

iid∼ N (0, In). (This uses again the rotational

invariance of Gaussianity and the bilevel ensemble structure.) Finally, for ℓ = 1, . . . , p− 1, we denote
the “leave-ℓ-out” matrices corresponding to the changed basis by A−1:ℓ :=

∑p
j=ℓ+1 λjzjz

⊤
j . Note that,

by definition, A−1:0 := A.
Using the above notation, we can then write the survival terms as follows

SU1,2 = λH · z⊤1 A−1y1.

The main challenge in characterizing the term above is that A−1 is dependent on both z1 and y1.
In particular, y1 depends on z1 itself but also it depends on z2, . . . , zk. In the binary case, a simple
leave-one-out analysis suffices to circumvent this difficulty as shown in [MNS+21]. In the multiclass
setting, we need to do a much more challenging leave-k-out analysis which we outline below. In
particular, we outline a recursive argument over k steps that iteratively removes the dependencies on
z1, . . . , zk from A−1. This process is described in the following subsections.

D.1.1 Key recursion: Removing dependencies

Start by defining the following “quadratic-like" terms:

Qℓ := yT
1 A

−1
−1:ℓz1, ℓ = 0, . . . , k , (78a)

Q̃ℓ := zT1 A
−1
−1:ℓz1, ℓ = 1, . . . , k , (78b)

Rℓ,j := yT
1 A

−1
−1:ℓzj , ℓ ≥ j, j = 1, . . . , k − 1 . (78c)

Recall the term we wish to control is Q0 = zT1A
−1
−1:0y1 = zT1A

−1y1. A single application of the
matrix inversion lemma (which was also done in [MNS+21] for the binary case and is described in a
self-contained manner in Appendix D.1.2) yields that SU1,2 =

λHQ1

1+λHQ̃1
. However, unlike in the binary

case Q1 can no longer be easily controlled, as y1 still depends on A−1
−1:1 as it is a functional of not only

z1, but also {z2, . . . , zk}.
On the other hand, the term involving the leave-k-out Gram matrix, i.e. Qk = zT1A

−1
−1:ky1 avoids

this issue. This is because y1 is only a functional of {z1, . . . , zk}, which ensures that y1 is independent
of A−1

−1:k. This allows us to sharply characterize Qk via the Hanson-Wright inequality, as shown in the
lemma below.

Lemma 15. For large enough n, we have

ck

(
cn

λLrs(Σ)
+

c′n3/4

λLrs(Σ)

)
≥ Qk ≥ ck

(
(n− s)

cλLrs(Σ)
− c′n3/4

λLrs(Σ)

)
. (79)

with probability at least 1− 2e−
√
n.

See Appendix E.2.1 for the proof of this lemma.
Thus, it suffices to characterize Q1 in terms of Qk, so that we can translate upper/lower bounds on

Qk to upper/lower bounds on Q1 and thereby characterize the survival SU1,2. The main result of this
section, shown below, does precisely this, guaranteeing that |Q1 −Qk| = o(Qk) with high probability.

Lemma 16. We have (
1− Ck

n1/4

)
Qk ≤ Q1 ≤

(
1 +

Ck

n1/4

)
Qk.

with probability at least 1− C ′k3e−C
√
n.

In the remainder of this section we prove Lemma 16. We introduce the following recursion for any
ℓ = k, . . . , 1 by directly applying the matrix inversion lemma:

Qℓ−1 = zT1 A
−1
−1:ℓ−1y1 = zT1 (A−1:ℓ + zℓz

T
ℓ )

−1y1 = Qℓ −
λH(zT1 A

−1
−1:ℓzℓ)(y

T
1 A

−1
−1:ℓzℓ)

1 + λHzTℓ A
−1
−1:ℓzℓ

= Qℓ − Q̃ℓ

(
zT1 A

−1
−1:ℓzℓ

Q̃ℓ

)(
λHRℓ,ℓ

1 + λHzTℓ A
−1
−1:ℓzℓ

)
, (80)
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where in the last line we recalled the definitions of Q̃ℓ and of Rℓ,ℓ in Eqs. (78).
In order to prove Lemma 16 using the above recursion, we establish the following bounds on each of

the three terms
zT1 A−1

−1:ℓzℓ

Q̃ℓ
, Rℓ,ℓ and Q̃ℓ that appear in Eq. (80). We provide the proofs of each of these

technical lemmas in Appendix E.2.

Lemma 17. For large enough n and for all ℓ ∈ [k], we have

|zT1 A−1
−1:ℓzℓ| ≤

C

n1/4
zT1 A

−1
−1:ℓz1 =

C

n1/4
Q̃ℓ , (81)

with probability at least 1− Ck3e−
√
n.

Lemma 18. For all ℓ ∈ [k], we have

|Rℓ,ℓ| ≤ Ck · zTℓ A−1
−1:ℓzℓ , ℓ = k, k − 1, . . . , 1 . (82)

with probability at least 1− Ck3e−
√
n.

Lemma 19. For large enough n and for all ℓ ∈ [k], we have

0 ≤ Q̃ℓ ≤
2

ck
Qk (83)

with probability at least 1− Cke−
√
n.

Proof of Lemma 16 Combining the bounds in Lemmas 17, 18, 19 and the fact that zTℓ A
−1
−1:ℓzℓ ≥ 0

within Equation (80) immediately yields for all ℓ = 1, . . . , k:

|Qℓ −Qℓ−1| ≤
2

ck
Qk

(
C

n1/4

) (
Ck · λHzTℓ A

−1
−1:ℓzℓ

1 + λHzTℓ A
−1
−1:ℓzℓ

)

≤ Qk
Ck

ckn1/4
.

The desired then follows by the bound |Qk −Q1| ≤
∑k

ℓ=2 |Qℓ −Qℓ−1|.

D.1.2 Completing the proof of Lemma 4

Armed with Lemma 16, we now complete the proof of Lemma 4. Recall that

SU1,2 = λHQ0 = λH · z⊤1 A−1y1 .

Applying Equation (80) for ℓ = 1, we can write

SU1,2 = λHQ0 = λH

(
Q1 −

λHQ̃1Q1

1 + λHλHQ̃1

)
=

λHQ1

1 + λHQ̃1

.

Thus, combining Lemmas 19 and 16, we can obtain the following lower/upper bounds on SU1,2:

λH

(
1− Ck

n1/4

)
Qk

1 + λH

(
2
ck

)
Qk

≤ SU1,2 ≤ λH

(
1 +

Ck

n1/4

)
Qk. (84)

It remains to substitute the upper/lower bounds on Qk we obtained in Lemma 15. Plugging in the
definition of the bilevel ensemble gives λLrs(Σ) = nm − nr. Noting that m > 1 and r < 1 gives

cn

λLrs(Σ)
+

c′n3/4

λLrs(Σ)
≤ Cn1−m and

(n− s)

cλLrs(Σ)
− c′n3/4

λLrs(Σ)
≥ cn1−m.
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Therefore, we have

cn1−m ≤ Qk ≤ Cn1−m.

Noting that λH = nm−q−r, we then have cn1−q−r ≤ λHQk ≤ Cn1−q−r. Plugging this back into
Equation (84) gives

ckn
1−q−r ≤ SU1,2 ≤ Ckn

1−q−r

for large enough n, which is the desired statement. A union bound over Lemmas 15 and 16 implies that
this statement holds with probability at least 1−Ck3e−C

√
n. This completes the proof of Lemma 4.

D.2 Proof of Lemma 5

This proof extends the argument in [MNS+21, Proof of Theorem 24] using the same change-of-basis
argument that we used to characterize the survival. As with the proof of Lemma 4, we assume without
loss of generality that c1 = 1, c2 = 2. First, we recall that

∆̂1,2 := X(XTX)−1(v1 − v2) = XA−1y1, (85)

and that we defined A := XTX and y1 := v1 − v2 as shorthand. We first state and prove the following
lemma, which is analogous to [MNS+21, Lemma 28, Eq. (53a)].

Lemma 20. The contamination term CN1,2 can be expressed as,

CN1,2 =
√
y⊤
1 Cy1, where (86)

C := A−1

 d∑
j=1,j ̸=1

λ2
jzjz

⊤
j

A−1.

This is a consequence of the relation CN2
1,2 :=

∑d
j=1,j ̸=1 λjα̂

2
j , where we define α̂j :=

√
λj · z⊤j A−1yj.

See Appendix E.3 for the proof of this lemma.
Note that the expression in Lemma 20 is still challenging to characterize, as the difference of

label vectors y1 is dependent on the matrix C. To make progress, we will write a k-step recursive
equation to express α̂j (and, thereby, CN1,2) in terms of A−1

−1:k instead of A−1, leading to a possible
characterization in terms of quadratic forms for which we can apply the Hanson-Wright inequality. We
begin by reproducing the first recursion from the proof of [MNS+21, Lemma 28], which directly yields

α̂j =
√
λj · z⊤j A−1

−1:1(y1 − SU1,2z1).

We now recurse this argument to get an expression in terms of A−1
−1:2. Applying the Sherman-Morrison

formula yields

A−1
−1:1 = A−1

−1:2 −
λH ·A−1

−1:2z2z2A
−1
−1:2

1 + λH · z⊤2 A−1
−1:2z2

and, consequently,

α̂j =
√
λj · z⊤j A−1

−1:2

(
ỹ1 − z2 ·

λH · z⊤2 A−1
−1:2ỹ1

1 + λH · z⊤2 A−1
−1:2z2

)
. (87)

To write the entire k-step recursion, we define some shorthand notation. For ℓ = 2, . . . , k we define

SU
(ℓ)
1,2 :=

λH · z⊤ℓ A−1
−1:ℓỹℓ−1

1 + λH · z⊤ℓ A−1
−1:ℓzℓ

and

ỹℓ := ỹℓ−1 − SU
(ℓ)
1,2zℓ

=⇒ ỹk = y1 −
k∑

ℓ=1

SU
(ℓ)
1,2zℓ.
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Consequently, rewriting Equation (87) in terms of this shorthand notation gives

α̂j =
√
λj · z⊤j A−1

−1:2ỹ2,

and repeating this argument for ℓ = 3, . . . , k ultimately yields

α̂j =
√

λj · z⊤j A−1
−1:kỹk.

Then, we use an identical set of manipulations to the proof of [MNS+21, Lemma 28] (reproduced for
completeness) to get

CN2
1,2 =

d∑
j=1,j ̸=1

λjα̂
2
j =

d∑
j=1,j ̸=1

λ2
j ỹ

⊤
k A

−1
−1:kzjz

⊤
j A

−1
−1:kỹk

= ỹ⊤
k A

−1
−1:k

 d∑
j=1,j ̸=1

λ2
jzjz

⊤
j

A−1
−1:kỹk

= ỹ⊤
k C̃kỹk, where

C̃k := A−1
−1:k

 d∑
j=1,j ̸=1

λ2
jzjz

⊤
j

A−1
−1:k.

We now complete the proof of Lemma 5 by working with the expression CN2
1,2 = ỹ⊤

k C̃kỹk. First, we
note that we can write

CN2
1,2 = ỹ⊤

k C̃k,1ỹk + ỹ⊤
k C̃k,2ỹk where

C̃k,1 := A−1
−1:k

 k∑
j=1,j ̸=1

λ2
jzjz

⊤
j

A−1
−1:k and

C̃k,2 := A−1
−1:k

 d∑
j=k+1

λ2
jzjz

⊤
j

A−1
−1:k.

Then, we can sharply upper-bound the terms T1 := ỹ⊤
k C̃k,1ỹk and T2 := ỹ⊤

k C̃k,2ỹk, which we do below
beginning with the second term T2.

We apply the algebraic identity (x− y)⊤M(x− y) ≤ 2(x⊤Mx+ y⊤My) k − 1 times to get

ỹ⊤
k C̃k,2ỹk ≤ 2k−1

(
y⊤
1 C̃k,2y1 +

k∑
ℓ=1

(SU(ℓ))21,2 · z⊤ℓ C̃k,2zℓ

)
.

We use the following technical lemma, which is proved in Appendix E.3.

Lemma 21. For ℓ = 2, . . . , k we define

SU
(ℓ)
1,2 :=

λH · z⊤ℓ A−1
−1:ℓỹℓ−1

1 + λH · z⊤ℓ A−1
−1:ℓzℓ

,

where ỹℓ := ỹℓ−1 − SU
(ℓ)
1,2zℓ and SU

(1)
1,2 := SU1,2 =

λH ·z⊤1 A−1
−1y1

1+λH ·z⊤1 A−1
−1z1

. Then, for all ℓ = 2, . . . , k we have

|SU(ℓ)
1,2| ≤

Ck

n1/4
< Ck . (88)

with probability at least 1− Ck2e−
√
n.
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Applying Lemma 21 thus gives

ỹ⊤
k C̃k,2ỹk ≤ Ck

(
y⊤
1 C̃k,2y1 +

k∑
ℓ=1

z⊤ℓ C̃k,2zℓ

)
.

Now, we note that the matrix C̃k,2 only depends on {zj}pj=k+1 and is therefore independent of y1 as
well as {zℓ}kℓ=1. Recall that each of {zℓ}kℓ=1 is isotropic Gaussian and that y1 is sub-Gaussian with
uncorrelated components, i.e. y21,i ≤ 1 and E[y1,iyc,i′ ] = 0 for i ̸= i′ ∈ [n]. Therefore, we can apply the
Hanson-Wright inequality [RV+13] with the parameters stated in [MNS+21, Eq (44)] to get

ỹ⊤
k C̃k,2ỹk ≤ Ck · Tr(C̃k,2) · log n

with probability at least
(
1− 1

n

)
. We denote by {λ̃j}p−k

j=1 the diagonal entries of the leave-k-out
covariance matrix Σ−1:k. A direct application of [MNS+21, Lemma 30] (which, in turn, is taken
from [BLLT20, Lemma 11]) gives

Tr(C̃k,2) ≤ C

(
s− k

n
+ n ·

∑p−k
j=s−k+1 λ̃

2
j

(
∑p−k

j>s−k+1 λ̃j)2

)
.

Then, substituting the bilevel ensemble parameterization in a manner identical to the proof of [MNS+21,
Lemma 35] gives

T2 ≤ Ck · n−min(m−1,2q+r−1) · log n. (89)

for q > 1− r.

Controlling the term T1 := ỹ⊤
k C̃k,1ỹk Unfortunately, this term is more delicate than T2, because

the matrix C̃k,1 intricately depends on z2, . . . , zk. However, we can unravel the expression back to get

ỹ⊤
k C̃k,1ỹk =

k∑
j=2

λ2
j (z

⊤
j A

−1
−1:kỹk)

2

≤
k∑

j=2

λ2
j

(
|z⊤j A−1

−1:ky1|+
k∑

ℓ=1

|SU(ℓ)
1,2||z⊤j A−1

−1:kzℓ|
)2

≤ Ck

k∑
j=2

λ2
j

(
|z⊤j A−1

−1:ky1|+ |z⊤j A−1
−1:kz1|+

1

n1/4

k∑
ℓ=2

|z⊤j A−1
−1:kzℓ|

)2

where the last inequality uses Lemma 21 and Lemma 4.
The key observation is that there are only O(k2) such terms that we need to control. Noting

that A−1
−1:k is independent of each of y1 and {zj}kj=1, we now use the Hanson-Wright inequality to

control each of the terms {z⊤j A−1
−1:ky1}kj=2 and {z⊤j A−1

−1:kzℓ}j ̸=ℓ. Note that for j = 2, . . . , k, we have
E[y1z

⊤
j ] = 0 from Lemma 22 (a base technical lemma, proved in Appendix E.1) and E[zℓz⊤j ] = δℓ,jIp.

We apply this inequality (as stated in [MNS+21, Lemma 26]) for the choice t = ∥A−1
−1:k∥2 ·

√
n log n to

get

z⊤j A
−1
−1:ky1 ≤ ∥A−1

−1:k∥2 ·
√
n log n and

z⊤j A
−1
−1:kzℓ ≤ δℓ,j · tr(A−1

−1:k) + ∥A−1
−1:k∥2 ·

√
n log n,

each with probability at least 1 − 1
nc for some c > 0. Next, applying Lemma 23 (a base technical

lemma, proved in Appendix E.1) gives us ∥A−1
−1:k∥2 ≤ C

λLrs(Σ) with probability at least 1− 2e−
n
c over

the random matrix A−1
−1:k. We further recall that λLrs(Σ) = nm − nr ≥ cnm for large enough n, and
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that λj = λH = nm−q−r for j = 2, . . . , k (because under our assumptions s > k). Excluding the terms
{z⊤j A−1

−1:kzj}kj=2 for now, each of the above contributes the following to T1:

Ck · λ2
H · n log n

λ2
Lr

2
s(Σ−1:k)

≤ Ck · n1−2q−2r · log n =: Ck · n−(2q+2r−1) · log n < n−(2q+r−1),

which is identical to the scaling for T2. We finally return to controlling the terms {z⊤j A−1
−1:kzj}kj=2.

Note that each of these terms is pre-multiplied by the factor 1
n1/4 Applying Lemma 23 again gives

tr(A−1
−1:k) ≤ Cn

λLrs(Σ) with probability at least 1 − 2e−
n
c . The contribution from each of these terms,

thus, becomes

1

n1/2

Ckλ
2
Hn2

λ2
Lr

2
s(Σ−1:k)

+
1

n1/2

Ck · λ2
H · n log n

λ2
Lr

2
s(Σ−1:k)

≤ 1

n1/2

Ckλ
2
Hn2

λ2
Lr

2
s(Σ−1:k)

≤ Ck · n2−2q−2r−1/2 = Ck · n−(2q+2r−3/2).

Thus, we get

T1 ≤ Ck · n−min(2q+r−1,2q+2r−3/2) · log n. (90)

Putting it all together Recall that CN2
1,2 := T1 + T2. Therefore, putting together the upper bounds

from Equations (90) and (89) gives us the following statement:

CN1,2(n) ≤ Ck

√
log n · n−min{m−1,2q+r−1,2q+2r−3/2}

2

for q > 1 − r and a universal constant Ck that depends only on k. This is the desired statement.
Further, a union bound over each of the probabilistic inequalities implies that the statement holds with
probability at least 1− Ck

nc for some 0 < c ≤ 1. This completes the proof of Lemma 5.

E Supporting technical lemmas for MLM error analysis

In this section, we prove the supporting technical lemmas for the MLM error analysis.

E.1 Basic lemmas about the MLM

We begin by collecting basic lemmas about the MLM that form building blocks to prove the rest of
the technical lemmas. The first such basic lemma controls the expectation of certain product forms
involving the difference label vector y1 and individual feature vectors {zℓ}pℓ=1.

Lemma 22. Let y1 = v1 − v2 be the difference label vector for c1 = 1, c2 = 2 and {zℓ}pℓ=1 be defined as
in the proof of Lemma 4. Then, we have for every i ∈ [n],

ck,ℓ := E[y1,izℓ,i] = ckδ1,ℓ,

where ck > 0 is a universal positive constant that depends only on k.

Proof. To prove this lemma we utilize the orthogonality and equal-weight Assumption 5 as well as the
details of the MLM. We denote uj := X⊤ej . It is easy to see from the definition of the changed basis
{zj}pj=1 that zj = uj for all j ≥ 3, and z1 = 1√

2
(u1 − u2) and z2 = 1√

2
(u1 + u2). We now use the

simplex-ETF-type structure of v1,v2 together with the structure in the MLM model to get

P
(
y1,i = 1

∣∣∣{u1,i, u2,i, . . . , uk,i}) =
exp(u1,i)∑

c′∈[k] exp(uc′,i)
and

P
(
y1,i = −1

∣∣∣{u1,i, u2,i, . . . , uk,i) =
exp(u2,i)∑

c′∈[k] exp(ujc′,i)
,
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and y1,i = 0 otherwise. Note here that {uc,i}c∈[k] are i.i.d. standard Gaussian. We start with the case
ℓ = 1. Here, we get

E[z1,iy1,i] =
1√
2
· E
[
(u1,i − u2,i) ·

exp(u1,i)∑
c′∈[k] exp(uc′,i)

− (u1,i − u2,i) ·
exp(u2,i)∑

c′∈[k] exp(ujc′,i)

]

=
1√
2
· E
[
(U1 − U2) ·

(eU1 − eU2)∑k
c=1 e

Uc

]

=
√
2 · E

[
U1 ·

(eU1 − eU2)∑k
c=1 e

Uc

]
,

where the last step follows by symmetry. Note that we have overloaded notation and written Uc := uc,i
for each c ∈ [k]. We also write U :=

[
U1 . . . Uk

]
as shorthand. Because Uc i.i.d. ∼ N (0, 1), we have

ck = E [U1 · g(U)]

where g(U) := eU1−eU2∑k
c=1 e

Uc
. Then, applying Stein’s lemma, we get

E [U1 · g(U)] =
n∑

i=1

E[U1Ui] · E
[
∂g

∂Ui

]
= E

[
∂g

∂U1

]
= E

[∑
i≥3 e

U1+Ui + 2eU1+U2

(
∑k

i=1 e
Ui)2

]
=: ck > 0.

The last step follows because the argument inside the expectation can never take value 0 and is always
non-negative. Thus, we have proved that E[y1,iz1,i] = ck > 0.

We now prove that E[y1,izℓ,i] = 0 for ℓ ̸= 1. First, for ℓ ≥ 3, we have

E[y1,izℓ,i] =
1√
2
· E
[
uℓ,i ·

exp(u1,i)∑
c′∈[k] exp(uc′,i)

− uℓ,i ·
exp(u2,i)∑

c′∈[k] exp(uc′,i)

]
= 0

by symmetry. Next, for ℓ = 2, we have

E[z2,iy1,i] =
1√
2
· E
[
(u1,i + u2,i) ·

exp(u1,i)∑
c′∈[k] exp(uc′,i)

− (u1,i + u2,i) ·
exp(u2,i)∑

c′∈[k] exp(ujc′,i)

]

=
1√
2
· E
[
(U1 + U2) ·

(eU1 − eU2)∑k
c=1 e

Uc

]

= E

[
U1 ·

(eU1 − eU2)∑k
c=1 e

Uc

]
− E

[
U2 ·

(eU2 − eU1)∑k
c=1 e

Uc

]
= 0,

where the last equality follows by symmetry. This completes the proof.

The next basic lemma controls the trace and operator norm of leave-ℓ-out Gram matrices and
leverages ideas first appearing in [BLLT20].

Lemma 23. For all ℓ ∈ [k] and sufficiently large n, the following inequalities are true for universal
constants c, C > 0, each with probability at least 1− 2e−

n
c :

∥A−1
−1:ℓ∥2 ≤

c

λLrs(Σ)

and
cn

λLrs(Σ)
≥ tr(A−1

−1:ℓ) ≥
(n− s)

cλLrs(Σ)
.
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In particular, these imply

∥A−1
−1:ℓ∥2 · n3/4

tr(A−1
1:ℓ )

≤ C2

n1/4
. (91)

Proof. First, we upper bound the operator norm term. Observe that

∥A−1
−1:ℓ∥2 = µ1(A

−1
−1:ℓ) =

1

µn(A−1:ℓ)
≤ 1

µn(A−1:s)
≤ c

λs+1rs(Σ)
,

where the last inequality uses [BLLT20, Lemma 5]. The second-to-last inequality holds for any choice
of s > k ≥ ℓ.

Next, we prove the bounds for the trace term. We lower bound the trace term as

tr(A−1
−1:ℓ) =

n∑
j=1

1

µj(A−1:ℓ)
≥

n∑
j=s

1

µj(A−1:ℓ)
≥ (n− s)

µs+1(A−1:ℓ)
.

Thus, it remains to upper bound µs+1(A−1:ℓ). Let {λ̃j}p−ℓ
j=1 denote the re-indexed eigenvalues of Σ−1:ℓ.

Then, Equation (38) from Lemma 25 in [MNS+21] directly yields

µs+1(A−1:ℓ) ≤ Cλ̃s+1rs(Σ−1:ℓ)

provided that rs(Σ−1:ℓ) ≥ bn. (Note that, under the bilevel ensemble, we have rs(Σ−1:ℓ) =
nm−ℓ−s

λL
≥

cnm > bn for large enough n.) Similarly, we upper bound the trace term as

tr(A−1
−1:ℓ) ≤

n

µn(A−1:ℓ)
≤ cn

λ̃s+1rs(Σ−1:ℓ)

where we now used Equation (37) from Lemma 25 in [MNS+21]. To complete the proof for the trace
term, we show that λ̃s+1rs(Σ−1:ℓ) ≍ λLrs(Σ). First, we note that λ̃s+1 = λs+1 = λL under the bilevel
ensemble. Also recall that ℓ ≤ k < s; hence we have rs(Σ−1:ℓ) = p− s− ℓ and rs(Σ) = p− s, which
implies that rs(Σ−1:ℓ) ≍ rs(Σ) for large enough n. Putting all of this together yields the desired
inequalities about the trace.

Finally, we prove Equation (91). This follows because, as already shown, we have

∥A−1
−1:ℓ∥2 · n3/4 ≤ c n3/4

λLrs(Σ)
tr(A−1

−1:ℓ) ≥
n− s

c λLrs(Σ)
.

thereby giving us

∥A−1
−1:ℓ∥2 · n3/4

tr(A−1
−1:ℓ)

≤ n3/4

n− s
≤ 2

n1/4
, (92)

where the last inequality follows for large enough n because s = nr and we have assumed r < 1. This
completes the proof of the lemma.

The following basic lemma relates the ratios of quadratic forms that are “similar" in their probability
distribution.

Lemma 24. We have
zTℓ A

−1
−1:kzℓ

zTℓ′A
−1
−1:kzℓ′

≤ C and
zTℓ A

−1
−1:ℓzℓ

zTℓ′A
−1
−1:ℓ′zℓ′

≤ C

for all ℓ, ℓ′ ∈ [k] with probability at least 1− c k e−
√
n.
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Proof. Recall that for any ℓ, ℓ′, we have that zℓ, zℓ′ are both independent of A−1
−1:k. Therefore, we have

zTℓ′A
−1
−1:kzℓ′ ≥ tr(A−1

−1:k)− c1∥A−1
−1:k∥2 · n3/4 and

zTℓ A
−1
−1:kzℓ ≤ tr(A−1

−1:k) + c1∥A−1
−1:k∥2 · n3/4

with probability at least 1− ke−
√
n. Putting these together gives

zTℓ A
−1
−1:kzℓ

zTℓ′A
−1
−1:kzℓ′

≤
tr(A−1

−1:k) + c1∥A−1
−1:k∥2 · n3/4

tr(A−1
−1:k)− c1∥A−1

−1:k∥2 · n3/4
≤

1 + c1
n1/4

1− c1
n1/4

≤ 2 ,

for large enough n, where in the above we used Eq. (91).
To prove the second inequality, recall that for any ℓ, ℓ′ ∈ [k], zℓ is independent of A−1

−1:ℓ and zℓ′ is
independent of A−1

−1:ℓ′ . Consequently, we have

zTℓ′A
−1
−1:ℓ′zℓ′ ≥ tr(A−1

−1:ℓ′)− c1∥A−1
−1:ℓ′∥2 · n3/4 and

zTℓ A
−1
−1:ℓzℓ ≤ tr(A−1

−1:ℓ) + c1∥A−1
−1:ℓ∥2 · n3/4

with probability at least 1− ke−
√
n. Putting these together gives

zTℓ A
−1
−1:ℓzℓ

zTℓ′A
−1
−1:ℓ′zℓ′

≤
tr(A−1

−1:ℓ) + c1∥A−1
−1:ℓ∥2 · n3/4

tr(A−1
−1:ℓ′)− c1∥A−1

−1:ℓ′∥2 · n3/4
≤

1 + c1
n1/4

1− c1
n1/4

≤ 2 ,

for large enough n, where we again used Eq. (91). This completes the proof of the lemma.

Finally, the following basic lemma controls the ratio of traces of the leave-ℓ-out Gram matrix and
the leave-k-out Gram matrix for any ℓ ∈ [k].

Lemma 25. For all ℓ ∈ [k] and sufficiently large n, it holds for universal constant C that

tr(A−1
−1:ℓ)

tr(A−1
1:k)

≥
(
1− C

n

)k−ℓ

≥
(
1− C

n

)k

Proof. Fix any ℓ ∈ [k]. We first lower-bound the ratio
tr(A−1

−1:ℓ)

tr(A−1
−1:ℓ+1)

, and then apply the argument

recursively. Since A−1:ℓ) = A−1:ℓ+1 + λHzℓ+1z
T
ℓ+1, we can apply the matrix inversion lemma to get

A−1
−1:ℓ = A−1

−1:ℓ+1 −
λHA−1

−1:ℓ+1zℓ+1z
T
ℓ+1A

−1
−1:ℓ+1

1 + λHzTℓ+1A
−1
−1:ℓ+1zℓ+1

.

Hence, we have

tr(A−1
−1:ℓ) = tr(A−1

−1:ℓ+1)−
λH tr(A−1

−1:ℓ+1zℓ+1z
T
ℓ+1A

−1
−1:ℓ+1)

1 + λHzTℓ+1A
−1
−1:ℓ+1zℓ+1

= tr(A−1
−1:ℓ+1)−

λH zTℓ+1A
−2
−1:ℓ+1zℓ+1

1 + λHzTℓ+1A
−1
−1:ℓ+1zℓ+1

≥ tr(A−1
−1:ℓ+1)− ∥A−1

−1:ℓ+1∥2 ·
λH zTℓ+1A

−1
−1:ℓ+1zℓ+1

1 + λHzTℓ+1A
−1
−1:ℓ+1zℓ+1

≥ tr(A−1
−1:ℓ+1)− ∥A−1

−1:ℓ+1∥2
(The second inequality follows because for any positive semidefinite matrix M with eigendecomposition
M = UΛUT =

∑
i λiuiu

T
i we have

xTM2x = (Ux)TΛ2(Ux) =
∑
i

λ2
i (u

T
i x)

2 ≤
(
max

i
λi

)∑
i

λi(u
T
i x)

2 = ∥M∥2 · xTMx

for any vector x.) Continuing from the penultimate display, we obtain

tr(A−1
−1:ℓ)

tr(A−1
−1:ℓ+1)

≥ 1−
∥A−1

−1:ℓ+1∥2
tr(A−1

−1:ℓ+1)
≥ 1− C

n

where the last inequality applies Eq. (91). Recursively applying the above for ℓ+ 1, . . . , k completes
the proof of the lemma.
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E.2 Survival Term

In this section we provide the proofs of Lemmas 15, 17, 18 and 19.

E.2.1 Proof of Lemma 15

First, we note that y1 remains independent of A−1:k as y1 only depends on z1, . . . , zk (which are in
turn mutually independent of zk+1, . . . , zp which comprise of A−1:k). Therefore, we can directly apply
the Hanson-Wright inequality to get

Qk ≥ ck ·
√

2

π
tr(A−1

−1:k)− 2c1∥A−1
−1:k∥2 · n3/4 and (93a)

Qk ≤ ck ·
√

2

π
tr(A−1

−1:k) + 2c1∥A−1
−1:k∥2 · n3/4. (93b)

with probability at least 1− 2e−
√
n. Combining the above with Lemma 23 applied for ℓ = k directly

gives the desired statement of Equation (79), completing the proof of the lemma.

E.2.2 Proof of Lemma 17

Note that the quadratic-like terms in both the LHS and RHS of (81) are well-suited for an application
of the Hanson-Wright inequality, since z1, zℓ are independent of A−1

−1:ℓ for all ℓ = 2, . . . , k. This is
formalized in the lemma below. Specifically, the desired statement to prove Lemma 17, i.e. Eq. (81) for
ℓ = 1, . . . , k, follows directly by applying Lemma 26 below for the special case ℓ′ = j = 1. (The slightly
more general statement of the lemma below will prove useful for proving subsequent lemmas.)

Lemma 26. For large enough n, for all ℓ ∈ [k] and ℓ′ < ℓ, j ≤ ℓ we have

|zTℓ A−1
−1:ℓzℓ′ | ≤

C

n1/4
zTj A

−1
−1:ℓzj .

with probability at least 1− Ck3e−
√
n.

Proof. The key observation is that for all ℓ′ < ℓ, j ≤ ℓ, we have that zℓ, zℓ′ , and zj are all mutually
independent of A−1

−1:ℓ. Therefore, applying the Hanson-Wright inequality in the form stated by [MNS+21]
gives us the following: for all ℓ ∈ [k], ℓ′ < ℓ, j ≤ ℓ, we have

|zTℓ A−1
−1:ℓzℓ′ | ≤ 2c1∥A−1

−1:ℓ∥2 · n3/4 and

zTj A
−1
−1:ℓzj ≥ tr(A−1

−1:ℓ)− c1∥A−1
−1:ℓ∥2 · n3/4 ,

with probability at least 1−Ck3e−
√
n. Above, we used the fact that zℓ, zℓ′ are independent. Therefore,

to prove the desired it suffices to show that

tr(A−1
1:ℓ ) ≥

n1/4

C2
∥A−1

−1:ℓ∥2 · n3/4 . (94)

This follows immediately from Eq. (91) in Lemma 23. This completes the proof.

E.2.3 Proof of Lemma 18

Recall that Rℓ,ℓ := yT
1 A

−1
−1:ℓzℓ. Bounding this term is difficult because y1 depends on A−1

−1:ℓ for any
ℓ < k. The only “easy” case is for ℓ = k for which y1 is independent of A−1

−1:k. As a starting point, we
exploit this independence to control the terms Rk,ℓ = yT

1 A
−1
−1:kzℓ for all ℓ ∈ [k], in the lemma below.

Lemma 27. We have, for large enough n,

|Rk,ℓ| = |yT
1 A

−1
−1:kzℓ| ≤

Ck

n1/4
zTkA

−1
−1:kzk for any ℓ = 2, . . . , k ,

and
|Rk,1| = |yT

1 A
−1
−1:kz1| ≤ Ck z

T
kA

−1
−1:kzk

with probability at least 1− Cke−
√
n.
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Proof. Recall that all of y1, zℓ, zk are independent of A−1
−1:k. Therefore, we can apply the Hanson-Wright

inequality to the RHS of the above, as well as Rk,ℓ (using the parallelogram law in the latter case) to
get

tr(A−1
−1:k)− c1∥A−1

−1:k∥2 · n3/4 ≤ z⊤k A
−1
−1:kzk ≤ tr(A−1

−1:k) + c1∥A−1
−1:k∥2 · n3/4

ck,ℓ · tr(A−1
−1:k)− 2c1∥A−1

−1:k∥2 · n3/4 ≤ Rk,ℓ ≤ ck,ℓ · tr(A−1
−1:k) + 2c1∥A−1

−1:k∥2 · n3/4,

with probability at least 1− Cke−
√
n. Above, we define ck,ℓ := E[y1,izℓ,i] (identically for any i ∈ [n]).

There are then two cases:

1. ℓ = 1: In this case we get ck,ℓ =: ck > 0 from Lemma 22. Plugging this above gives

Rk,1

zTkA
−1
−1:kzk

≤
ck · tr(A−1

−1:k) + 2c1∥A−1
−1:k∥2 · n3/4

tr(A−1
−1:k)− c1∥A−1

−1:k∥2 · n3/4

≤ ck
1 + c1

n1/4

1− c1
n1/4

≤ 2ck =: Ck,

where the second inequality follows from Eq. (91) in Lemma 23 and the last inequality follows for
large enough n. Similarly, we have

Rk,1

zTkA
−1
−1:kzk

≥ −
2c1∥A−1

−1:k∥2 · n3/4

tr(A−1
−1:k) + c1∥A−1

−1:k∥2 · n3/4

= − 2c1
tr(A−1

−1:k)

∥A−1
−1:k∥2·n3/4

+ c1

≥ − 2c1
n1/4

2 + c1
≥ − C

n1/4
,

where the second-to-last inequality in the above again used Equation (91).

2. ℓ ̸= 1: In this case we have ck,ℓ = 0, again from Lemma 22. Plugging this above gives

Rk,ℓ

zTkA
−1
−1:kzk

≤
2c1∥A−1

−1:k∥2 · n3/4

tr(A−1
−1:k)− c1∥A−1

−1:k∥2 · n3/4

≤ 2c1
tr(A−1

−1:k)

∥A−1
−1:k∥2·n3/4

+ c1

≤ 2c1
n1/4

2 + c1
≤ C

n1/4
,

where the last inequality follows for large enough n. Similarly, we have

Rk,ℓ

zTkA
−1
−1:kzk

≥ −
2c1∥A−1

−1:k∥2 · n3/4

tr(A−1
−1:k) + c1∥A−1

−1:k∥2 · n3/4

= − 2c1
tr(A−1

−1:k)

∥A−1
−1:k∥2·n3/4

+ c1

≥ − 2c1
n1/4

2 + c1
≥ − C

n1/4

where in the penultimate line we again used Eq. (91).

We now build on the “base case" Lemma 27 to control the terms Rℓ,ℓ in a similar manner to Rk,ℓ.
In particular, we note that the desired Eq. (82) to prove Lemma 18 follows by applying the slightly
more general lemma below for the case ℓ′ = ℓ.
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Lemma 28. For all ℓ ∈ [k] and all ℓ′ ≤ ℓ, we have

|Rℓ,ℓ′ | ≤
{
Ck · zTℓ A−1

−1:ℓzℓ if ℓ′ = 1
Ck

n1/4 · zTℓ A−1
−1:ℓzℓ if ℓ′ ̸= 1

(95)

with probability at least 1− ck3e−
√
n.

We complete the proof of Lemma 18 by proving Lemma 28, which we do in the next section.

E.2.4 Proof of Lemma 28

We will use recursion starting from ℓ = k to prove the desired statement for all ℓ = k − 1, k − 2, . . . , 1.
Throughout, we condition on the events of Lemmas 24, 26, and 27. The key to allow proving the
statement recursively is the following relation that follows by the matrix-inversion-lemma and holds for
all ℓ′ ≤ ℓ:

Rℓ,ℓ′ = yT
1 A

−1
−1:ℓzℓ′ = yT

1

(
A−1:ℓ+1 + zℓ+1z

T
ℓ+1

)−1
zℓ′

= yT
1 A

−1
−1:ℓ+1zℓ′ −

λH

(
yT
1 A

−1
−1:ℓ+1zℓ′

) (
zTℓ+1A

−1
−1:ℓ+1zℓ′

)
1 + λHzTℓ+1A

−1
−1:ℓ+1zℓ+1

= Rℓ+1,ℓ′ −Rℓ+1,ℓ+1

λH

(
zTℓ+1A

−1
−1:ℓ+1zℓ′

)
1 + λHzTℓ+1A

−1
−1:ℓ+1zℓ+1

. (96)

First we prove the statement for the base case ℓ = k− 1. For any ℓ′ ≤ k− 1, Equation (96) gives us

Rk−1,ℓ′ = Rk,ℓ′ −Rk,k

λH

(
zTkA

−1
−1:kzℓ′

)
1 + λHzTkA

−1
−1:kzk

.

Note that because ℓ′ ≤ k − 1, we have ℓ′ < k. Thus, we can apply Lemma 26 to get

|ϵk,ℓ′ | :=
λH |

(
zTkA

−1
−1:kzℓ′

)
|

1 + λHzTkA
−1
−1:kzk

≤ C

n1/4

λH

(
zTkA

−1
−1:kzk

)
1 + λHzTkA

−1
−1:kzk

≤ C

n1/4
.

Also, by Lemma 27, we have

|Rk,1| ≤ Ckz
T
kA

−1
−1:kzk and

|Rk,j | ≤
Ck

n1/4
· zTkA−1

−1:kzk for all j = 2, . . . , k.

Combining the three displays above with the recursion in Equation (96) yields the following for large
enough n:

|Rk−1,1| ≤ Ck

(
1 + Cn−1/4

)
· zTkA−1

−1:kzk ≤ Ck · zTkA−1
−1:kzk and

|Rk−1,ℓ′ | ≤ Ckn
−1/4 (1 + C) · zTkA−1

−1:kzk ≤ Ck

n1/4
· zTkA−1

−1:kzk for all ℓ′ ∈ {2, . . . , k − 1}.

Lemma 24 (applied for the pair (k, k − 1)) then gives us the desired Equation (95) for ℓ = k − 1, i.e.
|Rk−1,1| ≤ Ck · zTk−1A

−1
−1:k−1zk−1 and |Rk−1,ℓ′ | ≤ Ckn

−1/4 · zTk−1A
−1
−1:k−1zk−1 for ℓ′ = 2, . . . , k − 1. The

base case is therefore proved.
Next, we prove the inductive step. In particular, we assume that Equation (95) is true for ℓ+ 1 and

use it to prove the claim for ℓ. Our starting point is, again, the recursive relation in Equation (96).
Noting that ℓ′ < ℓ+ 1, we can again apply Lemma 26 to get

|ϵℓ+1,ℓ′ | :=
λH |

(
zTℓ+1A

−1
−1:ℓ+1zℓ′

)
|

1 + λHzTℓ+1A
−1
−1:ℓ+1zℓ+1

≤ C

n1/4

λH

(
zTℓ+1A

−1
−1:ℓ+1zℓ+1

)
1 + λHzTℓ+1A

−1
−1:ℓ+1zℓ+1

≤ C

n1/4
.
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Also, by the induction hypothesis, we have

|Rℓ+1,1| ≤ Ck z
T
ℓ+1A

−1
−1:ℓ+1zℓ+1 and

|Rℓ+1,j | ≤
Ck

n1/4
zTℓ+1A

−1
−1:ℓ+1zℓ+1 for all j = 2, . . . , k.

Note that the sharper second inequality above applies to the term Rℓ+1,ℓ+1 because we always have
ℓ+ 1 ≥ 2. Combining the two displays above with the recursion in Equation (96) yields the following
for large enough n:

|Rℓ,1| ≤ Ck

(
1 + Cn−1/4

)
· zTℓ+1A

−1
−1:ℓ+1zℓ+1 ≤ Ck · zTℓ+1A

−1
−1:ℓ+1zℓ+1 ≤ Ck · zTℓ A−1

−1:ℓzℓ

Similarly, we have for all ℓ′ = 2, . . . , ℓ,

|Rℓ,ℓ′ | ≤ Ckn
−1/4 (1 + C) · zTℓ+1A

−1
−1:ℓ+1zℓ+1 ≤ Ckn

−1/4 · zTℓ+1A
−1
−1:ℓ+1zℓ+1 ≤ Ckn

−1/4 · zTℓ A−1
−1:ℓzℓ

In both cases above, the last inequality follows from Lemma 24. This completes the proof of Lemma 28,
and therefore the proof of Lemma 18.

E.2.5 Proof of Lemma 19

Recall the definitions
Qk := zT1 A

−1
−1:ky1 and Q̃ℓ := zT1 A

−1
−1:ℓz1.

Since Q̃ℓ is a quadratic form, we have Q̃ℓ ≥ 0 and so it suffices to upper bound Q̃ℓ. Because z1 is
independent of A−1

−1:ℓ for any ℓ = 1, . . . , k, we can directly apply the Hanson-Wright inequality to get

Q̃ℓ = z⊤1 A
−1
−1:ℓz1 ≤ tr(A−1

−1:ℓ) + c1∥A−1
−1:ℓ∥2 · n3/4

with probability 1 − Ce−
√
n. Similarly, applying the Hanson-Wright inequality to the term Qk (see

Eq.(93)) we also have

Qk ≥ ck · tr(A−1
−1:k)− 2c1∥A−1

−1:k∥2 · n3/4.

with the same probability. Putting these together, we get

Q̃ℓ

Qk
≤

tr(A−1
1:ℓ ) + c1∥A−1

−1:ℓ∥2 · n3/4

ck · tr(A−1
−1:k)− 2c1∥A−1

−1:k∥2 · n3/4

≤
tr(A−1

−1:k)

tr(A−1
1:ℓ )

1 + c1
n1/4

ck − 2c1
n1/4

≤
(
1− C

n

)−k
(

1 + c1
n1/4

ck − 2c1
n1/4

)
≤ 2

ck
,

where the second inequality follows from Lemma 23 for ℓ and k (for large enough n) and the second-
to-last inequality uses Lemma 25. The last inequality follows again assuming large enough n. This
completes the proof of the lemma.

E.3 Contamination Term

In this section we prove Lemmas 20 and 21.
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E.3.1 Proof of Lemma 20

First, we note that the desired Equation (86) is a direct consequence of the expression CN2
1,2 :=∑d

j=1,j ̸=1 λjα̂
2
j , where

α̂j :=
√
λj · z⊤j A−1yj .

Therefore, it suffices to show that CN2
c1,c2 =

∑d
j=1,j ̸=1 λjα̂

2
j .

We denote the error vector ξ := ∆̂1,2 − ∆̂
⊤
1,2Σ∆1,2

∥Σ1/2∆1,2∥22
∆1,2 as shorthand, and recall from Lemma 3

that we have CN2
1,2 = ξ⊤Σξ. Further, we define Ẽ :=


ẽ1
ẽ2
...
ẽd

 ∈ Rd×d as the changed basis in matrix

form, and we define ξ̃ := Ẽξ. Then, the desired follows from these two statements:

1. We have CN2
1,2 = ξ̃

⊤
Σξ̃.

2. We have ξ̃1 = 0 and ξ̃j = α̂j for all j = 2, . . . , d.

We complete the proof by proving statements 1 and 2 for the specific form of Σ admitted by the bilevel
ensemble.

Proof of statement 1 We prove this statement for a generic vector y ∈ Rd. Consider the vector
ỹ := Ẽy. We will show that ỹ⊤Σỹ = y⊤Σy. Because Σ is a diagonal matrix, we have y⊤Σy =∑d

j=1 λjy
2
j . Further, it is straightforward to show from the specific form of the changed basis Ẽ that

ỹ1 =
y1−y2√

2
, ỹ2 =

y1+y2√
2

, and ỹj = yj for j = 3, . . . , d. Therefore, we have

λ1ỹ
2
1 + λ2ỹ

2
2 = λH(ỹ21 + ỹ22)

= λH

(
y21 + y22 − 2y1y2 + y21 + y22 + 2y1y2

2

)
= λH(y21 + y22) = λ1y

2
1 + λ2y

2
2.

Consequently, we have

ỹ⊤Σỹ =
d∑

j=1

λj ỹ
2
j = λ1ỹ

2
1 + λ2ỹ

2
2 +

d∑
j=3

λj ỹ
2
j

= λ1y
2
1 + λ2y

2
2 +

d∑
j=3

λjy
2
j =

d∑
j=1

λjy
2
j = y⊤Σy.

Hence, we have proved statement 1.

Proof of statement 2 First, note that ξ̃ = Ẽ∆̂1,2− ∆̂
⊤
1,2Σ∆1,2

∥Σ1/2∆1,2∥22
· Ẽ∆1,2. Recall that ∆1,2 ∝ ẽ1, and

so, Ẽ∆1,2 ∝ e1. Next, simple algebra shows that

(Ẽ∆̂1,2)j = e⊤j Ẽ∆̂1,2

= ẽ⊤j ∆̂1,2 = ẽ⊤j XA−1y1

=
√

λjz
⊤
j A

−1y1 =: α̂j .

where the third equality recalls the definition of ∆̂1,2 from Equation (85) and the second-to-last equality
recalls the definition zj :=

1√
λj
X⊤ẽj . Noting that, by definition, (Ẽ∆1,2)j = 0 for all j ̸= 1, we have
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thus shown that ξ̃j = α̂j for all j = 2, . . . , d. To complete the proof of statement 2, we need to show
that ξ̃1 = 0. Denote ∆1,2 = αẽ1 for some α > 0 (as a consequence, we also have Ẽ∆1,2 = αe1). Then,
it is equivalent to show that

∆̂
⊤
1,2Σ∆1,2

∥Σ1/2∆1,2∥22
· α = ẽ⊤1 ∆̂1,2.

(Recall that Ẽ∆1,2 ∝ e1, so this equality suffices to show the desired.) Starting with the LHS of the
above, we get

Σ∆1,2 = λ1αẽ1, and

Σ1/2∆1,2 = λ
1/2
1 αẽ1.

Therefore, we have

Σ∆1,2

∥Σ1/2∆1,2∥22
=

1

α
ẽ1, and

∆̂
⊤
1,2Σ∆1,2

∥Σ1/2∆1,2∥22
· α = ∆̂

⊤
1,2ẽ1.

This completes the proof of statement 2.
With statements 1 and 2 proved, the proof of this lemma is complete.

E.3.2 Proof of Lemma 21

We prove the lemma using induction on ℓ = 1, . . . , k. For the base case ℓ = 1, we have shown in
Lemma 4 that

|SU(1)
1,2| :=

λH · |z⊤1 A−1
−1:1y1|

1 + λH · z⊤1 A−1
−1:1z1

= |SU1,2| ≤ Ck . (97)

Now, we prove the inductive step. We fix ℓ > 1 and assume, along with the base case (Equation (97)),
that the statement is also true for 2, . . . , ℓ− 1, i.e.

∀j = 2, . . . , ℓ− 1, |SU(j)
1,2| :=

λH · |z⊤j A−1
−1:jỹj−1|

1 + λH · z⊤j A−1
−1:jzj

≤ Ck

n1/4
< Ck. (98)

(In fact, as we will see, we will only need to apply the weaker inequality |SU(j)
1,2| ≤ Ck.) We use

Equation (98) to prove the desired statement for ℓ. Consider first the numerator in the definition of
SU

(ℓ)
1,2, i.e. the term

z⊤ℓ A
−1
−1:ℓỹℓ−1 = z⊤ℓ A

−1
−1:ℓ

y1 −
ℓ−1∑
j=1

SU(j)
c1,c2zj

 = z⊤ℓ A
−1
−1:ℓy1 −

ℓ−1∑
j=1

SU(j)
c1,c2 · z⊤ℓ A−1

−1:ℓzj

Recall that z⊤ℓ A
−1
−1:ℓy1 = Rℓ,ℓ. Note that Lemma 18 shows for ℓ ≥ 2 that

|Rℓ,ℓ| ≤
Ck

n1/4
zℓA

−1
−1:ℓzℓ ,

Also recall from Lemma 26 that for all j < ℓ, we have

|zTℓ A−1
−1:ℓzj | ≤ Cn−1/4 · zTj A−1

−1:ℓzj ≤ Cn−1/4 · zTℓ A−1
−1:ℓzℓ ,

where again, the second inequality uses Lemma 24.
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Putting the above together, applying the triangle inequality and using the induction hypothesis
(i.e. |SU(j)

1,2| ≤ Ck) we conclude that

|z⊤ℓ A−1
−1:ℓỹℓ−1| ≤ C · zℓA−1

−1:ℓzℓ

(
Ck · n−1/4 + ℓ · Ck · n−1/4

)
≤ Ck

n1/4
· zℓA−1

−1:ℓzℓ . (99)

This gives us

|SU(ℓ)
1,2| :=

λH · |z⊤ℓ A−1
−1:ℓỹℓ−1|

1 + λH · z⊤ℓ A−1
−1:ℓzℓ

≤ 1

n1/4
·
λH · Ck · zℓA−1

−1:ℓzℓ

1 + λH · z⊤ℓ A−1
−1:ℓzℓ

≤ Ck

n1/4
(100)

for all ℓ ≥ 2. This completes the proof of the lemma.

F Recursive formulas for higher-order quadratic forms

We first show how quadratic forms involving the j-th order Gram matrix A−1
j can be expressed using

quadratic forms involving the (j − 1)-th order Gram matrix A−1
j−1. For concreteness, we consider j = 1;

identical expressions hold for any j > 1 with the only change being in the superscripts. Recall from
Section 6.2 that we can write

A1 = A0 +
[
∥µ1∥2v1 QTµ1 v1

] ∥µ1∥2vT
1

vT
1

µT
1 Q

 = QTQ+
[
∥µ1∥2v1 d1 v1

] ∥µ1∥2vT
1

vT
1

dT
1

 .

The first step is to derive an expression for A−1
1 . By the Woodbury identity [HJ12], we get

A−1
1 = A−1

0 −A−1
0

[
∥µ1∥2v1 d1 v1

] I+
∥µ1∥2vT

1

vT
1

dT
1

A−1
0

[
∥µ1∥2v1 d1 v1

]−1 ∥µ1∥2vT
1

vT
1

dT
1

A−1
0 .

(101)

We first compute the inverse of the 3 × 3 matrix B :=

I+
∥µ1∥2vT

1

vT
1

dT
1

A−1
0

[
∥µ1∥2v1 d1 v1

].

Recalling our definitions of the terms s
(c)
mj , h

(c)
mj and t

(c)
mj in Equation (40) in Section 6.2, we have:

B =

1 + ∥µ1∥22s
(0)
11 ∥µ1∥2h(0)11 ∥µ1∥2s(0)11

∥µ1∥2s(0)11 1 + h
(0)
11 s

(0)
11

∥µ1∥2h(0)11 t
(0)
11 1 + h

(0)
11

 .

Recalling B−1 = 1
det0

adj(B), where det0 is the determinant of B and adj(B) is the adjoint of B, simple
algebra gives us

det0 = s
(0)
11 (∥µ1∥22 − t

(0)
11 ) + (h

(0)
11 + 1)2,

and

adj(B) =

 (h
(0)
11 + 1)2 − s

(0)
11 t

(0)
11 ∥µ1∥2(s(0)11 t

(0)
11 − h

(0)
11 − h

(0)
11

2
) −∥µ1∥2s(0)11

−∥µ1∥2s(0)11 h
(0)
11 + 1 + ∥µ1∥22s

(0)
11 −s

(0)
11

∥µ1∥2(s(0)11 t
(0)
11 − h

(0)
11 − h

(0)
11

2
) ∥µ1∥22h

(0)
11

2
− t

(0)
11 (1 + ∥µ1∥22s

(0)
11 ) h

(0)
11 + 1 + ∥µ1∥22s

(0)
11

 .

We will now use these expressions to derive expressions for the 1-order quadratic forms that are used in
Appendix A.2.
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F.1 Expressions for 1-st order quadratic forms

We now show how quadratic forms of order 1 can be expressed as a function of quadratic forms of order
0. All of the expressions are derived as a consequence of plugging in the expression for B−1 together
with elementary matrix algebra.

First, we have

s
(1)
mk = vT

mA−1
1 vk = vT

mA−1
0 vk −

[
∥µ1∥2s(0)m1 h

(0)
m1 s

(0)
m1

] adj(B)

det0

∥µ1∥2s(0)k1

s
(0)
k1

h
(0)
k1


= s

(0)
mk −

1

det0
(⋆)(0)s , (102)

where we define

(⋆)(0)s := (∥µ1∥22 − t
(0)
11 )s

(0)
1k s

(0)
1m + s

(0)
1mh

(0)
k1 h

(0)
11 + s

(0)
1k h

(0)
m1h

(0)
11 − s

(0)
11 h

(0)
k1 h

(0)
m1 + s

(0)
1mh

(0)
k1 + s

(0)
1k h

(0)
m1.

Thus, for the case m = k we have

s
(1)
kk = vT

k A
−1
1 vk = vT

k A
−1
0 vk −

[
∥µ1∥2s(0)k1 h

(0)
k1 s

(0)
k1

] adj(B)

det0

∥µ1∥2s(0)k1

s
(0)
k1

h
(0)
k1


= s

(0)
kk − 1

det0

(
(∥µ1∥22 − t

(0)
11 )s

(0)
1k

2
+ 2s

(0)
1k h

(0)
k1 h

(0)
11 − s

(0)
11 h

(0)
k1

2
+ 2s

(0)
1k h

(0)
k1

)
. (103)

Next, we have

h
(1)
mk = vT

mA−1
1 dk = vT

mA−1
0 dk −

[
∥µ1∥2s(0)m1 h

(0)
m1 s

(0)
m1

] adj(B)

det0

∥µ1∥2h(0)1k

h
(0)
1k

t
(0)
1k


= h

(0)
mk −

1

det0
(⋆)

(0)
h , (104)

where we define

(⋆)
(0)
h = (∥µ1∥22 − t

(0)
11 )s

(0)
1mh

(0)
1k + h

(0)
m1h

(0)
1k h

(0)
11 + h

(0)
m1h

(0)
1k + s

(0)
1mt

(0)
k1 + s

(0)
1mt

(0)
k1 h

(0)
11 − s

(0)
11 t

(0)
k1 h

(0)
m1.

Next, we have

t
(1)
km = dT

kA
−1
1 dm = dT

kA
−1
0 dm −

[
∥µ1∥2h(0)1k t

(0)
1k h

(0)
1k

] adj(B)

det0

∥µ1∥2h(0)1m

h
(0)
1m

t
(0)
1m


= t

(0)
km − 1

det0
(⋆)

(0)
t , (105)

where we define

(⋆)
(0)
t = (∥µ1∥22 − t

(0)
11 )h

(0)
1mh

(0)
1k + t

(0)
m1h

(0)
1k h

(0)
11 + t

(0)
k1 h

(0)
1mh

(0)
11 + t

(0)
1mh

(0)
1k + t

(0)
1k h

(0)
1m − s

(0)
11 t

(0)
1mt

(0)
1k .

Thus, for the case m = k we have

t
(1)
kk = dT

kA
−1
1 dk = dT

kA
−1
0 dk −

[
∥µ1∥2h(0)1k t

(0)
1k h

(0)
1k

] adj(B)

det0

∥µ1∥2h(0)1k

h
(0)
1k

t
(0)
1k


= t

(0)
kk − 1

det0

(
(∥µ1∥22 − t

(0)
11 )h

(0)
1k

2
+ 2t

(0)
1k h

(0)
1k h

(0)
11 − s

(0)
11 t

(0)
1k

2
+ 2t

(0)
1k h

(0)
1k

)
. (106)

72



Next, we have

f
(1)
ki = dT

kA
−1
1 ei = dT

kA
−1
0 ei −

[
∥µ1∥2h(0)1k t

(0)
1k h

(0)
1k

] adj(B)

det0

∥µ1∥2g(0)1i

g
(0)
1i

f
(0)
1i


= f

(0)
ki − 1

det0
(⋆)

(0)
f , (107)

where we define

(⋆)
(0)
f = (∥µ1∥22 − t

(0)
11 )h

(0)
1k g

(0)
1i + t

(0)
1k g

(0)
1i + t

(0)
1k h

(0)
11 g

(0)
1i + h

(0)
1k f

(0)
1i + h

(0)
1k h

(0)
11 f

(0)
1i − s

(0)
11 t

(0)
1k f

(0)
1i .

Finally, we have

g
(1)
ji = vT

j A
−1
1 ei = vT

j A
−1
0 ei −

[
∥µ1∥2s(0)j1 h

(0)
j1 s

(0)
j1

] adj(B)

det0

∥µ1∥2g(0)1i

g
(0)
1i

f
(0)
1i


= g

(0)
ji − 1

det0
(⋆)

(0)
gj , (108)

where we define

(⋆)
(0)
gj = (∥µ1∥22 − t

(0)
11 )s

(0)
1j g

(0)
1i + g

(0)
1i h

(0)
11 h

(0)
j1 + g

(0)
1i h

(0)
j1 + s

(0)
1j f

(0)
1i + s

(0)
1j h

(0)
11 f

(0)
1i − s

(0)
11 h

(0)
j1 f

(0)
1i .

G One-vs-all SVM

In this section, we derive conditions under which the OvA solutions wOvA,c interpolate, i.e, all data
points are support vectors in Equation (8).

G.1 Gaussian mixture model

As in the case of the multiclass SVM, we assume nearly equal priors and nearly equal energy on the
class means (Assumption 1).

Theorem 7. Assume that the training set follows a multiclass GMM with noise covariance Σ = Ip and
Assumption 1 holds. Then, there exist constants c1, c2, c3 > 1 and C1, C2 > 1 such that the solutions of
the OvA-SVM and MNI are identical with probability at least 1− c1

n − c2ke
− n

c3k
2 provided that

p > C1kn log(kn) + n− 1 and p > C2n
1.5∥µ∥2. (109)

We can compare Equation (109) with the corresponding condition for multiclass SVM in Theorem 2
(Equation (16)). Observe that the right-hand-side of Equation (109) above does not scale with k,
while the right-hand-side of Equation (16) scales with k as k3. Otherwise, the scalings with n and
energy of class means ∥µ∥2 are identical. This discrepancy with respect to k-dependence arises because
the multiclass SVM is equivalent to the OvA-SVM in Equation (34) with unequal margins 1/k and
(k − 1)/k (as we showed in Theorem 1).

Proof sketch. Recall from Section 6.2 that we derived conditions under which the multiclass SVM
interpolates the training data by studying the related symmetric OvA-type classifier defined in Equa-
tion (15). Thus, this proof is similar to the proof of Theorem 2 provided in Section 6.2. The only
difference is that the margins for the OvA-SVM are not 1/k and (k− 1)/k, but 1 for all classes. Owing
to the similarity between the arguments, we restrict ourselves to a proof sketch here.
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Following Section 6.2 and Equation (46), we consider yi = k. We will derive conditions under which
the condition(

(1 + h
(−k)
kk )g

(−k)
ki − s

(−k)
kk f

(−k)
ki

)
+ C

∑
j ̸=k

(
(1 + h

(−j)
jj )g

(−j)
ji − s

(−j)
jj f

(−j)
ji

)
> 0, (110)

holds with high probability for some C > 1. We define

ϵ :=
n1.5∥µ∥2

p
≤ τ,

where τ is chosen to be a sufficiently small constant. Applying the same trick as in Lemma 2 (with the
newly defined parameters ϵ and τ) gives us with probability at least 1− c1

n − c2ke
− n

c3k
2 :

(110) ≥
((

1− C1ϵ√
k
√
n

)(
1− 1

C2

)
1

p
− C3ϵ

n
· n

kp

)
− k

C4

((
1 +

C5ϵ√
k
√
n

)
1

kp
− C6ϵ

n
· n

kp

)
≥
(
1− 1

C9
− C10ϵ√

k
√
n
− C11ϵ

k
− C12ϵ

)
1

p

≥ 1

p

(
1− 1

C9
− C0τ

)
, (111)

for some constants Ci’s > 1. We used the fact that |g(0)ji | ≤ (1/C)(1/(kp)) for j ̸= yi with probability at

least 1− c1
n − c2ke

− n
c3k

2 provided that p > C1kn log(kn) + n− 1, which is the first sufficient condition
in the theorem statement.

G.2 Multinomial logistic model

Recall that we defined the data covariance matrix Σ =
∑p

i=1 λiviv
T
i = V ΛV T and its spectrum

λ =
[
λ1 · · · λp

]
. We also defined the effective dimensions d2 :=

∥λ∥21
∥λ∥22

and d∞ := ∥λ∥1
∥λ∥∞ .

The following result provides sufficient conditions under which the OvA SVM and MNI classifier
have the same solution with high probability under the MLM.

Theorem 8. Assume that the training set follows a multiclass MLM. There exist constants c and
C1, C2 > 1 such that, if the following conditions hold:

d∞ > C1n log(kn) and d2 > C2(log(kn) + n), (112)

the solutions of the OvA-SVM and MNI are identical with probability at least (1− c
n). In the special

case of isotropic covariance, the same result holds provided that

p > 10n log(
√
kn) + n− 1, (113)

Comparing this result to the corresponding results in Theorems 3, we observe that k now only
appears in the log function (as a result of k union bounds). Thus, the unequal 1/k and (k − 1)/k
margins that appear in the multiclass-SVM make interpolation harder than with the OvA-SVM, just as
in the GMM case.

Proof sketch. For the OvA SVM classifier, we need to solve k binary max-margin classification problems,
hence the proof follows directly from [MNS+21, Theorem 1] and [HMX21, Theorem 1] by applying k
union bounds. We omit the details for brevity.
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One-vs-one SVM

In this section, we first derive conditions under which the OvO solutions interpolate, i.e, all data points
are support vectors. We then provide an upper bound on the classification error of the OvO solution.

In OvO classification, we solve k(k − 1)/2 binary classification problems, e.g. for classes pair (c, j),
we solve

wOvO,(c,j) := argmin
w

∥w∥2 sub. to wTxi ≥ 1, if yi = c; wTxi ≤ −1 if yi = j, ∀i ∈ [n]. (114)

Then we apply these k(k− 1)/2 classifiers to a fresh sample and the class that got the highest +1 voting
gets predicted.

We now present conditions under which every data point becomes a support vector over these
k(k − 1)/2 problems. We again assume nearly equal priors and nearly equal energy on the class means
(Assumption 1).

Theorem 9. Assume that the training set follows a multiclass GMM with noise covariance Σ = Ip and
Assumption 1 holds. Then, there exist constants c1, c2, c3 > 1 and C1, C2 > 1 such that the solutions of
the OvA-SVM and MNI are identical with probability at least 1− c1

n − c2ke
− n

c3k
2 provided that

p > C1n log(kn) + (2n/k)− 1 and p > C2n
1.5∥µ∥2. (115)

Proof sketch. Note that the margins of OvO SVM are 1 and −1, hence the proof is similar to the proof
of Theorem 7. Recall that in OvO SVM, we solve k(k − 1)/2 binary problems and each problems has
sample size 2n/k with high probability. Therefore, compared to OvA SVM which solves k problems
each with sample size n, OvO SVM needs less overparameterization to achieve interpolation. Thus the
first condition in Equation (109) reduces to p > C1n log(kn) + (2n/k)− 1.

We now derive the classification risk for OvO SVM classifiers. Recall that OvO classification solves
k(k − 1)/2 binary subproblems. Specifically, for each pair of classes, say (i, j) ∈ [k]× [k], we train a
classifier wij ∈ Rp and the corresponding decision rule for a fresh sample x ∈ Rp is ŷij = sign(xT ŵij).
Overall, each class i ∈ [k] gets a voting score si =

∑
j ̸=i 1ŷij=+1. Thus, the final decision is given by

majority rule that decides the class with the highest score, i.e. argmaxi∈[k] si. Having described the
classification process, the total classification error Pe for balanced classes is given by the conditional
error Pe|c given the fresh sample belongs to class c. Without loss of generality, we assume c = 1.
Formally, Pe = Pe|1 = Pe|1(s1 < s2 or s1 < s3 or · · · or s1 < sk). Under the nearly equal prior and
energy assumption, by symmetry and union bound, the conditional classification risk given that true
class is 1 can be upper bounded as:

Pe|1(s1 < s2 or s1 < s3 or · · · or s1 < sk) ≤ Pe|1(s1 < k − 1) = Pe|1(∃j s.t. ŷ1j ̸= 1) ≤ (k − 1)Pe|1(ŷ12 ̸= 1).

Therefore, it suffices to bound Pe|1(y12 ̸= 1). We can directly apply Theorem 4 with changing k to 2
and n to 2n/k.

Theorem 10. Let Assumptions 1 and 2, and the condition in Equation (115) hold. Further assume

constants C1, C2, C3 > 1 such that
(
1−C1

√
k
n − C2n

kp

)
∥µ∥2 > C3. Then, there exist additional constants

c1, c2, c3 and C4 > 1 such that the OvO SVM solutions satisfies:

Pe|c ≤ (k − 1) exp

−∥µ∥22

((
1− C1

√
k
n − C2n

kp

)
∥µ∥2 − C3

)2

C4

(
∥µ∥22 + kp

n

)
 (116)

with probability at least 1− c1
n − c2ke

− n
c3k

2 , for every c ∈ [k]. Moreover, the same bound holds for the
total classification error Pe.
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