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Summary9

Lagrangian data in Earth sciences are unique because they do not conform to established10

standards related to dimensions, coordinates, and organizational structures. In addition, because11

they convolve spatial and temporal information, Lagrangian data need specific processing and12

analysis tools for their scientific and operational use. The clouddrift Python library addresses13

these challenges by offering tools to process and analyze Lagrangian data with an emphasis on14

the ragged array representation.15

Statement of need16

In Earth, Ocean, Geo-, and Atmospheric Science, Eulerian data typically refers to a type of17

data acquired or simulated at a particular fixed point or region in space. Eulerian data are18

defined on fixed spatiotemporal grids with monotonic coordinates (e.g. latitude, longitude,19

depth, time) for which popular Python tools such as Xarray (Hoyer & Hamman, 2017) are20

naturally suited. In contrast, Lagrangian data are acquired by observing platforms that move21

with the flow they are embedded in, for example, uncrewed platforms, vehicles, virtual particles,22

atmospheric phenomena such as tropical cyclones, and even animals that gather data along23

their natural but complex paths. Because such paths traverse both spatial and temporal24

dimensions, Lagrangian data often convolve spatial and temporal information that cannot25

consistently and readily be organized, cataloged, and stored in common data structures and26

file formats with the help of common libraries and standards. As an example, the concepts of27

dimensions and coordinates for Lagrangian data are ambiguous and not clearly established. As28

such, for both data generators and data users, Lagrangian data present challenges that the29

clouddrift Python library aims to overcome.30

The clouddrift library is distinct from other tools designed to simulate particle trajectories in31

oceanic and atmospheric models, such as OceanParcels (Delandmeter & Sebille, 2019), or32

HYSPLIT (Stein et al., 2015). Unlike these softwares, clouddrift’s primary intent is to provide33

specific tools to analyze data from observational and numerical Lagrangian experiments. The34

second intent is to transform Lagrangian datasets into analysis-ready cloud-optimized datasets35

using consistent data structures and methodologies, an objective similar to Pangeo-Forge for36

Earth data (Stern et al., 2022). While clouddrift shares some goals with argopy (Maze &37

Balem, 2020), a Python library for accessing and manipulating the Argo dataset (a specific38

Lagrangian oceanographic dataset), clouddrift aims to be dataset-agnostic and extends beyond39

just Earth data. Additionally, clouddrift incorporates oceanographic analysis functions from40

jLab, a Matlab data analysis package (Lilly, 2021), in compliance with its license. Clouddrift41
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core Python dependencies include NumPy (Harris et al., 2020) and SciPy (Virtanen et al.,42

2020) for data analysis, as well as Xarray (Hoyer & Hamman, 2017), pandas (McKinney,43

2010; The pandas development team, 2024), and Awkward Array for its data processing and44

manipulation functions.45

Scope and key features46

The scope of the clouddrift library includes:47

1. Working with contiguous ragged array representations of data, whether they originate48

from geosciences or any other field. Ragged array representations are useful when49

the data lengths of the instances of a feature (variable) are not all equal. With such50

representations the data for each feature are stored contiguously in memory, and the51

number of elements that each feature has is contained in a count variable which clouddrift52

calls rowsize. A graphical representation of the application of the ragged array structure53

to Lagrangian data is displayed in Figure 1.54

Figure 1: Ragged array representation for Lagrangian data.

2. Delivering functions and methods to perform scientific analysis of Lagrangian data,55

oceanographic or otherwise (LaCasce, 2008; van Sebille et al., 2018), structured as56

ragged arrays or otherwise. A straightforward example of Lagrangian analysis provided57

by clouddrift is the derivation of Lagrangian velocities from a sequence of Lagrangian58

positions, and vice versa. Another more involved example is the discovery of pairs of59

Lagrangian data prescribed by distances in space and time. Both of these methods are60

currently available with clouddrift.61

Example: The following example illustrates how to combine two functions from the clouddrift62

library in order to calculate Lagrangian velocities from ragged arrays of Cartesian positions and63

times that share row sizes 2, 3, and 4:64

import numpy as np

from clouddrift.kinematics import velocity_from_position

from clouddrift.ragged import apply_ragged

rowsize = [2, 3, 4]

x = np.array([1, 2, 10, 12, 14, 30, 33, 36, 39])
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y = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])

t = np.array([1, 2, 1, 2, 3, 1, 2, 3, 4])

u1, v1 = apply_ragged(velocity_from_position, [x, y, t], rowsize,

coord_system="cartesian")

3. Processing publicly available Lagrangian datasets into the common ragged array data65

structure and format. Through data adapters, this type of processing includes not66

only converting Lagrangian data from typically regular arrays to ragged arrays but also67

aggregating data and metadata from multiple data files into a single data file. The68

canonical example of the clouddrift library is constituted of the data from the NOAA69

Global Drifter Program (Elipot et al., 2022).70

Example: The following example locally builds an xarray dataset, with ragged array representa-71

tions, of the latest dataset of position, velocity, and sea surface temperature from the Global72

Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys:73

from clouddrift.adapters import gdp6h

ds = gdp6h.to_raggedarray().to_xarray()

4. Making cloud-optimized ragged array datasets easily accessible. This involves opening in74

a computing environment, without unnecessary download, Lagrangian datasets available75

from cloud servers, as well as opening Lagrangian datasets that have been seamlessly76

processed by the clouddrift data adapters.77

Example: The following simple command remotely opens without downloading the hourly78

location, current velocity, and temperature collected from Global Drifter Program drifters79

worldwide, distributed as a Zarr archive with ragged array representations and stored in cloud80

storage as part of the Registry of Open Data on AWS:81

from clouddrift.datasets import gdp1h

ds = gdp1h()
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