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Abstract: This is a mini-review capturing the views and opinions of selected participants at the 2021
IEEE BIBM 3rd Annual LncRNA Workshop, held in Dubai, UAE. The views and opinions are ex-
pressed on five broad themes related to problems in IncRNA, namely, challenges in the computational
analysis of IncRNAs, IncRNAs and cancer, IncRNAs in sports, IncRNAs and COVID-19, and IncRNAs
in human brain activity.

Keywords: IncRNAs; cancer; COVID-19; IncRNA datasets; deep learning; large language models

1. Introduction

This mini-review collates selected views and opinions on certain topics in the area
of long non-coding RNA (IncRNA) biology, bioinformatics, genomics, and therapeutics,
from the perspectives of several keynote, plenary, and invited speakers, panelists, and
organizers of the IEEE BIBM 3rd Annual LncRNA Workshop, which was held in Dubai,
UAE, in December 2021, with both remote and in-person participation. As a mini-review,
this article is not intended to be either comprehensive or complete, nor does it cover all the
important issues surrounding today’s IncRNA research. Contributors were asked to write
briefly on a topic of their choice as it related to their presentations or the discussions at the
Workshop. This mini-review touches on five broad themes chosen for their relevance and
appeal to the IncRNA community: challenges in the computational analysis of IncRNAs,
IncRNAs and cancer, IncRNAs in sports, IncRNAs and COVID-19, and IncRNAs in human
brain activity.

Given the focus on discussion and presentations at the 2021 Workshop, we acknowl-
edge the limited scope of this mini-review, as it could not cover various equally important
topics related to IncRNA—for instance, the accurate prediction of IncRNA targets and
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functions; tissue, cell type, and context specificity of IncRNAs and their roles in develop-
ment, differentiation, and tissue homeostasis; roles of IncRNAs in cell communication and
immune response; IncRNA function in the brain beyond epilepsy; the relationship of the
IncRNAome to the conundrum of bifunctional RN'As; and other themes.

The views and opinions expressed are those of the authors and do not necessarily
represent those of the IEEE or BIBM. Not all invited speakers contributed to this mini-review.

2. Current Challenges in the Computational Analysis of LncRNAs

Alexandre Rossi Paschoal, Federal University of Technology—Parand—UTFPR, Brazil; Rosalind
Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK,

Xiaobo Zhou, University of Texas Health Science Center, Houston, TX, USA,

Donald A. Adjeroh, West Virginia University (WVU), Morgantown, WV, USA.

Long non-coding RNA (IncRNA) is arbitrarily defined as a transcript greater than
200 nucleotides (nt) with low or no potential to encode a protein. These IncRNA genes may
reside in regions of the genome between protein-coding genes, but they may also overlap
protein-coding regions, which results in several IncRNA biotypes, including intergenic,
antisense, and intronic IncRNAs. According to GENCODE version 44 (v44) website statis-
tics (www.gencodegenes.org/human/stats.html (accessed on 28 September 2023)), 31.8%
(19,922/62,700) of the total genes annotated are IncRNA genes, while 23.0% (58,246/252,835)
of the annotated transcripts are IncRNA loci transcripts. In contrast, just a tiny fraction
of these is experimentally or manually curated and available and, in general, this is typi-
cally obtained from model species. These observations can tremendously impact IncRNA
research. For that, we provide some discussion that may help researchers reflect on the
current challenges in long non-coding RNA research. We point out open challenges crucial
for the mathematical and computational modeling and analysis of IncRNAs and their roles
in the cell. Some of these challenges require immediate attention, while others may require
longer-term research to address. All the same, the goal is to raise the curiosity of the IncRNA
community about these problems and to call attention to potential directions toward their
resolution. We organized our discussion on the computational challenges into three broad
groups: RNA biology, data challenges, and machine learning in IncRNA analysis.

2.1. RNA Biology: LncRNAs and Their Functions, ORFs, and Micropeptides

Long non-coding RNAs are essential players in many cellular processes, from regular
development to oncogenic transformation. Figure 1 provides a schematic view of the
functions of IncRNAs. The rapid growth of genome-wide translation profiling and ribosome
profiling has revealed that a number of small open reading frames (sSORFs) within ncRNAs
actually have peptide- or protein-coding potential [1,2]. The peptides or short proteins
encoded by transcripts annotated as IncRNAs have been shown to be critical players in
cancer development and progression. For example, a conserved 53 aa peptide encoded
by the putative IncRNA HOXB-AS3 suppresses colon cancer growth by regulating the
alternative splicing of pyruvate kinase M (PKM) and tumor metabolic reprogramming [1,3].
FBXW?7-185aa is encoded by the circRNA FBXW?7 and inhibits glioma growth [4]. Moreover,
miPEP-200a and miPEP-200b are encoded by miR-200a and miR-200b, and respectively,
inhibit the migration of prostate cancer cells via the suppression of the process of epithelial-
to-mesenchymal transition [5].

The addiction to ORF annotation in “non-coding” biology. A recent study discussed
the feature extraction approaches for biological sequences using different mathematical
formulations [6]. In particular, the paper provided detailed mapping of the timeline on
various tools for IncRNA identification (see Figure 1 in [6]). Of these tools, only 3 out of 21
(14.2%) did not use open reading frame (ORF) predictions or annotations in their methods.
The conclusion was that most current approaches to IncRNA analysis are, paradoxically,
still highly dependent on ORF information. How would such tools that highly depend on
ORF information handle IncRNAs without ORF information? With the rise in awareness
of the frequent incidence of small ORFs (sORFs or smORFs) in IncRNAs, what will the
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behavior of these tools be? How do they and how should they handle sORFs inside IncRNA
genes? These are some open questions that the field will face imminently. One essential
suggestion could be to consider alignment-free methods, using tools such as BASiNET [7],
an alignment-free tool that uses network-based features to analyze biological sequences.

A. Multifunctional polymers
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Figure 1. The functions of IncRNAs can be considered from two perspectives, namely, (i) from
the viewpoint of RNA function alone and (ii) in terms of encoding peptides or proteins. (A) The
multifunctional molecular complexes containing IncRNAs, including IncRNA-protein, IncRNA-
DNA, IncRNA-mRNA, and IncRNA-miRNA. (B) The functions of IncRNAs as RNA molecules:
IncRNAs regulate target genes by functioning as enhancers, IncRNAs regulate target genes by
recruiting transcription factors, IncRNAs regulate alternative splicing events by interacting with
splicing factors, and IncRNAs regulate mRNA by targeting the 3’-UTR region. (C) The functions of
IncRNAs via encoding peptides or proteins able to regulate alternative splicing (e.g., HOXB-AS3
peptide) and gene expression (e.g., SPAR peptide).

Coding or non-coding RNA: What is a gene? The definition of a gene has been
substantially updated since the Central Dogma of Molecular Biology proposed by Watson
and Crick. Researchers of the first post-genomic century have been deliberating over the
increasingly complex question of what are coding and non-coding genes. This scenario
brings one particular challenge, namely, when is the gene actually coding for a protein?
For example, if a gene has 12 isoforms, of which some are coding and some are non-coding
transcripts, should it be considered a coding or a non-coding gene? This is the case for
the gene KCNK4-TEX40 (ID: ENSG00000257069), which has six transcripts annotated as
protein-coding (including one with its CDS not defined), four annotated as “RNA with
retained introns”, one as a product of nonsense-mediated decay, and a last one as an
IncRNA. The question is the following: Do the isoforms not matter? This issue is not
trivial, and also relates to the problem of bifunctional RNAs [8-10] where certain RNAs
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biologically exhibit both a protein-coding capacity and non-coding functional properties, as
well as to complex transcriptional units such as SRA1, where a combination of alternative
splicing and promoter choice lead to the production of distinct coding and non-coding
transcripts, with different functions, from a single gene locus.

Small in size, but a bigger challenge. On a related challenge, there have been
discussions about small, short, or micropeptides, or small ORFs. These peptides are
derived from a myriad of genomic locations including coding, non-coding, intergenic, and
untranslated regions (UTRs) with upstream or downstream coding gene regions, unveiling
the remarkable complexity of cells [11]. Principally, the identification of IncRNA-encoded
small peptides confronts the basic molecular biological concepts and brings up the question
of whether or not these micropeptides are just noise. There are indications that some of
these may not be just noise. A small peptide of 53 aa encoded by the IncRNA HOXB-AS3
binds to an mRNA and inhibits the formation of PKM2 to induce a tumor-suppressive
effect [12] (see also Figure 1).

2.2. The Data Challenge in LncRNA Research: Datasets, Availability, Beyond Human Data

Datasets. In the era of data-hungry machine learning and other artificial intelligence
(AI) techniques, data have become a premium in successful applications of these ap-
proaches in a given domain. Not surprisingly, the availability of data and datasets has also
become an urgent challenge in the computational analysis of IncRNAs and their functions.
Several datasets have become available on IncRNAs. For instance, RNALocate v2.0 [13]
contains RNA subcellular localization entries validated by experimental evidence. The
database contains information on IncRNAs located in the nucleus, cytoplasm, ribosome,
exosome, nucleoplasm, chromatin, cytosol, endoplasmic reticulum, and plasma membrane.
LncATLAS [14], a key database for the subcellular localization of IncRNAs, provides a
cytoplasmic/nuclear relative concentration index (CN-RCI), derived from GENCODE
(Ensembl) RN A-Seq measurements for IncRNAs and mRNAs across 15 cell lines.

From the emerging importance of ncRNAs in cancer, studying regulations related to
ncRNAs and their coding potential is essential to fully understanding cancer progression
and identifying therapeutic targets. Several databases are now available on cancer-related
studies providing annotations for interaction and ncRNA-disease associations. Examples
of these include RN Acentral [15], NONCODE [16], NoncoRNA [17], NPInter [18], ViR-
Base [19], MNDR [20], EVAtlas [21], ncRNA-eQTL [22], and NSDNA [23]. Some datasets
such as ncEP [24], FuncPEP [25], and SPENCER [26] only contain experimentally validated
and functionally characterized ncRNA-encoded peptides. IncRNAfunc [27] is a newly
developed knowledgebase focusing on the annotation of IncRNA function in human cancer.
TransLnc [28] provides the potential peptides encoded by IncRNAs, but this database
only includes IncRNAs and lacks circRNAs and miRNAs, which are also required to fully
understand ncRNAs’ coding potential of action in cancer. Recently, a manually curated
dataset of bifunctional RN As was introduced [10].

To date, systematic annotations of coding potentials for ncRNAs have been unavail-
able. There is also an urgent need to develop a comprehensive resource for translatable
ncRNAs that extends neoantigens for investigating the translation capacity of ncRNAs and
for expanding investigations on the cancer immunopeptidome. Similar comprehensive
resources are also required for applications of IncRNAs and other ncRNAs outside of cancer.
But other challenges still abound.

Benchmarking, standardized nomenclature, and discrepancies. As noted by the
creators of the Extensive de novo TE Annotator (EDTA) in [29], there is a significant lack of
benchmarking and standardized studies to help to organize the diversity of studies and
datasets in IncRNA research. We have the HUGO Gene Nomenclature Committee [30]
and similar reports [31,32], for example. All these initiatives are crucial for biological
research; however, they have focused mainly on humans. Science is much more than the
human genome. In plants, there are disparate IncRNA datasets, with differences in their
annotations. A case in point is the difference in IncRNA annotations between two popular
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datasets CANTATAdD [33,34] and GreeNC [35,36]. What is the overlap among these
available databases? The lack of experimental data raises the need for a careful analysis of
potential discrepancies and to possibly arrive at a consensus across different datasets.

Big data age does not always mean good data availability. By 2019, there were over
230 databases dedicated only to ncRNAs [37,38]. For miRNA, the most studied ncRNA,
only about 13% of the databases made their FASTA sequences or similar files available,
and for IncRNAs, it was even a tinier fraction [37,38]. The scientific community has to
wake up to these unbelievable statistics because information is needed to build novel and
cutting-edge methods. Having access to data is fundamental to improving in silico research.
This seems obvious, but it is not always the case. This challenge brings one more reflection
that less is actually more. From a supervised machine learning point of view, a higher
quality but smaller number of experimentally validated data samples is perhaps better
than big data without validated data or curated labels. We also do concede that, when
one considers certain machine learning models, such as self-supervised learning, large
unannotated datasets can still be valuable for learning important representations from
the data. A related challenge is about how the scientific community makes data available.
This is perhaps a more general problem, beyond IncRNAs and genomics research. There
are cases where a dataset was published but not updated; even worse, the dataset may
have been discontinued and made no longer available, without providing access to the old
versions of the dataset. This has been observed even for datasets published as part of some
papers in relatively high-quality (Q1) journals. Another aspect is that, oftentimes, data
are available as supplementary material and are often incomplete, for instance, without
complete sequence information or other relevant attributes. These data need to be easier
to obtain. Making data available in several formats (e.g., FASTA, GFE, BED, TSV), using
an uncomplicated download protocol is the way to go. Some journals and conferences are
already moving toward this requirement.

Beyond IncRNA data from humans and other model organisms. The pandemic
created an awareness and significantly increased our consciousness with respect to the
importance of using data from non-model species in important biomedical investigations.
Whether such data are coming from a bat or from a pangolin does not matter. What really
matters is that only focusing on humans or mammals limits our analysis and perspective to
just a tiny fraction of biodiversity. Only by deeply exploring other species can we prepare
ourselves for future pandemics and novel drug development. A well-explored model plant
is Arabidopsis thaliana, whose genome, for example, is quite comparatively different from
the coffee genome. For IncRNAs, and for ncRNAs or other types of genomic research for
that matter, there is an urgent need to consider information and genomic data from other
species, beyond the human genome, or the standard model species.

2.3. Modern Machine Learning in LncRNA Research: Deep Learning and LLMs

We consider there to be two problems in the application of artificial intelligence (AI)
techniques in IncRNA analysis, specifically the use of deep learning models in IncRNA
localization and the use of large language models (LLMs) in studying IncRNAs.

LncRNA subcellular localization: More challenging than it appears. There has
been vigorous research on computational approaches to the problem of IncRNA iden-
tification [39—41] and on the issue of mRINA localization [42—-45]. LncRNA subcellular
localization has also attracted some recent attention [46], and various machine learning
methods have been proposed [47-49]. Some of these methods reported relatively high per-
formance, for instance, relatively high accuracy, and in some cases, above 90%. However, a
closer analysis showed that most of these methods had problems in their data, for instance,
working with significantly imbalanced data, where the machine learning model was basi-
cally memorizing the majority class. In some others, there was observed significant leakage
in the data, whereby there was leakage of data from the training to the validation sets or
to the test sets. In some other cases, some methods tended to directly or indirectly ignore
or eliminate the difficult cases (for instance, based on the thresholds used to declare the
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localization, say nuclear versus cytoplasmic localization, for the case of binary localization).
The result was that the true performance of these methods was typically in the 50% to 65%
range (for binary nuclear versus cytoplasmic localization), generally much lower than some
of the reported performance levels. However, the results for these methods demonstrated
that the computational analysis of IncRNA localization, be it for binary class or multi-
class localization, is still a critical challenge, especially using only sequence information.
This thus calls for more careful benchmarking of existing machine learning methods for
this problem. For fairness, such benchmarking will have to be performed on the same
dataset across different methods and on the same or comparable hardware configurations.
(This obviously relates to the challenge of the datasets introduced previously). Beyond
benchmarking, there is also need for more specialized machine learning and deep learning
techniques that can exploit the special nature and characteristics of IncRNAs, including
information on their sequences, structures, conformations, and types. Clearly, this need for
more sophisticated deep learning algorithms also applies to the general area of IncRNA
and ncRNA analysis, and not just on IncRNA localization.

Large Language Models (LLMs) for IncRNAs. Current IncRNA detection methods are
mainly designed based on transcriptome sequencing data. Language models such as Bidi-
rectional Encoder Representations from Transformers (BERT) and Generative Pre-training
(GPT) have received an extensive attention recently because of the good performance of
the transformer involved. They have been applied in various directions and fields. Re-
cently, scientists found that some sORFs were also derived from IncRNAs. sORF-encoded
peptides (SEPs) with a length of less than 100 amino acids were found to be involved in
cancer suppression and cellular metabolism. Feng et. al. developed LncCat [50], an ORF
attention model for identifying IncRNAs using a natural language model, which showed
an impressive performance. This model could be improved by pre-training and fine-tuning
the BERT and GPT models. Other models such as the BART model [51] could be applied
to this problem too. We could potentially identify a lot of more IncRNAs with these latest
approaches. Along the lines of the improved techniques mentioned earlier, a similar case
can also be made beyond methods for improved IncRNA identification, but for the case
of developing specialized LLMs for general analysis and understanding IncRNAs and
their functions.

2.4. Looking to the Future: Toward Improved Research and Applications

Two aspects are helping to provide better IncRNA annotation and, consequently,
discover better IncRNA functional information. The first is developments in long-read
sequencing technology which will help to sequence full-length transcripts and IncRNAs.
The second is the deep sequencing of genomes (for example, the Genome 10K Project [52];
100,000 Genomes— in Africa, for Africa [53]; 100,000 Genome Project in the UK [54]; and
10KP: 10,000 Plant Genomes Project [55]). These are examples of how the large-scale avail-
ability of samples in the same species could help to comprehend the diversity, conservation,
and variability among IncRNAs. In the same way, single-cell sequencing will help to
look at these data as individual cells, enabling cell-to-cell communication. Further, the
increasing availability of information about chromatin packaging and accessibility, for
instance, from assays for transposase-accessible chromatin with sequencing (ATAC-Seq),
could also open up another vista for the improved computational analysis of IncRNAs.
Combining insights from ATAC-Seq with information from RNA-Seq could lead to new
breakthroughs in the machine understanding of the functions and activities of ncRNAs
in general, and IncRNAs in particular. These technologies coupled with improvements
and new developments in computational methods (both hardware (e.g., processor archi-
tectures) and software (e.g., Al)) will improve future research on IncRNAs and create new
applications and possibilities like never before seen.
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3. Challenges and Rewards of Modelling Cancer-Associated Long Non-Coding RNAs
In Vivo

Nadya Dimitrova, Yale University, New Haven, CT, USA

Cancer initiation and progression to a deadly and metastatic disease is a multi-step
process that involves the gradual acquisition of numerous genetic and epigenetic aberra-
tions of cellular effectors, involved in proliferation, survival, differentiation, and cell-to-cell
interactions [56]. The discovery that mammalian genomes encode thousands of long non-
coding RNAs (IncRNAs) has spurred investigation into whether the non-coding genome
contains an untapped reservoir of novel modulators or perhaps even novel effectors of
cancer processes [57,58]. To date, the in vivo evidence that IncRNAs are themselves effec-
tors in cancer is sparse. On the other hand, the potential for IncRNAs to act as modulators
of key nodes in cancer pathways is steadily gathering experimental support, including
in organismal models [59]. Here, we focus on how the dysregulation of IncRNAs can
rewire cellular pathways, creating points of vulnerability exploited during cancer evolution.
We then describe how genetically engineered mouse models (GEMMs) of cancer can be
carefully harnessed to define the scope of IncRNAs’ contribution in cancer.

While IncRNAs are rarely mutated in cancer, comparative analyses of normal and
tumoral tissues have revealed extensive cancer-linked alterations in IncRNA expression
patterns [60]. Global gene expression analyses have highlighted numerous differentially
expressed IncRNAs and, in many cases, robustly linked differential IncRNA expression
patterns with cancer types and clinical outcomes. For example, the overexpression of
the IncRNAs metastasis-associated lung adenocarcinoma transcript 1 (Malat1) and Hox
transcript antisense RNA (HOTAIR) has been strongly associated with metastatic lung and
breast adenocarcinomas [61,62]. In some cases, genomic analyses of non-coding regions
have provided a genetic mechanism for altered IncRNA expression, such as the somatic
copy number variations (SCNVs) in plasmacytoma variant translocation 1 (PVT1) [63]
and focally amplified IncRNA 1 (FALI) [64] loci and the single nucleotide polymorphisms
(SNPs) detected in enhancer and promoter regions of prostate cancer-associated transcript
1 (PCAT1) [65] and neuroblastoma-associated transcript 1 (NBAT1) [66], respectively. The
contribution of dysregulated IncRNA expression to cancer has been an important ongoing
question to pursue.

Current models propose that IncRNAs act primarily through two mechanisms: cis-
regulatory, acting as local activators or repressors of the expression of neighboring genes,
and trans-regulatory, acting as global modulators of cellular processes throughout the
nucleus and in the cytoplasm [67]. The subcellular localization of an IncRNA detected by
single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) can provide clues
about its mechanism. Many cis-regulatory IncRNAs, including PVT1, accumulate at their
site of transcription [68], while trans-regulatory IncRNAs, such as Malat1, tend to have
a wider cellular distribution [69]. When designing gain-of-function and loss-of-function
models to elucidate IncRNA function, it has been essential to consider the mechanism
involved [70]. For example, the functions of cis-regulatory IncRNAs cannot be reliably
studied using RNAi- or ASO-based knockdown approaches and their activities cannot
be recapitulated with exogenously expressed constructs. In addition, genetic modifica-
tions of cis-regulatory IncRNA loci have to be assessed for their RNA-independent effects
through perturbations of transcriptional and DNA regulatory elements. On the other hand,
IncRNA /target accessibility and relative abundance have to be incorporated in models for
trans-regulatory IncRNAs.

When one considers these caveats, it becomes apparent that designing experiments
to study the contribution of dysregulated IncRNA expression in cancer, especially at the
organismal level, can be very challenging. Efforts to investigate two well-studied cancer-
associated IncRNAs, PVT1 and Malat1, described below, illustrate the discordant results
from alternative approaches and highlight the importance of carefully designed studies to
dissect the contributions of IncRNAs in cancer initiation and progression.
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Frequently amplified in cancer, PVT1 offers a striking example of the challenges en-
countered when studying cancer IncRNAs. Initial work supported the proposed oncogenic
function of PVT1 in a murine model of breast cancer where genetically engineered Myc-Pvt1
co-amplification was observed to be more tumorigenic than Myc amplification alone [71].
However, subsequent studies discovered tumor-suppressive elements in the PvtI locus,
including a DNA boundary element [72] and a p53-regulated isoform, Pvt1b, which acted
in cis to downregulate Myc expression in response to genotoxic and oncogenic stress and
during cellular senescence [68]. Inhibition of the p53-activated isoform Pvt1b by CRISPR
mutagenesis of the p53 binding element in vivo led to larger tumors in an autochthonous
mouse model of lung adenocarcinoma [68]. This finding placed Pvt1b downstream of
the p53 tumor-suppressive pathway and indicated a specific role for Pvt1b in restraining
growth early in tumor development through Myc repression. Thus, there is exciting po-
tential for using the Pvt1 locus as a therapeutic handle to modulating Myc levels in cancer.
However, additional carefully designed GEMMs are needed to deconvolve the oncogenic
and tumor-suppressive elements in the Pvt1 locus and to dissect the interplay between
regulatory DNA and RNA elements.

Another example of the biological and technical complexities associated with studying
the roles of IncRNAs in cancer is provided by Malat1, whose overexpression is strongly
associated with metastatic disease and poor patient prognosis across a remarkably wide
range of cancer types [73]. Despite its ubiquitous expression, strong conservation, and
high abundance in all mammalian cells, both the normal and the cancer functions of
Malat1 have remained a mystery. One of the main caveats of previous studies has been the
use of three independent Malat1 knockout mouse models, which have led to conflicting
results likely because they did not properly recapitulate the potential gain-of-function
or dominant phenotypes that Malat]l overexpression may have imparted in the context
of cancer [74,75]. Indeed, in unpublished work from our lab, CRISPR activation-guided
epigenetic overexpression of endogenous Malat1 in an autochthonous mouse model of
lung adenocarcinoma confirmed that increased Malatl expression is a driver of cancer
progression. We found that while Malatl does not modulate cellular proliferation, it
cooperates with p53 loss to reprogram the tumor microenvironment and promote metastatic
disease. The data indicated that Malat1l drives tumor progression, rather than tumor
initiation, consistent with its association with advanced disease and poor prognosis in
patients. One of the outstanding questions is the link or lack thereof between Malat1’s
normal and oncogenic functions and mechanisms. Another important area for further
investigation is how targeting Malat1 or its downstream targets may be harnessed to limit
metastatic disease.

Attempting to model the dysregulation of IncRNAs in cancer models has not been
without its challenges. However, growing efforts that take into account the evolving
functions and mechanisms of IncRNAs also reflect the important insights that can be gained
from well-designed studies.

4. The Human Y Chromosome, Long Non-Coding RNAs, and Cancer: Challenges
and Opportunities

Ivan Martinez, West Virginia University, Morgantown, WV, USA

From amongst the 23 pairs of chromosomes comprising the human genome, the
human Y chromosome is the smallest, containing only a little over 62 million base pairs.
(Chromosome 1, the largest, spans about 249 million base pairs.) [76] For that reason, it
is not surprising that the Y chromosome harbors, and expresses, fewer protein-coding
genes than any other chromosome in the human genome [77]. Originally, the X and Y
chromosomes contained the same amount of genetic information, but during evolution,
the Y chromosome lost most of its genes, while maintaining the sex-determining SRY
gene. Although the reference assembly of the human genome, building upon the Human
Genome Project’s original sequence completed in 2003, was updated in 2013, and again
with supplementary annotations in 2019, named GRCh38 [78], the complete sequencing
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of the human Y chromosome was not achieved until 2023 [76]. The main difficulty in
sequencing the Y chromosome was engendered by its high amount of complex repetitive
DNA structures, such as long palindromes, tandem repeats, and segmental duplications.
This property is unique to the Y chromosome. There are other difficulties in the study
of the human Y chromosome: in particular, during the process of aging, men’s cells start
to lose their Y chromosome [79], a condition that can be exacerbated by smoking [80].
The occasional loss of the Y chromosome in different male cell types is known as mosaic
loss of Y chromosome (mLoY). This uneven mLoY has been linked to several diseases,
such as a higher incidence of Alzheimer’s disease [81], cardiac fibrosis [82], and deficient
immune response [83], and a higher risk of cancer development [84]. A recent study using
a pan-cancer approach revealed that different types of male cancers have different amounts
of mLoY [85]. The study suggested that mLoY is a reflection of genetic instability in cancer
cells and could be associated with a higher incidence of mutation rates [85]. All these
findings pose an interesting question: How could the loss of a small chromosome, such as
the Y chromosome, which only contains a few protein-coding genes, be so important in
cancer development and aggressiveness? The answer may be found in the different types
of non-coding RNA (ncRNA) transcripts expressed from the Y chromosome.

In comparison to other ncRNAs, such as microRNAs, small nuclear RNAs, and other
“classical” ncRNA types, long non-coding RNAs (IncRNAs) have a higher genetic and
functional diversity. In general, IncRNAs demonstrate a low rate of gene expression
in normal cells, relative to the typical expression levels of protein-coding mRNAs, but
IncRNA expression is altered in a wide variety of human cancers [86]. Interestingly,
most IncRNAs, instead of having a high extent of evolutionary sequence conservation
comparable to the majority of protein-coding genes, rely more on secondary structure
conservation, which affords them a higher level of functional versatility [87]. Previously, it
was accepted that IncRNAs, by definition, were unable to be translated into proteins, as
they were assumed to lack bona fide open reading frames (ORFs). However, recent studies,
starting with the findings from the Lipovich laboratory within the framework of Phase
II of the ENCODE Consortium, experimentally showed, using direct methods such as
mass spectrometry and indirect methods such as ribosome profiling, that certain IncRNAs
have short ORFs and are able to be translated into “micropeptides” with a median size of
44 amino acids [88,89], even though these ORFs are distinct—in terms of their micro size,
(recent) evolution, and (lack of) any database homologies or predicted functions—from
conventional mRNA ORFs, indicating that despite containing short ORFs, these IncRNAs
should not be reclassified as protein-coding. In general, IncRNAs have been classified
into four major groups: antisense to protein-coding genes, sense-overlapping, intergenic,
and intronic [90]. Antisense IncRNAs are transcribed from the antisense DNA strand of
a protein-coding “sense” gene, and in contemporary nomenclature, they are commonly
named with the protein-coding gene name with the addition of an -AS (antisense) at the
end [91], for instance, FAM83H-AS1, AFAP1-AS1, and ASMTL-AS]1. Sense IncRNAs are
encoded on the same DNA strand as the gene they have been named after even though
their sequence includes some of the gene’s exonic regions which may not be translated
(because they reside in untranslated regions or because the of isoform dependence of the
reading frame), as is the case with the IncRNA DAPLAR [92]. Intergenic IncRNAs, also
known as long intergenic non-coding RNAs (lincRNAs), are the most common IncRNA
type. These IncRNAs do not overlap any known coding genes [93], and include the linc-
SPRY3 family [94]. Intronic IncRNAs, as the name implies, are expressed within the intronic
regions of protein-coding genes [95]. All these types of IncRNAs are transcribed from
the human Y chromosome, but intergenic IncRNAs are the most commonly found there—
perhaps due to the paucity of annotated protein-coding genes on this chromosome. Until
now, the expression of more than 50 IncRNAs from the human Y chromosome has been
documented, and evidence is emerging from recent studies that some of these ncRNAs are
contributing to the etiology and pathogenesis of several human diseases.
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A global gene expression analysis of male human brain embryos has unraveled six new
IncRNAs (KDM5D, TTTY14, UTY, TTTY15, ARSEP1, and TXLNG2P) expressed from the Y
chromosome that could be potentially involved in central nervous system development [96].
Dysregulation of these IncRNAs and others plays a role in many diseases including cancer.
For example, Inc-KDM5D-4 has a role in fatty liver formation and cellular inflammation
associated with atherosclerosis and coronary artery disease in men [97]. Also, the expression
of the Y chromosome IncRNA TTTY15 was found to be frequently elevated in prostate
cancer tissue, in comparison to normal tissue, proving that this IncRNA is not a mere
biomarker but a functional contributor to cell proliferation; repression of this IncRNA
showed a tumor-suppressive effect [98]. In multiple myeloma, the antisense IncRNA ZFY-
AS1 was found to be a protective prognostic biomarker through bioinformatics analysis [99].
Another example is LINC00278, an IncRNA able to be translated into a small peptide
(micropeptide), known as Yin Yang 1, that is important in the development of esophageal
carcinomas [100]. Interestingly, LINC00278 was found to inhibit the growth of laryngeal
squamous cell carcinoma cells in in vitro and in vivo models, by negatively regulating the
AKT/mTOR signaling pathway via the downregulation of COL4A1/COL4A2 [101].

Our group discovered a family of IncRNAs expressed from the Y chromosome that
directly contribute to radiation therapy susceptibility in male non-small-cell lung carci-
nomas (NSCLCs) [94]. We found three IncRNAs named Inc-SPRY3 RNAs (also known
as Inc-BPY2C), which exhibited dose-dependent expression after radiation in radiosensi-
tive male NSCLC cell lines, but not in radioresistant male NSCLC cell lines. Cytogenetic
analysis revealed that the radioresistant male NSCLC cell lines lost their Y chromosome
(mLoY), and consequently, Inc-SPRY3 RNAs did not exist in those cell lines. Gain- and
loss-of-function experiments confirmed that the Inc-SPRY3 family functionally contributes
to the radiation susceptibility of male NSCLC cells. More recent unpublished findings
from our group have highlighted that the exogenous expression of the Inc-SPRY3 RNAs
in female NSCLC cells, as well as mouse NSCLC cells, which also induced radiation sus-
ceptibility, suggesting that not only are the pathways affected by these IncRNAs present in
female cells and other mammalian cells, but also that a potential use of these IncRNAs as
therapeutic molecules may be feasible. The advantage of using mouse NSCLC cells express-
ing these human IncRNAs is enormous, because we can ask questions about the tumor
microenvironment and the immune response, as well as address the functional impact of
the differences between the mouse and human Y chromosomes, in well-established in vivo
mouse xenograft models of cancer. One of the greatest obstacles of using mouse models
to study IncRNAs expressed from the Y chromosome is the vast difference between the
human and the mouse Y chromosomes. For example, the mouse Y chromosome is 99.9%
euchromatin, expressing almost 700 protein-coding genes [102]. In contrast, the human 'Y
chromosome is largely heterochromatic and has less than 40% euchromatin [76], serving as
an example of the extensive, and often underappreciated, human-mouse differences in the
non-coding sequence space of the genome. In this context, it is important to remember that,
unlike protein-coding genes, most IncRNAs are not conserved between mammalian lin-
eages, and hence, most human IncRNAs appear to be primate-specific in evolution, based
on conventional nucleotide sequence homology analyses and multispecies alignments.
Reflecting this trend, the linc-SPRY3 IncRNA genes are only present in humans and some
nonhuman primates and are absent in mice.

An orthogonal opportunity to understand the importance of Y chromosome-encoded
IncRNAs in cancer is afforded by the increasing adoption of artificial intelligence (Al) in
bioinformatics. There is emerging evidence that Al can predict chromosomal aneuploidies
in glioblastomas, using an imaging-based fully automated method [103]. Furthermore,
Al was used to review histopathological images of colorectal cancer tumors to predict
DNA yields [104]. Our group is interested in using Al to identify and characterize specific
histopathological features found in male NSCLC tumors with the loss of the Y chromosome,
in order to correlate these images with tumor staging, overall survival, and smoking history.
By using DNA-FISH and hematoxylin and eosin (H&E) stained images from male NSCLC
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tissue arrays, we are planning to test different segmentation and convolutional neuronal
network algorithms to identify differences in histopathological features (including cell size,
nuclear cluster, and nuclear texture) that predict the loss of the Y chromosome.

Summarily, here we highlight that the study of IncRNAs expressed from the human
Y chromosome is an uncharted new field with exceptionally high potential to generate
new cancer-related findings that could explain in part the sex-specific differences in cancer
treatment efficacy as well as differences in overall survival between male and female
cancer patients, simultaneously providing the mechanistic insights that could guide the
development of IncRNA-driven therapeutics in NSCLC and beyond.

5. Non-Coding RNAs in the Genetics of Sports

Ekaterina G. Derevyanchuk, Southern Federal University, Rostov-on-Don, Russian Federation.
Leonard Lipovich, Shenzhen Huayuan Biological Science Research Institute, Shenzhen, China, and
School of Medicine, Wayne State University, Detroit, Michigan, USA.

To date, over 200 genes have been associated with the development and manifestation
of human traits related to physical activity, exercise, and endurance [105,106]. The majority
of these genes were annotated by Bouchard and colleagues in a human genetic map
of physical activity [107,108]. A detailed study of these genes is required in order to
understand how they convey the underlying phenotypes, and hence, how to properly
design a personalized sports training regimen that accounts for genetics, accurately predicts
individual athletes’ capabilities, proactively identifies exercise-related health problems, and
facilitates the detection of the new threat of gene-based doping. In the past two decades, the
progressive emergence of high-throughput technologies to monitor transcriptome profiling
has revealed that, while the exons of protein-coding genes account for a mere 1.5% of the
3,300,000,000-base human genome, more than 90% of the human genome is transcribed into
non-coding RNA (ncRNA) transcripts. The most abundant class of these long non-coding
RNAs (IncRNAs), encoded by 40,000 of the estimated 60,000 human genes, has been shown
to be essential for a wide range of fundamental cellular and biological processes in health
and disease [109-111].

Motivated by these revelations, our studies have been focused on the identification
and localization of miRNA binding sites in the 3'UTRs of, and IncRNA transcripts adjoining
and overlapping (including antisense and bidirectionally promoted transcripts of), key
genes previously shown to be among the determinants of endurance and speed strength
qualities (PPARD, NRF2, PGC-1, HIF-1, HIF-2, GYS1, HBA1, HBA2, HBB, ADRB2, NOS3,
CHRM2, UCP2, UCP3, VEGF, and EPO), genes for muscle work efficiency (ACE, CK-MM,
ACTN3, MLCK, AMPD]1, and IGF-1), and genes responsible for psychological characteristics
relevant to exercise ()HTT, BDNF—already known to be regulated by the antisense IncRNA
BDNF-AS1—as discussed in the Human Brain Activity section of this mini-review, HTR2A
(SR), DRD2, and MTHFR).

We used the TargetScan Human 8.0 resource to identify microRNA binding sites inside
the studied genes (http://www.targetscan.org/vert_80/ (accessed on 5 October 2021)).
TargetScan predicts the biological targets of miRNAs at protein-coding mRNA 3'UTRs by
searching for the presence of conserved 8mer and 7mer sites that match the seed region of
each miRNA. Sites are identified with mismatches in the seed region that are compensated
by conserved 3’ pairing. We used a Pct cutoff = 0.8 to select only significant miRNA binding
sites. We identified binding sites for 26 microRNAs inside the studied genes.

Furthermore, we performed a search for disease-related SNPs in miRNA binding sites.
We used miRdSNP, a database of disease-associated SNPs in miRNA target sites on 3’UTRs
of human genes (http://mirdsnp.ccr.buffalo.edu/, (accessed on 28 September 2023)). We
identified 21 miRNAs that were literature-supported (PubMed) disease-associated SNPs at
their target sites in our selected set of genes. This study needs to be complemented in the
future by competing endogenous RNA (ceRNA) prediction tools that may help identify, for
example, miRNA-IncRNA interactions that sponge miRNAs away from important mRNA
targets in the endurance and physical ability contexts.
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Although, in addition to miRNAs, IncRNAs play critical roles in various biological
functions and disease processes, human physical qualities related to IncRNAs have rarely
been investigated to date. We carried out bioinformatics analysis using the UCSC Genome
Browser and its underlying UCSC Genome Database (https://genome.ucsc.edu/, (accessed
on 23 May 2023)) to find IncRNAs transcribed near, or overlapping, selected genes. We
analyzed the length and tissue expression distribution of the candidate IncRNA identified,
which included several TCONS transcripts (transcripts of uncertain coding potential,
contributed to databases by high-throughput transcriptome projects but lacking detailed
laboratory-based annotations), and we found that these characteristics vary widely. In
particular, overall, we observed a lack of their expression in muscle tissue, except the
HELLPAR IncRNA (a cause of HELLP Syndrome, a complication of pregnancy), supported
by the TCONS_12_00006386, TCONS_I2_00006387, and TCONS_I2_00006388 transcripts
located downstream of the IGF1 gene and, intriguingly, expressed mainly in skeletal muscle,
according to the “LincRNA RNA-seq” UCSC Genome Browser dataset.

It was already evident from the literature and from our pilot analysis that both short
and long non-coding RNAs had great potential for further studies in the nascent field of
sports genomics. The obtained findings should promote the understanding of possible
IncRNA functions in the regulation of human physical qualities, with implications that
range well beyond extreme sports such as deep-sea diving and high-altitude alpinism, in
particular for the transcriptome-based control of endurance and extreme physiology, in
situations such as recovery from natural and manmade disasters.

6. Long Non-Coding RNAs in COVID-19

Tatiana P. Shkurat, Southern Federal University, Rostov-on-Don, Russian Federation. Leonard
Lipovich, Shenzhen Huayuan Biological Science Research Institute, Shenzhen, China, and School of
Medicine, Wayne State University, Detroit, Michigan, USA.

During the opening decades of the post-genomic era, it has become increasingly clear
that the majority of significant disease-associated variants discovered in Genome-Wide
Association Studies (GWAS) across all human diseases reside in non-coding regions of the
genome [112], and at the same time, long non-coding RNAs (IncRNAs) have been emerging
as drivers of different diseases [113]. Tens of thousands of IncRNAs genes regulate the
activity of protein-coding genes in various tissues and their response to environmental
influences. Nevertheless, most IncRNAs’ disease contributions and druggability potential
remain poorly understood. To date (23 May 2023), more than 6.9 million people on our
planet have died from the SARS-CoV-2 virus and more than 765.9 million have been
infected (https://covid19.who.int, (accessed on 23 May 2023)). Extraordinary worldwide
research and clinical efforts have been undertaken to understand the complex mechanisms
of SARS-CoV-2 infection.

Coronaviruses that cause disease in humans have been transmitted to humans from
animals and to domestic animals from bats. Viral mutations occur in animal hosts. Current
consensus converges on the conclusion that, during passage through animal hosts, the
virus accumulated mutations in the spike protein gene. This spike is important for the
docking of SARS-CoV-2 to human cells. Comparative analysis of SARS-CoV-2 with other
coronaviruses showed that this virus has a stretch of six new amino acids in its spike
protein, Tyr-Leu-Thr—Pro-Gly—Asp [114]. New mutations increase dramatically in the
SARS-CoV-2 spike protein when the virus is transmitted person to person, as the virus
mutates mainly when it replicates in host cells. Analysis of 48635 SARS-CoV-2 genomes
highlighted a total of 353341 mutation events, relative to the NC_045512.2 Wuhan reference
genome, with an average of 7.2 mutations per sample [115]. Frequently occurring variants
have been found in both the non-coding and the protein-coding regions of the viral genome.
But the severity of the disease does not depend solely on the characteristics of the virus.
The clinical manifestations of COVID-19 are extraordinarily variable and range from a
complete absence of symptoms to severe respiratory failure and death. This extreme and
unusual clinical variability suggests that host genetics (i.e., genomic variants) play a strong
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role in the susceptibility to symptomatic disease and in and impact of the wide spectrum of
manifestations of COVID-19.

We meta-analyzed data from GWAS and other host-side genetic studies of COVID,
noticing the high diversity of the datasets. Nine causal SNPs and eleven pathogenic genes
in COVID-19 have been identified in populations in Spain and Italy [116]. In the Chinese
population, SNP variants common with other populations (including in the ABO blood
group gene, previously implicated in susceptibility to diabetes and metabolic disease and
harboring an antisense IncRNA that overlaps its first exon (L. Lipovich and E.L. Kleinrbink,
pers. comm., unpublished), and in the antisense IncRNA FOXP4-AS1) were found to be
significantly associated with COVID-19 severity. The rare risk variant in MEF2B, on the
other hand, is specific to East Asian populations and confers an approximately eightfold
increase in the risk of severe COVID-19 among carriers [117]. A meta-analysis of GWAS
from more than 125,000 cases in 60 studies from 25 countries showed that genes at several
loci, including SFTPD, MUCS5B, and ACE2, contained variants that could be confidently
used to predict the susceptibility to, and the severity of, symptomatic disease [118].

Intriguingly, several studies have highlighted that the expression of specific antisense
IncRNAs was deregulated in patients with COVID-19 and correlated with the severity
of COVID-19, and that this may play a role in the pathogenesis of this disease. Reduced
expression of the IncRNAs A2M-AS1 and FLVCR1, and increased expression of the IncRNAs
DBH-AS1, FLVCR1-DT, and NCBP2AS2, was observed in patients with COVID-19. Both
FLVCRI1-DT and NCBP2AS2 showed a positive correlation with interleukin-6 (IL-6). DBH-
AS1 and FLVCRI1-DT had a significant association with mortality, complications, and
mechanical ventilation. A significant negative correlation was found between A2M-AS1
and NCBP2AS2-1 as well as between FLVCR1 and FLVCR1-DT [119], the latter consistent
with many findings of antisense IncRNAs negatively regulating their cognate-sense mRNAs
transcribed from the same locus, mentioned in other sections of this mini-review. In another
recent study [120], it was shown that, in the severe form of COVID-19, 898 differentially
expressed IncRNNAs were detected in the peripheral blood of patients: 414 upregulated and
484 downregulated. In that study, through GO and KEGG gene ontology and functional
category enrichment analysis, the authors reported the detected IncRNAs to have previously
known functions in neurons, lung cancer, and organ injury.

We conducted a bioinformatics analysis of the localization of human long non-coding
RNAs genes located within 50 kb of each significant phenotype-associated genetic variant
SNP mapped in COVID GWAS and virus-host interactions. It is interesting to note that
the majority of these SNPs are located on chromosome 2. In comparison, on chromo-
somes 6 (heavily involved in immunity thanks to hosting the MHC complex genes) and 19,
only very small numbers of significant SNPs are located on similarly sized genomic frag-
ments. We used data from the COVID GWAS v4 (genome-euro.ucsc.edu) and COVID19-hg
GWAS round 5 meta-analyses (www.covid19hg.org). We examined all SNPs reported by
these efforts for possible localization within IncRNA genes. We then constructed maps
of interactions for the identified COVID severity, SNP-containing IncRNAs (IL10RB-AS1,
MGC57346, CCR5AS) with miRNA and protein-coding genes. Using the LncRRIsearch
web server (http:/ /rtools.cbrc.jp/LncRRIsearch/, (accessed on 23 May 2023)), we predicted
interactions between the miRNAs known to target the highlighted genes and various
IncRNAs. Then, we analyzed the significant SNPs in the protein-coding genes targeted
by miRNAs in this context and identified all IncRNAs that had the potential to interact
with them. For example, we identified three IncRNAs that showed the highest probability
of interaction with the tyrosine kinase (T'YK2) gene: RP11-573D15.8-01 (antisense to the
FETUB/fetuin-B protease inhibitor gene), AP006621.9-001 (antisense to the EPSS8L2 gene
involved in actin cytoskeleton organization), and RP11-9502.5-001 (antisense to CELF4).
Each of these IncRNAs also interacts with more than 15 different miRNAs. This prototype
points to the possibility of a massive and unbiased analysis of how, specifically, IncRNAs
regulate coding gene activity, and of their relationship with miRNAs and with each other.
These studies will empower quantitative assessments of the viral infection phenotypic
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response range of any given host genotype, hence heralding the implementation of genome-
driven, RNA-empowered, personalized medicine for more effective responses to current
and future pandemics.

7. Deciphering Roles for LncRNAs in Human Brain Activity, Disease, and Death

Jeffrey A. Loeb, Department of Neurology and Rehabilitation, University of Illinois at Chicago,
Chicago, USA

The human brain has evolved to generate extraordinary capabilities enabling complex
behaviors not present in other species. Due to their often recent evolutionary origins
relative to older conserved protein-coding genes, as well as to their more rapid rate of
evolution as a consequence of being unencumbered by protein-coding open reading frames,
IncRNAs have a significant potential to contribute to recent-origin and species-specific
traits, including the phenotypic uniqueness of the human brain, through a wide variety of
functions that are still poorly understood. At the same time, and perhaps because of these
capabilities, the human brain suffers from a number of diseases related to both too much
brain activity (epilepsy) and too little (neurodegeneration). Given these strong evolutionary
differences, a major challenge in deciphering the roles of IncRNAs in human brain function
and disease comes from a critical need to study them in the human brain rather than in
other species.

For most other human brain diseases including Alzheimer’s disease, we have to wait
until death to collect tissues for research. When comparing the genomic landscape between
fresh human brain samples and postmortem samples, we discovered marked differences
in coding and non-coding gene expression suggesting that a dead brain is not entirely
dead [121]. While neuronal genes involved in brain activity are rapidly degraded, other
cells and “zombie genes” come to life, making the interpretation of postmortem human
brain genomic studies challenging. In fact, we found that neuronal genes are rapidly
lost during the postmortem interval, yet genes involved in brain repair from glial cells
including astrocytes and microglia actually increase substantially. Histological inspection at
these same time points confirmed these cellular changes, as predicted, from clustering the
transcriptional changes. Of note, we found that non-coding genes including microRNAs
and IncRNAs were lost at a much faster rate than protein-coding genes [122]. This finding
demonstrates a critical importance to studying IncRNAs in freshly isolated tissues rather
than postmortem tissues, especially from the human brain.

Patients who suffer from epileptic seizures can obtain significant improvements by
removing portions of their brains. Epileptic electrical networks in fact are often quite large
and complex, often requiring very large portions of the brain to be removed surgically
in both children and adults. In order to make critical decisions about which portions to
remove and which to leave intact, extensive long-term electrical recordings are performed
in vivo. When precisely localized to the electrical recordings, the brain tissues removed
from these surgical procedures offer a rare opportunity to explore differences in human
brain regions with abnormal and normal brain activity in freshly isolated human brain that
is not affected by a postmortem interval [122].

We took a multi-systems approach to study these priceless tissues linking genomic,
proteomic, and molecular differences to quantitative electrical activities, brain imaging
studies, and clinical data through a relational database [123]. Previously, we found many
IncRNAs that were differentially expressed as a function of human brain epileptic spiking
activity from human brain biopsies at regions of low and high epileptic activities (4). One
of these, BDNFOS (BDNF-AS1), was an antisense IncRNA overlapping coding portions of
the Brain-Derived Neurotrophic Factor (BDNF) gene that has important roles in synaptic
remodeling and neuronal survival. We found that downregulation of BDNFOS led to the
upregulation of BDNF which suggested that increasing BDNFOS expression could be a
way of reducing pathological BDNF signaling in epileptic brain regions. More recently,
we further explored IncRNA expression and function discovering that many IncRNAs are
coregulated in the human brain with known MAPK signaling pathway protein coding
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genes. Similar to BDNFOS, we found that some of these, particularly those antisense to
nearby protein-coding genes, also regulate these coding genes, suggesting a large network
of IncRNAs that can regulate important protein-coding genes within this important path-
way that could lead to pathologic epileptic activities [124]. Consistently, we found that an
MAPK inhibitor could prevent the development of epileptic spiking in an animal model [8].

8. Conclusions

This mini-review collated selected views and opinions on IncRNA biology, bioinfor-
matics, genomics, and therapeutics, from the perspectives of several keynote, plenary
and invited speakers, panelists, and organizers of the IEEE BIBM 3rd Annual LncRNA
Workshop, which was held in Dubai, UAE, in December 2021. Given the focus on the 2021
Workshop, we acknowledge the limited scope of this mini-review, as it could not cover
various equally important topics that were not discussed at the Workshop. Examples here
include the accurate prediction of IncRNA targets and functions, context specificity of IncR-
NAs, IncRNAs in cell communication and immune response, connection between IncRNAs
and bifunctional RNAs, etc. These provide promising avenues for future investigations.
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noteworthy accomplishments, Dr. Zhou has pioneered high-content cellular imaging informatics,
bioinformatics, systems biology, systems modeling-guided cancer and regenerative medicine, and
imaging-aided surgical design/optimization.

Dr. Alexandre Paschoal is a Group Leader in Artificial Intelligence and Informatics at the
Rosalind Franklin Institute, United Kingdom, and concurrently serves as an Associate Professor at
the Federal University of Technology—Parana (UTFPR), Brazil. Having earned his Ph.D. in Bioinfor-
matics from the University of Sao Paulo in 2012 in Brazil, Dr. Paschoal exemplifies a commitment
to interdisciplinary research. Dr. Paschoal is broadly trained in computer science, with his primary
research focus lying in build cutting edge Al techniques to translate biological data into actionable
knowledge utilizing principles from the field of bioinformatics. His vision involves contributions
to link the fields involving data sciences and life/biological sciences to extract insights to guide
decision-making. His primary biological focus lies in non-coding RNAs and transposable elements.

Dr. Nadya Dimitrova is an Assistant Professor in the Departments of Molecular, Cellular and
Developmental Biology and Genetics at Yale University and a member of the Yale Center for RNA
Science and Medicine and the Yale Cancer Center. She has a long-standing interest in understanding
the functions and mechanisms of action of long non-coding RNAs (IncRNAs) in the context of cancer.
Her work is focused on developing genetic models to study the roles of IncRNAs in normal and
disease states and gaining deeper insights into mechanisms of IncRNAs. Nadya Dimitrova is the
recipient of the HHMI Predoctoral Fellowship, the Damon Runyon Postdoctoral Fellowship Award,
the Lung Cancer Research Foundation Scientific Merit Award, the Pew-Stewart Award for Cancer
Research, the V Scholar Award, and the NCI Merit Award.

Dr. Ekaterina G. Derevyanchuk is an Associate Professor at the Genetics Department at the
Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
(Rostov-on-Don, Russian Federation). She is a member of the Vavilov Society of Geneticists and
Breeders. Her work focuses on the study of the role of non-coding RNAs in various diseases and
the development of diagnostic test systems based on the data obtained. Particularly, her studies
are related to the search of localization of ncRNA binding sites around and inside genes associ-
ated with various diseases. Dr. Derevyanchuk is a winner of the All-Russian contest, held by the
Foundation for Assistance to Small Innovative Enterprises (FASIE), a German Academic Exchange
Service (DAAD) scholarship holder, and a winner of the young scientists contest held within the
framework of the International Congress “Early Pregnancy” (RUDN, Moscow, Russia). She is also
co-owner of a small gold medal for the development of bioinformatics technology for searching for
the relationship between organization scenarios in animal and human genomes of non-coding DNA
and protein-coding DNA (RosBioTech, Moscow, Russia). She is the author of the best poster presen-
tation at the Interregional Scientific and Practical Conference “Cellular Technologies for Practical
Healthcare” (Yekaterinburg, Russia) and winner of the competition for the best poster report in the
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framework of the International Conference of Young Scientists “New directions in Life Sciences”
(Yerevan, Armenia).

Dr. Tatiana Shkurat is Professor and Head of the Genetics Department at the Academy of
Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University (Rostov-on-Don,
Russian Federation). She is PI and group leader at her home institution. She has extensive experience
in supervising research teams and training doctoral candidates and has led more than 30 grant-funded
research projects in Russia as well as internationally sponsored projects. She has developed extensive
intellectual property (IP), having been granted patents on methods of gene diagnostics of monogenic
and multifactorial diseases, certificates of the computer program for automatic search of motifs, and
visual analysis of images of nucleotide sequences. Recently, Prof. Shkurat has focused on the interface
of non-coding DNA /RNA, evolutionary genomics, and personalized medicine. Her preliminary
results represent a significant advancement toward the future deployment of approaches for the
validation and utilization of novel therapeutic targets in patients with different diseases, based on
IncRNA and genome editing.

Dr. Jeffrey Loeb is a practicing neurologist, epileptologist, and neuroscientist who currently
holds the John S. Garvin Chair, Professor and Head of the Department of Neurology and Rehabil-
itation. He received his A.B. in Chemistry, M.D., and PhD. from the University of Chicago. After
completing a residency in Neurology at the Massachusetts General Hospital in Boston, he joined
the faculty of Harvard Medical School where he also had fellowship training in epilepsy at Har-
vard’s Beth Israel Deaconess Hospital. Dr. Loeb conducted postdoctoral work in the Department of
Neurobiology at Harvard Medical School with Dr. Gerald Fischbach, where he became interested
in how understanding early neural development can teach us what goes wrong in human disease
and suggest new treatments. This and other work focusing on translating basic discoveries into new
treatments has resulted in high-profile publications, federal and foundation grant support, and a
number of patents, including one for a targeted drug that blocks neuregulin signaling and shows
promise in degenerative disease by blocking neural inflammation, such as in ALS and Alzheimer’s.
His work in treating epilepsy patients led to a one-of-a-kind, large-scale, systems biology project of
human brain tissues that links the genes, molecular, and cellular signals that underlie the abnormal
electrical activities that characterize this common neurological disorder. Dr. Loeb is director of the
University of Illinois NeuroRepository, co-director of biomedical informatics in UIC’s Center for
Clinical and Translational Science, and Chief Clinical Strategist for the Sturge-Weber Foundation.
To build on his scientific efforts and translate discoveries back to patients through public—private
partnerships, he recently formed “I-BRAIN” (Illinois Brain Analytics) in close collaboration and with
support from the Discovery Partners Institute.

Dr. Ivan Martinez is an Associate Professor at the West Virginia University (WVU) Cancer
Institute and the Department of Microbiology, Immunology and Cellular Biology at WVU School of
Medicine. Originally from Mexico City, he graduated with honors from The National Autonomous
University of Mexico (UNAM). He completed his Ph.D. in Molecular Genetics and Biochemistry at
the University of Pittsburgh and continued his training as a postdoctoral fellow in the Department of
Genetics at Yale University School of Medicine for over 5 years. After his training, he was recruited at
WVU in 2013. The goal of Dr. Martinez’s research is to understand the importance of non-coding
RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (IncRNAs), and circular
non-coding RNAs (circRNAs), in the process of carcinogenesis and viral infections. Dr. Martinez
has been invited to present his research at prestigious institutions such as Harvard University, the
University of Massachusetts Chan Medical School, the National Cancer Institute (NCI) at the National
Institutes of Health (NIH), Gottingen University-Max Planck Institutes in Germany, and the National
Institute of Genomic Medicine (Instituto Nacional de Medicine Genomics) in Mexico City. Since 2019,
he has served as the Co-Chair for the International Conference on Bioinformatics and Biomedicine
(IEEE BIBM) Annual Workshop on Long Non-Coding RNAs (BIBM LncRNA). He was also the
Co-Chair in the organization of the 2022 Keystone Symposium “Small Regulatory RNAs: From Bench
to Bedside” in Santa Fe, New Mexico. Dr. Martinez was also the co-leader of a team of researchers
involved in the development of the COVID-19 PCR test at WVU (from in-house reagents to a fully
automated testing robot). The test developed by Dr. Martinez’s team was the main test used not only
at WVU but in the entire State of West Virginia during the COVID-19 pandemic. Furthermore, Dr.
Martinez has been a member of the World Health Organization (WHO) COVID-19 Animal Model
Group since 2021.

Dr. Leonard Lipovich is an internationally recognized pioneer in the long non-coding RNA
(IncRNA) biology of human disease. He led a major international project with the Japan-based
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FANTOM Consortium (which built the first comprehensive catalog of mouse protein-coding and
IncRNA genes), where he discovered that IncRNAs are often not conserved in evolution between
primates and rodents and are more numerous than protein-coding genes. He built the first published
catalog of human IncRNA genes supported by full-length experimental data. Leading a platform
effort within the ENCODE (Encyclopedia of DNA Elements) Consortium—a direct successor to the
Human Genome Project—Prof. Lipovich was the first to empirically reveal the unexpected ribosomal
translation of short open reading frames from IncRNAs in human cells using mass spectrometry.
His work has been fundamental to establishing that primate-specific IncRNAs in humans directly
contribute to the etiology of cancer, diabetes, and epilepsy. His current focus is on identifying,
and validating in the laboratory, IncRNAs from genome-wide association studies and personalized
genome sequencing, as well as from in vivo transcriptome analysis and high-throughput screens, as
novel and druggable causes of those diseases.

Leonard Lipovich earned his B.A. (cum laude) in Genetics and Development from Cornell Uni-
versity (1998) and his Ph.D. in Molecular Biotechnology from the Department of Genome Sciences
at the University of Washington, Seattle (2003). He completed postdoctoral training at the Genome
Institute of Singapore, where he characterized the first mammalian IncRNA functional in stem cell
pluripotency and discovered the prevalence of primate-specific IncRNAs in sense-antisense gene
pairs. Dr. Lipovich joined Wayne State University in Detroit, Michigan, USA in 2007, as an assistant
professor, attaining an associate professorship and tenure in 2013, then a full professorship in 2019. In
2024, he transitioned to Wenzhou-Kean University in Wenzhou, China. He is active in IncRNA-based
drug development efforts, through commercialization projects with startup RNA-biotech companies
in China and elsewhere. Dr. Lipovich received the U.S. National Institutes of Health (NIH) Director’s
New Innovator Award, for the 2014-2019 project cycle. In 2015, he chaired both the Keystone Sympo-
sium and the Royal Society international scientific meeting on IncRNA. To date, Dr. Lipovich (h-index:
45) has published 87 peer-reviewed papers (including 36 as a first, last, or principal author), delivered
over 50 invited presentations, and chaired numerous sessions at key conferences. Dr. Lipovich is a
Founding Co-Chair (2019—present) of the Annual LncRNA Workshop at the IEEE-BIBM. His goal is
to improve human health through personalized, IncRNA-targeted, post-genomic therapeutics.
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