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Abstract— In this work, we studied the question of whether
the two ends of long non-coding ribonucleic acids (IncRNAs)
(i.e., the 5’ end and 3’end) carry similar information about
subcellular localization of IncRNAs. We considered this
problem from three viewpoints using machine learning models:
(1) consideration of the classification performance of the
machine learning models using features from defined regions
(or segments) along the sequence, (2) correlation-based
analysis using models built on regions/segments along the
LncRNA sequence, and (3) analysis of the relative positions of
predicted IncRNA localization motifs along the LncRNA
sequence. Our results and observations suggest that the 5’
region of the IncRNA sequences (the prefixes) tend to carry
more localization signals when compared with the 3’ region
(the suffixes) of the sequences. These could have implications
on how we use machine learning models for improved analysis
of IncRNA subcellular localization.

Keywords: IncRNA, localization, machine learning, motifs

I. INTRODUCTION

Most long non-coding RNA (IncRNA) genes are poorly
characterized. Some clues to their cellular roles have been
provided by experiments that measure whether the IncRNA
transcripts are more abundant in the nucleus or cytoplasm. All
IncRNA is formed in the nucleus, but much of it is exported
through the nuclear membrane into the cytoplasm where,
presumably, it plays some role. Subcellular localization of
IncRNA is influenced by many factors, as reviewed in [1]. In
many cases, localization is correlated to specific k-mers or
motifs, i.e. substrings that exactly or inexactly match some
pattern, found within the IncRNAs themselves. This
observation has inspired many machine learning experiments
designed to train models that predict localizations given the
IncRNA sequences alone.
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In protein-coding RNA, also called messenger RNA
(mRNA), the center portion of the RNA sequence is
evolutionarily constrained to list the 3-nucleotide codons that
get translated into proteins. In mRNA, the initial and trailing
regions are called the 5° UTR and 3* UTR, respectively. The
UTR portions of mRNA often contain information beyond
protein sequence, such as binding motifs and localization
signals. Since IncRNA shares many characteristics with
mRNA, it has been suggested that localization signals may be
concentrated at the 5’ end or 3’ end of IncRNA [2].

In this study, we trained machine learning models to predict
either nuclear or cytoplasmic subcellular localization of
IncRNAs given a portion of their sequences. We compared the
accuracy of models that operated only on just the prefixes, or
just the suffixes, or the entire lengths of IncRNA sequences.
More specifically, we performed our analysis with four machine
learning models, namely, Multilayer Perceptron (MLP),
Random Forest (RF), eXtreme Gradient Boosting (XGB), and
Light Gradient Boosting Machine (LGBM)), first using the entire
sequence (all Seq), and then using segments from different
regions of the IncRNA sequence, moving from the 5’ end to the
3’ end. That is, from prefix segment (5 end), second segment,
middle segment, fourth segment, and suffix segment (3° end).
Using all k-mer features from the sequence (all_Seq) with RF
produced the highest classification accuracy of 60.45%, using 4-
mers with 0 mismatch. We then evaluated the prefix, second,
middle, fourth segments, and the suffix on different length
segments. Using segment length 1024, with 4-mer with 0
mismatch on the prefix segment resulted in the highest segment-
based results, in terms of classification accuracy. The
classification accuracy seemed to decrease from the prefix (5’
end) towards the suffix (3° end). The results seem to show that
the prefix region (5° end) of the IncRNA sequences tended to
contain more signals that are relevant to localization, when
compared with the other regions, including the suffix region (3’
end). This observation is further studied by performing
correlation-based analysis using segments along the IncRNA
sequence, and also by analyzing the relative position of ranked
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localization motifs along the IncRNA sequence. A learning-
based fusion using extracted prediction probabilities from
machine models developed using 3 segment lengths, and 5
region segments as input to the random forest model achieved a
slightly improved classification accuracy of 61.89%.

II. BACKGROUND

Nearly all protein-coding RNA must localize to the
cytoplasm to be functional. That is because the cytoplasm is the
sole site of translation from mRNA to protein. In contrast, the
nucleus is the sole site of intron splicing, and incomplete
splicing is associated with nuclear retention. One study [3]
looked at a splice signal called 5’SS. This signal is commonly
located at 5° ends and is commonly removed by splicing. The
authors found that 5’SS in the 3’ ends of mRNAs does not get
removed by splicing and is associated with nuclear retention.
The effect was less strong, but still present, in IncRNA.

A 2022 study [4]measured the impact of 5°SS and two other
sequence motifs known to favor nuclear retention in IncRNA:
BORG, and SIRLOIN. These motifs are recognizable
computationally, and presumably biochemically, by their
nucleotide sequence and its implied molecular structure. The
study examined the effect of these motifs on IncRNA in a
particular human cell line, known as BSX, which is cultured
from retinal pigment epithelium. RNA was isolated from the
nucleus and from the cytoplasm of these cells under two
conditions: normal, and oxidative stress. The RNA was
sequenced, aligned to the human reference transcriptome, and
quantified to give each transcript’s cytoplasmic-over-nuclear
log2 fold change. For most IncRNA, the value was near zero,
indicating similar abundance in the nucleus and cytoplasm. This
was true under the normal and stress conditions, but more
transcripts moved to the extremes when the cells were under
stress. This indicates that environmental factors influence
localization. When the authors compared transcripts that do or
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do not harbor one of the three known nuclear localization motifs,
they found that the nuclear fraction was higher for IncRNAs that
contained the motifs than for those that did not. This was true
under the normal and the stressed conditions. This confirms that
the known factors encourage nuclear retention. Next, the authors
found an effect due to multiplicity. The fold change was
inversely correlated with copy count, meaning that more repeats
of the signal correlated with heavier nuclear retention.

A 2019 study [5] built models to predict nuclear or
cytoplasmic enrichment per RNA. The models used a
combination of IncRNA features including sequence elements.
The models were mildly successful, explaining 45% of the
variance for mRNA genes and 34% of the variance for IncRNA
genes. However, the most predictive factor was splicing
efficiency, i.e. the portion of the transcripts whose introns were
removed completely. This factor is measurable in cells but it
may not be easily predictable from sequence alone. For this
reason, one can expect low levels of accuracy in machine
learning classifiers trained on the sequences alone. A 2015
study found that many IncRNAs are translated to protein in the
cytoplasm [6]. This finding is counter-intuitive since IncRNA is,
by definition, non-coding. However, biology is rarely binary,
and the definition of IncRNA should perhaps be modified to
indicate that they do not encode functional proteins. The protein
products of translated IncRNA may be unstable or inactive, but
in some cases they bear resemblance to functional proteins in the
same or other species. Furthermore, the authors argue that some
translated IncRNAs bear signs of purifying evolutionary
selection, indicating that these IncRNAs contribute to overall
fitness in some way. Protein translation occurs only in the
cytoplasm. The authors found that localization preference for the
cytoplasm correlates with IncRNA efficiency at translation to
protein. This indicates that preference for the cytoplasm is
distributed non-randomly among IncRNAs.
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Figure 1. Workflow for the reported analysis. (4) classification using k-mers, (B) analysis using correlation, and motif location.
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In a 2022 study, Ron and Ulitsky [7] measured the nuclear
vs cytoplasmic enrichment of certain sequences associated with
either compartment. Though most of the findings concerned
another type of RNA (circRNA), the authors reported some
associations between IncRNA sequence and localization. For
example, the authors found that nuclear localization was
associated with many short sequences taken from the MALAT1
IncRNA, which is known to have nuclear function.

The foregoing suggests that there could be some value in
further studying IncRNA sequences, especially on the question
of whether the 5’ and 3’ ends of a IncRNA could hold important
information that may be relevant to localization. Clearly, an
improved understanding of the role of these IncRNA ends in
localization could be exploited to build improved computational
methods for predicting subcellular localization for IncRNAs,
based primarily on information from their sequences.

III. METHODS

Figure 1 shows the basic workflow in our analysis. Panel A
shows our baseline model. We build our datasets first, and then
create baselines of the machine learning models. Panel B shows
the workflow of following analysis. Using the baseline models,
we identify a suitable machine learning model to be used to
analyze the different regions of the IncRNA, using varying
segment lengths on the sequence. We performed IncRNA
localization classification using the models. Further, based on
the predicted class and the true classes of the IncRNA
sequences, we performed correlation analysis, using results
from the different regions of the IncRNA sequence. Finally, we
performed further analysis by considering the relative positions
of predicted k-mer localization sequence motifs, as obtained
from the best performing machine learning model.

A. Dataset

We downloaded IncRNA subcellular localization data from
IncATLAS [8]. The IncATLAS considered two localizations in
the cells: nuclear and the cytoplasmic, which is the fluid inside
a cell but outside the cell’s nucleus. They computed the
cytoplasmic-nuclear relative concentration index (CN-RCI)
values for the genes from 15 cell lines. We obtained the gene
ensemble ID and a CN-RCI value for each gene from the
dataset. We then download IncRNA sequence data and
annotation file (.gff file) from GENCODE
(https://www.gencodegenes.org’/human/) release 42. The
GENCODE dataset includes repeated genes with duplicate
transcripts. We combined the two datasets according to their
gene ensemble ID and retained transcripts that had at least one
CN-RCI value for the cell lines. We used the longest transcript
for a given gene, and removed the duplicated genes. We
separate the dataset into training and test sets with a ratio of 4:1.
We obtained 4662 genes for the training set. The length of the
IncRNA transcripts varied from 72 to 205,000. To reduce the
computation workload, we only analyzed genes with sequence
lengths between 200 and 5000 in the training set. Thus, we
obtained 4607 genes (transcripts) for the training set.

We used segments of lengths 256, 512, and 1024
respectively, from the sequences to check whether the prefixes
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(5’ ends), and suffixes (3’ends) contain similar amounts of
localization information. To make results from the different
lengths more comparable, we performed our analysis only on
sequences with lengths greater than or equal to 1027. This
reduced our data to 2834 sequences in total. We extract
subsequences with lengths 256, 512, and 1024 respectively,
from 5 positions in each given IncRNA sequence. These 5
positions thus defined 5 segments, namely, the prefix segment,
the second segment, the middle, the fourth segment, and the
suffix segment. See Figure 2.

Not all the sequences (IncRNAs) have CN-RCI values in
every cell line. For each cell line, we will drop the sequences
that do not have a value in the cell line. In this work, we
considered 3 cell lines, A549, MCF.7, and SK.N.SH for our first
two analyses (classification, and correlation-based analysis). We
set the class threshold to 0. Thus, for a IncRNA with a CN-RCI
value greater or equal to 0, we set the class label to 1 (i.e., more
likely to be cytoplasmic). Otherwise, we set the class label to 0
(i.e., more likely to be nuclear). For each cell line, we perform
down-sampling to build a balanced dataset, with equal numbers
for the two label categories. Thus, we obtain balanced datasets
having A549 with 968 genes, MCF.7 with 796 genes, and
SK.N.SH with 734 genes.

B. Feature representation

LncRNA is transcribed from DNA. LncRNA consists of a
string of nucleotide bases, namely, adenine (A), guanine (G),
uracil (U), and cytosine (C). For our feature space, we use only
sequence-based features, using simple k-mers (k-length
substrings) from the sequence. We used k=4, and k=6, and used
the k-mer counts as our feature representation for each IncRNA
sequence. The k-mer counts are easy to compute, though more
efficient algorithms are available using suffix trees and suffix
arrays [13]. Using the k-mer counts, we generate the k-mer
profile for a given sequence or segment. The profiles are
normalized by the sequence length, or by the segment length as
needed to capture the probability of occurrence of each given k-
mer in the sequence, or segment.

C. Machine Learning Models

In this work, we studied IncRNA subcellular localization as
a classification problem, using four machine learning models,
namely, the random forest (RF) classifier from Scikit [9],
XGBoost [10], light gradient boosting machine classifier
(LGBM) [11], and multilayer perceptron classifier (MLP). For
the first three models, we use the default parameters. We build
3 layers (64,32,2) MLP model with TensorFlow [12].

Our baseline models are built on the k-mer profiles obtained
using the full-length sequence (all_len), normalized by gene’s
sequence length. We than evaluated the respective classification
performance on the 5 different regions of the sequence, k-mer
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profiles normalized by region length. For each model, we
analyzed 3 cell lines, namely, A549, MCF.7, and SK.N.SH. We
used 5-fold cross validation on the balanced training sets. Based
on the predicted localization labels, we performed class
correlation analysis. We then performed motif location analysis,
by considering the distribution of motifs along the sequence,
using the relative position of predicted IncRNA motifs along the
sequence.

D. Evaluation

In this work, we performed our classification study using a
balanced dataset, obtained via under-sampling. We performed
5-fold cross-validation twice on this data, and recorded the
average results from the two runs. We report average of the
classification accuracy over the 3 cell lines.

IV. RESULTS

A. Classification performance

Table 1 and Table 2 show the classification results for the
baseline models (using k-mer profiles from all the sequence),
using the four machine learning models (MLP, RF, XGB, and
LGBM). We have included results for exact k-mers (_Omiss)
and inexact k-mers (as introduced in [14]) with k-mismatches

(_lmiss, 2miss, 3 _miss). The results show that the RF model
with default parameters resulted in the highest accuracy of
60.45% on 4-mer with 0 mismatch, and 60.25% on 6-mer with
1 mismatch. In subsequent analysis, we will focus random forest
model (RF) with 4mer with 0 mismatch and 6mer with 1
mismatch. In subsequent analysis, we will focus on the random
forest (RF) model, using 4mers with 0 mismatch, and 6mers
with 1 mismatch.

We tested the RF model on segments from different regions of
the IncRNA sequences, using different segment lengths.
Results are shown in Tables 3 and 4. The highest score was
59.3%, using prefixes and segment length 1024. Expectedly,
the results show that the classification accuracy increases with
increasing segment length -- from 58.73% with length 256 to
59.3% with length 1024. This tendency of improved
classification accuracy with increasing segment length was also
generally observed for each of the five regional segments.
Considering the 5 segments (or regions) at a given sequence
length, the accuracy was observed to generally decrease from
the prefix (5’ end) to the suffix (3° end). This indicates that
localization signals are stronger or more likely to be found in
the prefix (5° end) of the IncRNA sequence, when compared
with the suffix (3’ end). This was a surprising observation, thus
we set out to perform further analysis (see below).

We also further tested the performance using a learning-based
fusion scheme. We extracted the predicted probabilities from
the 15 models (i.e., 3 segment lengths, 5 regions), and used

Table 1. Classification results using the baseline models on 4-mers.

MLP_0 miss| MLP_1 miss|MLP_2 miss| RF_0 miss | RF_1 miss | RF_2 miss | XGB_0 miss| XGB_1 miss| XGB_2 miss| LGBM_0 miss| LGBM_1 miss| LGBM_2 miss
AS49 58.52 60.22 58.36 63.27 62.44 59.5 61.77 61.36 60.12 62.09 62.55 60.32
MCF.7 55.09 56.72 57.29 57.92 57.85 55.02 55.9 58.04 532 57.09 5842 54.96
SK.N.SH]| 56.27 56.13 5422 60.15 57.77 55.52 58.18 56.27 56.13 57.29 5797 56.47
mean 56.63 57.69 56.62 60.45 59.35 56.68 58.62 58.56 56.48 58.82 59.65 57.25

Table 2. Classification results using the baseline models on 6-mers.

MLP_0 miss| MLP_1 miss| MLP_2 miss| MLP_3 miss [RF_O miss|RF_1 miss|RF_2 miss|RF_3 miss|XGB_0 miss|XGB_1 miss|XGB_2 miss|XGB_3 miss|LGBM_0 miss|LGBM_1 miss|LGBM_2 miss|LGBM_3 miss|
A549 59.55 60.79 60.63 61.46 60.48 63.58 62.44 62.34 59.14 61.36 61.67 60.64 60.53 64 6229 62.34
MCF.7 55.59 5729 5792 56.91 58.11 58.23 59.11 55.77 56.97 57.85 56.28 54.52 59.04 56.78 58.73 56.72
SK.N.SH 5722 5791 5838 58.86 56.81 58.93 57.29 56.74 58.59 57.02 54.09 58.04 58.04 57.29 55.59 56.47
mean 5745 58.66 5898 59.08 58.47 60.25 59.61 58.28 58.23 58.74 5735 57.73 59.2 59.36 58.87 58.51

Table 3. Classification performance using 4mer with 0 mismatch on
segments from different sequence regions.

Segment length Prefix | Second | Middle | Fourth Suffix
256 58.73 56.34 55.57 53.92 52.82
512 58.53 57.5 56.7 56.29 55.39
1024 59.3 58.33 59.13 57.66 55.16

Tabled. Classification performance using 6mer with 1 mismatch on
segments from different sequence regions..

Segment length Prefix | Second | Middle | Fourth Suffix
256 57.85 537 554 5258 5345
512 5594 5595 56.32 5562 55.04
1024 5817 5747 5831 5691 55.98
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these as the input features to the machine learning models. Once
again, the random forest (RF) model produced the best results,
giving an accuracy of 61.89% on 4mers, 0 mismatch, and
60.67% on 6mers, 0 mismatch. See results in Table 5.

Tables. Classification performance using learning-based fusion.

15 features |[4merOmiss |[4merlmiss|6merOmiss |6merlmiss|6mer2miss

RF 61.89

61.28 60.67 59.7 60.62
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Table 6. Correlation analysis using 4-mers. The correlation coefficient between true class and different model predicted classes.

Class | all_len| 256_pfx | 256_second | 256_mid | 256_fourth | 256 _sfx | 512_pfx | 512 second | 512_mid | 512 fourth | 512 sfx | 1024_pfx | 1024 second | 1024 mid | 1024 fourth | 1024 sfx
Class 1 0.209 0.175 0.127 0.112 0.078 0.056 0.171 0.151 0.134 0.126 0.108 0.186 0.176 0.183 0.154 0.103
all_len 0.209 1 0.247 0.273 0.259 0.232 0.125 0.309 0.379 0.371 0.303 0.255 0.423 0.281 0.453 0.372 0.371
256_pfx 0.175 0.247 1 0.123 0.027 0.014 0.03 0.474 0.165 0.053 0.046 0.032 0.347 0.091 0.112 0.039 0.076
256_second | 0.127 0.273 0.123 1 0.145 0.112 0.078 0.17 0.382 0.203 0.146 0.092 0.268 0.232 0.243 0.152 0.155
256_mid 0.112 0.259 0.027 0.145 1 0.166 0.074 0.062 0.176 0.43 0.21 0.139 0.168 0.127 0.346 0.218 0.23
256_fourth 0.078 0.232 0.014 0.112 0.166 1 0.102 0.054 0.125 0.207 0.377 0.187 0.091 0.09 0.244 0.307 0.288
256_sfx 0.056 0.125 0.03 0.078 0.074 0.102 1 0.05 0.078 0.101 0.147 0.252 0.067 0.055 0.118 0.161 0.198
512 pfx 0.171 0.309 0.474 0.17 0.062 0.054 0.05 1 0.234 0.097 0.068 0.065 0.448 0.135 0.139 0.098 0.113
512_second | 0.151 0.379 0.165 0.382 0.176 0.125 0.078 0.234 1 0.241 0.16 0.107 0.367 0.328 0.314 0.2 0.165
512_mid 0.134 0.371 0.053 0.203 043 0.207 0.101 0.097 0.241 1 0.26 0.196 0.225 0.209 0.475 0.306 0.288
512_fourth 0.126 0.303 0.046 0.146 0.21 0.377 0.147 0.068 0.16 0.26 1 0.282 0.157 0.127 0.282 0.418 0.372
512_sfx 0.108 0.255 0.032 0.092 0.139 0.187 0.252 0.065 0.107 0.196 0.282 1 0.108 0.09 0.228 0.33 0.352
1024 _pfx 0.186 0.423 0.347 0.268 0.168 0.091 0.067 0.448 0.367 0.225 0.157 0.108 1 025 0.307 0.179 0.182
1024_second | 0.176 0.281 0.091 0.232 0.127 0.09 0.055 0.135 0.328 0.209 0.127 0.09 0.25 1 0.252 0.215 0.125
1024_mid 0.183 0.453 0.112 0.243 0.346 0.244 0.118 0.139 0.314 0.475 0.282 0.228 0.307 0.252 1 0.343 0.323
1024_fourth | 0.154 0.372 0.039 0.152 0.218 0.307 0.161 0.098 02 0.306 0.418 0.33 0.179 0.215 0.343 1 0.447
1024_sfx 0.103 0.371 0.076 0.155 0.23 0.288 0.198 0.113 0.165 0.288 0.372 0.352 0.182 0.125 0.323 0.447 1

B. Correlation analysis

Table 6 shows the correlation coefficients between the
classification labels produced using the machine learning model
(RF in this case) on the different regions/segments (using 4-
mers), and the true class labels. The results include correlation
results between regions using the same lengths, and also
different regions with different lengths. The correlation analysis
between true class and the predicted classes from different
models seems to suggest the same observations as the direct
classification results, namely, (1) the prefix, second, and middle
segments have relatively higher correlation with the true class,
compared with fourth, and suffix. For length 1024 segments, the
prefix, second prefix, and middle had correlation coefficient of
0.186, 0.176, and 0.183 respectively, which then decreases to
0.154 and 0.103 for the fourth segment, and the suffix,
respectively. Similar observations were made for segment
lengths 256 and 512. (2) The longer the segment length, the
higher the correlation with the true class. We also can observe
that, as expected, nearby regions had more correlation, when
compared with distal regions.

C. Motif based analysis

To identify the key motifs that may be important in subcellular
localization, we utilized the RF classifier to generate feature
ranks for each cell line. For this analysis, we used 14 cell lines
in total, namely, AS549, MCF.7, HT1080, GM12878,
SK.MEL.5, HeLa.S3, SK.N.DZ, SK.N.SH. IMR.90, K562,
HepG2, HUVEC, NCI.H460. and NHEK. (We did not use
H1.hESC, the stem-cell cell line, as it appeared to have very
different characteristics when compared with the others).
Specifically, we focused on 6-mer with 1 mismatch, and

generated the RF feature importance ranking for inexact k-
mers. For each cell line, we identified the top 200 k-mers (the
motifs). The results showed there were 644 motifs shared
between at least two cell lines. Some top-ranked motifs in one
cell line were also observed in the top-ranked motifs for other
cell lines, while certain top-ranked motifs tended to appear in
few cell lines.

We then checked the CN-RCI distribution per cell line that
linked to the top ranked motifs. For each cell line, we divided
the genes into two groups: genes with the motif, or genes
without the motif, and then computed the average RCI value
for the genes within the two groups. Finally, we compute the
average of differences across all the cell lines. See Tables 7. For
example, the motif “44TAAA” appeared in the top 200 motifs
for 9 cell lines, as listed in Table 7. In cell line A549, the
average RCI value from genes with the motifiis -0.315, without
the motif is -0.677. The difference between the average for
those with and without the motif is 0.362. Similarly, we
compute the difference for all the other cell lines. Finally, for
this example motif, we obtain the mean difference across all the
9 cell lines where it appeared as 0.317. See Table 7.

We set our localization thresholds as +0.3. Thus, motifs with
mean difference greater than or equal to 0.3 are deemed more
likely to be located in the cytoplasm. The analysis above
identified 157 such “cytoplasmic motifs”. Similarly, motifs
with mean difference less than -0.3, are deemed more likely to
be in the nucleus. We identified 45 such “nuclear-leaning
motifs”. We then analyzed the relative position(s) of a given
motif along the IncRNA sequences where the motif occurred.
We first find the

Table 7. The average of RCI value with and without a given motif, and the mean difference across the cell lines. Example using the motif "AATAAA".

AATAAA A549 MCEF.7 HT1080 NHEK GM12878 HeLa.S3 SKN.SH K562 HepG2 Mean_diff
With -0.315 -1.430 -0.349 -0.993 -1.018 -1.334 -1.160 -0.799 -1.185 -0.954
Without -0.677 -1.519 -0.710 -1.330 -1.145 -1.968 -1.499 -1.067 -1.524 -1.271
Difference 0.362 0.089 0.361 0.337 0.128 0.633 0.338 0.268 0.339 0.317
2787
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position of the motif in the sequence, say p;, and then obtain the
relative position by dividing p; with sequence length n. This
normalizes the position to a range of 0 to 1, which then allows
us to compare relative positions across sequence with different
lengths. We performed the analysis for three groups of motifs,
namely, cytoplasmic motifs (157 motifs), nuclear-leaning
motifs (45 motifs), and both types of motifs combined (202
motifs). We used our training set of 3913 genes, (H1.hESC
removed), where the motifs occurred. For each gene, we
computed the relative positions of occurrence for each of the
202 motifs (where one occurred). We then generate the
distribution of the relative positions of the 202 motifs across all
genes and all cell lines where they occurred. The results are
shown in Figure 3.

The results show that the nuclear-leaning motifs (with mean
difference < -0.3) tend to appear more in the first half of the
sequence. The density goes up sharply and then goes down
from prefix (5’ end) to the middle and then all the way to the
suffix (3’ end). The localization signals seem to be located more
towards the prefix region (5° end), which is consistent with our
previous observation, based on classification performance and
correlation analysis. However, for the cytoplasmic motifs, there
was a significant surge in the motif density as we come closer
to the IncRNA ends — both the prefix (5 region) and suffix (3’
region). This seems to suggest that, for IncRNAs that localize
in the cytoplasm, the suffix region (3’ end) could also hold
significant localization signals, perhaps even more so than the
middle region. This observation may imply possibly significant
differences between nuclear-leaning and cytoplasmic
IncRNAs. This certainly requires further analysis using more
data, and perhaps via some biological experimental studies.
Using the whole set of motifs, the trend also aligned with our
earlier observations, that is, generally more signals (or more
localization motifs in this case) as we move from the 5’ region
to the 3’ region.
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V. DISCUSSION AND CONCLUSION

Using the analysis on top-ranked motifs from random-forest
feature importance ranking, we identified 202 motifs, 157
cytoplasmic-leaning, and 45 nuclear-leaning. The analysis of
the relative location of these motifs along the sequence seem to
support the observation that the two ends of the IncRNA
sequence may not be contributing equally in terms of the
strength or amount of subcellular localization signals they may
contain. Lubelsky and Ulitsky [7] identified 49 tiles that contain
the  SINE-derived  nuclear-RNA-localization  element
(SIRLOIN) best matching sequences in NucLibA library and
81 tiles in NucLibB library, which are associated with nuclear
enrichment. By querying the motifs in these SIRLOIN regions,
31 of the 45 nuclear motifs and 55 of the 157 cytoplasmic
motifs were found in genes that localize in the nuclear region.

Overall, our classification results using machine learning
models on the segments reveal that the prefix (5 end) of the
sequence tends to contain more localization signals than the
suffix (3’ end). The correlation analysis and further motif
positional analysis provide further support to this observation.
The case for cytoplasmic genes is not clear cut, and requires
further analysis. If the results from our computational studies
can be verified in the wet lab, this could have significant
implications in the analysis of IncRNA sequences.

Towards such improved analysis, we made an initial
attempt to use our observations from this work to develop
improved machine learning models for IncRNA subcellular
localization. For instance, using the above identified 45
nuclear-leaning and 157 cytoplasmic-leaning motifs based on
6mers with 1 mismatch, we developed a RF models using the 5
regional segments, and 3 sequence lengths. We obtained the
highest classification rate of 62.2% using just the prefix
segments, with segment length 1024. Further, we applied
learning-based score fusion using the predicted classification
probabilities from the 15 models. Essentially, here, we used a
machine-learning model to automatically assign appropriate
weights to the results from different regional segments at a
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Figure 3. Distribution of relative positions for three groups of localization motifs. Results are shown for all 202 motifs, cytoplasmic motifs (with
mean CN-RCI difference >= 0.3), and nuclear-leaning motifs (with mean CN-RCI difference < -0.3).
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given segment length, and combined these for the final sub-
cellular localization decision. This produced the best overall
average classification accuracy of 61.89%, using 4mers with 0
mismatch (Table 5). These results point to the potential to build
on the reported observations in this work to further improve the
localization models using more sophisticated machine learning
techniques, such as deep learning models and architectures.

We can point out some limitations of the current study. The
segment-based analysis is essentially performance based. The
ideal scenario would be to simply use segment windows with 1
position overlaps across the length of the entire IncRNA
sequence, rather than just the prefix, middle, and suffix. Though
this could be very computationally intensive, it will provide a
clearer picture on whether localization signals have any
association with certain regions in the sequence. Further, the
motif position analysis was based mainly on predicted motifs
from a machine learning model. It should be possible to
perform a similar analysis using already characterized and
biologically validated IncRNA localization motifs.

ACKNOWLEDGMENT

This work is supported in part by the US National Science
Foundation (NSF), Award #s: 1747788, 1920920, 2125872.

REFERENCES

[1] C.-J. Guo, G. Xu, and L.-L. Chen, “Mechanisms of Long
Noncoding RNA Nuclear Retention,” Trends Biochem Sci,
vol. 45, no. 11, pp. 947-960, Nov. 2020, doi:
10.1016/j.tibs.2020.07.001.

[2] A.F. Palazzo and E. S. Lee, “Sequence Determinants for
Nuclear Retention and Cytoplasmic Export of mRNAs and
IncRNASs,” Frontiers in Genetics, vol. 9, 2018, Available:
https://www.frontiersin.org/articles/10.3389/fgene.2018.0
0440

[3] E.S.Lee, A. Akef, K. Mahadevan, and A. F. Palazzo, “The
consensus 5’ splice site motif inhibits mRNA nuclear
export,” PLoS One, vol. 10, no. 3, p. e0122743, 2015, doi:
10.1371/journal.pone.0122743.

[4] T.J. Kaczynski, E. D. Au, and M. H. Farkas, “Exploring
the IncRNA localization landscape within the retinal

2789

pigment epithelium under normal and stress conditions,”
BMC Genomics, vol. 23, no. 1, p. 539, Jul. 2022, doi:
10.1186/s12864-022-08777-1.

[5] B. Zuckerman and I. Ulitsky, “Predictive models of
subcellular localization of long RNAs,” RNA, vol. 25, no.
5, pp- 557-572, May 2019, doi: 10.1261/rna.068288.118.

[6] Z.Ji, R. Song, A. Regev, and K. Struhl, “Many IncRNAs,
5’UTRs, and pseudogenes are translated and some are
likely to express functional proteins,” Elife, vol. 4, p.
e08890, Dec. 2015, doi: 10.7554/eLife.08890.

[71 M. Ron and I. Ulitsky, “Context-specific effects of
sequence elements on subcellular localization of linear and
circular RNAs,” Nat Commun, vol. 13, no. 1, p. 2481, May
2022, doi: 10.1038/s41467-022-30183-0.

[8] D. Mas-Ponte, J. Carlevaro-Fita, E. Palumbo, T. Hermoso
Pulido, R. Guigo, and R. Johnson, “LncATLAS database
for subcellular localization of long noncoding RNAs,”
RNA (New York, N.Y.), vol. 23, no. 7, pp. 1080-1087,
2017, doi: 10.1261/rna.060814.117.

[9] F. Pedregosa et al., “Scikit-learn: Machine Learning in
Python,” Journal of Machine Learning Research, vol. 12,
no. 85, pp. 2825-2830, 2011.

[10] “XGBoost ~ Documentation  —  xgboost  2.0.1
documentation.” Accessed: Nov. 03, 2023. [Online].
https://xgboost.readthedocs.io/en/stable/index.html

[11]1G. Ke et al, “Lightgbm: A highly efficient gradient
boosting decision tree,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[12] M. Abadi et al, “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems”.

[13] Adjeroh, Donald, Timothy Bell, and Amar Mukherjee. The
Burrows-Wheeler Transform: Data Compression, Suffix
Arrays, and Pattern Matching. Springer Science &
Business Media, 2008.

[14] W. Yi, and D. A. Adjeroh. “A deep learning approach to
IncRNA subcellular localization using inexact q-mers,” In
2021 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 2128-2133. IEEE, 2021.

Authorized licensed use limited to: West Virginia Univ Institute of Technology. Downloaded on September 01,2024 at 19:01:54 UTC from IEEE Xplore. Restrictions apply.



