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Abstract— In this work, we studied the question of whether 

the two ends of long non-coding ribonucleic acids (lncRNAs) 

(i.e., the 5’ end and 3’end) carry similar information about 

subcellular localization of lncRNAs. We considered this 

problem from three viewpoints using machine learning models: 

(1) consideration of the classification performance of the 

machine learning models using features from defined regions 

(or segments) along the sequence, (2) correlation-based 

analysis using models built on regions/segments along the 

LncRNA sequence, and (3) analysis of the relative positions of 

predicted lncRNA localization motifs along the LncRNA 

sequence. Our results and observations suggest that the 5’ 

region of the lncRNA sequences (the prefixes) tend to carry 

more localization signals when compared with the 3’ region 

(the suffixes) of the sequences. These could have implications 

on how we use machine learning models for improved analysis 

of lncRNA subcellular localization. 
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I. INTRODUCTION  

Most long non-coding RNA (lncRNA) genes are poorly 
characterized. Some clues to their cellular roles have been 
provided by experiments that measure whether the lncRNA 
transcripts are more abundant in the nucleus or cytoplasm. All 
lncRNA is formed in the nucleus, but much of it is exported 
through the nuclear membrane into the cytoplasm where, 
presumably, it plays some role. Subcellular localization of 

lncRNA is influenced by many factors, as reviewed in [1]. In 

many cases, localization is correlated to specific k-mers or 
motifs, i.e. substrings that exactly or inexactly match some 
pattern, found within the lncRNAs themselves. This 
observation has inspired many machine learning experiments 
designed to train models that predict localizations given the 
lncRNA sequences alone.  

In protein-coding RNA, also called messenger RNA 
(mRNA), the center portion of the RNA sequence is 
evolutionarily constrained to list the 3-nucleotide codons that 
get translated into proteins. In mRNA, the initial and trailing 
regions are called the 5’ UTR and 3’ UTR, respectively. The 
UTR portions of mRNA often contain information beyond 
protein sequence, such as binding motifs and localization 
signals. Since lncRNA shares many characteristics with 
mRNA, it has been suggested that localization signals may be 

concentrated at the 5’ end or 3’ end of lncRNA [2]. 
In this study, we trained machine learning models to predict 

either nuclear or cytoplasmic subcellular localization of 
lncRNAs given a portion of their sequences. We compared the 
accuracy of models that operated only on just the prefixes, or 
just the suffixes, or the entire lengths of lncRNA sequences. 
More specifically, we performed our analysis with four machine 
learning models, namely, Multilayer Perceptron (MLP), 
Random Forest (RF), eXtreme Gradient Boosting (XGB), and 
Light Gradient Boosting Machine (LGBM), first using the entire 
sequence (all_Seq), and then using segments from different 
regions of the lncRNA sequence, moving from the 5’ end to the 
3’ end. That is, from prefix segment (5’ end), second segment, 
middle segment, fourth segment, and suffix segment (3’ end).  
Using all k-mer features from the sequence (all_Seq) with RF 
produced the highest classification accuracy of 60.45%, using 4-
mers with 0 mismatch.  We then evaluated the prefix, second, 
middle, fourth segments, and the suffix on different length 
segments. Using segment length 1024, with 4-mer with 0 
mismatch on the prefix segment resulted in the highest segment-
based results, in terms of classification accuracy. The 
classification accuracy seemed to decrease from the prefix (5’ 
end) towards the suffix (3’ end). The results seem to show that 
the prefix region (5’ end) of the lncRNA sequences tended to 
contain more signals that are relevant to localization, when 
compared with the other regions, including the suffix region (3’ 
end). This observation is further studied by performing 
correlation-based analysis using segments along the lncRNA 
sequence, and also by analyzing the relative position of ranked 
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localization motifs along the lncRNA sequence. A learning-
based fusion using extracted prediction probabilities from 
machine models developed using 3 segment lengths, and 5 
region segments as input to the random forest model achieved a 
slightly improved classification accuracy of 61.89%. 

II. BACKGROUND 

Nearly all protein-coding RNA must localize to the 
cytoplasm to be functional. That is because the cytoplasm is the 
sole site of translation from mRNA to protein. In contrast, the 
nucleus is the sole site of intron splicing, and incomplete 
splicing is associated with nuclear retention. One study [3] 
looked at a splice signal called 5’SS. This signal is commonly 
located at 5’ ends and is commonly removed by splicing. The 
authors found that 5’SS in the 3’ ends of mRNAs does not get 
removed by splicing and is associated with nuclear retention. 
The effect was less strong, but still present, in lncRNA.   

A 2022 study  [4]measured the impact of 5’SS and two other 
sequence motifs known to favor nuclear retention in lncRNA: 
BORG, and SIRLOIN. These motifs are recognizable 
computationally, and presumably biochemically, by their 
nucleotide sequence and its implied molecular structure. The 
study examined the effect of these motifs on lncRNA in a 
particular human cell line, known as BSX, which is cultured 
from retinal pigment epithelium. RNA was isolated from the 
nucleus and from the cytoplasm of these cells under two 
conditions: normal, and oxidative stress. The RNA was 
sequenced, aligned to the human reference transcriptome, and 
quantified to give each transcript’s cytoplasmic-over-nuclear 
log2 fold change. For most lncRNA, the value was near zero, 
indicating similar abundance in the nucleus and cytoplasm. This 
was true under the normal and stress conditions, but more 
transcripts moved to the extremes when the cells were under 
stress. This indicates that environmental factors influence 
localization. When the authors compared transcripts that do or 

do not harbor one of the three known nuclear localization motifs, 
they found that the nuclear fraction was higher for lncRNAs that 
contained the motifs than for those that did not. This was true 
under the normal and the stressed conditions. This confirms that 
the known factors encourage nuclear retention. Next, the authors 
found an effect due to multiplicity. The fold change was 
inversely correlated with copy count, meaning that more repeats 
of the signal correlated with heavier nuclear retention.  

A 2019 study [5] built models to predict nuclear or 
cytoplasmic enrichment per RNA. The models used a 
combination of lncRNA features including sequence elements. 
The models were mildly successful, explaining 45% of the 
variance for mRNA genes and 34% of the variance for lncRNA 
genes. However, the most predictive factor was splicing 
efficiency, i.e. the portion of the transcripts whose introns were 
removed completely. This factor is measurable in cells but it 
may not be easily predictable from sequence alone. For this 
reason, one can expect low levels of accuracy in machine 
learning classifiers trained on the sequences alone.  A 2015 
study found that many lncRNAs are translated to protein in the 
cytoplasm [6]. This finding is counter-intuitive since lncRNA is, 
by definition, non-coding. However, biology is rarely binary, 
and the definition of lncRNA should perhaps be modified to 
indicate that they do not encode functional proteins. The protein 
products of translated lncRNA may be unstable or inactive, but 
in some cases they bear resemblance to functional proteins in the 
same or other species. Furthermore, the authors argue that some 
translated lncRNAs bear signs of purifying evolutionary 
selection, indicating that these lncRNAs contribute to overall 
fitness in some way. Protein translation occurs only in the 
cytoplasm. The authors found that localization preference for the 
cytoplasm correlates with lncRNA efficiency at translation to 
protein. This indicates that preference for the cytoplasm is 
distributed non-randomly among lncRNAs.  

 

Figure 1. Workflow for the reported analysis. (A) classification using k-mers; (B) analysis using correlation, and motif location. 
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In a 2022 study, Ron and Ulitsky [7] measured the nuclear 
vs cytoplasmic enrichment of certain sequences associated with 
either compartment. Though most of the findings concerned 
another type of RNA (circRNA), the authors reported some 
associations between lncRNA sequence and localization. For 
example, the authors found that nuclear localization was 
associated with many short sequences taken from the MALAT1 
lncRNA, which is known to have nuclear function. 

The foregoing suggests that there could be some value in 
further studying lncRNA sequences, especially on the question 
of whether the 5’ and 3’ ends of a lncRNA could hold important 
information that may be relevant to localization. Clearly, an 
improved understanding of the role of these lncRNA ends in 
localization could be exploited to build improved computational 
methods for predicting subcellular localization for lncRNAs, 
based primarily on information from their sequences.  

III. METHODS 

Figure 1 shows the basic workflow in our analysis. Panel A 
shows our baseline model. We build our datasets first, and then 
create baselines of the machine learning models. Panel B shows 
the workflow of following analysis. Using the baseline models, 
we identify a suitable machine learning model to be used to 
analyze the different regions of the lncRNA, using varying 
segment lengths on the sequence. We performed lncRNA 
localization classification using the models. Further, based on 
the predicted class and the true classes of the lncRNA 
sequences, we performed correlation analysis, using results 
from the different regions of the lncRNA sequence.  Finally, we 
performed further analysis by considering the relative positions 
of predicted k-mer localization sequence motifs, as obtained 
from the best performing machine learning model.  

A. Dataset 

We downloaded lncRNA subcellular localization data from 

lncATLAS [8]. The lncATLAS considered two localizations in 

the cells: nuclear and the cytoplasmic, which is the fluid inside 
a cell but outside the cell’s nucleus. They computed the 
cytoplasmic-nuclear relative concentration index (CN-RCI) 
values for the genes from 15 cell lines.  We obtained the gene 
ensemble ID and a CN-RCI value for each gene from the 
dataset. We then download lncRNA sequence data and 
annotation file (.gff file) from GENCODE 
(https://www.gencodegenes.org/human/) release 42. The 
GENCODE dataset includes repeated genes with duplicate 
transcripts. We combined the two datasets according to their 
gene ensemble ID and retained transcripts that had at least one 
CN-RCI value for the cell lines. We used the longest transcript 
for a given gene, and removed the duplicated genes. We 
separate the dataset into training and test sets with a ratio of 4:1. 
We obtained 4662 genes for the training set. The length of the 
lncRNA transcripts varied from 72 to 205,000. To reduce the 
computation workload, we only analyzed genes with sequence 
lengths between 200 and 5000 in the training set. Thus, we 
obtained 4607 genes (transcripts) for the training set.  
 

 We used segments of lengths 256, 512, and 1024 
respectively, from the sequences to check whether the prefixes 

(5’ ends), and suffixes (3’ends) contain similar amounts of 
localization information. To make results from the different 
lengths more comparable, we performed our analysis only on 
sequences with lengths greater than or equal to 1027. This 
reduced our data to 2834 sequences in total. We extract 
subsequences with lengths 256, 512, and 1024 respectively, 
from 5 positions in each given lncRNA sequence. These 5 
positions thus defined 5 segments, namely, the prefix segment, 
the second segment, the middle, the fourth segment, and the 
suffix segment. See Figure 2. 

Not all the sequences (lncRNAs) have CN-RCI values in 
every cell line. For each cell line, we will drop the sequences 
that do not have a value in the cell line. In this work, we 
considered 3 cell lines, A549, MCF.7, and SK.N.SH for our first 
two analyses (classification, and correlation-based analysis). We 
set the class threshold to 0. Thus, for a lncRNA with a CN-RCI 
value greater or equal to 0, we set the class label to 1 (i.e., more 
likely to be cytoplasmic). Otherwise, we set the class label to 0 
(i.e., more likely to be nuclear). For each cell line, we perform 
down-sampling to build a balanced dataset, with equal numbers 
for the two label categories. Thus, we obtain balanced datasets 
having A549 with 968 genes, MCF.7 with 796 genes, and 
SK.N.SH with 734 genes. 

B. Feature representation 

LncRNA is transcribed from DNA. LncRNA consists of a 
string of nucleotide bases, namely, adenine (A), guanine (G), 
uracil (U), and cytosine (C).  For our feature space, we use only 
sequence-based features, using simple k-mers (k-length 
substrings) from the sequence. We used k=4, and k=6, and used 
the k-mer counts as our feature representation for each lncRNA 
sequence. The k-mer counts are easy to compute, though more 
efficient algorithms are available using suffix trees and suffix 
arrays [13]. Using the k-mer counts, we generate the k-mer 
profile for a given sequence or segment. The profiles are 
normalized by the sequence length, or by the segment length as 
needed to capture the probability of occurrence of each given k-
mer in the sequence, or segment. 

C. Machine Learning Models 

In this work, we studied lncRNA subcellular localization as 
a classification problem, using four machine learning models, 
namely, the random forest (RF) classifier from Scikit [9], 
XGBoost [10], light gradient boosting machine classifier 
(LGBM) [11], and multilayer perceptron classifier (MLP). For 
the first three models, we use the default parameters. We build 
3 layers (64,32,2) MLP model with TensorFlow [12].  

Our baseline models are built on the k-mer profiles obtained 
using the full-length sequence (all_len), normalized by gene’s 
sequence length. We than evaluated the respective classification 
performance on the 5 different regions of the sequence, k-mer 

 

Figure 2. The 5 segments in the sequence. 
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profiles normalized by region length. For each model, we 
analyzed 3 cell lines, namely, A549, MCF.7, and SK.N.SH. We 
used 5-fold cross validation on the balanced training sets. Based 
on the predicted localization labels, we performed class 
correlation analysis. We then performed motif location analysis, 
by considering the distribution of motifs along the sequence, 
using the relative position of predicted lncRNA motifs along the 
sequence. 

 

 

D. Evaluation 

In this work, we performed our classification study using a 
balanced dataset, obtained via under-sampling. We performed 
5-fold cross-validation twice on this data, and recorded the 
average results from the two runs. We report average of the 
classification accuracy over the 3 cell lines. 
 
 

IV. RESULTS 

A. Classification performance 

Table 1 and Table 2 show the classification results for the 
baseline models (using k-mer profiles from all the sequence), 
using the four machine learning models (MLP, RF, XGB, and 
LGBM).  We have included results for exact k-mers (_0miss) 
and inexact k-mers (as introduced in [14]) with k-mismatches 

(_1miss, _2miss, 3_miss). The results show that the RF model 
with default parameters resulted in the highest accuracy of 
60.45% on 4-mer with 0 mismatch, and 60.25% on 6-mer with 
1 mismatch. In subsequent analysis, we will focus random forest 
model (RF) with 4mer with 0 mismatch and 6mer with 1 
mismatch. In subsequent analysis, we will focus on the random 
forest (RF) model, using 4mers with 0 mismatch, and 6mers 
with 1 mismatch. 

We tested the RF model on segments from different regions of 
the lncRNA sequences, using different segment lengths. 
Results are shown in Tables 3 and 4. The highest score was 
59.3%, using prefixes and segment length 1024. Expectedly, 
the results show that the classification accuracy increases with 
increasing segment length -- from 58.73% with length 256 to 
59.3% with length 1024. This tendency of improved 
classification accuracy with increasing segment length was also 
generally observed for each of the five regional segments. 
Considering the 5 segments (or regions) at a given sequence 
length, the accuracy was observed to generally decrease from 
the prefix (5’ end) to the suffix (3’ end). This indicates that 
localization signals are stronger or more likely to be found in 
the prefix (5’ end) of the lncRNA sequence, when compared 
with the suffix (3’ end).  This was a surprising observation, thus 
we set out to perform further analysis (see below). 
 
We also further tested the performance using a learning-based 
fusion scheme. We extracted the predicted probabilities from 
the 15 models (i.e., 3 segment lengths, 5 regions), and used 

these as the input features to the machine learning models. Once 
again, the random forest (RF) model produced the best results, 
giving an accuracy of 61.89% on 4mers, 0 mismatch, and 
60.67% on 6mers, 0 mismatch.  See results in Table 5. 

Table 3. Classification performance using 4mer with 0 mismatch on 

segments from different sequence regions.

 

 Table4. Classification performance using 6mer with 1 mismatch  on 

segments from different sequence regions..

 

 
Table 1. Classification results using the baseline models on 4-mers.

 

 Table 2. Classification results using the baseline models on 6-mers.  

 

Table5. Classification performance using learning-based fusion. 

 

Segment length Prefix Second Middle Fourth Suffix

256 58.73 56.34 55.57 53.92 52.82

512 58.53 57.5 56.7 56.29 55.39

1024 59.3 58.33 59.13 57.66 55.16

MLP_0 miss MLP_1 miss MLP_2 miss MLP_3 miss RF_0 miss RF_1 miss RF_2 miss RF_3 miss XGB_0 miss XGB_1 miss XGB_2 miss XGB_3 miss LGBM_0 miss LGBM_1 miss LGBM_2 miss LGBM_3 miss

A549 59.55 60.79 60.63 61.46 60.48 63.58 62.44 62.34 59.14 61.36 61.67 60.64 60.53 64 62.29 62.34

MCF.7 55.59 57.29 57.92 56.91 58.11 58.23 59.11 55.77 56.97 57.85 56.28 54.52 59.04 56.78 58.73 56.72

SK.N.SH 57.22 57.91 58.38 58.86 56.81 58.93 57.29 56.74 58.59 57.02 54.09 58.04 58.04 57.29 55.59 56.47

mean 57.45 58.66 58.98 59.08 58.47 60.25 59.61 58.28 58.23 58.74 57.35 57.73 59.2 59.36 58.87 58.51
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B. Correlation analysis 

 Table 6 shows the correlation coefficients between the 
classification labels produced using the machine learning model 
(RF in this case) on the different regions/segments (using 4-
mers), and the true class labels.  The results include correlation 
results between regions using the same lengths, and also 
different regions with different lengths. The correlation analysis 
between true class and the predicted classes from different 
models seems to suggest the same observations as the direct 
classification results, namely, (1) the prefix, second, and middle 
segments have relatively higher correlation with the true class, 
compared with fourth, and suffix. For length 1024 segments, the 
prefix, second prefix, and middle had correlation coefficient of 
0.186, 0.176, and 0.183 respectively, which then decreases to 
0.154 and 0.103 for the fourth segment, and the suffix, 
respectively. Similar observations were made for segment 
lengths 256 and 512. (2) The longer the segment length, the 
higher the correlation with the true class. We also can observe 
that, as expected, nearby regions had more correlation, when 
compared with distal regions. 

C. Motif based analysis 

To identify the key motifs that may be important in subcellular 
localization, we utilized the RF classifier to generate feature 
ranks for each cell line. For this analysis, we used 14 cell lines 
in total, namely, A549, MCF.7, HT1080, GM12878, 
SK.MEL.5, HeLa.S3, SK.N.DZ, SK.N.SH. IMR.90, K562, 
HepG2, HUVEC, NCI.H460. and NHEK. (We did not use 
H1.hESC, the stem-cell cell line, as it appeared to have very 
different characteristics when compared with the others). 
Specifically, we focused on 6-mer with 1 mismatch, and 

generated the RF feature importance ranking for inexact k-
mers. For each cell line, we identified the top 200 k-mers (the  
 motifs). The results showed there were 644 motifs shared 
between at least two cell lines. Some top-ranked motifs in one 
cell line were also observed in the top-ranked motifs for other 
cell lines, while certain top-ranked motifs tended to appear in 
few cell lines.  
We then checked the CN-RCI distribution per cell line that 
linked to the top ranked motifs. For each cell line, we divided 
the genes into two groups: genes with the motif, or genes 
without the motif, and then computed the average RCI value 
for the genes within the two groups. Finally, we compute the 
average of differences across all the cell lines. See Tables 7. For 
example, the motif “AATAAA” appeared in the top 200 motifs 
for 9 cell lines, as listed in Table 7. In cell line A549, the 
average RCI value from genes with the motif is -0.315, without 
the motif is -0.677. The difference between the average for 
those with and without the motif is 0.362.  Similarly, we 
compute the difference for all the other cell lines. Finally, for 
this example motif, we obtain the mean difference across all the 
9 cell lines where it appeared as 0.317. See Table 7. 
 
We set our localization thresholds as ±0.3. Thus, motifs with 
mean difference greater than or equal to 0.3 are deemed more 
likely to be located in the cytoplasm. The analysis above 
identified 157 such “cytoplasmic motifs”. Similarly, motifs 
with mean difference less than -0.3, are deemed more likely to 
be in the nucleus.  We identified 45 such “nuclear-leaning 
motifs”. We then analyzed the relative position(s) of a given 
motif along the lncRNA sequences where the motif occurred. 
We first find the  

Table 6. Correlation analysis using 4-mers. The correlation coefficient between true class and different model predicted classes.

 

Table 7. The average of RCI value with and without a given motif, and the mean difference across the cell lines. Example using the motif "AATAAA".

 

Class all_len 256_pfx 256_second 256_mid 256_fourth 256_sfx 512_pfx 512_second 512_mid 512_fourth 512_sfx 1024_pfx 1024_second 1024_mid 1024_fourth 1024_sfx

Class 1 0.209 0.175 0.127 0.112 0.078 0.056 0.171 0.151 0.134 0.126 0.108 0.186 0.176 0.183 0.154 0.103

all_len 0.209 1 0.247 0.273 0.259 0.232 0.125 0.309 0.379 0.371 0.303 0.255 0.423 0.281 0.453 0.372 0.371

256_pfx 0.175 0.247 1 0.123 0.027 0.014 0.03 0.474 0.165 0.053 0.046 0.032 0.347 0.091 0.112 0.039 0.076

256_second 0.127 0.273 0.123 1 0.145 0.112 0.078 0.17 0.382 0.203 0.146 0.092 0.268 0.232 0.243 0.152 0.155

256_mid 0.112 0.259 0.027 0.145 1 0.166 0.074 0.062 0.176 0.43 0.21 0.139 0.168 0.127 0.346 0.218 0.23

256_fourth 0.078 0.232 0.014 0.112 0.166 1 0.102 0.054 0.125 0.207 0.377 0.187 0.091 0.09 0.244 0.307 0.288

256_sfx 0.056 0.125 0.03 0.078 0.074 0.102 1 0.05 0.078 0.101 0.147 0.252 0.067 0.055 0.118 0.161 0.198

512_pfx 0.171 0.309 0.474 0.17 0.062 0.054 0.05 1 0.234 0.097 0.068 0.065 0.448 0.135 0.139 0.098 0.113

512_second 0.151 0.379 0.165 0.382 0.176 0.125 0.078 0.234 1 0.241 0.16 0.107 0.367 0.328 0.314 0.2 0.165

512_mid 0.134 0.371 0.053 0.203 0.43 0.207 0.101 0.097 0.241 1 0.26 0.196 0.225 0.209 0.475 0.306 0.288

512_fourth 0.126 0.303 0.046 0.146 0.21 0.377 0.147 0.068 0.16 0.26 1 0.282 0.157 0.127 0.282 0.418 0.372

512_sfx 0.108 0.255 0.032 0.092 0.139 0.187 0.252 0.065 0.107 0.196 0.282 1 0.108 0.09 0.228 0.33 0.352

1024_pfx 0.186 0.423 0.347 0.268 0.168 0.091 0.067 0.448 0.367 0.225 0.157 0.108 1 0.25 0.307 0.179 0.182

1024_second 0.176 0.281 0.091 0.232 0.127 0.09 0.055 0.135 0.328 0.209 0.127 0.09 0.25 1 0.252 0.215 0.125

1024_mid 0.183 0.453 0.112 0.243 0.346 0.244 0.118 0.139 0.314 0.475 0.282 0.228 0.307 0.252 1 0.343 0.323

1024_fourth 0.154 0.372 0.039 0.152 0.218 0.307 0.161 0.098 0.2 0.306 0.418 0.33 0.179 0.215 0.343 1 0.447

1024_sfx 0.103 0.371 0.076 0.155 0.23 0.288 0.198 0.113 0.165 0.288 0.372 0.352 0.182 0.125 0.323 0.447 1

AATAAA A549 MCF.7 HT1080 NHEK GM12878 HeLa.S3 SK.N.SH K562 HepG2 Mean_diff

With -0.315 -1.430 -0.349 -0.993 -1.018 -1.334 -1.160 -0.799 -1.185 -0.954

Without -0.677 -1.519 -0.710 -1.330 -1.145 -1.968 -1.499 -1.067 -1.524 -1.271

Difference 0.362 0.089 0.361 0.337 0.128 0.633 0.338 0.268 0.339 0.317
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position of the motif in the sequence, say pi, and then obtain the 
relative position by dividing pi with sequence length n. This 
normalizes the position to a range of 0 to 1, which then allows 
us to compare relative positions across sequence with different 
lengths.  We performed the analysis for three groups of motifs, 
namely, cytoplasmic motifs (157 motifs), nuclear-leaning 
motifs (45 motifs), and both types of motifs combined (202 
motifs). We used our training set of 3913 genes, (H1.hESC 
removed), where the motifs occurred. For each gene, we 
computed the relative positions of occurrence for each of the 
202 motifs (where one occurred). We then generate the 
distribution of the relative positions of the 202 motifs across all 
genes and all cell lines where they occurred. The results are 
shown in Figure 3. 
  
The results show that the nuclear-leaning motifs (with mean 
difference < -0.3) tend to appear more in the first half of the 
sequence. The density goes up sharply and then goes down 
from prefix (5’ end) to the middle and then all the way to the 
suffix (3’ end). The localization signals seem to be located more 
towards the prefix region (5’ end), which is consistent with our 
previous observation, based on classification performance and 
correlation analysis. However, for the cytoplasmic motifs, there 
was a significant surge in the motif density as we come closer 
to the lncRNA ends – both the prefix (5’ region) and suffix (3’ 
region). This seems to suggest that, for lncRNAs that localize 
in the cytoplasm, the suffix region (3’ end) could also hold 
significant localization signals, perhaps even more so than the 
middle region. This observation may imply possibly significant 
differences between nuclear-leaning and cytoplasmic 
lncRNAs. This certainly requires further analysis using more 
data, and perhaps via some biological experimental studies. 
Using the whole set of motifs, the trend also aligned with our 
earlier observations, that is, generally more signals (or more 
localization motifs in this case) as we move from the 5’ region 
to the 3’ region.  
 

V. DISCUSSION AND CONCLUSION 

Using the analysis on top-ranked motifs from random-forest 
feature importance ranking, we identified 202 motifs, 157 
cytoplasmic-leaning, and 45 nuclear-leaning. The analysis of 
the relative location of these motifs along the sequence seem to 
support the observation that the two ends of the lncRNA 
sequence may not be contributing equally in terms of the 
strength or amount of subcellular localization signals they may 
contain. Lubelsky and Ulitsky [7] identified 49 tiles that contain 
the SINE-derived nuclear-RNA-localization element 
(SIRLOIN) best matching sequences in NucLibA library and 
81 tiles in NucLibB library, which are associated with nuclear 
enrichment. By querying the motifs in these SIRLOIN regions, 
31 of the 45 nuclear motifs and 55 of the 157 cytoplasmic 
motifs were found in genes that localize in the nuclear region.  

Overall, our classification results using machine learning 
models on the segments reveal that the prefix (5’ end) of the 
sequence tends to contain more localization signals than the 
suffix (3’ end). The correlation analysis and further motif 
positional analysis provide further support to this observation. 
The case for cytoplasmic genes is not clear cut, and requires 
further analysis. If the results from our computational studies 
can be verified in the wet lab, this could have significant 
implications in the analysis of lncRNA sequences. 

Towards such improved analysis, we made an initial 
attempt to use our observations from this work to develop 
improved machine learning models for lncRNA subcellular 
localization. For instance, using the above identified 45 
nuclear-leaning and 157 cytoplasmic-leaning motifs based on 
6mers with 1 mismatch, we developed a RF models using the 5 
regional segments, and 3 sequence lengths. We obtained the 
highest classification rate of 62.2% using just the prefix 
segments, with segment length 1024. Further, we applied 
learning-based score fusion using the predicted classification 
probabilities from the 15 models. Essentially, here, we used a 
machine-learning model to automatically assign appropriate 
weights to the results from different regional segments at a 

 

Figure 3. Distribution of relative positions for three groups of localization motifs. Results are shown for all 202 motifs, cytoplasmic motifs (with 

mean CN-RCI difference >= 0.3), and nuclear-leaning motifs (with mean CN-RCI difference < -0.3). 
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given segment length, and combined these for the final sub-
cellular localization decision. This produced the best overall 
average classification accuracy of 61.89%, using 4mers with 0 
mismatch (Table 5). These results point to the potential to build 
on the reported observations in this work to further improve the 
localization models using more sophisticated machine learning 
techniques, such as deep learning models and architectures.  

We can point out some limitations of the current study. The 
segment-based analysis is essentially performance based. The 
ideal scenario would be to simply use segment windows with 1 
position overlaps across the length of the entire lncRNA 
sequence, rather than just the prefix, middle, and suffix. Though 
this could be very computationally intensive, it will provide a 
clearer picture on whether localization signals have any 
association with certain regions in the sequence.  Further, the 
motif position analysis was based mainly on predicted motifs 
from a machine learning model. It should be possible to 
perform a similar analysis using already characterized and 
biologically validated lncRNA localization motifs. 
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