
Bandit Algorithms for Prophet Inequality and Pandora’s Box

Khashayar Gatmiry∗ Thomas Kesselheim† Sahil Singla‡ Yifan Wang§

Abstract

The Prophet Inequality and Pandora’s Box problems are fundamental stochastic problem with applications
in Mechanism Design, Online Algorithms, Stochastic Optimization, Optimal Stopping, and Operations
Research. A usual assumption in these works is that the probability distributions of the n underlying random
variables are given as input to the algorithm. Since in practice these distributions need to be learned under
limited feedback, we initiate the study of such stochastic problems in the Multi-Armed Bandits model.

In the Multi-Armed Bandits model we interact with n unknown distributions over T rounds: in round t
we play a policy x(t) and only receive the value of x(t) as feedback. The goal is to minimize the regret, which
is the difference over T rounds in the total value of the optimal algorithm that knows the distributions vs.
the total value of our algorithm that learns the distributions from the limited feedback. Our main results give

near-optimal Õ
(
poly(n)

√
T
)
total regret algorithms for both Prophet Inequality and Pandora’s Box.

Our proofs proceed by maintaining confidence intervals on the unknown indices of the optimal policy.
The exploration-exploitation tradeoff prevents us from directly refining these confidence intervals, so the main
technique is to design a regret upper bound function that is learnable while playing low-regret Bandit policies.

1 Introduction

The field of Stochastic Optimization deals with optimization problems under uncertain inputs, and has had
tremendous success since [Bel57]. A standard model is that the inputs are random variables that are drawn from
known probability distributions. The goal is to design a policy (an adaptive algorithm) to optimize the expected
objective function. Examples of such problems include Prophet Inequality [HKS07, CHMS10, KW12, Rub16],
Pandora’s Box [KWW16, Sin18b, GKS19], and Auction Design [Har22, Rou16]. Most prior works assume that
the underlying distributions are known to the algorithm and the challenge is in computing an (approximately)
optimal policy. However, in practical applications, the distributions are typically unknown and must be learned
concurrently with decision-making.

A foundational framework that examines stochastic problems with unknown distributions is the stochastic
online learning model; see books [CBL06, BC12, Haz16]. Here, the learner interacts with the environment for
T days. On each day t ∈ [T], the learner plays a certain policy a(t) ∈ A, where A represents the set of all
policies (actions/algorithms). The environment draws a sample X(t) ∼ D, where D indicates the environment’s
unknown underlying distribution, and then the learner receives a reward a(t)(X(t)) along with some “feedback”.
For a maximization problem, the goal of the online learning model is to approach the optimal policy with reward
Opt := maxa∈A EX∼D[a(X)] while minimizing in expectation the total regret:

T · Opt−
∑

t∈[T] a
(t)(X(t)).

The best regret bound that can be achieved for an online learning problem highly depends on the feedback given
to the algorithm. In the full-feedback model, the learner observes the complete sample X(t) as daily feedback.
Since accessing the entire sample X(t) is often not feasible in many real-world applications, several partial feedback
models have been considered. The most limiting of them is the bandit feedback model where the only feedback
available is the reward a(t)(X(t)); see books [Sli19, LS20].

∗(gatmiry@mit.edu) Electrical Engineering and Computer Science, Massachusetts Institute of Technology
†(thomas.kesselheim@uni-bonn.de) Institute of Computer Science and Lamarr Institute for Machine Learning and Artificial

Intelligence, University of Bonn
‡(ssingla@gatech.edu) School of Computer Science, Georgia Tech. Supported in part by NSF award CCF-2327010.
§(ywang3782@gatech.edu) School of Computer Science, Georgia Tech. Supported in part by NSF award CCF-2327010.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited462

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Interestingly, in many online learning scenarios, limiting feedback does not excessively impair the regret
bound. For instance, consider the classic Learning from Experts problem where the goal is to identify the optimal
action. In this case, for a small action set, both full feedback and bandit feedback result in an optimal regret
bound of Θ(

√
T). This motivates us to address the following question for general online stochastic optimization

problems:

What is the minimum amount of feedback necessary to learn a stochastic optimization problem while
maintaining a near-optimal regret bound in T as the full feedback model?

In addition to being an intellectually intriguing question, there are several other motivations for designing
low regret algorithms that operate with limited feedback.

• In numerous real-world scenarios, accessing the complete sample X(t) as feedback is infeasible. Furthermore, in
order to safeguard data privacy to the greatest extent possible, it is advantageous to utilize minimal information
in real-world online learning tasks.

• An online learning algorithm that operates with less feedback is concurrently applicable to all partial feedback
models that incorporate the required feedback. We can therefore obtain near-optimal online learning algorithms
that function uniformly across different feedback models.

Specifically, in this paper, we address the above question in the context of the fundamental Prophet Inequality
and Pandora’s Box problems, which have wide-ranging applications in areas such as Mechanism Design, Online
Algorithms, Microeconomics, Operations Research, and Optimal Stopping. Our main results imply near-optimal
Õ
(
poly(n)

√
T
)
regret algorithms for both these problems under most limited bandit feedback, where Õ(·) hides

logarithmic factors.

1.1 Prophet Inequality under Bandit Feedback In the classical Optimal Stopping problem of Prophet
Inequality [KS77, KS78, SC84], we are given distributions D1, . . . ,Dn of n independent random variables. The
outcomes Xi ∼ Di for i ∈ [n] are revealed one-by-one and we have to immediately select/discard Xi with the
goal of maximizing the selected random variable in expectation. They have become popular in Algorithmic Game
Theory in the last 15 years since they imply posted pricing mechanisms that are “simple” (and hence more
practical) and approximately optimal; see related work in Section 1.4.

The optimal policy for Prophet Inequality is given by a simple (reverse) dynamic program: always select
Xn on reaching it and select Xi for i < n if its value is more than the expected value of this optimal policy on
Xi+1, . . . , Xn. Thus, the optimal policy with expected value Opt can be thought of as a fixed-threshold policy
where we select Xi iff Xi > τi for τi being the expected value of this policy after i. How to design this optimal
policy for unknown distributions? (See Remark 1.2 on the “hindsight optimum” benchmark.)

As a motivating example, consider a scenario where you want to sell a perishable item (e.g., cheese) in the
market each day for the entire year. For simplicity, assume that there are 8 buyers, one arriving in each hour
between 9 am to 5 pm. Your goal is to set price thresholds for each hour to maximize the total value. If the buyer
value distributions are known, this can be modeled as a Prophet Inequality problem with n = 8 distributions.
However, for unknown value distributions this becomes a repeated game with a fixed arrival order where on each
day you play some price thresholds and obtain a value along with feedback. Next, we formally describe this
repeated game.

Online Learning Prophet Inequality. In this problem the distributions D1, . . . ,Dn of Prophet Inequality are
unknown to the algorithm in the beginning. We make the standard normalization assumption that each Di is
supported on [0, 1]. Without this normalization, a non-trivial additive regret is not achievable. Now we play a

T rounds repeated game1: in round t ∈ [T] we play a policy, which is a set of n thresholds (τ
(t)
1 , . . . , τ

(t)
n), and

receives as reward its value on freshly drawn independent random variables X
(t)
1 ∼ D1, . . . , X

(t)
n ∼ Dn, i.e., the

reward is X
(t)
Alg(t) where Alg(t) ∈ [n] is the smallest index i with X

(t)
i > τ

(t)
i . The goal is to minimize the total

regret :

T · Opt−E
[∑T

t=1 X
(t)
Alg(t)

]
.

1We will always assume T ≥ n since otherwise getting an O(poly(n)) regret algorithm is trivial.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited463

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Since per-round reward is bounded by 1, the goal is to get o(T) regret. Moreover, standard examples show that
every algorithm incurs Ω(

√
T) regret; see Section 5.

An important question is what amount of feedback the algorithm receives after a round. One might consider

a full-feedback setting, where after each round t the algorithm gets to know the entire sample X
(t)
1 , . . . , X

(t)
n as

feedback, which could be used to update beliefs regarding the distributions D1, . . . ,Dn. Here it is easy to design
an Õ

(
poly(n)

√
T
)
regret algorithm. This is because after discretization, we may assume that the there are only

T candidate thresholds for each Xi, so there are only Tn candidate policies. Now the classical multiplicative
weights algorithm [AHK12] implies that the regret is O

(√
T log(#policies)

)
= Õ

(
poly(n)

√
T
)
. Although this

näıve algorithm is not polytime, a recent work of [GHTZ21] on O(n/ϵ2) sample complexity for prophet inequality

can be interpreted as giving a polytime Õ(poly(n)
√
T) regret algorithm under full-feedback2. These results,

however, do not extend to bandit feedback, where the algorithm does not see the entire sample.

Bandit Feedback. In many applications, it is unreasonable to assume that the algorithm gets the entire sample

X
(t)
1 , . . . , X

(t)
n . For instance, in the above scenario of selling a perishable item, we may only see the winning bid

(e.g., if you don’t run the shop and delegate someone else to sell the item at the given price thresholds). There
are several reasonable partial feedback models, namely:

(a) We see X
(t)
1 , . . . , X

(t)
Alg(t) but not X

(t)
Alg(t)+1, . . . , X

(t)
n , meaning that we do not observe the sequence after it

has been stopped.
(b) We see the index Alg(t) and the value XAlg(t) that we select but no other Xi.
(c) We only see the value of XAlg(t) that we select and not even the index Alg(t).

What is the least amount of feedback needed to obtain Õ(poly(n)
√
T) regret?

Our first main result is that even with the most restrictive feedback (c), it is possible to obtain Õ(poly(n)
√
T)

regret. Thus, the same bounds also hold under (a) and (b). Note that these bounds are almost optimal because
standard examples show that even with full feedback every algorithm incurs Ω(

√
T) regret (see Section 5).

Theorem 1.1. There is a polytime algorithm with O(n3
√
T log T) regret for the Bandit Prophet Inequality problem

where we only receive the selected value as the feedback.

(We remark that it is possible to improve the n3 factor in this result but we do not optimize it to keep the
presentation cleaner.)

Theorem 1.1 may come as a surprise since there are several stochastic problems that admit O(poly(n)/ϵ2)

sample complexity but do not admit Õ
(
poly(n)

√
T
)
regret bandit algorithms. Indeed, a close variant of prophet

inequality is sequential posted pricing. Here, the reward is defined as the revenue, i.e., it is the threshold itself if
a random variable crosses it rather than the value of the random variable (welfare) as in prophet inequality. It is
easy to show that sequential posted pricing has O(1/ϵ2) sample complexity [GHTZ21], but even for n = 1 every
bandit algorithm incurs Ω(T 2/3) regret [LSTW23].

One might wonder whether Õ
(
poly(n)

√
T
)
regret in Theorem 1.1 holds even for adversarial online learning,

i.e., where X
(t)
1 , . . . , X

(t)
n are chosen by an adversary in each round t and we compete against the optimal fixed-

threshold policy in hindsight. In Section 5 we prove that this is impossible since every online learning algorithm
incurs Ω(T) regret for adversarial inputs, even under full-feedback.

Remark 1.2 (Hindsight Optimum). There is a lot of work on Prophet Inequality (with Samples) where the
benchmark is the expected hindsight optimum E [maxXi]; see Section 1.4. However, we will be interested in the
more realistic benchmark of the optimal policy, or in other words the optimal solution to the underlying MDP, which
is standard in stochastic optimization. Firstly, comparing to the hindsight optimum does not make sense for most
stochastic problems, including Pandora’s Box, since it cannot be achieved even approximately. Secondly, optimal
policy gives us a much more fine-grained picture than comparing to the offline optimum. For instance, it is known
that a single sample suffices to get the optimal 2-competitive guarantee compared to the offline optimum [RWW20].
This might give the impression that there is nothing to be learned about the distributions for Prophet Inequality

2Their results are in the PAC model for “strongly monotone” stochastic problems. They immediately imply Õ(
√
nT) regret under

full-feedback using the standard doubling-trick.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited464

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

and sublinear regrets are impossible. However, this is incorrect as Theorem 1.1 obtains sublinear regret bounds
w.r.t. the optimal policy.

1.2 Pandora’s Box under Bandit Feedback The Pandora’s Box problem was introduced by Weitzman,
motivated by Economic search applications [Wei79]. For example, how should a large organization decide between
competing research technologies to produce some commodity. In the classical setting, we are given distributions
D1, . . . ,Dn of n independent random variables. The outcome Xi ∼ Di for i ∈ [n] can be obtained by the algorithm
by paying a known inspection cost ci. The goal is to find a policy to adaptively inspect a subset S ⊆ [n] of the
random variables to maximize utility : E

[
maxi∈S Xi −

∑
i∈S ci

]
. Note that unlike the Prophet Inequality, we may

now inspect the random variables in any order by paying a cost and we don’t have to immediately accept/reject
Xi.

Even though Pandora’s Box has an exponential state space, [Wei79] showed a simple optimal policy where
we inspect in a fixed order (using “indices”) along with a stopping rule. We study this problem in the Online
Learning model where the distributions Di supported on [0, 1] are unknown-but-fixed. Without loss of generality,
we will assume that the deterministic costs ci ∈ [0, 1] are known to the algorithm3.

Formally, in Online Learning for Pandora’s Box we play a T rounds repeated game where in round t ∈ [T]
we play a policy a(t), which is an order of inspection along with a stopping rule. As reward, we receive our utility

(value minus total inspection cost) on freshly drawn independent random variables X
(t)
1 ∼ D1, . . . , X

(t)
n ∼ Dn.

The goal is to minimize the total regret, which is the difference over T rounds in the expected utility of the optimal
algorithm that knows the underlying distributions and the total utility of our algorithm.

In the full-feedback setting the algorithm receives the entire sample X
(t)
1 , . . . , X

(t)
n as feedback in each

round. Here, it is again easy to design an Õ
(
poly(n)

√
T
)
regret polytime algorithm relying on the results in

[GHTZ21, FL20]. But these results do not extend to partial feedback.

There are again multiple ways of defining partial feedback. E.g., we could see the values of all Xi for i ∈ S,
meaning that we get to see the values of the inspected random variables. Indeed, our results again apply to the
most restrictive form of partial feedback: We only see the total utility of a policy and not even the indices of
inspected random variables or any of their values.

Theorem 1.3. There is a polytime algorithm with O(n5.5
√
T log T) regret for the Bandit Pandora’s Box problem

where we only receive utility (selected value minus total cost) as feedback.

Again, standard examples show that every algorithm incurs Ω(
√
nT) regret even will full feedback; see

Section 5. Furthermore, we will prove in Section 5 that Theorem 1.3 cannot hold for adversarial online learning

where X
(t)
1 , . . . , X

(t)
n are chosen by an adversary: every online learning algorithm incurs Ω(T) regret for adversarial

inputs, even under full-feedback.

1.3 High-Level Techniques Let’s consider the general Prophet Inequality problem or the subproblem of
Pandora’s Box where the optimal order is given. In both cases, a policy is described by n thresholds
τ1, . . . , τn ∈ [0, 1], defining when to stop inspecting. It would be tempting to apply standard multi-armed bandit
algorithms to maximize the expected reward over [0, 1]n. However, such approaches are bound to fail because
the expected reward is not even continuous4, let alone convex or Lipschitz. Discretizing the action space and
applying a bandit algorithm only leads to Ω(T 2/3) regret. Another reasonable approach is to try to learn the
distributions Di. However, recall that we only get feedback regarding the overall reward of a policy and do not
see which Xi is selected. It is possible to obtain samples from each Xi by considering policies that ignore all other
boxes; however, such algorithms that use separate exploration and exploitation also have Ω(T 2/3) regret.

3If the costs ci are unknown but fixed then the problem trivially reduces to the case of known costs. This is because we could

simply open each box once without keeping the prize inside and receive as feedback the cost ci.
4For example, consider the Prophet Inequality instance in which X1 is a distribution that returns 1

4
w.p. 1

2
and 3

4
otherwise, while

X2 is a distribution that always returns 1
2
. The reward of this example is a piece-wise constant function: When τ < 1

4
or τ ≥ 3

4
, the

expected reward is 1
2
. When 1

4
≤ τ < 3

4
, the expected reward is 5

8
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited465

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Our algorithms combine exploration and exploitation. We maintain confidence intervals [ℓi, ui] for i ∈ [n] sat-
isfying w.h.p. that the optimal thresholds τ∗i ∈ [ℓi, ui]. The crucial difference from UCB-style algorithms [ACBF02]
is that we don’t get unbiased samples with low regret, so we cannot maintain or play upper confidences. Instead,
we need a “refinement” procedure to shrink the intervals while ensuring that the regret during the refinement is
bounded.

More precisely, our algorithm works in O(log T) phases. In each phase, we start with confidence intervals
[ℓi, ui] that satisfy: (i) τ∗i ∈ [ℓi, ui] and (ii) playing any thresholds within the confidence intervals incur at most
some ϵ regret. During the phase, we refine the confidence interval to [ℓ′i, u

′
i] while only playing thresholds within

our original confidence intervals, so that we don’t incur much regret. We will show that the new confidence
intervals satisfy that τ∗i ∈ [ℓ′i, u

′
i] and that playing any thresholds within [ℓ′1, u

′
1], . . . , [ℓ

′
n, u

′
n] incur at most ϵ

2
regret. Thus, the regret bound goes down by a constant factor in each phase.

Bounding Function to Refine for n = 2. To illustrate the idea behind a refinement phase, let’s discuss the
case of n = 2; see Section 2 for more technical details. In this case, there is only one confidence interval [ℓ, u]
that we have to refine. Our idea is to define a “bounding function” δ(·) such that the expected regret in a single
round when using threshold τ ∈ [ℓ, u] is bounded by |δ(τ)|. Ideally, we would like to choose the optimal threshold
τ∗ for which δ(τ∗) = 0. However, this requires the knowledge of δ, which we don’t have since the distributions

are unknown. Instead, we compute an estimate δ̂ of δ and construct the new confidence interval [ℓ′, u′] to include

all τ for which |δ̂(τ)| is small. The main technical difficulty is to obtain δ̂ while only playing low-regret policies.

We achieve this by choosing δ such that δ̂ can be obtained by using only the estimates F̂i of the CDF and the
empirical average rewards when choosing the boundaries of the confidence interval as thresholds. Note that we
do not make any statements about the width of the confidence interval; we only ensure that the regret is bounded
when choosing any threshold inside the confidence interval.

Prophet Inequality for General n. In the case of general n, each refinement phase updates the confidence
intervals from the last random variable Xn to the first one X1. To refine confidence interval [ℓi, ui], we use our
algorithm for the n = 2 case as a subroutine, i.e., we play ℓi and ui sufficiently many times keeping the other
thresholds fixed. However, there are several challenges in this approach. The first important one is that the
probability of reaching Xi will change depending on which thresholds are applied before it. We deal with this
issue by always using thresholds from our confidence intervals that maximize the probability of reaching Xi.
Another important challenge while refining [ℓi, ui] is that the current choice of thresholds for Xi+1, . . . , Xn is
not optimal, so we maybe learning a threshold different from τ∗i . We handle this issue by choosing the other
thresholds in a way that they only improve from phase to phase. We then leave some space in the confidence
intervals to accommodate for the improvements in later phases.

Pandora’s Box for General n. We still maintain confidence intervals and refine them using ideas similar to
Prophet Inequality for general n. The main additional challenge arising in Pandora’s box is that the inspection
ordering is not fixed. The optimal order is given by ordering the random variables by decreasing thresholds.
However, there might be multiple orders consistent with our confidence intervals. Therefore, we keep a set S of
constraints corresponding to a directed acyclic graph on the variables, where an edge from Xi to Xj means that Xi

comes before Xj in the optimal order. We update this set by consider pairwise swaps. Then, during refinement
of confidence interval [ℓi, ui], we choose an inspection order satisfying these constraints while (approximately)
maximizing a difference of products objective.

1.4 Further Related Work There is a long line of work on both Prophet Inequality (PI) and Pandora’s Box
(PB), so we only discuss the most relevant papers. For more references, see [Luc17, Sin18a]. Both PI and PB
are classical single-item selection problems, but were popularized in TCS in [HKS07] and [KWW16], respectively,
due to their applications in mechanism design. Extensions of these problems to combinatorial settings have been
studied in [CHMS10, KW12, FGL15, FSZ16, Rub16, RS17, EFGT20] and in [KWW16, Sin18b, GKS19, GJSS19,
FTW+21], respectively. Although the optimal policy for PI with known distributions is a simple dynamic program,
designing optimal policies for free-order or in combinatorial PI settings is challenging. Some recent works designing
approximately-optimal policies are [ANSS19, PPSW21, SS21, LLP+21, BDL22].

Starting with Azar, Kleinberg, and Weinberg [AKW14], there is a lot of work on PI-with-Samples where the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited466

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

distributions are unknown but the algorithm has sample access to it [CDFS19, RWW20, GHTZ21, CDF+22].
These works, however, compete against the benchmark of expected hindsight optimum, so lose at least a
multiplicative factor of 1/2 due the classical single-item PI and do not admit sublinear regret algorithms.

The field of Online Learning under both full- and bandit-feedback is well-established; see books [CBL06,
BC12, Haz16, Sli19, LS20]. Most of the initial works focused on obtaining sublinear regret for single-stage
problems (e.g., choosing the reward maximizing arm). The last decade has seen progress on learning multi-stage
policies for tabular MDPs under bandit feedback; see [LS20, Chapter 38]. However, these algorithms have a regret
that is polynomial in the state space, so they do not apply to PI and PB that have large MDPs.

Finally, there is some recent work at the intersection of Online Learning and Prophet Inequality/Pandora’s
Box [EHLM19, ACG+22, GT22]. These models are significantly different from ours, so do not apply to our
problems. The closest one is [GT22], where the authors consider Pandora’s Box under partial feedback (akin to
model (a)), but for adversarial inputs (i.e., no underlying distributions). They obtain O(1)-competitive algorithms
and leave open whether sublinear regrets are possible [Ger22]. Our lower bounds in Section 5.2 resolve this question
by showing that sublinear regrets are impossible for adversarial inputs (even under full feedback), and one has to
lose a multiplicative factor in the approximation.

2 Prophet Inequality and Pandora’s Box for n = 2

In this section, we give O(
√
T log T) regret algorithms for both Bandit Prophet Inequality and Bandit Pandora’s

Box problems with n = 2 distributions. We discuss this special case of Theorem 1.1 before since it’s already
non-trivial and showcases one of our main ideas of designing a regret bounding function that is learnable while
playing low-regret Bandit policies.

Our algorithms run in O(log T) phases, where the number of rounds doubles each phase. Starting with an
initial confidence interval containing the optimal threshold τ∗, the goal of each phase is to refine this interval such
that the one-round regret drops by a constant factor for the next phase. In Section 2.1 we discuss each phase’s
algorithm for Prophet Inequality with n = 2. In Section 2.2 we give a generic doubling framework that combines
all phases to prove total regret bounds. Finally, in Section 2.3 we extend these ideas to Pandora’s Box with n = 2.

2.1 Prophet Inequality via an Interval-Shrinking Algorithm We first introduce the setting of the Bandit
Prophet Inequality Problem with two distributions. Let D1,D2 denote the two unknown distributions over [0, 1]
with cdfs F1, F2 and densities f1, f2. Consider a T rounds game where in each round t we play a threshold
τ (t) ∈ [0, 1] and receive as feedback the following reward:

• Independently draw X
(t)
1 from D1. If X

(t)
1 ≥ τ (t), return X

(t)
1 as the reward.

• Otherwise, independently draw X
(t)
2 from D2 and return it as the reward.

The only feedback we receive is the reward, and not even which random variable gets selected.

If the distributions are known then the optimal policy is to play τ∗ := E [X2] in each round. For τ ∈ [0, 1],
let R(τ) be the expected reward of playing one round with threshold τ , i.e.,

R(τ) := F1(τ) ·E [X2] +

∫ 1

τ

x · f1(x)dx = 1 + F1(τ)(E [X2]− τ)−
∫ 1

τ

F1(x)dx,(2.1)

where the second equality uses integration by parts. The total regret is T ·R(τ∗)−
∑T

t=1 R(τ (t)).

Initialization. For the initialization, we get Θ(
√
T log T) samples from both D1 and D2 by playing τ = 0 and

τ = 1, respectively. This incurs Θ(
√
T log T) regret since each round incurs at most 1 regret. The following simple

lemma uses the samples to obtain initial distribution estimates.

Lemma 2.1. After getting C · sqrtT log T samples from D1 and D2, with probability 1− T−10 we can:

• Calculate F̂1(x) such that |F̂1(x)− F1(x)| ≤ T− 1
4 for all x ∈ [0, 1] simultaneously.

• Calculate ℓ and u such that u− ℓ ≤ T− 1
4 and E [X2] ∈ [ℓ, u].

Proof. The first statement follows the DKW inequality (Theorem A.3). After taking N = C ·
√
T log T samples,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited467

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the probability that ∃x s.t. |F̂1(x) − F1(x)| > ε = T− 1
4 is at most 2 exp(−2Nε2) = 2T−2C < T−2C+1. So, the

first statement holds with probability at least 1 − T−11 when C > 10.

The second statement follows the Hoeffding’s Inequality (Theorem A.1). After taking N = C ·
√
T log T

samples, let µ be the average reward. Let ℓ = µ−ε and u = µ+ε for ε = 1
2T

− 1
4 . Then, u−ℓ ≤ T− 1

4 by definition.
Since the reward of each sample in inside [0, 1], by Hoeffding’s Inequality the probability that |µ−E [X2] | > ε is
bounded by 2 exp(−2Nε2) = 2T−2C < T−2C+1. So, the second statement holds with probability at least 1−T−11

when C > 10. Taking a union bound for two statements gives the desired lemma.

Next we discuss our core algorithm.

Interval-Shrinking Algorithm. Starting with an initial confidence interval containing τ∗ = E [X2], our
Interval-Shrinking algorithm (Algorithm 1) runs for Θ(log T

ϵ2) rounds and outputs a refined confidence interval. In
the following lemma, we will show that this refined interval still contains τ∗ and that the regret of playing any τ
inside this refined interval is bounded by O(ϵ).

Algorithm 1: Interval-Shrinking Algorithm for Prophet Inequality

Input: Interval [ℓ, u], approximate cdf F̂1(x), and accuracy ϵ.
1 Run C · log T

ϵ2 rounds with τ = ℓ. Let R̂ℓ be the average reward.

2 Run C · log T
ϵ2 rounds with τ = u. Let R̂u be the average reward.

3 For τ ∈ [ℓ, u], define ∆̂(τ) := F̂1(u)(τ − u)− F̂1(ℓ)(τ − ℓ) +
∫ u

ℓ
F̂1(x)dx.

4 For τ ∈ [ℓ, u], define δ̂(τ) := ∆̂(τ)− (R̂u − R̂ℓ).

5 Let ℓ′ := min{τ ∈ [ℓ, u] s.t. δ̂(τ) ≥ −5ϵ} and let u′ := max{τ ∈ [ℓ, u] s.t. δ̂(τ) ≤ 5ϵ}.
Output: [ℓ′, u′]

Lemma 2.2. Suppose we are given:

• Initial interval [ℓ, u] of length u− ℓ ≤ T− 1
4 and satisfying τ∗ ∈ [ℓ, u].

• Distribution estimate F̂1(x) satisfying |F1(x)− F̂1(x)| ≤ T− 1
4 for all x ∈ [0, 1] simultaneously.

Then, for ϵ > T− 1
2 Algorithm 1 runs thresholds inside [ℓ, u] for at most 1000 · log T

ϵ2 rounds, and outputs a
sub-interval [ℓ′, u′] ⊆ [ℓ, u] satisfying with probability 1− T−10 the following statements:

1. τ∗ ∈ [ℓ′, u′].
2. For every τ ∈ [ℓ′, u′] the expected one-round regret of playing τ is at most 10ϵ.

Proof Overview of Lemma 2.2. The main idea is to define a bounding function

δ(τ) := (F1(u)− F1(ℓ)) · (τ − τ∗).

As we show in Claim 2.3 below, this function satisfies R(τ∗) − R(τ) ≤ |δ(τ)| for all τ ∈ [ℓ, u], i.e., |δ(τ)| is an
upper bound on the one-round regret when choosing τ instead of τ∗. So, ideally, we would like to choose τ that
minimizes |δ(τ)|. However, we do not know δ(τ). Therefore, we derive an estimate δ̂(τ) for all τ ∈ [ℓ, u] and

discard τ for which |δ̂(τ)| is too large because these cannot be the minimizers.

In order to estimate δ(τ), we rewrite it in a different way as sum of terms that can be estimated well. First,
consider the difference in expected rewards when choosing thresholds u and ℓ, i.e.,

R(u)−R(ℓ) = (F1(u)− F1(ℓ))τ
∗ −

∫ u

ℓ

xf1(x)dx = F1(u) · (τ∗ − u)− F1(ℓ) · (τ∗ − ℓ) +

∫ u

ℓ

F1(x)dx,

where we used integration by parts. Adding this with δ(τ) gives δ(τ) + (R(u)−R(ℓ)) equals

F1(u)(τ − u)− F1(ℓ)(τ − ℓ) +

∫ u

ℓ

F1(x)dx =: ∆(τ),(2.2)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited468

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

which gives an alternate way of expressing δ(τ) = ∆(τ) − (R(u) − R(ℓ)). (Another way of understanding the
definition of ∆(τ) is that it represents the difference of playing thresholds u and ℓ, assuming that E [X2] = τ .)
So, we define the estimate

δ̂(τ) := ∆̂(τ)− (R̂u − R̂ℓ),

where ∆̂ uses the estimate F̂1 instead of F1 in (2.2) and to estimate R̂u and R̂ℓ we use empirical averages obtained
in the current phase. The advantage is that besides the coarse knowledge of F̂1 we assumed to be given, we only
need to choose thresholds from within our current confidence interval to obtain δ̂. Claim 2.4 will show that δ̂(τ)
estimates δ(τ) within an additive error of O(ϵ).

Completing the Proof of Lemma 2.2. Now we complete the missing details. We first prove that |δ(τ)| gives
an upper bound on one-round regret with threshold τ .

Claim 2.3. If τ, τ∗ ∈ [ℓ, u], then R(τ∗)−R(τ) ≤ |δ(τ)|.

Proof. Consider R(τ∗)−R(τ). The two settings are different only when X1 is between τ∗ and τ , and the difference
of the reward is bounded by |τ∗− τ |. Therefore, R(τ∗)−R(τ) ≤ |τ∗− τ | · |F1(τ

∗)−F1(τ)| ≤ |τ∗− τ | · |F1(u)−
F1(ℓ)| = |δ(τ)|, where the second inequality uses τ∗, τ ∈ [ℓ, u] implies |F1(τ)− F1(τ

∗)| ≤ |F1(u)− F1(ℓ)|.

Next, we prove that δ̂(τ) is a good estimate of δ(τ).

Claim 2.4. In Algorithm 1, if the conditions in Lemma 2.2 hold then with probability 1 − T−10 we have
|δ̂(τ)− δ(τ)| ≤ 5 · ϵ for all τ ∈ [ℓ, u] simultaneously.

Proof. Recall that δ(τ) = ∆(τ)−
(
R(u)−R(ℓ)

)
. We first bound the error |∆̂(τ)−∆(τ)|. Notice,

|∆̂(τ)−∆(τ)| ≤ |F1(u)− F̂1(u)| · |τ − u|+ |F1(ℓ)− F̂1(ℓ)| · |τ − ℓ|+
∫ u

ℓ

|F1(x)− F̂1(x)|dx.

The main observation is that all three terms on the right-hand-side can be bounded by T− 1
2 since |F1(x)−F̂1(x)| ≤

T− 1
4 and u− ℓ ≤ T− 1

4 . Hence, |∆̂(τ)−∆(τ)| ≤ 3T− 1
2 ≤ 3ϵ.

Next, we bound the errors for |R̂ℓ −R(ℓ)| and for |R̂u −R(u)|. For |R̂ℓ −R(ℓ)|, notice that R̂ℓ is an estimate
of R(ℓ) with N = C · log T

ϵ2 samples. Since the reward of each sample is in [0, 1], by Hoeffding’s Inequality

(Theorem A.1) the probability that |R̂ℓ−R(ℓ)| > ϵ is bounded by 2 exp(−2Nϵ2) = 2T−2C . Then, |R̂ℓ−R(ℓ)| ≤ ϵ
holds with probability at least 1 − T−11 when C > 10. The error bound for |R̂u − R(u)| is identical. Taking
a union bound for two error for |R̂ℓ − R(ℓ)| and for |R̂u − R(u)|, and then summing them with the error for
|∆̂(τ)−∆(τ)| completes the proof.

Now, we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. We will assume that |δ̂(τ)−δ(τ)| ≤ 5ϵ, which is true with probability 1−T−10 by Claim 2.4.

Observe that δ̂(τ) is a monotone increasing function because δ̂′(τ) = ∆̂′(τ) = F̂1(u) − F̂1(ℓ) ≥ 0. Therefore,

according to the definition of ℓ′ and u′, we have [ℓ′, u′] = {τ ∈ [ℓ, u] : |δ̂(τ)| ≤ 5ϵ}. Now, we can use this property
to prove the two statements of this lemma separately.

For Statement 1, notice that δ(τ∗) = 0. Claim 2.4 gives |δ̂(τ∗)| ≤ 5ϵ. Then, since τ∗ ∈ [ℓ, u] and |δ̂(τ∗)| ≤ 5ϵ,

we must have τ∗ ∈ [ℓ′, u′] as [ℓ′, u′] = {τ ∈ [ℓ, u] : |δ̂(τ)| ≤ 5ϵ}.
Next, we prove Statement 2. By Claim 2.3, it suffices to bound |δ(τ)| for all τ ∈ [ℓ′, u′]. By Claim 2.4, we

have w.h.p. for all τ ∈ [ℓ′, u′] that |δ(τ)| ≤ |δ̂(τ)| + 5ϵ ≤ 10ϵ, where the last inequality uses the definition of ℓ′

and u′.

2.2 Doubling Framework for Low-Regret Algorithms In this section we show how to run Algorithm 1
for multiple phases with a doubling trick to get O(

√
T log T) regret. Instead of directly proving the regret bound

for Prophet Inequality with n = 2, we first give a general doubling framework that will later be useful for Prophet
Inequality and Pandora’s Box problems with n random variables:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited469

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 2.5. Consider an online learning problem with size n. Assume the one-round regret for every possible
action is bounded by 1. Suppose there exists an action set-updating algorithm Alg satisfying: Given accuracy ϵ
and action set A, algorithm Alg runs Θ(n

α log T
ϵ2) rounds in A and outputs A′ ⊆ A satisfying the following with

probability 1− T−10:

• The optimal action in A belongs to A′.
• For a ∈ A′, the one-round regret of playing a is bounded by ϵ.

Then, with probability 1− T−9 the regret of Algorithm 2 is O(nα/2
√
T log T).

Algorithm 2: General Doubling Algorithm

Input: Time horizon T , problem size n, action space A, algorithm Alg, and parameter α.
1 Let i = 1, ϵ1 = 1, A1 = A

2 while ϵi >
nα/2 log T√

T
do

3 Call Alg with input ϵi and Ai, and get output Ai+1

4 ϵi+1 ← ϵi
2

5 i← i+ 1

6 Run a ∈ Ai for the remaining rounds.

The proof of the lemma uses simple counting; see Section B.

Based on Lemma 2.5, we can immediately give the Bandit Prophet Inequality regret bound.

Theorem 2.6. There exists an algorithm that achieves O(
√
T · log T) regret with probability 1− T−9 for Bandit

Prophet Inequality problem with two distributions.

Proof. The initialization runs O(
√
T log T) rounds, so the regret is O(

√
T log T). For the following interval

shrinking procedure, Algorithm 1 matches the algorithm Alg described in Lemma 2.5 with α = 0. Therefore,
applying Lemma 2.5 completes the proof.

2.3 Extending to Pandora’s Box with a Fixed Order In order to extend the approach to Pandora’s
Box, in this section we consider a simplified problem with a fixed box order. There are two boxes taking values
in [0, 1] from unknown distributions D1,D2 with cdfs F1, F2 and densities f1, f2. The boxes have known costs
c1, c2 ∈ [0, 1]. We assume that we always pay c1 to observe X1 (i.e., E [X1] > c1), and then decide whether to
observe X2 by paying c2. Indeed, it might be better to open the second box before the first box or not to open
any box. We make these simplifying assumptions in this section to make the presentation cleaner. Generally,
determining an approximately optimal order will be one of the main technical challenges that we will need to
handle for general n in Section 4.

Formally, consider a T rounds game where in each round t we play a threshold τ (t) ∈ [0, 1] and receive as
feedback the following utility:

• Independently draw X
(t)
1 from D1. If X

(t)
1 ≥ τ (t), we stop and receive X

(t)
1 − c1 as the utility.

• Otherwise, we pay c2 to see X
(t)
2 drawn independently from D2, and receive max{X1, X2} − (c1 + c2) as

utility.

The only feedback we receive is the utility, and not even which random variable gets selected.

To see the optimal policy, define a gain function g(v) := E [max{0, X2 − v} − c2] to represent the expected
additional utility from opening X2 assuming we already have X1 = v, i.e.,

g(v) = − c2 +

∫ 1

v

(x− v)f2(x)dx = − c2 + (1− v)−
∫ 1

v

F2(x)dx.(2.3)

The optimal threshold (Weitzman’s reservation value) τ∗ is now the solution to g(τ∗) = 0, i.e.,
E [max{X2 − τ∗, 0}] = c2. Since our algorithm does not know F2(x) but only an approximate distribution
F̂2(x), we get an estimate ĝ(v) of g(v) by replacing F2(x) with F̂2(x) in (2.3).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited470

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

For τ ∈ [0, 1], let reward function R(τ) denote the expected reward of playing τ . With the definition of gain
function g(v) and linearity of expectation, we can write

R(τ) := − c1 +E [X1] +

∫ τ

0

f1(x)g(x)dx.

The total regret of our algorithm is now defined as T ·R(τ∗)−
∑T

t=1 R(τ (t)).

Interval-Shrinking Algorithm. Starting with an initial confidence interval [ℓ, u] containing τ∗, we again design
an Interval-Shrinking algorithm (Algorithm 3) that runs for Θ(log T

ϵ2) rounds and outputs a refined confidence
interval [ℓ′, u′]. We will show that this refined interval still contains τ∗ and that the regret of playing any τ inside
this refined interval is bounded by O(ϵ). Now we give the algorithm and the theorem.

Algorithm 3: Interval-Shrinking Algorithm for Pandora’s Box

Input: Interval [ℓ, u], length m, and CDF estimates F̂1(x), F̂2(x).
1 Run C · log T

ϵ2 rounds with τ = ℓ. Let R̂ℓ be the average reward.

2 Run C · log T
ϵ2 rounds with τ = u. Let R̂u be the average reward.

3 For τ ∈ [ℓ, u], define ∆̂(τ) := (ĝ(u)− ĝ(τ))F̂1(u)− (ĝ(ℓ)− ĝ(τ))F̂1(ℓ)−
∫ u

ℓ
ĝ′(x)F̂ (x)dx.

4 For τ ∈ [ℓ, u], define δ̂(τ) := ∆̂(τ)− (R̂u − R̂ℓ).

5 Let ℓ′ = min{τ ∈ [ℓ, u] s.t. δ̂(τ) ≥ −4ϵ} and let u′ = max{τ ∈ [ℓ, u] s.t. δ̂(τ) ≤ 4ϵ}.
Output: [ℓ′, u′]

Lemma 2.7. Suppose we are given:

• Initial interval [ℓ, u] satisfying τ∗ ∈ [ℓ, u], gain function |g(τ)| ≤ T− 1
4 , and bounding function |δ(τ)| ≤ 16ϵ

where δ is defined in (2.4).
• CDF estimate F̂1(x) which is constructed via 1000 · log T

ϵ new i.i.d. samples of X1.

• CDF estimate F̂2(x) which is constructed via 1000 · log T
ϵ new i.i.d. samples of X2.

Then, for ϵ > T− 1
2 , Algorithm 3 runs thresholds inside [ℓ, u] for no more than 10000 ·ϵ−2 log T rounds and outputs

with probability 1− T−10 a sub-interval [ℓ′, u′] ⊆ [ℓ, u] satisfying:

1. τ∗ ∈ [ℓ′, u′].
2. Simultaneously for every τ ∈ [ℓ′, u′], we have |δ(τ)| ≤ 8ϵ.
3. Simultaneously for every τ ∈ [ℓ′, u′], the expected one-round regret of playing τ is at most 8ϵ.

To understand the main idea of the proof, let’s compare the expected reward of choosing the optimal threshold
τ∗ and an arbitrary threshold τ ∈ [ℓ, u]. The difference is given by

R(τ∗)−R(τ) =

∫ τ∗

0

f1(x)g(x)dx −
∫ τ

0

f1(x)g(x)dx =

∫ τ∗

τ

f1(x)g(x)dx.

Note that g is non-increasing since g′(x) = F2(x) − 1 ≤ 0. So, using τ∗, τ ∈ [ℓ, u] imply |F1(τ
∗) − F1(τ)| ≤

|F1(ℓ)− F1(u)|, we get R(τ∗)−R(τ) ≤ |(F1(ℓ)− F1(u)) · g(τ)|. This motivates defining bounding function

δ(τ) := (F1(u)− F1(ℓ)) ·
(
g(τ∗)− g(τ)) = − (F1(u)− F1(ℓ)) · g(τ),(2.4)

and we get the following upper bound on the one-round regret when choosing τ instead of τ∗.

Claim 2.8. If τ, τ∗ ∈ [ℓ, u] then R(τ∗)−R(τ) ≤ |δ(τ)|.

In order to define an estimate δ̂(τ) that can be computed using the available information, again consider the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited471

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

rewards when playing thresholds u and ℓ. The difference is given by

R(u)−R(ℓ) =

∫ u

ℓ

f1(x)g(x)dx = F1(u)g(u)− F1(ℓ)g(ℓ)−
∫ u

ℓ

F1(x)g
′(x)dx

= F1(u)g(u)− F1(ℓ)g(ℓ)−
∫ u

ℓ

F1(x) · (F2(x)− 1)dx.

Adding this equation with the definition of δ(τ) gives δ(τ) +R(u)−R(ℓ) equals

F1(u) ·
(
g(u)− g(τ)

)
− F1(ℓ) ·

(
g(ℓ)− g(τ)

)
−
∫ u

ℓ

F1(x) · (F2(x)− 1)dx =: ∆(τ),(2.5)

which gives us an alternate way to express δ(τ) = ∆(τ)− (R(u)−R(ℓ)). So, we define the estimate

δ̂(τ) := ∆̂(τ)− (R̂u − R̂ℓ),

where ∆̂ uses the estimates F̂1 and ĝ instead of F1 and g in (2.5), and to estimate (R̂u − R̂ℓ) we use empirical

averages obtained in the current phase. We have the following claim on the accuracy of δ̂ in Section B.2, which
is similar to Claim 2.4.

Claim 2.9. In Algorithm 3, if the conditions in Lemma 2.7 hold, then with probability 1−T−10 |δ̂(τ)−δ(τ)| ≤ 4ϵ
simultaneously for all τ ∈ [ℓ, u].

The proof of Claim 2.9 is different from Claim 2.4: After the initialization, it’s not possible to give an initial
confidence interval of length at most T− 1

4 . So, we cannot prove an O(T− 1
2) accuracy for ∆(τ). Instead, we use the

fact that Var∆(τ) ≤ O(ϵ) to give an O(ϵ) accuracy bound using Bernstein inequality (Theorem A.2) for a single
τ . To extend the bound to the whole interval, we discretize and apply a union bound. To avoid the dependency
from the previous phases when discretizing, in each phase we use new samples to construct F̂1 and F̂2. This is
the reason that we introduce sample sets in Algorithm 3.

Now the proof of Lemma 2.7 is similar to the proof of Lemma 2.2 via Claims 2.8 and 2.9.

Finally, we state the main theorem for Pandora’s Box problem with two boxes in a fixed order.

Theorem 2.10. For Bandit Pandora’s Box learning problem with two boxes in a fixed order, there exists an
algorithm that achieves O(

√
T log T) total regret.

The proof of Theorem 2.10 is similar to Theorem 2.6: We first show that Θ(
√
T log T) initial samples are

sufficient to meet the conditions in Lemma 2.7. Combining this with Lemma 2.5 proves the theorem. See
Section B.2 for details.

3 Prophet Inequality for General n

In the Bandit Prophet Inequality problem, there are n unknown independent distributions D1, . . . ,Dn taking
values in [0, 1] with cdfs F1, . . . , Fn and densities f1, . . . , fn. Consider a T rounds game where round t we play

thresholds τττ (t) = (τ
(t)
1 , τ

(t)
2 , . . . , τ

(t)
n−1, τ

(t)
n = 0) and receive the following reward: For i ∈ [n], independently draw

X
(t)
i from Di. Let j = min{i ∈ [n] : X

(t)
i ≥ τ

(t)
i }. X

(t)
j is returned as the reward. The only feedback is the reward,

and we do not see the index j of the selected random variable. Since we have τ
(t)
n = 0, the algorithm will always

select a value. In the following, we omit τ
(t)
n and only use τττ (t) := (τ

(t)
1 , τ

(t)
2 , . . . , τ

(t)
n−1) to represent a threshold

setting.

Let Opti represent the optimal expected reward if only running on distributions Di,Di+1, . . . ,Dn. Then, the
optimal i-th threshold setting is exactly Opti+1. We can calculate {Opti+1} as follows:

• Let Optn = E [Xn]
• For i = n− 1→ 1: Let Opti = R(1, 1, . . . , 1,Opti+1,Opti+2, . . . ,Optn), where the function R(τττ) represents
the expected one-round reward under thresholds τττ = (τ1, . . . , τn−1).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited472

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The total regret is defined
T · Opt1 −

∑T
t=1 R(τττ (t)).

High-Level Approach. Following the doubling framework from Algorithm 2, we only need to design an
initialization algorithm and a constraint-updating algorithm. For the initialization, we get O(poly(n)

√
T log T)

i.i.d. samples for each Xi by playing thresholds (1, 1, . . . , τi−1 = 1, τi = 0, 0, . . . , 0). Besides, we run
O(poly(n)

√
T log T) samples to get the initial confidence intervals with small length. For the constraint-updating

algorithm, we reuse the idea from the n = 2 case where we shrink confidence intervals by testing Xi with thresholds
ℓi or ui. However, there are two major new challenges while testing Xi.

The first challenge while testing Xi is that we may stop early, and not get sufficiently many samples for Xi.
Although the probability of reaching Xi could be very small, this also means that we will not reach Xi frequently.
To avoid this problem, for j < i, we use the upper confidence bounds as thresholds since they maximize the
probability of reaching Xi. In particular, it is at least as high as in the optimal policy. Therefore, we will be able
to show that the probability term cancels in calculation, so the total loss from Xi can still be bounded.

The second challenge is that when we are testing Xi, we need to also set thresholds τj for j > i. The problem
is that the optimal choice for τi depends on τj for j > i. To cope this this problem, in our algorithm we use the
lower confidence bounds as thresholds for j > i. Formally, let Algi denote the expected reward if only running
on distributions Di, . . . ,Dn with lower confidence bounds as the thresholds, i.e.,

Algi := R(1, . . . , 1, τi = ℓi, τi+1 = ℓi+1, . . . , τn−1 = ℓn−1).

Now, under our threshold setting, we can only hope to learn Algi+1, while the optimal threshold is Opti+1. So,
our key idea is to first get a new confidence interval for Algi+1. Then, since we have Algi+1 ≤ Opti+1, the lower
bound for Algi+1 is also a lower bound for Opti+1. For the upper bound, we first bound the difference between
Opti+1 and Algi+1, and adding this difference to the upper bound for Algi+1 gives the upper bound for Opti+1.

3.1 Interval-Shrinking Algorithm for General n In this section, we give the interval shrinking algorithm,
and provide the regret analysis to show that we can get a new group of confidence intervals that achieves O(ϵ)

regret after Õ(poly(n)ϵ2) rounds. We first give the algorithm and the corresponding lemma.

Algorithm 4: Interval shrinking Algorithm for general n

Input: Intervals [ℓ1, u1], . . . , [ℓn−1, un−1], CDF estimates F̂1(x), . . . , F̂n(x), and ϵ.
1 For i ∈ [n− 1], define P̂i :=

∏
j∈[i−1] F̂j(uj)

2 for i = n− 1→ 1 do

3 Run C · log T
ϵ2 rounds with thresholds (u1, . . . , ui−1, ℓi, ℓ

′
i+1, . . . ℓ

′
n−1) and C · log T

ϵ2 rounds with

(u1, . . . , ui−1, ui, ℓ
′
i+1, . . . ℓ

′
n−1). Let D̂i be the difference of the average rewards.

4 For τ ∈ [ℓi, ui], define ∆̂i(τ) := P̂i(F̂i(ui)(τ − ui)− F̂i(ℓi)(τ − ℓi) +
∫ ui

ℓi
F̂i(x)dx).

5 For τ ∈ [ℓi, ui], define δ̂i(τ) := ∆̂i(τ)− D̂i.

6 Let ℓ′i = min
{
τ ∈ [ℓi, ui] s.t. δ̂i(τ) ≥ −ϵ

}
.

7 Let u′
i = max

{
τ ∈ [ℓi, ui] s.t. δ̂i(τ) ≤ (2n− 2i− 1)ϵ

}
.

Output: [ℓ′2, u
′
2], . . . , [ℓ

′
n, u

′
n]

Lemma 3.1. Suppose we are given:

• Distribution estimates F̂i(x) for i ∈ [n − 1] satisfying |
∏

i∈S F̂i(x) −
∏

i∈S Fi(x)| ≤ T−1/4 for all x ∈ [0, 1]
and S ⊆ [n].

• Initial intervals [ℓi, ui] for i ∈ [n − 1] of length ui − ℓi ≤ T−1/4 that satisfy Opti+1 ∈ [ℓi, ui] and
Algi+1 ∈ [ℓi, ui].

Then, for ϵ > 12T− 1
2 Algorithm 4 runs no more than 1000 · n log T

ϵ2 rounds such that in each round the threshold
τττ satisfies τi ∈ [ℓi, ui] for all i ∈ [n− 1]. Moreover, with probability 1− T−10 the following statements hold:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited473

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

(i) Opti+1 ∈ [ℓ′i, u
′
i] for all i ∈ [n− 1].

(ii) Let Alg′i := R(1, . . . 1, ℓ′i, . . . , ℓ
′
n−1) for i ∈ [n− 1]. Then Alg′i+1 ∈ [ℓ′i, u

′
i].

(iii) For every threshold setting τττ = (τ1, . . . , τn−1) where τi ∈ [ℓ′i, u
′
i], the expected one-round regret of playing τττ

is at most 2n2ϵ.

We first introduce some notation to prove Lemma 3.1. First, we define a single-dimensional function Ri(τ) to
generalize reward function R(τ) from the n = 2 case in Section 2.1. Ideally, Ri(τ) should represent the reward of
playing τi = τ , but thresholds τj for j > i also affect its expected reward. So, to match the setting in Algorithm 4,
we set thresholds τi+1, . . . , τn−1 to be the updated lower bounds, i.e., define

Ri(τ) := R(1, . . . , 1, τi = τ, ℓ′i+1, . . . , ℓ
′
n−1).

Next, we introduce Pi, representing the maximum probability of observing Xi when we have confidence intervals
{[ℓi, ui]}, i.e.,

Pi :=
∏i−1

j=1 Fj(uj).

Replacing Fj with F̂j in this equation defines estimate P̂i.

Notice that Pi also equals the probability of reaching Xi when we play thresholds τj = uj for all j < i in
Algorithm 4. So, the loss of playing a sub-optimal threshold τi will be Pi · (Ri(Alg

′
i+1) − Ri(τ)) because Pi is

the probability of reaching Xi and Alg′i+1 is the optimal threshold when τj = ℓ′j for all j > i. We define the
generalized bounding function:

δi(τ) := Pi ·
(
Fi(ui)− Fi(ℓi)

)
· (τ − Alg′i+1).

We will show in Claim 3.2 below that |δi(τ)| upper bounds Pi · (Ri(Alg
′
i+1)−Ri(τ)) for all τ ∈ [ℓi, ui]. Since we

don’t know δi(τ), we will estimate it by writing in a different way.

Consider the difference in expected rewards between τi = ui and τi = ℓi when the other thresholds are set
to τj = uj for j < i and τj = ℓ′j for j > i. The difference between these two settings only comes from τi, so the
expected difference is

Pi · (Ri(ui)−Ri(ℓi)) = Pi ·
(
(Fi(ui)− Fi(ℓi))Alg

′
i+1 −

∫ ui

ℓi

xfi(x)dx

)
= Pi ·

(
Fi(ui)(Alg

′
i+1 − ui)− Fi(ℓi)(Alg

′
i+1 − ℓi) +

∫ ui

ℓi

Fi(x)dx

)
.

Adding this with δi(τ) implies δi(τ) + Pi · (Ri(ui)−Ri(ℓi)) equals

Pi ·
(
Fi(ui)(τ − ui)− Fi(ℓi)(τ − ℓi) +

∫ ui

ℓi

Fi(x)dx

)
=: ∆i(τ),(3.6)

which gives another way of writing δi(τ) = ∆i(τ) − Pi · (Ri(ui) − Ri(ℓi)). Since D̂i from Algorithm 4 is the
difference between average rewards of taking samples with τi = ui and τi = ℓi, it is an unbiased estimator of
Pi · (Ri(ui)−Ri(ℓi)). So, we define estimate

δ̂i(τ) := ∆̂i(τ)− D̂i,

where ∆̂i(τ) is obtained by replacing Fi with F̂i and Pi with P̂i in (3.6).

Similar to Claim 2.3 and Claim 2.4, we introduce the following claims for Algorithm 4.

Claim 3.2. For i ∈ [n− 1], if Alg′i+1 ∈ [ℓi, ui] and τ ∈ [ℓi, ui], then Pi ·
(
Ri(Alg

′
i+1)−Ri(τ)

)
≤ |δi(τ)|.

Proof. We only need to prove that Ri(Alg
′
i+1)−Ri(τ) ≤ |δi(τ)|

Pi
=
(
Fi(ui)− Fi(ℓi)

)
· (τ − Alg′i+1). Now the proof

is identical to Claim 2.3 by replacing function R(·) with Ri(·).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited474

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Claim 3.3. In Algorithm 4, if the conditions in Lemma 3.1 hold, then with probability 1 − T−10, we have
|δ̂i(τ)− δi(τ)| ≤ ϵ simultaneously for all τ ∈ [ℓi, ui].

Proof. There are two terms in δi(τ) = ∆i(τ) − Pi · (Ri(u)−Ri(ℓ)). We prove that the error of each term is
bounded by ϵ

2 with high probability, which will complete the proof by a union bound.

We first bound |∆̂i(τ)−∆i(τ)|. There are three terms in ∆i(τ)
Pi

= Fi(ui)(τ −ui)−Fi(ℓi)(τ − ℓi)+
∫ ui

ℓi
Fi(x)dx.

Since the conditions in Lemma 3.1 guarantee that |F̂i(x)−Fi(x)| ≤ T−1/4 and ui − ℓi ≤ T−1/4, the error in each

term is at most 1√
T

and the total error
∣∣∣∆i(τ)

Pi
− ∆̂i(τ)

P̂i

∣∣∣ ≤ 3√
T
.

For Pi, the preconditions in Lemma 3.1 guarantee that |P̂i − P̂i| ≤ T−1/4. Moreover, observe that

ui − ℓi ≤ T−1/4 implies that |∆i(τ)|
Pi

≤ 3T−1/4. So,

∣∣∣∆̂i(τ)−∆i(τ)
∣∣∣ ≤ ∣∣∣∣∣P̂i

(
∆̂i(τ)

P̂i

− ∆i(τ)

Pi

)∣∣∣∣∣+
∣∣∣∣(P̂i − Pi)

∆i(τ)

Pi

∣∣∣∣ ≤ 6√
T
≤ ϵ

2
,

where the last inequality uses ϵ > 12T− 1
2 .

For Pi · (Ri(ui) − Ri(ℓi)), note that D̂i is an unbiased estimator of Pi · (Ri(ui) − Ri(ℓi)) with N = C · log T
ϵ2

samples. So, by Hoefdding’s Inequality,

Pr
[∣∣D̂i − Pi · (Ri(ui)−Ri(ℓi))

∣∣ > ϵ

2

]
≤ 2 exp(−8Nϵ2) = 2T−8C .

Thus, |D̂i − Pi · (Ri(ui)−Ri(ℓi))| ≤ ϵ
2 holds with probability 1 − T−10 when C > 10.

Besides Claim 3.2 and Claim 3.3, we also need some other properties of Algorithm 4 to prove Lemma 3.1.
The next claim shows that the expected reward of playing lower confidence bounds increases phase to phase.

Claim 3.4. Assume the conditions in Lemma 3.1 and the bound in Claim 3.3 hold. Then, for i ∈ [n], we have
Alg′i ≥ Algi.

Proof. We prove by induction for i going from n to 1. The base case i = n holds because Alg′n = Algn = Optn =
E [Xn] by definition.

For the induction step, assume that Alg′i+1 ≥ Algi+1 by induction hypothesis. Observe that

R(1, . . . , 1, ℓi, ℓi+1, . . . , ℓn−1) = E [Xi · 1Xi>ℓi] +Pr [Xi ≤ ℓi]R(1, . . . , 1, 1, ℓi+1, . . . , ℓn−1)

≤ E [Xi · 1Xi>ℓi] +Pr [Xi ≤ ℓi]R(1, . . . , 1, 1, ℓ′i+1, . . . , ℓ
′
n−1)

= R(1, . . . , ℓi, ℓ
′
i+1, . . . , ℓ

′
n−1),(3.7)

where the inequality uses induction hypothesis as R(1, . . . , 1, 1, ℓi+1, . . . , ℓn−1) = Algi+1 ≤ Alg′i+1 =
R(1, . . . , 1, 1, ℓ′i+1, . . . , ℓ

′
n−1).

Next, we have Ri(ℓi) ≤ Ri(ℓ
′
i), i.e.,

R(1, . . . , 1, ℓi, ℓ
′
i+1, . . . , ℓ

′
n−1) ≤ R(1, . . . , 1, ℓ′i, ℓ

′
i+1, . . . , ℓ

′
n−1).(3.8)

To prove this, we first observe that if ℓi = ℓ′i, then the inequality is an equality. Otherwise, there must be

δ̂i(ℓ
′
i) = −ϵ. Next, combining the definition of δi(τ) and Claim 3.3, we have δ̂i(Alg

′
i+1) ≥ δi(Alg

′
i+1)−|δi(Alg

′
i+1)−

δ̂i(Alg
′
i+1)| ≥ −ϵ. Since δ̂′i(τ) = Pi · (F̂i(ui)− F̂i(ℓi)) ≥ 0 means δ̂i(τ) is increasing, there must be Alg′i+1 ≥ ℓ′i.

Now consider function Ri(τ). Recall that Ri(τ) = R(1, ...1, τi = τ, ℓ′i+1, ..., ℓ
′
n−1). Therefore,

Ri(τ) = Pr [Xi ≤ τ] · Alg′i+1 +E [Xi · 1Xi>τ] = Fi(τ) · Alg′i+1 +

∫ 1

τ

fi(x)x dx,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited475

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

which means R′
i(τ) = fi(τ)(Alg

′
i+1 − τ), showing that Ri(τ) is a unimodular function and reaches its maximum

when τ = Alg′i+1. Hence, (3.8) holds because ℓi+1 ≤ ℓ′i+1 ≤ Alg′i+1.

Combining (3.7) and (3.8) proves the claim.

Next, we prove that Alg′i+1 ∈ [ℓi, ui], which is crucial for us to use Claim 3.2.

Claim 3.5. Assume that the preconditions in Lemma 3.1 and the bound in Claim 3.3 hold, then Alg′i+1 ∈ [ℓi, ui]
for all i ∈ [n− 1].

Proof. Claim 3.4 shows that Algi+1 ≤ Alg′i+1. On the other hand, Alg′i+1 ≤ Opti+1 holds because Opti+1 is the
maximum achievable reward. Then, Claim 3.5 holds because Opti+1,Algi+1 ∈ [ℓi, ui] by the preconditions in
Lemma 3.1.

Finally, we show that Alg′i cannot be much smaller than Opti.

Claim 3.6. Assume that the preconditions in Lemma 3.1 and the bound in Claim 3.3 hold, then Opti − Alg′i ≤
2(n−i)ϵ

Pi
for all i ∈ [n− 1].

Proof. We prove by induction for i going from n to 1. The base case i = n holds because Optn = Alg′n = E [Xn].

For the induction step, we assume that Opti+1−Alg′i+1 ≤
2(n−i−1)ϵ

Pi+1
and would like to show that Opti−Alg′i ≤

2(n−i)ϵ
Pi

. We first have

R(1, . . . , 1,Opti+1,Opti+2, . . . ,Optn) = E
[
Xi · 1Xi>Opti+1

]
+Pr

[
Xi ≤ Opti+1

]
Opti+1

≤ E
[
Xi · 1Xi>Opti+1

]
+Pr

[
Xi ≤ Opti+1

]
(Alg′i+1 +

2(n−i−1)ϵ
Pi+1

)

≤ E
[
Xi · 1Xi>Opti+1

]
+Pr

[
Xi ≤ Opti+1

]
Alg′i+1 +

2(n−i−1)ϵ
Pi

= R(1, . . . , 1,Opti+1, ℓ
′
i+1, . . . , ℓ

′
n−1) +

2(n−i−1)ϵ
Pi

,(3.9)

where we use the induction hypothesis in the second line, and the fact that Pr
[
Xi ≤ Opti+1

]
≤ Pr [Xi ≤ ui] =

Pi+1

Pi
in the third line.

Next, since Alg′i+1 is the optimal threshold, we have

R(1, . . . , 1,Opti+1, ℓ
′
i+2, . . . , ℓ

′
n−1) ≤ R(1, . . . , 1,Alg′i+1, ℓ

′
i+2, . . . , ℓ

′
n−1).(3.10)

Finally,
|δ(ℓ′i)| ≤ |δ̂(ℓ′i)|+ |δ̂(ℓ′i)− δ(ℓ′i)| ≤ ϵ+ ϵ = 2ϵ,

where the bound of |δ̂(ℓ′i) − δ(ℓ′i)| is from Claim 3.3, and the bound of |δ̂(ℓ′i)| is from Algorithm 4. Combining

this with Claim 3.2, we have Ri(Alg
′
i+1)−Ri(ℓ

′
i) ≤

|δi(ℓ′i)|
Pi

≤ 2ϵ
Pi
, which is exactly

R(1, . . . , 1,Alg′i+1, ℓ
′
i+1, . . . , ℓ

′
n−1) ≤ R(1, . . . , 1, ℓ′i, ℓ

′
i+1, . . . , ℓ

′
n−1) +

2ϵ

Pi
.

Summing this with (3.9) and (3.10) completes the induction step.

Finally, we can prove Lemma 3.1.

Proof of Lemma 3.1. In this proof, we assume Claim 3.3 always holds. Then the whole proof should success with
probability 1− T−10.

We prove the three statements separately:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited476

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Statement (i). For the upper bound, Claim 3.6 shows that Opti − Alg′i ≤
2(n−i)ϵ

Pi
. Therefore, δi(Opti+1) ≤

Pi · Fi(ui) · 2(n−i−1)ϵ
Pi+1

= 2(n − i − 1)ϵ. Combining this with Claim 3.3, we have δ̂i(Opti+1) ≤ 2(n − i − 1)ϵ + ϵ =

(2n− 2i− 1)ϵ. Then Opti+1 ≤ u′
i, because Opti+1 ∈ [ℓi, ui], u

′
i = max{τ : τ ∈ [ℓi, ui]∧ δ̂i(τ) ≤ (2n− 2i− 1)ϵ} and

the monotonicity of δ̂i function.

For the lower bound, at least we have Opti+1 ≥ Alg′i+1. Therefore, δi(Opti+1) ≥ 0, so δ̂i(Opti+1) ≥ −ϵ. Then
Opti+1 ≥ ℓ′i, because Opti+1 ∈ [ℓi, ui], ℓ

′
i = max{τ : τ ∈ [ℓi, ui]∧ δ̂i(τ) ≥ −ϵ} and the monotonicity of δ̂i function.

Combining the two bounds proves Statement (i).

Statement (ii). The proof idea is the same as Statement (i). Notice that δi(Alg
′
i+1) = 0. Then, according

to Claim 3.3, |δ̂i(Alg′i+1)| ≤ ϵ. So Statement (ii) hold because Alg′i+1 ∈ [ℓi, ui], which is from Claim 3.5, and

[ℓ′i, u
′
i] ⊇ {τ ∈ [ℓi, ui] : |δ̂i(τ)| ≤ ϵ}.

Statement (iii). We prove the following stronger statement by induction on i: If τj ∈ [ℓ′j , u
′
j] for all j ∈ {i, . . . , n},

then
Alg′i − R(1, . . . 1, τi, . . . , τn−1) ≤ (n−i+1)2ϵ

Pi
.

When the statement above holds, taking i = 1 gives R(τ1, . . . , τn−1) ≥ Alg′1 − n2ϵ. Furthermore, Claim 3.6 shows
that Alg′1 ≥ Opt1 − 2(n− 1)ϵ. Combining these two inequalities proves Statement (iii).

It remains to prove the induction statement. The base case i = n holds trivially.

For the induction step, we will assume that the statement holds for i + 1 and we have to show it also holds
for i. By induction hypothesis,

R(1, . . . , 1, τi, . . . , τn−1) = E [Xi · 1Xi≥τi] +Pr [Xi < τi]R(1, . . . , 1, τi+1, . . . , τn−1)

≥ E [Xi · 1Xi≥τi] +Pr [Xi < τi]
(
R(1, . . . , 1, ℓ′i+1, . . . , ℓ

′
n−1)−

(n−i)2ϵ
Pi+1

)
≥ E [Xi · 1Xi≥τi] +Pr [Xi < τi]R(1, . . . , 1, ℓ′i+1, . . . , ℓ

′
n−1)−

(n−i)2ϵ
Pi

= R(1, . . . , 1, τi, ℓ
′
i+1, . . . , ℓ

′
n−1)−

(n−i)2ϵ
Pi

.

Furthermore, |δi(τi)| ≤ |δ̂i(τi)| + ϵ by Claim 3.3 and |δ̂i(τ)| ≤ (2n − 2i − 1)ϵ by the definitions of ℓ′i and u′
i,

which means |δi(τ)| ≤ 2(n− i)ϵ. So, Claim 3.2 implies

R(1, . . . , 1,Alg′i+1, ℓ
′
i+1, . . . , ℓ

′
n−1)−R(1, . . . , 1, τi, ℓ

′
i+1, . . . , ℓ

′
n−1) ≤

2(n− i)ϵ

Pi
.

Finally, using R(1, . . . , 1,Alg′i+1, ℓ
′
i+1, . . . , ℓ

′
n−1) ≥ Alg′i, we get

R(1, · · · , 1, τi, . . . , τn−1) ≥ Alg′i −
2(n− i)ϵ

Pi
− (n− i)2ϵ

Pi
≥ Alg′i −

(n− i+ 1)2ϵ

Pi
.

3.2 Initialization and Putting Everything Together Now, we can give the initialization algorithm. The
main goal of the initialization is to satisfy the conditions listed in Lemma 3.1. Starting from the second call of
Algorithm 4, the confidence interval length constraint and the distribution estimates constraints hold from the
initialization, and the constraints Opti+1,Algi+1 ∈ [ℓi, ui] are guaranteed by Statements (i) and (ii) in Lemma 3.1.
Then, we can apply Lemma 2.5 to bound the total regret.

We first give the initialization algorithm:

Lemma 3.7. Algorithm 5 runs O(n3
√
T log T) rounds. The output satisfies with probability 1 − T−10 all

constraints listed in Lemma 3.1.

Proof. For the accuracy bound of F̂i(x), we first show that |F̂i(x) − Fi(x)| ≤ T−1/4

2n with probability 1 − T−11

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited477

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 5: Initialization

Input: Time horizon T , problem size n.
1 for i = 1→ n do

2 Run 1000n2
√
T log T free samples for Xi to estimate F̂i(x).

3 for i = n− 1→ 1 do

4 Run 1000n2
√
T log T samples under the threshold setting (1, . . . , 1, τi+1 = ℓ′i+1, . . . , τn−1 = ℓ′n−1). Let

µi be the average reward.

5 Let ℓi = µi − T−1/4

10n , ui = µi + (2n− 2i− 1) · T
−1/4

10n

Output: [ℓ1, u1], . . . , [ℓn−1, un−1].

after running N = C · n2
√
T log T samples with C = 1000. With DKW inequality (Theorem A.3), we have

Pr

[
|F̂i(x)− Fi(x)| > ε =

T− 1
4

2n

]
≤ 2 exp(−2Nε2) = 2T−C/4.

So the bound holds with probability 1 − T−12 when C = 1000. By the union bound, with probability 1 − T−11,

we have |F̂i(x) − Fi(x)| ≤ T− 1
4

2n holds for every i ∈ [n]. Then, for the accuracy of
∏

i∈S Fi(x), we have(
(1− T− 1

4

2n)n−1
)
≤
∏

i∈S F̂i(x)−
∏

i∈S Fi(x) ≤
(
(1+ T− 1

4

2n)n−1
)
. For the lower bound, we have (1− T− 1

4

2n)n−1 ≥
1− T− 1

4

2 −1 > −T− 1
4 . For the upper bound, we have (1+ T− 1

4

2n)n−1 ≤ exp(T
− 1

4

2n ·n)−1 ≤ 1+2 · T
− 1

4

2 −1 = T− 1
4 .

Combining two bounds finishes the proof.

For the confidence interval, the constraints ui − ℓi ≤ T− 1
4 hold by definition. Then, it only remains to show

Opti+1 ∈ [ℓi, ui] and Algi+1 ∈ [ℓi, ui].

We start from proving Algi+1 ∈ [ℓi, ui]. Notice that µi is an estimate of Algi+1 with N = C · n2
√
T log T

samples with C = 1000. With Hoeffding’s Inequality (Theorem A.1), we have

Pr

[
|µi − Algi+1| > ε =

T−1/4

10n

]
< 2 exp(−2Nε2) = 2T−C/50.

Notice that ℓi = µi− T−1/4

10n and ui = µi+
T−1/4

10n . Then, by the union bound for all i ∈ [n] , we have Algi+1 ∈ [ℓi, ui]
holds for all i with probability 1− T−11 when C ≥ 1000.

For Opti+1, we prove the statement by doing induction with the assumption that |Algi+1−µi| ≤ T−1/4

10n for all
i. The base case is i = n, the statement simply holds because Algn = Optn. Next, we consider i, with the condition
that Optj+1 ∈ [ℓj , uj] for all j > i. For the lower bound, since we know that Algi+1 ≥ ℓi, there must be Opti+1 ≥ ℓi,
because Opti+1 ≥ Algi+1. For the upper bound, we first bound the difference between Algi+1 and Opti+1. Consider
the setting (1, . . . 1, τi+1 = ℓi+1, . . . , τn−1 = ℓn−1) and (1, . . . , 1, τi+1 = Opti+2, . . . , τn−1 = Optn). The first
setting incurs an extra loss only when its behavior is different from the second setting. Assume the two settings
behave differently when meeting a threshold τj . Notice that this extra loss is bounded by |ℓj − Optj+1|. Since

Optj+1 ∈ [ℓj , uj] for all j > i, this difference is upper bounded by maxj>i uj−ℓj = ui+1−ℓi+1 = (2n−2i−2)· T
−1/4

10n .
Therefore,

Opti+1 ≤ Algi+1 + (2n− 2i− 2) · T
−1/4

10n
≤ µi + (2n− 2i− 1) · T

−1/4

10n
= ui.

Combining the lower bound and the upper bound proves Opti+1 ∈ [ℓi, ui]. Finally, taking union bounds for all
events that hold with probability 1 − T−11 finishes the proof.

Now we are ready to prove the main theorem.

Theorem 1.1. There is a polytime algorithm with O(n3
√
T log T) regret for the Bandit Prophet Inequality problem

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited478

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where we only receive the selected value as the feedback.

Proof. For the initialization, Algorithm 5 runs O(n3
√
T log T) rounds, so the total regret from the initialization

is O(n3
√
T log T).

For the main algorithm, we run Algorithm 2 with Algorithm 4 being the required sub-routine Alg. This is
feasible because the requirements in Lemma 3.1 are guaranteed by the initialization and Lemma 3.1 itself. Besides,

Lemma 3.1 implies that Algorithm 4 upper-bound the one-round regret by ϵ after O(n
5 log T
ϵ2) samples. Applying

Lemma 2.5 with α = 5, we have the O(n2.5
√
T log T) regret bound. Combining two parts finishes the proof.

4 Pandora’s Box for General n

In the Bandit Pandora’s Box problem, there are n unknown independent distributions D1, . . . ,Dn representing
the values of the n boxes. The distributions have cdfs F1, . . . , Fn and densities f1, . . . , fn. Moreover, each
box/distribution Di has a known inspection cost ci. Although in the original problem in introduction we assumed
that the values and costs have support [0, 1], in this section we will scale down the costs and values by a factor of
2n, so that they have support [0, 1

2n]. This scaling helps to bound the utility in each round between [−0.5, 0.5].
To obtain bounds for the original unscaled problem, we will multiply our bounds with this factor 2n in the final
analysis.

Consider a T rounds game where in each round we play some permutation π representing the order of
inspection and n thresholds (τπ(1), . . . , τπ(n)). Our algorithm receives the following utility as feedback: For
i ∈ [n], draw Xπ(i) ∼ Dπ(i). Let j be the minimum index that satisfies max{Xπ(1), . . . , Xπ(j − 1)} ≥ τπ(j).
If such j does not exist, j is set to be n + 1 (all boxes opened). The utility we receive in this round is
max{Xπ(1), . . . , Xπ(j − 1)} −

∑
k<j cπ(k).

Note that the only feedback is the utility, and we do not see any value or even the index j where we stop.

In the case of known distributions, the optimal one-round policy for this problem was designed by
Weitzman [Wei79]: For every distribution Di, solve the equation E [max{Xi − σi, 0}] = ci; now play permutation
π by sorting in decreasing order of σi and set threshold τ∗i = σi. Let OPT be the optimal expected reward
according to this optimal policy. Let ALGt be the expected reward of our policy in the t-th round. Then, we
want to design an algorithm with total regret T ·OPT −

∑
t∈T ALGt at most Õ(poly(n)

√
T).

Before introducing the algorithm, we define the gain function for this general case:

gi(v) := − ci +

∫ 1

v

(x− v)fi(x)dx = − ci + (1− v)−
∫ 1

v

Fi(x)dx.(4.11)

Similar to the n = 2 case, this gain function is the expected additional utility we get on opening Xi when we
already have value v in hand. Note that the optimal threshold τ∗i satisfies gi(τ

∗
i) = 0.

4.1 High-Level Approach via Valid Policies. We first briefly introduce the initialization algorithm. The
following lemma shows what we achieve in the initialization (proved in Section C.1).

Lemma 4.1. The initialization algorithm runs 1000 ·
√
T log T samples for each distribution to output interval

[ℓi, ui], such that with probability 1− T−10 the following hold simultaneously for all i ∈ [n]:

• ℓi ≤ σi ≤ ui.
• |gi(x)| ≤ T− 1

4 simultaneously for all x ∈ [ℓi, ui].

After initialization, the main part is the action set-updating algorithm. Similar to the algorithm for n = 2,
we hope to use estimates F̂i(x) to gradually shrink the intervals [ℓi, ui]. However, one major challenge is that we
don’t have a fixed order. If n is a constant, we can just simply try all possible permutations and use a multi-armed
bandit style algorithm to find the optimal permutation. But the number of permutations is exponential in n, so
this approach is impossible when n is a general parameter. To get a polynomial regret algorithm, we can only
test poly(n) number of different orders.

Another challenge is that the idea for n = 2 can bound the regret when we play a sub-optimal threshold, but

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited479

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

it tells nothing about playing a sub-optimal order. We don’t have a direct way to bound the regret when playing
an incorrect order.

Both difficulties imply that only keeping the confidence intervals as the constraint for the actions is not
enough. Therefore, we also introduce a set of order constraints:

Definition 4.2 (Valid Constraint Group). Given a set of confidence intervals I = {[ℓ1, u1], [ℓ2, u2], ..., [ℓn, un]}
and a set S of order constraints, satisfying:

• ui − ℓi ≤ T− 1
4 .

• σi ∈ [ℓi, ui]
• Every constraint in S can be defined as (i, j) that means σi > σj.
• The constraints in S are closed, i.e., if (i, j), (j, k) ∈ S, there must be (i, k) ∈ S.
• If (i, j) ∈ S, we must have ui ≥ uj and ℓi ≥ ℓj.

For (I, S) satisfying the conditions above, we call it a valid constraint group.

The intuition of the extra order constraints is: When we are shrinking the intervals, if it is evident that
σi > σj , we will require Di to be in front of Dj in the following rounds. Correspondingly, we give the following
definition for a “valid” policy. During the algorithm, we will only run valid policies, according to the current
constraint group we have.

Definition 4.3 (Valid Policy). Let (τπ(1), τπ(2), ..., τπ(n)) be a policy to play in one round, where π is the
distribution permutation for this policy, and the threshold in front of box π(i) is τπ(i). For simplicity, we use
π to represent a policy.

For a policy π, we say it is valid for a constraint group (I, S) if the following conditions hold:

• For i ∈ [n], τπ(i) ∈ [ℓπ(i), uπ(i)].
• If (i, j) ∈ S, then Di must be in front of Dj, i.e., π

−1(i) < π−1(j).
• For i < j, τπ(i) ≥ τπ(j).

Notice that for a valid constraint group, we have σi ∈ [ℓi, ui] for all i ∈ [n], and σi > σj for all (i, j) ∈ S.
Then, the optimal policy is valid. Therefore, we can always find a valid policy from the constraint group.

Now, we are ready to give the main idea of the constraint-updating algorithm. In each phase, we first update
the confidence intervals and then update the order constraints as follows:

• Step 1: For each i ∈ [n], we run Õ(poly(n)ϵ2) samples to update the confidence interval to [ℓ′i, u
′
i], such that

for every threshold pair τi, τ
′
i ∈ [ℓ′i, u

′
i], the moving difference is small, i.e., if we move τi to τ ′i and keep the

validity, the difference of the expected reward is bounded by O(poly(n) · ϵ).
• Step 2: For each distribution pair (i, j) without a constraint, we run Õ(poly(n)ϵ2) samples to test the order
between them, such that we can either clarify which one is bigger between σi and σj , or we can claim that
the swapping difference (the difference before and after swapping Di and Dj) is bounded by O(poly(n) · ϵ).

Finally, we argue that for every valid policy, we can convert it into the optimal policy by using poly(n) number
of moves and swaps. This is sufficient for us to give O(poly(n) · ϵ) regret bound.

In the following analysis, we use separate sub-sections to introduce each part. Section 4.2 provides the
Interval-Shrinking algorithm to bound the moving difference. Section 4.3 introduces the way to add a new order
constraint to bound the swapping difference. Section 4.4 shows how to convert a valid policy to the optimal policy
using a poly(n) number of moves and swaps. Finally, Section 4.5 combines the results of three sub-sections to
complete the analysis.

4.2 Step 1: Interval-Shrinking to Bound Moving Difference The goal of this sub-section is: Given
i ∈ [n] and an original constraint group (I, S), we want to update the confidence interval [ℓi, ui], to make sure
that moving τi inside the new confidence interval incurs a small difference. The key idea of the Interval-Shrinking
algorithm is similar to the case when n = 2: For each i ∈ [n], we want to play two different values for τi, and see
the difference of the expected reward. However, playing τi = ℓi and τi = ui might be impossible. The reason is:
We hope to keep a decreasing threshold setting. There may not be a policy that allow τi to be set to ui and ℓi
without changing other thresholds. If we need different permutations to test τi = ui and τi = ℓi, this makes the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited480

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

analysis involved. Therefore, we should find a policy that fixes the order and other thresholds, then test τi under
this fixed policy while keeping a decreasing thresholds.

When we set τi to be different values, the two policies will be different only when the maximum reward before
τi falls between the two thresholds. Therefore, to see the largest difference, we hope the probability of this event
is maximized. This intuition allows us to give the following definition:

Definition 4.4 (MoveBound Policy). Given (I, S) and i ∈ [n], a MoveBound policy is a valid partial policy π
parameterized by ℓ and u5, such that Fπ,i(u)− Fπ,i(ℓ) is maximized.

In the definition, Fπ,i(x) is the probability that the algorithm reaches distribution Xi with maximum value
v < x in hand, i.e.,

Fπ,i(x) :=
∏

j<π−1(i)

Fπ(j)(x).

Furthermore, u and ℓ represents two possible value of τi to keep a valid π, i.e., π is valid when both τi = u
and τi = ℓ.

A key fact of MoveBound policy is that for every different distribution, we might find a different MoveBound
policy. This is different from the Prophet Inequality problem: In the Pandora’s Problem, we don’t keep a fixed
order. Every order that satisfies the constraints (I, S) is possible to be tested.

Now, the key idea of the Interval-Shrinking algorithm is clear: For each i, find the MoveBound policy and run
samples with τi = u and τi = ℓ. Then, use a method similar to Algorithm 3 to calculate the new interval. The
following algorithm describes the details of this idea:

Algorithm 6: Interval-Shrinking Algorithm

Input: (I, S), ϵ, i, F̂1(x), ..., F̂n(x)
1 Get an approximate MoveBound policy π̂ and ℓ, u using Lemma 4.8.

2 Calculates F̂π̂,i(x).

3 For τ ∈ [ℓi, ui], let ∆̂i(τ) := F̂π̂,i(u)
∫ u

τ
(F̂i(x)− 1)dx+ F̂π̂,i(ℓ)

∫ τ

ℓ
(F̂i(x)− 1)dx−

∫ u

ℓ
F̂π̂,i(x)(F̂i(x)− 1)dx.

4 Run C · ϵ−2 log T samples with τi = u. Let the average reward be R̂u.

5 Run C · ϵ−2 log T samples with τi = ℓ. Let the average reward be R̂ℓ.

6 Define δ̂i(τ) := ∆̂i(τ)− (R̂u − R̂ℓ).

7 Let u′
i = maxτ∈[ℓi,ui] |δ̂i(τ)| < ϵ and let ℓ′i = minτ∈[ℓi,ui] |δ̂i(τ)| < ϵ.

Output: [ℓ′i, u
′
i]

Then, the following lemma shows the bound when modifying a threshold:

Lemma 4.5 (Moving Difference Bound). Suppose we are given (I, S), ϵ > 16T− 1
2 , CDF estimates

F̂1(x), · · · , F̂n(x), and i ∈ [n], satisfying the following conditions for all j ∈ [n]:

• |gj(τ)| ≤ T− 1
4 for all τ ∈ [ℓj , uj].

• (I, S) is valid.
• For any valid partial policy π′ of (I, S), we fix the order and the other thresholds except τj. Assume π′ is valid
when both τj = ℓ′ and τj = ℓ′. Define δπ′,u′,ℓ′,j(τ) = (Fπ′,j(ℓ

′)− Fπ′,j(u
′))gi(τ). Then |δπ′,u′,ℓ′,j(τ)| ≤ 6ϵ.

• CDF estimate F̂j(x) is constructed via 105 · n
2 log T

ϵ fresh i.i.d. samples of Xj.

Then, Algorithm 6 runs O(log T
ϵ2) samples and calculates a new interval [ℓ′i, u

′
i], such that the following properties

hold with probability 1− T−11:

(i) σi ∈ [ℓ′i, u
′
i]

5Here, we say π is a partial policy because it’s not completely fixed. We fix the permutation of the distributions and the value of
all other thresholds, but the value of τi is flexible.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited481

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

(ii) Let I ′i = (I \ {[ℓi, ui]}) ∪ {[ℓ′i, u′
i]}. For any valid partial policy π′ of (I ′i, S), we fix the order and the other

thresholds. Assume π′ is valid when both τi = u′ and τi = ℓ′. Define δπ′,u′,ℓ′,i(τ) = (Fπ′,i(ℓ
′)−Fπ′,i(u

′))gi(τ).
Then |δπ′,u′,ℓ′,i(τ)| ≤ 3ϵ.

(iii) For any valid policy of (I ′i, S), if we fix the order and the other thresholds, but modify τi to τ ′i , satisfying
that the new policy is still valid, the difference of the expected reward between these two policies is less than
3ϵ.

Before starting the proof, we first give an accuracy bound of the distribution estimates, which is proved in
Section C.2.

Claim 4.6. Assume the preconditions in Lemma 4.5 hold. Then with probability 1−T−12, we have |
∏

i∈S F̂i(x)−∏
i∈S Fi(x)| ≤

√
ϵ simultaneously hold for all x ∈ [0, 1] and S ⊆ [n].

Proof of Lemma 4.5. Fix the MoveBound policy π. Assume we want to move τi from τi = u to τi = ℓ, such that
the policies are both valid when τi = ℓ and τi = u. Since we only care about the absolute value of the difference
between two expected rewards, we may assume u > ℓ.

If moving τi from u to ℓ, the performance of the two policies will only be different if the previous maximum
reward falls between ℓ and u: It will reject the previous maximum if τi = u, but accept it when τi = ℓ. Besides,
since ℓ is greater than the next threshold in π, when the previous maximum is inside [ℓ, u], the algorithm must
stop before the next threshold, which means the difference only comes from τi and Xi.

Recall that Fπ̂,i(x) =
∏

j<π̂−1(i) Fj(x), i.e., Fπ̂(i)(x) is the probability that Algorithm 4 reaches τi with

v ≤ x in hand. Let fπ̂,i(x) = F ′
π̂,i(x). Then, the difference of the expected reward is

∫ u

ℓ
fπ̂,i(x)gi(x)dx =

Fπ̂,i(u)gi(u) − Fπ̂,i(ℓ)gi(ℓ) −
∫ u

ℓ
Fπ̂,i(x)g

′
i(x)dx. To upper-bound this difference, define generalized bounding

function

δi(τ) := − (Fπ̂,i(u)− Fπ̂,i(ℓ)) · gi(τ).(4.12)

Then, to learn δi(τ), we define

∆i(τ) := Fπ̂,i(u)(gi(u)− gi(τ))− Fπ̂,i(ℓ)(gi(ℓ)− gi(τ))−
∫ u

ℓ

Fπ̂,i(x)g
′
i(x)dx

= Fπ̂,i(u)

∫ u

τ

(Fi(x)− 1)dx+ Fπ̂,i(ℓ)

∫ τ

ℓ

(Fi(x)− 1)dx−
∫ u

ℓ

Fπ̂,i(x)(Fi(x)− 1)dx.

Observe that δi(τ) = ∆i(τ) − (Ru − Rℓ), where Ru and Rℓ correspond to the expected reward in π̂ with τi = u
and τi = ℓ respectively. Then, by replacing Fi(x) with F̂i(x), we can get ∆̂i(τ), which is an estimate of ∆i(τ).
For Ru and Rℓ, we can learn the estimates R̂u and R̂ℓ via running samples. Combining these estimates results in
δ̂i(τ). Then, the following claim shows that δ̂i(τ) estimates δi(τ) accurately (proved in Section C.3).

Claim 4.7. In Algorithm 6, if the conditions in Lemma 4.5 holds, then with probability 1 − T−12 we have
|δ̂i(τ)− δi(τ)| ≤ ϵ simultaneously for all τ ∈ [ℓi, ui].

Now we prove the statements in Lemma 4.5. In the following proofs, we assume |δi(τ) − δ̂i(τ)| ≤ ϵ holds
simultaneously for all τ ∈ [ℓi, ui].

Statement (i). Look at Algorithm 6: It finds π̂, ℓ, u, gets δ̂i(τ), then calculates [ℓ′i, u
′
i] = {τ ∈ [ℓi, ui] : |δ̂i(τ) < ϵ|}.

Since δi(τ
∗
i) = 0, there must be |δ̂i(τ∗i)| ≤ ϵ. Therefore, τ∗i ∈ [ℓ′i, u

′
i].

Statement (ii). Notice that [ℓ′i, u
′
i] = {τ ∈ [ℓi, ui] : |δ̂i(τ) ≤ ϵ|}. Therefore, for all τ ∈ [ℓ′i, u

′
i], |δi(τ)| ≤

|δ̂i(τ)|+ |δi(τ)− δ̂i(τ)| ≤ 2ϵ. We first assume that π̂ is an accurate MoveBound policy. Then, from the definition,
we have Fπ̂,i(u) − Fπ̂,i(ℓ) ≥ Fπ′,i(u

′) − Fπ′,i(ℓ
′) for all valid partial policy π′ parameterized by u′, ℓ′. Therefore,

|δπ′,u′,ℓ′,i(τ)| ≤ |δi(τ)| ≤ 2ϵ.

Statement (iii). We again assume that π̂ is an accurate MoveBound policy. Recall that we just proved |δi(τ)| ≤ 2ϵ.
Combining this with (4.12), we have |gi(τ)| ≤ 2ϵ

(Fπ̂,i(u)−Fπ̂,i(ℓ))
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited482

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Now, consider the policy π′. Assume we first have τi = u′ and we want to move it to τi = ℓ′, satisfying
ℓ′, u′ ∈ [ℓ′i, u

′
i] and π′ is valid when both τi = ℓ′ and τi = u′. Then, the difference of the expected reward is∣∣∣∫ u′

ℓ′
fπ′,i(x)gi(x)dx

∣∣∣, and we have the following bound:∣∣∣∣∣
∫ u′

ℓ′
fπ′,i(x)gi(x)dx

∣∣∣∣∣ ≤ |Fπ′,i(u
′)− Fπ′,i(ℓ

′)| max
v∈[ℓ′,u′]

|gi(v)| ≤ 2ϵ,(4.13)

where in the last inequality we use the fact that Fπ̂,i(u)− Fπ̂,i(ℓ) ≥ |Fπ′,i(u
′)− Fπ′,i(ℓ

′)| when π is a MoveBound
policy, and |gi(v)| ≤ 2ϵ

(Fπ,i(u)−Fπ,i(ℓ))
for all v ∈ [ℓ′i, u

′
i]. This gives an upper bound on the difference of the expected

reward when we want to move τi.

The remaining part is to show how to get a MoveBound policy. However, since we only have CDF estimates
F̂i(x) instead of an accurate Fi(x), there is no hope to get an accurate MoveBound policy. The following Lemma
then shows that we can calculate an approximate MoveBound policy:

Lemma 4.8. There exists an algorithm with time complexity O(n · 2n) that calculates a MoveBound policy with
an extra 4

√
ϵ additive error.

We leave the details of the algorithm and the proof to Section C.4.

Finally, we show that this 4
√
ϵ error doesn’t hurt too much for both Statement (ii) and (iii). Define

qi := max
π

Fπ,i(u)− Fπ,i(ℓ), and q̂i := Fπ̂,i(u)− Fπ̂,i(ℓ),

where π̂ is the approximate MoveBound policy we get via Lemma 4.8. Then, we have qi ≤ q̂i+4
√
ϵ. For Statement

(ii), we have

|δπ′,u′,ℓ′,i(τ)| ≤ qi max
v∈[ℓ′i,u

′
i]
|gi(v)| ≤ (q̂i + 4

√
ϵ) · max

v∈[ℓ′i,u
′
i]
|gi(v)|

≤ q̂i ·
maxv∈[ℓ′i,u

′
i]
|δi(v)|

q̂i
+ 4
√
ϵ · T−1/4

≤ 2ϵ+ 4
√
ϵ · T− 1

4 < 3ϵ.

Here, the second line follows the definition of δi(v) and the precondition in Lemma 4.5. The third line holds because

the condition |δi(v)| ≤ 2ϵ does not require π̂ to be accurate, and the last inequality holds when ϵ > 16T− 1
2 .

For Statement (iii), following (4.13), we can bound the moving difference to∣∣∣∣∣
∫ u′

ℓ′
fπ′,i(x)gi(x)

∣∣∣∣∣ ≤ qi max
v∈[ℓ′i,u

′
i]
|gi(v)|.

Therefore, the same 3ϵ bound holds.

4.3 Step 2: Updating Order Constraints to Bound Swapping Difference In this section, our goal
is to verify σi and σj which one is larger, or claiming that reversing the order of Xi and Xj doesn’t hurt too
much. We first provide the following lemma, which shows the difference of the expected reward when we swap
two distributions with a same threshold:

Lemma 4.9. For a policy π, such that Xi and Xj are consecutive with τi = τj = τ , let ∆π,i,j(τ) be the change
of the expected reward after swapping Xi and Xj, then

∆π,i,j(τ) = Fπ,i(τ)(gi(τ)(1− Fj(τ))− gj(τ)(1− Fi(τ))).

Proof. Assume we have value v in hand before arriving Xi and Xj . To pass the threshold, there must be v ≤ τ .
If Xi is in the front, the expected gain of opening Xi is gi(v). After that, if Xi < τ , we can play Xj as well. The

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited483

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

expected gain is Fi(v)gj(v)+
∫ τ

v
fi(x)gj(x)dx = Fi(τ)gj(τ)−

∫ τ

u
Fi(x)g

′
j(x)dx. Therefore, the total expected gain

from Xj and Xi is gi(v) + Fi(τ)gj(τ) −
∫ τ

u
Fi(x)g

′
j(x)dx. Similarly, if Xj is in the front, the total expected gain

from Xi and Xj is gj(v) + Fj(τ)gi(τ)−
∫ τ

u
Fj(x)g

′
i(x)dx.

Notice that the order of Xi and Xj doesn’t affect the expected gain from the distributions behind Xi and
Xj . Therefore, the difference of the gain from Xi and Xj is exactly the difference of the expected reward:(

gi(v) + Fi(τ)gj(τ)−
∫ τ

u

Fi(x)g
′
j(x)dx

)
−
(
gj(v) + Fj(τ)gi(τ)−

∫ τ

u

Fj(x)g
′
i(x)dx

)
= gi(v) + Fi(τ)gj(τ)− gj(v)− Fj(τ)gi(τ) +

∫ τ

u

(Fj(x)(Fi(x)− 1)− Fi(x)(Fj(x)− 1)) dx

=

(
gi(v) + u− τ +

∫ τ

u

Fi(x)dx

)
−
(
gj(v) + u− τ +

∫ τ

u

Fj(x)dx

)
+ Fi(τ)gj(τ)− Fj(τ)gi(τ)

= gi(τ)(1− Fj(τ))− gj(τ)(1− Fi(τ)).

Since the probability that v arrives with v < τ is exactly Fπ,i(τ), the expected difference is ∆π,i,j(τ) =
Fπ,i(τ)(gi(τ)(1− Fj(τ))− gj(τ)(1− Fi(τ))).

Lemma 4.9 shows the following properties:

1. Assume σi > σj . When τ ∈ [σj , σi], ∆π,i,j(τ) < 0, i.e., letting Xi be in the front is better. This implies: If
we know the sign of ∆π,i,j(τ), and we are sure that τ is between σi and σj , then we can determine that σi

and σj which one is greater.
2. Fix i, j, τ , |∆π,i,j(τ)| is maximized when Fπ,i(τ) is maximized.

According to Property 2, we hope to test Xi and Xj with a policy π that maximizes Fπ,i(τ). If the difference
is bounded when Fπ,i(τ) is maximized, the swapping difference is bounded in all policies. Inspired by this, we
give the definition of the SwapTest policy:

Definition 4.10 (SwapTest Policy). Given (I, S) and i, j ∈ [n] with i ̸= j and (i, j), (j, i) /∈ S. Assume we have
[ℓ′i, u

′
i], [ℓ

′
j , u

′
j] ∈ I. A SwapTest policy is a pair of valid policies (π, π′), such that

• τi = τj = max{ℓ′i, ℓ′j}.
• Xi and Xj are adjacent in both π and π′, but under different orders, and this is the only difference between
π and π′. W.l.o.g, assume Xi is in the front in π, while Xj is in the front in π′, i.e., π−1(i) = π−1(j)− 1,
and π′−1(j) = π′−1(i)− 1.

• The SwapTest policy maximizes Fπ,i(τ) when the first two conditions are satisfied.

Then, the algorithm for testing Xi and Xj is clear: We find the SwapTest policy for Xi and Xj , run some
samples for two policies and see the difference. If the difference is too large, we can verify σi and σj which one is
larger. Otherwise, we can bound the swapping difference. Algorithm 7 gives the details of this idea.

Algorithm 7: SwapTest Algorithm

Input: Distribution indices i and j
1 Run Algorithm 8 to get SwapTest policy (π, π′)

2 Run C · log T
n2ϵ2 samples with policy π. Let R̂i,j be the average reward.

3 Run C · log T
n2ϵ2 samples with policy π′. Let R̂j,i be the average reward.

4 if |R̂i,j − R̂j,i| > 40nϵ then

5 Add constraint (i, j) into S′ if R̂i,j > R̂j,i, otherwise add constraint (j, i) into S′.
6 Update S′ according to the transitivity. Update I ′ according to the new order constraints, i.e., when

adding a constraint (a, b), let u′
b ← min{u′

a, u
′
b} and ℓ′a ← max{ℓ′a, ℓ′b}.

Output: Updated constraint group (I ′, S′)

Before analysing the algorithm, we point out two facts of Algorithm 7:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited484

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 8: Finding SwapTest Policy

Input: Input: (I ′, S′), m, i, j
1 Let τ = τi = τj = max{ℓ′i, ℓ′j}
2 Let T = {k|(k, i) ∈ S′ ∨ (k, j) ∈ S′ ∨ ℓ′k > τ}.
3 For k ∈ T , let τk = u′

k

4 For k ∈ [n] \ ({i, j} ∪ T), let τk = ℓ′k
5 Let π and π′ be two policies that sort the distributions in a decreasing threshold order, and break ties

according to S′. The only difference is: Xi is in front of Xj in π, but Xj is in front of Xi in π′.
Output: π and π′

• Algorithm 7 relies on Algorithm 6, i.e., we need to first run Algorithm 6 to get n new confidence intervals,
then run Algorithm 7 to update order constraints. This is critical to the regret analysis.

• In the SwapTest algorithm, we only test the swapping difference with τi = τj = max{ℓ′i, ℓ′j}, and give the
difference bound only with this threshold. This is sufficient for our regret analysis.

Lemma 4.11 (Swapping Difference Bound). Given (I ′, S), ϵ, and i, j ∈ [n] with i ̸= j and (i, j), (j, i) /∈ S, where
I ′ is generated by Algorithm 6. Assume the preconditions in Lemma 4.1 hold. Algorithm 7 runs O(log T

n2ϵ2) samples
and achieves one of the following:

• Clarify σi and σj which one is bigger with probability 1− T−12, and give a new constraint (i, j) or (j, i).
• Make the following claim with probability 1− T−12: For every two valid policies of (I ′, S), satisfying:

– τi = τj = max{ℓ′i, ℓ′j}.
– Xi and Xj are consecutive in both policies but in a different order. This is the only difference between

two policies.
The difference of the expected reward between these two policies is no more than 60nϵ.

Proof. We first prove the theorem assuming Algorithm 8 returns an accurate SwapTest policy (π, π′). According
to the definition of SwapTest policy, π and π′ maximizes the probability of reaching Xi and Xj when τi =
τj = max{ℓ′i, ℓ′j}. According to Property 2, for any valid policy, such that Xi and Xj are consecutive with
τi = τj = max{ℓ′i, ℓ′j}, the swapping difference is no more than the difference between π and π′. Therefore,
if we are evident that the difference between π and π′ is no more than 60nϵ, we can claim that this upper
bounds the swapping difference between Xi and Xj for any other policy. The proof idea is the following: We
run multiple samples to estimate Ri,j and Rj,i, where Ri,j is the expected reward of π and Rj,i is the expected

reward of π′. Next, we show that |Ri,j − R̂i,j | ≤ 10nϵ and |Rj,i − R̂j,i| ≤ 10nϵ with probability 1 − T−12. Then,

|Ri,j −Rj,i| ≤ 60nϵ when |R̂i,j − R̂j,i| ≤ 40nϵ.

Now, we bound |Ri,j−R̂i,j | with Hoeffding’s Inequality (Theorem A.1). R̂i,j is an estimate of Ri,j by running

N = C · log T
n2ϵ2 samples, and the per-round reward is bounded by [−0.5, 0.5]. Then, Pr

[
|Ri,j − R̂i,j | > 10nϵ

]
<

2 exp(−2N ·100n2ϵ2/4) = 2T−50C . Hence, |Ri,j− R̂i,j | ≤ 10nϵ with probability 1−T−13 when C > 10. Bounding

|Rj,i − R̂j,i| is identical, and by the union bound, |Ri,j − R̂i,j | ≤ 10nϵ and |Rj,i − R̂j,i| ≤ 10nϵ simultaneously
hold with probability 1− T−12.

The concentration proof above also shows that when |R̂i,j − R̂j,i| > 40nϵ, we can claim that w.h.p.
|Ri,j − Rj,i| > 20nϵ. Next, we show that this is evident to clarify which of σi and σj is greater. We first
introduce a special case to give the intuition: Consider the case that all other confidence intervals are disjoint
with [ℓ′i, u

′
i] or [ℓ

′
j , u

′
j]. W.l.o.g., assume π (Xi in the front) is better than π′ (Xj in the front). If τ = max{ℓ′i, ℓ′j}

is between σi and σj , we can immediately claim that σi > σj according to Property 1. If τ doesn’t fall between
σi and σj , there must be τ < min{σi, σj}. Then, we adjust π and π′ by increasing τi and τj to min{σi, σj}.
According to Lemma 4.5, these operations do not change the expected reward too much: Since we move two
thresholds in each policy, the expected reward of π can decrease by at most 6ϵ, and the expected reward of π′ can
increase by at most 6ϵ. Therefore, if the original π is at least 20ϵ better than π′, we can still claim that σi > σj .

However, this moving process can be invalid in the general case: min{σi, σj} might be greater than some
thresholds in front of Xi and Xj . To fix this issue, consider the following process:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited485

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• Step 1: Increase τi and τj until reaching τk, where Xk is the distribution just in front of Xi and Xj .
• Step 2: Swap Xi and Xj with Xk.
• Repeat Step 1 and 2 until τi = τj = min{σi, σj}.

Let ∆π,π′ be the difference between expected values of π and π′. We monitor the change of ∆π,π′ during these
operations. Step 1 can decrease ∆π,π′ by at most 12ϵ < 20ϵ. Step 2 can increase the absolute value of ∆π,π′ .
Since there can be at most n Step 1 and 2, if initially ∆π,π′ > 20nϵ, this is sufficient to guarantee that ∆π,π′ > 0
at the end of the process. Then, we are evident to claim σi > σj .

It remains to show that Algorithm 8 returns a SwapTest policy. Besides, this policy should also guarantee that
when we are swapping Xi and Xj with Xk, the policy after doing a swap is still valid. Therefore, we introduce
the following lemma:

Lemma 4.12. Algorithm 8 calculates a SwapTest policy. Besides, it has the following property: Let τ =
max{ℓ′i, ℓ′j} and τ ′ = min{σi, σj}. If τ ′ > τ , then for all k ∈ [n] \ {i, j}, if τk ∈ [τ, τ ′], there must be (k, i) /∈ S
and (k, j) /∈ S.

Proof. The first two conditions in Definition 4.10 directly follows Algorithm 8. For the objective condition, observe
that no distribution in the set T can be moved behind Xi and Xj . Therefore, the policy calculated by Algorithm 8
minimizes Fπ,i(τ), which means the third condition holds.

For the additional property, assume there exists k satisfying τk = u′
k, τk < min{σi, σj}. Notice that if

(k, i) ∈ S′, there must be u′
k ≥ u′

i ≥ min{σi, σj}, which is in contrast to the condition τk = u′
k < min{σi, σj}.

Therefore, (k, i) /∈ S′. Similarly, (k, j) /∈ S′. Therefore, the additional property in Lemma 4.12 holds.

Finally, applying Lemma 4.12 immediately proves Lemma 4.11.

4.4 Converting our Policy to the Optimal Policy in Polynomial Steps In this section, we show that
using poly(n) number of moves and swaps can convert any valid policy into the optimal policy. Since Lemma 4.5
and Lemma 4.11 already show that the difference of each move and swap is bounded by O(poly(n)ϵ), combining
these results, we can argue that the per-round loss of a valid policy is bounded by O(poly(n)ϵ). Formally, we give
the following lemma:

Lemma 4.13. Given a valid constraint group (I, S). For a valid policy of (I, S), we use a “move” to represent
the action that modifies a single threshold, and guarantees that the policy after modifying the threshold is still
valid. Besides, we use a “swap” to represent the action that swaps two consecutive distributions with the same
threshold. This threshold should be equal to the maximum of the two lower confidence bounds, and the policy after
swapping the distributions should still be valid.

For any valid policy of (I, S), it can be converted into the optimal policy using 2n2 moves and 2n2 swaps.

Proof. Let π be the policy that τi = ℓi for all i ∈ [n], and the distributions are sorted in a decreasing order of τ .
Since for every constraint (i, j) ∈ S, we have ℓi ≥ ℓj , π must be a valid policy.

We can prove Lemma 4.13 by showing the following statement: Starting from the policy π, we can move it
to any valid policy π′ using n2 moves and n2 swaps:

• Step 1: Let i = argmaxi τ
′
i , where τ ′i is the threshold of Xi in policy π′.

• Step 2: If Xi is not the first distribution in π, move τi to τππ−1(i)−1
, then swap Xi and Xππ−1(i)−1

.

• Step 3: Do Step 2 until Xi is moved to the first place. Then move τi to τ ′i .
• Step 4: Ignore Xi in both π and π′, repeat Step 1, 2 and 3 until every distribution is settled.

Each distribution only involves in n swaps and n moves, so the total number of moves and swaps are both
bounded by n2. Then, we need to show the validity of every operation. For each move, we increase τi to let it be
closer to τ ′i . Since τ ′i ∈ [ℓi, ui], every move is valid. For each swap, the threshold in the front must reach its lower
confidence bound. Besides, every swap happens only when there is no constraint between two distributions, so
every swap is valid.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited486

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Finally, notice that every operation is bidirected. It means that starting from any valid policy π′, we can
convert it to the policy π, and then convert it to the optimal policy using 2n2 moves and swaps, which finishes
the proof.

4.5 Putting Everything Together In this section, we show how to combine Algorithm 6 and Algorithm 7 to
generate a new valid constraint group (I ′, S′), then proves that this leads to an Õ(poly(n)

√
T) regret algorithm.

We first give the one-phase algorithm:

Algorithm 9: Constraint Updating Algorithm for Pandora’s Box

Input: I = {[ℓ1, u1], ..., [ℓn, un]}, S = {(i, j)}, F̂1(x), . . . , F̂n(x), m
1 //STEP 1: Calculate new confidence interval for each distribution
2 for i ∈ [n] do

3 For j ∈ [n], construct F̂j(x) using 105 · n
2 log T

ϵ new i.i.d. samples of Xj

4 Run Algorithm 6 with new CDF estimates to get ℓ′i and u′
i.

5 //Adjust the confidence intervals to meet constraints in S.
6 for (i, j) ∈ S do
7 Let ℓ′i = max{ℓ′i, ℓ′j} and u′

j = min{u′
j , u

′
i}.

8 Let I ′ = {[ℓ′i, u′
i]} and S′ = S

9 //Add new constraints for disjoint confidence intervals
10 for (i, j) /∈ S′ do
11 if ℓ′i > u′

j then Add (i, j) into S′ ;

12

13 //STEP 2: Calculate new constraints for each distribution pair
14 Let Q = {(i, j)|(i, j) /∈ S′ ∧ (j, i) /∈ S′}
15 while Q ̸= ∅ do
16 Choose (i, j) ∈ Q and remove (i, j) from Q
17 Run Algorithm 7 with input (i, j) and update I ′ and S′

18 //New constraints may fail some previous tests. Should add them back
19 For every k such that ℓ′k changes in Algorithm 7, if ∃k′ such that (k, k′), (k′, k) /∈ S′, add (k, k′) into Q.

Output: (I ′, S′)

We can directly give the following lemma according to the three lemmas above:

Lemma 4.14 (Main Lemma). Given (I, S) and ϵ > 16T− 1
2 . Assume the pre-conditions in Lemma 4.5 hold, i.e.,

• |gj(τ)| ≤ T− 1
4 for all τ ∈ [ℓj , uj].

• (I, S) is valid.
• For any valid partial policy π′ of (I, S), we fix the order and the other thresholds except τj. Assume π′ is valid
when both τj = ℓ′ and τj = ℓ′. Define δπ′,u′,ℓ′,j(τ) = (Fπ′,j(ℓ

′)− Fπ′,j(u
′))gi(τ). Then |δπ′,u′,ℓ′,j(τ)| ≤ 6ϵ.

• CDF estimate F̂j(x) is constructed via 105 · n
2 log T

ϵ fresh i.i.d. samples of Xj.

Then, Algorithm 9 runs O(n log T
ϵ2) rounds, such that the policy in each round is valid for (I, S) (except Line

3), and output a new constraint group (I ′, S′), satisfying the following statements with probability 1− T−10:

• (I ′, S′) is valid.
• For all j ∈ [n], for any valid partial policy π′ of (I ′, S′), we fix the order and the other thresholds except τj.
Assume π′ is valid when both τj = ℓ′ and τj = ℓ′. Define δπ′,u′,ℓ′,i(τ) = (Fπ′,j(ℓ

′) − Fπ′,j(u
′))gi(τ). Then

|δπ′,u′,ℓ′,i(τ)| ≤ 3ϵ.
• For a valid policy of (I ′, S′), the per-round regret is no more than 126n3ϵ.

Proof. In this proof, we assume Lemma 4.5 and Lemma 4.11 holds. We use Lemma 4.5 for no more than n

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited487

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

times and Lemma 4.11 for no more than n2 times. By the union bound6, our proof fails with probability at most
n · T−11 + n2 · T−12 ≤ T−10.

For the validity of (I ′, S′), the statement σi ∈ [ℓ′i, u
′
i] follows Lemma 4.5, and the statement σi > σj for all

(i, j) ∈ S′ follows Lemma 4.11. All other statements hold by definition. Therefore, (I ′, S′) is valid.

For the bound of |δπ′,u′,ℓ′,i(τ)|, it’s guaranteed directly by Lemma 4.5. Notice that Lemma 4.5 even provides
a stronger bound for the constraint group (I ′i, S). Since all possible choices of π′, ℓ′, u′ must be valid for (I ′i, S)
when it’s valid for (I ′, S′), this doesn’t hurt the statement.

For the per-round regret bound, Lemma 4.5 says that the difference of a move is bounded by 3ϵ. Lemma 4.11
says that the difference of a swap is bounded by 60nϵ. Then, according to Lemma 4.13, we can convert any valid
policy to the optimal policy using 2n2 moves and swaps. Therefore, the per-round regret is bounded by 126n3ϵ.

Next, we argue that Algorithm 9 runs no more than O(n log T
ϵ2) rounds. Note that Algorithm 6 is called n times,

and Algorithm 6 uses O(log T
ϵ2) rounds in one call. So the number of rounds is O(n log T

ϵ2). For Algorithm 7, we
might test a distribution pair (Xi, Xj) for multiple times. The reason is the following: When using Lemma 4.13,
we need to make sure that the value of the final max{ℓ′i, ℓ′j} is the one that we test. Therefore, if the value of ℓ′i
changes, we need to re-test some distribution pairs (i, j). We can argue that the total number of tests is bounded:
When doing an extra test for (i, j), at least one of ℓ′i or ℓ′j must change. This can happen only when a new
constraint related to i or j is added into S′. There are only 2n constraints related to i and j, so we can test (i, j)
for at most 4n times. Therefore, the total number of calls of Algorithm 7 is no more than 4n3, and Algorithm 7
uses O(log T

n2ϵ2) samples in one call, so the number of samples is bounded by O(n log T
ϵ2). Combining the two results

finishes the proof.

Now, we are ready to show the total regret bound.

Theorem 4.15. There exists an O(n4.5
√
T log T) regret algorithm for Pandora’s Box problem.

Proof. We run Algorithm 2 and then use Lemma 2.5 to bound the main part of the total regret. To run
Algorithm 2, we require the pre-conditions listed in Lemma 4.14 hold. We discuss them separately:

• |gj(τ)| ≤ T−1/4: This is guaranteed by Lemma 4.1.
• (I, S) is valid: For the first phase, the condition τ∗i ∈ [ℓi, ui] is guaranteed by Lemma 4.1, and we don’t
have any initial order constraints between distributions (except those distributions with disjoint confidence
intervals). Therefore, (I, S) is valid for the first phase. Starting from the second phase, this is guaranteed
by Lemma 4.14.

• |δπ′,u′,ℓ′,i(τ)| ≤ 6ϵ: For the first phase, this is true because |δπ′,u′,ℓ′,i(τ)| ≤ |g(τ)| ≤ T− 1
4 , and initially we

have ϵ = O(1). Starting from the second phase, this is from Lemma 4.14 regarding the previous phase.
Notice that parameter ϵ in the new phase is exactly ϵ

2 in the previous phase. Therefore, there is an extra 2
factor in the condition.

• New CDF estimates: This is guaranteed by Algorithm 9.

Lemma 4.14 implies that after O(n
7 log T
ϵ2) rounds, the one-round regret in the new constraint group is bounded

by ϵ. Applying Lemma 2.5 with α = 7, we have the O(n3.5
√
T log T) regret bound.

Besides, there are some extra rounds not covered by Lemma 2.5, including the initialization and the CDF
estimates construction (Line 3 in Algorithm 9). For the initialization, Lemma 4.1 runs O(n

√
T log T) samples, so

the regret is O(n
√
T log T). For the CDF estimates construction, let k be the number of phases in the doubling

algorithm. Then, the total number of samples is

k∑
i=1

n ·O(
n2 log T

ϵi
) = O(

√
T)

Combining three parts of regret, the total regret is O(n3.5
√
T log T).

6We assume T > 10n, otherwise an O(n) regret algorithm is trivial.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited488

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Finally, recall that until now we are working on a scaled Pandora’s Box problem: We scale down the values
and the costs by a factor of 2n. Therefore, for the original problem, the final regret bound is O(n4.5

√
T log T).

4.6 Making the Algorithm Efficient Currently, the running time of the whole algorithm is exponential in n
as just Lemma 4.8 introduces an algorithm with O(n2n) running time. If we want a polynomial time algorithm,
we may need an approximation. The following lemma shows a new regret bound with approximation:

Lemma 4.16. Assume for every i, we can γ-approximate maxπ,u,ℓ F̂π,i(u) − F̂π,i(ℓ), then there exists an

O(max{γn4.5, γ2n}
√
T log T) regret algorithm.

Proof. In this proof, we first discuss the problem for the scaled Pandora’s Box problem, and add the scaled 2n
factor back at last.

We first see how the γ approximation changes Lemma 4.5. Recall that qi = maxπ Fπ,i(u) − Fπ,i(ℓ). We

further define q̃i = maxπ F̂π,i(u) − F̂π,i(ℓ) and q̄i = Fπ̂,i(u) − Fπ̂,i(ℓ), where π̂ is the chosen policy that γ-

approximates maxπ,u,ℓ F̂π,i(u) − F̂π,i(ℓ). According to Claim 4.6, we have q̃i ≥ qi − 2
√
ϵ and q̄i ≥ q̃i

γ − 2
√
ϵ. So

qi ≤ γq̄i + (2γ + 2)
√
ϵ. According to (4.13), Statement (ii) and (iii) are both bounded by

qi max
v∈[ℓ′i,u

′
i]
|gi(v)| ≤ (γq̄i + (2γ + 2)

√
ϵ) max

v∈[ℓ′i,u
′
i]
|gi(v)|

≤ γq̄i ·
2ϵ

q̄i
+ (2γ + 2)

√
ϵ · T− 1

4 ≤ 3γϵ.

For Statement (ii), this changes the bound of |δπ̂,u′,ℓ′,i(τ)| to O(γϵ). In our proof, we use this bound when
proving Claim 4.7: The bound of |δπ̂,u′,ℓ′,i(τ)| provides a bound for the variance of the ∆i(τ) function, and then

we use Bernstein Inequality to show |∆̂i(τ) − ∆i(τ)| ≤ O(ϵ). When the bound changes to O(γϵ), to get an
O(ϵ) approximation of ∆i(τ), the number of samples for constructing CDF estimates should be multiplied by γ2,
leading to an O(γ2

√
T log T) regret bound.

For Statement (iii), notice that we need to use this moving difference to bound the swapping difference. The
main idea of the original proof is: Assume we want to test Xi and Xj . After O(n) moves, we can adjust τi and
τj to min{σi, σj}, then bound the swapping difference by O(n) ·O(ϵ). Since there is an extra γ factor in the new
moving difference bound, the new swapping difference should be O(γnϵ).

Next, Lemma 4.13 shows that we need 2n2 move operations and swap operations to convert a policy to the
optimal one, so the new regret bound after O(n log T

ϵ2) samples is O(γn3ϵ). Then, the parameter α in Lemma 2.5

changes to γ2n7, so the total regret from the doubling algorithm is O(γn3.5
√
T log T).

Finally, after combining these two new regret bounds and adding the scaled 2n factor back to the regret
bound, we get the O(max{γn4.5, γ2n2}

√
T log T) final regret bound.

Lemma 4.16 shows that: If we can get a poly(n) approximation for the MoveBound policy in polynomial time,
we can still get an O(poly(n)

√
T) regret algorithm. To achieve this goal, we introduce the following sub-routine:

Definition 4.17 (sub-routine). Let Problem A be the following: Given n and real numbers a1, ..., an, b1, ..., bn,
satisfying 0 ≤ ai ≤ bi ≤ 1 for all i ∈ [n]. The objective of Problem A is to calculate

max
B∈[n]

∏
i∈B

bi −
∏
i∈B

ai.

under a set of constraints {(i, j)}, where a constraint (i, j) means that if we have i ∈ B, there must be j ∈ B.

Lemma 4.18. If there exists an algorithm that calculates an γ-approximation for Problem A, then there exists
an algorithm that γ-approximates maxπ F̂π,i(u)− F̂π,i(ℓ). If the running time of the algorithm for approximating

Problem A is polynomial, then the algorithm for approximating F̂π,i(u)− F̂π,i(ℓ) is also polynomial.

Proof. Consider calculating a MoveBound policy for Xi. Assume that we know the value of ℓ and u. Then, we
only need to pick a subset B ⊆ [n] \ {i} to maximize

∏
j∈B bj −

∏
j∈N aj , where bj = F̂j(u), and aj = F̂j(ℓ).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited489

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

However, not all subsets B are valid. Firstly, for j ∈ B, there must be τj ≥ u, which means uj ≥ u is required.
Similarly, we should also guarantee that ℓj ≤ ℓ for all j ∈ [n] \ B. Besides, if there is an order constraint (j, k),
then k ∈ B implies j ∈ B, which can be represented as a constraint in Problem A. If all constraints are satisfied,
policy τj = uj for j ∈ B and τj = ℓj for j /∈ B∪{i} is a feasible policy. Therefore, finding the optimal policy with
fixed ℓ and u is captured by Problem A. So, an γ-approximation algorithm for Problem A also γ-approximates
F̂π,i(u)− F̂π,i(ℓ).

Notice that when maximizing F̂π,i(u) − F̂π,i(ℓ), we want to push the thresholds to the boundaries to give
τi enough space. Therefore, the value of ℓ and u must be equal to some ℓj or uj , which means that there are
only O(n2) candidates. Therefore, if the algorithm that γ- approximates Problem A runs in polynomial time, the
running time of the algorithm for approximating F̂π,i(u)− F̂π,i(ℓ) is also polynomial.

It remains to give a poly(n)-approximation algorithm for Problem A, with O(poly(n)) running time. The
following theorem shows that this is possible:

Lemma 4.19. Given an instance of Problem A. Let Bj be the subset with the smallest size that contains j. Let
qj =

∏
i∈Bj

bi −
∏

i∈Bj
ai Then, maxj qj is an n-approximation of problem A.

Proof. Construct a graph G = (V,E), such that V = [n], and E is the set of all constraints, i.e., a constraint
(u, v) is represented as a directed edge (u, v) ∈ E. Then, Bj is the set of all vertices which is reachable from j.

Notice that when G contains a connected component, we can shrink the component into one single vertex,
because picking any single vertex in the connected component means picking the whole component. Therefore,
we only need to prove the theorem when G is a directed acyclic graph (DAG).

Re-index the vertices in G, to make sure that for every edge (u, v) ∈ E, there must be u > v. Besides, make
sure that B∗ = {1, ..., k} is exactly the optimal set of Problem A. Then,

∏
i∈[k]

bi −
∏
i∈[k]

ai =
∑
j∈[k]

j−1∏
i=1

bi · (bj − aj) ·
k∏

i=j+1

ai


≤
∑
j∈[k]

 ∏
i∈Bj\{j}

bi · (bj − aj) · 1


≤
∑
j∈[k]

∏
i∈Bj

bi −
∏
i∈Tj

ai

 ≤
∑
j∈[n]

qj ,

where the second-last inequality uses ai ≤ bi. Therefore, maxj qj is an n-approximation of
∏

i∈B∗ bi−
∏

i∈B∗ ai.

Finally, combining Lemma 4.16, Lemma 4.18, and Lemma 4.19 gives the following main theorem:

Theorem 1.3. There is a polytime algorithm with O(n5.5
√
T log T) regret for the Bandit Pandora’s Box problem

where we only receive utility (selected value minus total cost) as feedback.

5 Lower Bounds

In this section we prove lower bounds for Online Learning Prophet Inequality and Online Learning Pandora’s
Box. Our lower bounds will hold even against full-feedback.

5.1 Ω(
√
T) Lower Bound for Stochastic Input We show an Ω(

√
T) regret lower bound for Bandit Prophet

Inequality and an Ω(
√
nT) lower bound for Pandora’s Box problem, which implies that the

√
T factor in our

regret bounds is tight. We first give the lower bound for Prophet Inequality.

Theorem 5.1. For Bandit Prophet Inequality there exists an instance with n = 2 such that all online algorithms
incur Ω(

√
T) regret.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited490

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Let D1 be a distribution that always gives 1
2 . Let D2 be a Bernoulli distribution. The probability of

X2 = 1 might be 1
2 + 1√

T
or 1

2 −
1√
T
. Both settings appear w.p. 1

2 . The online algorithm doesn’t know which

is the real setting. If it chooses not to open X2, it will lose
√
T w.p. 1

2 . Otherwise, because of the variance, the

algorithm needs Ω(T) samples from X2 to learn the real setting, and loses 1
2 ·
√
T for each round it runs. In both

cases, the online algorithm should lose Ω(
√
T), which finishes the proof.

For the Pandora’s Box problem, [GHTZ21] already shows a lower bound for the sample complexity of
Pandora’s Box problem, which directly implies a lower bound for the online learning setting.

Theorem 5.2 ([GHTZ21]). For any instance of Pandora’s problem in which the rewards are bounded in [0, 1],
running Ω(n

ϵ2) samples is necessary to get an ϵ-additive algorithm.

Corollary 5.3. For Pandora’s Box problem, all online algorithms incur Ω(
√
nT) regret.

Proof. Assume there exists an online algorithm that achieves o(
√
nT) regret. This implies that after T rounds,

we can achieve o(n√
T
) per-round regret, which is in contradiction with Theorem 5.2.

We remark that [GHTZ21] claims that Ω(n
ϵ2) samples are necessary to get an ϵ-additive algorithm for Prophet

Inequality but without giving a proof. However, this claim seems incorrect since in an ongoing work we show an
Õ(
√
T) regret algorithm for Prophet Inequality with full-feedback.

5.2 Ω(T) Lower Bound for Adversarial Input In this paper, we study Bandit Prophet Inequality and
Bandit Pandora’s Box problems under the stochastic assumption that input is drawn from unknown-but-fixed
distributions. A natural extension would be: can we obtain o(T) regret for adversarial inputs where the the input
distribution may change in each time step? The following theorems shows that sub-linear regret is impossible
even for oblivious adversarial inputs with n = 2 under full-feedback.

Theorem 5.4. For Bandit Prophet Inequality with oblivious adversarial inputs, there exists an instance with
n = 2 such that the optimal fixed-threshold strategy has total value 3

4T but no online algorithm (even under
full-feedback) can obtain total value more than 1

2T .

Proof. We first introduce a notation used in this proof. Let s be a 01-string. Define Bin(s) to be the binary
decimal corresponding to s. For example, Bin(1) = (0.1)2 = 1

2 , Bin(0011) = (0.0011)2 = 3
16 .

Now, we introduce the main idea of the counter example: At the beginning, the adversary will choose a T -bits
code s = s1s2...sT uniformly at random (i.e., si is set to be 0 or 1 w.p. 1

2 independently). The value of X1 is 1
2

plus a small bias that contains the information of the code. The value of X2 is either 1 or 0, which is decided by
the code. Formally, in the i-th round:

• X1 = 1
2 + ϵ · vi, where ϵ is an arbitrarily small constant that doesn’t effect the reward, and vi is a value

between Bin(s1s2...si−1 +0+1T−i) and Bin(s1s2...si−1 +1+0T−i). The notation 0k represents a length-k
string with all 0s, and 1k represents a length-k string with all 1s.

• X2 = 1 if si = 0, otherwise X2 = 1.

For an online algorithm, it only knows that the next si can be 0 or 1 w.p. 1
2 . Therefore, no matter it switches

to the next box or not, it can only get 1
2 in expectation. So the maximum total reward it can achieve is 1

2T .

However, if we know the code, playing τ = 1
2 + ϵ ·Bin(s) gets 3

4T : X2 = 1 when X1 < τ , while X2 = 0 when
X1 ≥ τ . Therefore, playing τ allows us to pick every 1, but stays in X1 = 1

2 when X2 = 0. Since we generate the
code uniformly at random, X2 is 1 w.p. 1

2 . Therefore, the expected reward is T · (12 · 1 +
1
2 ·

1
2) =

3
4T .

Next, we use a similar proof idea to prove lower bound for Pandora’s Box. This resolves an open question of
[Ger22, GT22] on whether sublinear regrets are possible for Online Learning of Pandora’s Box with adversarial
inputs.

Theorem 5.5. For Bandit Pandora’s Box with oblivious adversarial inputs, there exists an instance with n = 2
such that the optimal fixed-threshold strategy has total utility 1

4T but no online algorithm (even under full-feedback)
can obtain total utility more than 0.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited491

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. At the beginning, the adversary will choose a T -bits code s = s1s2...sT uniformly at random (si is set to
be 0 or 1 w.p. 1

2 independently). The cost c1 is 0, and the value of X1 is 0 plus a small bias that contains the
information of the code. The cost c2 is 1

2 , and the value of X2 is either 1 or 0, which is decided by the code.
Formally, in the i-th round:

• X1 = 0 + ϵ · vi, where ϵ is an arbitrarily small constant that doesn’t effect the reward, and vi is a value
between Bin(s1s2...si−1 +0+1T−i) and Bin(s1s2...si−1 +1+0T−i). The notation 0k represents a length-k
string with all 0s, and 1k represents a length-k string with all 1s.

• X2 = 1 if si = 0, otherwise X2 = 1.

The cost of X1 is 0, so we can always first open X1. Then, for an online algorithm, it doesn’t know whether
X2 is 1 or 0. No matter it opens X2 or not, the expected reward will only be 0.

However, when we know the code, playing τ = ϵ ·Bin(s) gets 1
4T , because it will open X2 whenever X2 = 1,

and skip it when X2 is 0. Since we generate the code uniformly at random, X2 is 1 w.p. 1
2 . Therefore, the

expected reward is T · (12 · (1−
1
2)) =

1
4T .

References

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

[ACG+22] Alexia Atsidakou, Constantine Caramanis, Evangelia Gergatsouli, Orestis Papadigenopoulos, and Christos
Tzamos. Contextual pandora’s box. arXiv preprint arXiv:2205.13114, 2022.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and
applications. Theory of computing, 8(1):121–164, 2012.

[AKW14] Pablo Daniel Azar, Robert Kleinberg, and S. Matthew Weinberg. Prophet inequalities with limited information.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 1358–
1377, 2014.

[ANSS19] Nima Anari, Rad Niazadeh, Amin Saberi, and Ali Shameli. Nearly optimal pricing algorithms for production
constrained and laminar bayesian selection. In Proceedings of the 2019 ACM Conference on Economics and
Computation, EC, pages 91–92, 2019.

[BC12] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[BDL22] Mark Braverman, Mahsa Derakhshan, and Antonio Molina Lovett. Max-weight online stochastic matching:
Improved approximations against the online benchmark. In ACM Conference on Economics and Computation, EC,
2022.

[Bel57] Richard Bellman. Dynamic programming. Princeton University Press, 1957.
[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.
[CDF+22] Constantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis

Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuser. Single-sample prophet inequalities via
greedy-ordered selection. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
1298–1325, 2022.

[CDFS19] José R. Correa, Paul Dütting, Felix A. Fischer, and Kevin Schewior. Prophet inequalities for I.I.D. random
variables from an unknown distribution. In Proceedings of the 2019 ACM Conference on Economics and Computation,
EC, pages 3–17, 2019.

[CHMS10] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-parameter mechanism
design and sequential posted pricing. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC,
pages 311–320, 2010.

[EFGT20] Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. Online stochastic max-weight matching:
Prophet inequality for vertex and edge arrival models. In The 21st ACM Conference on Economics and Computation,
EC, pages 769–787, 2020.

[EHLM19] Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Brendan Lucier, and Michael Mitzenmacher. Online
pandora’s boxes and bandits. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pages 1885–
1892, 2019.

[FGL15] Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted prices. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 123–135, 2015.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited492

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[FL20] Hu Fu and Tao Lin. Learning utilities and equilibria in non-truthful auctions. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS, 2020.

[FSZ16] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1014–1033, 2016.

[FTW+21] Hu Fu, Zhihao Gavin Tang, Hongxun Wu, Jinzhao Wu, and Qianfan Zhang. Random order vertex arrival
contention resolution schemes for matching, with applications. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP, pages 68:1–68:20, 2021.

[Ger22] Evangelia Gergatsouli. Personal communication. 2022.
[GHTZ21] Chenghao Guo, Zhiyi Huang, Zhihao Gavin Tang, and Xinzhi Zhang. Generalizing complex hypotheses on

product distributions: Auctions, prophet inequalities, and pandora’s problem. In Conference on Learning Theory,
COLT, pages 2248–2288, 2021.

[GJSS19] Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. The markovian price of information. In Proceedings
of Integer Programming and Combinatorial Optimization, IPCO, volume 11480, pages 233–246, 2019.

[GKS19] Buddhima Gamlath, Sagar Kale, and Ola Svensson. Beating greedy for stochastic bipartite matching. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 2841–2854, 2019.

[GT22] Evangelia Gergatsouli and Christos Tzamos. Online learning for min sum set cover and pandora’s box. In
International Conference on Machine Learning, ICML, pages 7382–7403, 2022.

[Har22] Jason D Hartline. Mechanism design and approximation. Book draft., 2022.
[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157–

325, 2016.
[HKS07] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Tuomas Sandholm. Automated online mechanism

design and prophet inequalities. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
pages 58–65, 2007.

[KS77] Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. Bull. Am. Math. Soc, 1977.
[KS78] Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value. Advances in Prob,

4:197–266, 1978.
[KW12] Robert Kleinberg and S. Matthew Weinberg. Matroid prophet inequalities. In Proceedings of the 44th Symposium

on Theory of Computing Conference, STOC, pages 123–136, 2012.
[KWW16] Robert D. Kleinberg, Bo Waggoner, and E. Glen Weyl. Descending price optimally coordinates search. In

Proceedings of the ACM Conference on Economics and Computation, EC, pages 23–24, 2016.
[LLP+21] Allen Liu, Renato Paes Leme, Martin Pál, Jon Schneider, and Balasubramanian Sivan. Variable decomposition

for prophet inequalities and optimal ordering. In The 22nd ACM Conference on Economics and Computation, EC,
page 692, 2021.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
[LSTW23] Renato Paes Leme, Balasubramanian Sivan, Yifeng Teng, and Pratik Worah. Pricing query complexity of

revenue maximization. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
399–415, 2023.

[Luc17] Brendan Lucier. An economic view of prophet inequalities. SIGecom Exch., 16(1):24–47, 2017.
[PPSW21] Christos H. Papadimitriou, Tristan Pollner, Amin Saberi, and David Wajc. Online stochastic max-weight

bipartite matching: Beyond prophet inequalities. In The 22nd ACM Conference on Economics and Computation,
EC, pages 763–764, 2021.

[Rou16] Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press, 2016.
[RS17] Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1671–1687, 2017.
[Rub16] Aviad Rubinstein. Beyond matroids: secretary problem and prophet inequality with general constraints. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 324–332, 2016.
[RWW20] Aviad Rubinstein, Jack Z. Wang, and S. Matthew Weinberg. Optimal single-choice prophet inequalities from

samples. In 11th Innovations in Theoretical Computer Science Conference, ITCS, pages 60:1–60:10, 2020.
[SC84] Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative random

variables. the Annals of Probability, pages 1213–1216, 1984.
[Sin18a] Sahil Singla. Combinatorial optimization under uncertainty: Probing and stopping-time algorithms. Unpublished

doctoral dissertation, Carnegie Mellon University, 2018.
[Sin18b] Sahil Singla. The price of information in combinatorial optimization. In Proceedings of the Twenty-Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2018.
[Sli19] Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trends in Machine Learning, 12(1-

2):1–286, 2019.
[SS21] Danny Segev and Sahil Singla. Efficient approximation schemes for stochastic probing and prophet problems. In

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited493

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The 22nd ACM Conference on Economics and Computation, EC, pages 793–794, 2021.
[Wei79] Martin L. Weitzman. Optimal search for the best alternative. Econometrica: Journal of the Econometric Society,

pages 641–654, 1979.

A Basic Probabilistic Inequalities

Theorem A.1 (Hoeffding’s Inequality). Let X1, . . . , XN be independent random variables such that ai ≤ Xi ≤ bi.

Let SN =
∑

i∈[N] Xi. Then for all t > 0, we have Pr [|SN −E [Sn] | ≥ t] ≤ 2 exp
(
− 2t2∑

i∈[n](bi−ai)2

)
. This implies,

that if Xi are i.i.d. samples of random variable X, and a = ai, b = bi for all i ∈ [N], let X̂ := 1
N

∑
i∈[N] Xi, then

for every ε > 0,

Pr
[
|X̂ −E [X] | ≥ ε

]
≤ 2 exp

(
− 2Nε2

(b− a)2

)
.

Theorem A.2 (Bernstein Inequality). Given mean zero random variables {Xi}Ni=1 with P(|Xi| ≤ c) = 1 and
VarXi ≤ σ2

i . If X̄N denotes their average and σ2 = 1
N

∑n
i=1 σ

2
i , then

P(|X̄N | ≥ ε) ≤ 2 exp
(
− Nε2

2σ2 + 2cε/3

)
.

Theorem A.3 (DKW Inequality). Given a natural number N , let X1, . . . , Xn be i.i.d. samples with cumulative
distribution function F (·). Let F̂ (·) be the associated empirical distribution function F̂ (x) := 1

N

∑
i∈[N] 1Xi≤x.

Then, for every ε > 0, we have

Pr

[
sup
x
|F̂ (x)− F (x)| > ε

]
≤ 2 exp(−2Nε2).

B Missing Proofs from Section 2

B.1 Proof of Lemma 2.5

Proof. There are two different sources of regret. We bound them separately.

Loss 1 from the while loop: The main idea of the proof is to use the regret bound from the previous phase to
bound the total regret in the next phase. Specifically, assume ϵ0 = O(1) be the maximum possible one-round
regret, and assume there are k phases in the while loop. Then the total regret can be bounded by

k∑
i=1

O

(
nα log T

ϵ2i

)
· ϵi−1 =

k∑
i=1

O

(
nα log T

ϵi

)
= O(nα/2

√
T).(B.1)

Therefore, the total regret from the while loop is bounded by O(nα/2
√
T).

Loss 2 after the while loop: After the while loop, the one-round regret is bounded by ϵk = nα/2 log T√
T

, so the total

regret can be bounded by O(n
α/2 log T√

T
) · T = O(nα/2

√
T log T).

Finally, combining the two sources of regret proves the theorem.

Besides, we should also verify that Algorithm 2 succeeds with probability 1− T−9, and it runs no more than
O(T) rounds. For the success probability, Algorithm 2 runs k = O(log T) < T rounds, and the subroutine Alg
succeeds with probability 1− T−10. By the union bound, Algorithm 2 succeeds with probability 1− T−9. As for
the number of rounds, in the while loop, Algorithm 2 runs

k∑
i=1

nα log T

ϵ2i
≤ 4nα log T

ϵ2k
= O(T)

number of rounds. Therefore, Algorithm 2 is a valid algorithm with respect to time horizon T .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited494

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

B.2 Missing Details of Pandora’s Box Algorithm for n = 2

B.2.1 Proof of Lemma 2.7 To prove Lemma 2.7, we need two claims. The first claim says that when we
have a good guess τ with a small δ(τ), the loss of playing τ is bounded:

Claim 2.8. If τ, τ∗ ∈ [ℓ, u] then R(τ∗)−R(τ) ≤ |δ(τ)|.

Proof. We first upper-bound R(τ∗) − R(τ). The two settings are different only when X1 is between τ and τ∗:
Playing τ will loss an extra |g(X1)|. Since g(x) is monotone, we can bound |g(X1)| by |g(τ)|. Therefore, the extra
loss of playing τ is no more than |F1(τ

∗)− F1(τ)||g(τ)|.
On the other hand,

|δ(τ)| = (F1(u)− F1(ℓ))

∣∣∣∣∣
∫ τ∗

τ

g′(x)dx

∣∣∣∣∣ = (F1(u)− F1(ℓ)) · |g(τ)|.

When τ, τ∗ ∈ [ℓ, u], F1(u)− F1(ℓ) ≥ |F1(τ
∗)− F1(τ)|. Therefore, |δ(τ)| ≥ R(τ∗)−R(τ).

The second claim shows that we can get a good estimate for function δ(τ):

Claim 2.9. In Algorithm 3, if the conditions in Lemma 2.7 hold, then with probability 1−T−10 |δ̂(τ)−δ(τ)| ≤ 4ϵ
simultaneously for all τ ∈ [ℓ, u].

Proof. Recall that δ(τ) = ∆(τ) − (R(u)−R(ℓ)). We will give the bound for |∆(τ∗) −∆(τ)|, |R(u) − R̂(u)| and
|R(ℓ)− R̂(ℓ)| separately.

For |∆(τ∗)−∆(τ)|, we first bound the magnitude of ∆(τ):

∆(τ) =

∫ u

τ

(F1(u)− F1(x))(F2(x)− 1)dx−
∫ τ

ℓ

(F1(x)− F1(ℓ))(F2(x)− 1)dx,

which implies

|∆(τ)| ≤ (F1(u)− F1(τ))

∫ u

τ

(1− F2(x))dx+ (F1(τ)− F1(ℓ))

∫ τ

ℓ

(1− F2(x))dx(B.2)

= (F1(u)− F1(τ))(g(τ)− g(u)) + (F1(τ)− F1(ℓ))(g(ℓ)− g(τ))(B.3)

≤ (F1(u)− F1(ℓ))(g(ℓ)− g(u))(B.4)

≤ |δ(u)|+ |δ(ℓ)| ≤ 32ϵ,(B.5)

where the last equality follows from the bound |δ(τ)| ≤ 16ϵ for all τ ∈ [ℓ, u] in Lemma 2.7.

Now notice that the estimate ∆̂(τ) we have based on our initial estimates F̂1 and F̂2 is unbiased i.e.

E
[
∆̂(τ)

]
= ∆(τ) ≤ 32ϵ. This simply follows from exchanging interval integration and expectation combined

with the independence of X1 and X2:

E

[∫ u

τ

(F̂1(u)− F̂1(x))(F̂2(x)− 1)dx

]
=

∫ u

τ

(E
[
F̂1(u)

]
−E

[
F̂1(x)

]
)(E

[
F̂2(x)

]
− 1)dx

=

∫ u

τ

(F1(u)− F1(x))(F2(x)− 1)dx.(B.6)

Now let us define ∆̂(τ) per sample i for each initial sample. We run N = C · log T
ϵ samples for C = 1000. Then

for i ∈ [N], we define

∆̂(k)(τ) =

∫ u

τ

(F̂
(k)
1 (u)− F̂

(k)
1 (x))(F̂

(k)
2 (x)− 1)dx−

∫ τ

ℓ

(F̂
(k)
1 (x)− F̂

(k)
1 (ℓ))(F̂

(k)
2 (x)− 1)dx,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited495

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where F̂
(k)
1 (.) and F̂

(k)
2 (.) are simple threshold functions at the ith initial sample, which are estimates for the

densities F1 and F2 respectively. Note that

∆̂(τ) =
1

N

∑
k∈[N]

∆̂(k)(τ).

Now again similar to (B.6) we have

E
[
∆(k)(τ)

]
= E [∆(τ)] ≤ 32ϵ.(B.7)

Moreover, note that the random variable ∆̂(i)(τ) is bounded by one since

|∆̂(k)(τ)| ≤
∫ u

τ

∣∣∣(F̂ (k)
1 (u)− F̂

(k)
1 (x))(F̂

(k)
2 (x)− 1)

∣∣∣dx− ∫ τ

ℓ

∣∣∣(F̂ (k)
1 (x) + F̂

(k)
1 (ℓ))(F̂

(k)
2 (x)− 1)

∣∣∣dx
≤
∫ u

τ

1dx+

∫ τ

ℓ

1dx = u− ℓ ≤ 1.(B.8)

Combining Equations (B.7) and (B.8), we have the variance bound:

Var[∆̂(τ)] ≤ E
[
∆̂(τ)2

]
≤ E

[
∆̂(τ)

]
≤ 32ϵ.(B.9)

Now, combining (B.8) and (B.9), we can apply Bernstein inequality for the random variables ∆̂(i)(τ). We
have:

Pr
[
|∆̂(τ)−∆(τ)| ≥ ϵ

]
≤ 2 exp(− Nϵ2

2Var[∆̂(τ)] + 2
3ϵ

) = 2T− 3C
194 .(B.10)

Therefore, |∆̂(τ)−∆(τ)| < ϵ holds with probability 1 − T−12 when C = 1000.

Notice that we only prove the bound for a single τ . To strengthen this concentration bound to hold
simultaneously for all τ and [ℓ, u], we take a union over appropriate cover sets. In particular, consider C as
a discretization of the interval [ℓ, u] with accuracy 1/T . To be able to exploit the high probability argument for
the elements inside the cover for the ones outside, we need to show that ∆ is Lipschitz with respect to τ , u and ℓ.

For ∆ function, we have |∆(τ)−∆(τ ′)| ≤ 2|τ − τ ′| since

∣∣∣∆(τ)−∆(τ ′)
∣∣∣ = ∣∣∣ ∫ τ ′

τ

(F1(u)− F1(x))(F2(x)− 1)dx
∣∣∣+ ∣∣∣ ∫ τ ′

τ

(F1(u)− F1(x))(F2(x)− 1)dx
∣∣∣

≤ 2|τ − τ ′|.

It is easy to see that the same Lipschitz bound also holds for ∆̂.

Now for an arbitrary τ ′ ∈ [ℓ, u], if we consider the closest τ to it in C, we have |τ ′ − τ | ≤ 1
T . Then, using the

Lipschitz constant of ∆ and ∆̂:∣∣∣∆(τ)−∆(τ ′)
∣∣∣ ≤ 2

T
and

∣∣∣∆̂(τ)− ∆̂(τ ′)
∣∣∣ ≤ 2

T
.(B.11)

Now we apply a union bound over the events |∆̂(τ)−∆(τ)| < ϵ for all τ ∈ C. Since running over all possibilities
of |C| ≤ T , after taking a union bound we know that all of these events happen simultaneously with probability
at least 1− T−11. We then have for τ ′ and its closest element τ in C:

|∆(τ)−∆(τ ′)|+ |∆̂(τ)− ∆̂(τ ′)| ≤ 4|τ − τ ′| ≤ 4

T
.(B.12)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited496

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We simply upper-bound 4
T by ϵ. This must be true because ϵ ≥ T− 1

2 = ω(1
T). Then, combining the bound

in (B.12) with (B.10) implies |∆̂(τ ′)−∆(τ ′)| ≤ 2ϵ holds with probability 1− T−11 for all τ ∈ [ℓ, u].

Next, we bound |R̂ℓ − R(ℓ)| and |R̂u − R(u)|. For |R̂ℓ − R(ℓ)|, Notice that R̂ℓ is an estimate of R(ℓ) with
N = C · log T

ϵ2 samples, and the reward of each sample falls in [−1, 1]. By Hoeffding’s Inequality (Theorem A.1),

the probability that |R̂ℓ − R(ℓ)| > ϵ is bounded by 2 exp(−2Nϵ2/4) = 2T−C/2. So, with probability 1 − T−11

|R̂ℓ−R(ℓ)| ≤ ϵ when C > 100. The bound for |R̂u−R(u)| is identical. Finally, combining three parts with union
bound finishes the proof.

Finally, we have the tools to prove Lemma 2.7:

Proof of Lemma 2.7. We will assume that |δ̂(τ)−δ(τ)| ≤ 4ϵ, which is true with probability 1−T−10 by Claim 2.9.

Observe that δ̂(τ) is a monotone increasing function, because δ̂′(τ) = ∆̂′(τ) = (F̂1(u)− F̂1(ℓ))(1− F̂2(τ) ≥ 0.

Therefore, according to the definition of ℓ′ and u′, we have [ℓ′, u′] = {τ ∈ [ℓ, u] : |δ̂(τ)| ≤ 4ϵ}. Now, we can use
this property to prove two statements separately:

For the statement that τ∗ ∈ [ℓ′, u′], notice that δ(τ∗) = 0. According to Claim 2.9, |δ̂(τ∗)| ≤ 4ϵ. Then, since

τ∗ ∈ [ℓ, u] and |δ̂(τ∗)| ≤ 4ϵ, there must be τ∗ ∈ [ℓ′, u′], because [ℓ′, u′] = {τ ∈ [ℓ, u] : |δ̂(τ)| ≤ 4ϵ}.
Next, we prove that |δ(τ)| ≤ 8ϵ for all τ ∈ [ℓ, u]. This is true because [ℓ′, u′] = {τ ∈ [ℓ, u] : |δ̂(τ)| ≤ 4ϵ}, and

we have |δ̂(τ)− δ(τ)| ≤ 4ϵ from Claim 2.9. Therefore, |δ(τ)| ≤ |δ̂(τ)|+ |δ̂(τ)− δ(τ)| ≤ 8ϵ for all τ ∈ [ℓ′, u′].

Finally, the bound R(τ∗)−R(τ) ≤ 8ϵ directly follows Claim 2.8 and that |δ(τ)| ≤ 8ϵ.

B.2.2 Proof of Theorem 2.10 To prove Theorem 2.10, we need to first give an initialization algorithm such
that its output should satisfy the conditions listed in Lemma 2.7. Formally, we have the following lemma:

Lemma B.1. After running no more than 1000
√
T log T samples from D1 and D2, with probability 1− T−10 we

can output an initial interval [ℓ, u] that satisfies |g(τ)| ≤ T−1/4 and τ∗ ∈ [ℓ, u].

Proof. We first run 1000
√
T log T extra samples for X2 and calculate an estimate F̂2(x). We can show that

|F̂2(x)−F2(x)| ≤ 1
2T

− 1
4 with probability 1−T−10: After running N = C ·

√
T log T samples, the DKW inequality

(Theorem A.3) shows that Pr
[
|F̂2(x)− F2(x)| > ε = 1

2T
− 1

4

]
≤ 2 exp(−2Nε2) = 2T−C/2. Then, with probability

1− T−10, we have |F̂2(x)−F2(x)| ≤ 1
2T

− 1
4 simultaneously holds for all x ∈ [0, 1] when C > 100. In the following

proof, we assume this accuracy bound always holds.

Next, we calculate ĝ(τ) by replacing F2(x) with F̂2(x) in (2.3). When |F̂2(x) − F2(x)| ≤ 1
2T

− 1
4 holds

simultaneously for all x ∈ [0, 1], we have |ĝ(τ) − g(τ)| ≤
∫ 1

τ
|F̂2(x) − F2(x)| ≤ 1

2T
− 1

4 . Then, we let

[ℓ, u] := {τ : |ĝ(τ)| ≤ 1
2T

− 1
4 }. Since ĝ′(τ) = F̂2(τ) − 1 ≤ 0, function ĝ(τ) is a non-increasing. So, the set

{τ : |ĝ(τ)| ≤ 1
2T

− 1
4 } must form an interval. Besides, notice that g(τ∗) = 0, which means |ĝ(τ∗)| ≤ 1

2T
− 1

4 , so we

must have τ∗ ∈ [ℓ, u]. Furthermore, for every τ ∈ [ℓ, u], |g(τ)| ≤ |ĝ(τ)|+ |ĝ(τ)− g(τ)| ≤ T− 1
4 , which finishes the

proof.

Now, we are ready to prove Theorem 2.10:

Proof of Theorem 2.10. For the core part of the algorithm, we run Algorithm 2 and then use Lemma 2.5 to bound
the regret. To run Algorithm 2, we let the constraints to mean that the threshold played in each round is inside
the interval [ℓ, u] given by Algorithm 3. Besides, we require the conditions listed in Lemma 2.7 hold (with high
probability). We discuss them separately:

• |g(τ)| ≤ T− 1
4 for all τ ∈ [ℓ, u]: This is guaranteed by Lemma B.1.

• τ∗ ∈ [ℓ, u]: For the first phase, this is guaranteed by Lemma B.1. Starting from the second phase, this is
from Lemma 2.7 of the previous phase.

• |δ(τ)| ≤ 16ϵ: For the first phase, this is true because ϵ1 = 1. Starting from the second phase, this is
from Lemma 2.7 of the previous phase. Notice that the statement in Lemma 2.7 is a little bit different: It
guarantees that |δ(τ)| ≤ 8ϵ with respect to the [ℓ, u] and ϵ from the previous phase. When switching to the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited497

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

new phase, notice that F2(u
′) − F2(ℓ

′) ≤ F2(u) − F2(ℓ), which means |δ(τ)| drops when switching to the
new phases. Besides, the parameter ϵnew in the new phase is exactly 1

2ϵold. Combining these two differences
shows that |δ(τ)| ≤ 16ϵ holds in the new phase.

Therefore, Algorithm 3 satisfies algorithm Alg in Lemma 2.5. Applying Lemma 2.5 gives the O(
√
T log T)

regret bound.

Besides, we also run samples for initialization and constructing CDF estimates for Algorithm 3. These are
not coverd by Lemma 2.5. For the initialization, Lemma B.1 states that Θ(

√
T log T) rounds are sufficient. So

the regret from the initialization is O(
√
T log T). For constructing F̂1(x) and F̂2(x), assume we run k phases,

then the total number of samples is

k∑
i=1

Θ(
log T

ϵi
) = O(

√
T log T).

Combining three parts finishes the proof.

C Missing Proofs from Section 4

C.1 Proof of Lemma 4.1

Proof. We first prove the lemma for a single i. For [ℓi, ui], we run C ·
√
T log T extra samples for Xi with C = 1000,

and calculate an estimate F̂i(x). We can show that |F̂i(x)−Fi(x)| ≤ 1
2T

− 1
4 with probability 1−T−11: After running

N = C ·
√
T log T samples, the DKW inequality (Theorem A.3) shows that Pr

[
|F̂i(x)− Fi(x)| > ε = 1

2T
− 1

4

]
≤

2 exp(−2Nε2) = 2T−C/2. Then with probability 1 − T−11, we have |F̂i(x) − Fi(x)| ≤ 1
2T

− 1
4 holds for every

x ∈ [0, 1] when C > 100. In the following proof, we assume this accuracy bound always holds. By the union
bound over all i ∈ [n], the whole proof succeeds with probability 1 − T−10.

Next, we calculate ĝi(τ) by replacing Fi(x) with F̂i(x) in (4.11). When |F̂i(x) − Fi(x)| ≤ T− 1
4 holds for all

x ∈ [0, 1], we have |ĝi(τ)−gi(τ)| ≤
∫ 1

τ
|F̂i(x)−Fi(x)| ≤ 1

2T
− 1

4 . Then, we let [ℓi, ui] := {τ : |ĝi(τ)| ≤ 1
2T

− 1
4 }. Since

ĝ′(τ) = F̂i(τ) − 1 ≤ 0, which means ĝi(τ) is a decreasing function, then the set {τ : |ĝi(τ)| ≤ 1
2T

− 1
4 } must form

an interval. Besides, notice that gi(τ
∗) = 0, which means |ĝi(τ∗)| ≤ 1

2T
− 1

4 , so there must be τ∗i = σi ∈ [ℓi, ui].

Furthermore, for every τ ∈ [ℓi, ui], |gi(τ)| ≤ |ĝi(τ)|+ |ĝi(τ)− gi(τ)| ≤ T− 1
4 .

Finally, combining the statements for all n intervals finishes the proof.

C.2 Proof of Claim 4.6

Proof. We first show that |F̂i(x) − Fi(x)| ≤
√
ϵ

2n with probability 1 − T−13 with N = C · n2 log T
ϵ samples,

where C is set to be 1000. Using DKW inequality (Theorem A.3), we have Pr
[
|F̂i(x)− Fi(x)| >

√
ϵ

2n

]
≤

2 exp(−2N ϵ
4n2) = 2T−C/4. So the bound holds with probability 1 − T−13 when C = 1000. By the union

bound, with probability 1− T−12 we have |F̂i(x)− Fi(x)| ≤
√
ϵ

2n holds for every i ∈ [n]. Then, for the accuracy of∏
i∈S Fi(x), we have

(
(1−

√
ϵ

2n)
n−1

)
≤
∏

i∈S F̂i(x)−
∏

i∈S Fi(x) ≤
(
(1+

√
ϵ

2n)
n−1

)
. For the lower bound, we have

(1−
√
ϵ

2n)
n−1 ≥ 1−

√
ϵ

2 −1 > −
√
ϵ. For the upper bound, we have (1+

√
ϵ

2n)
n−1 ≤ exp(

√
ϵ

2n ·n)−1 ≤ 1+2·
√
ϵ

2 −1 =
√
ϵ.

Combining two bounds finishes the proof.

C.3 Proof of Claim 4.7

Proof. Since δi(τ) = ∆i(τ)− (Ru−Rℓ), there are three parts in δi(τ). We show that the accuracy of each part is
bounded by ϵ

3 with probability 1− T 13, then taking a union bound over three accuracy bounds gives Claim 4.7.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited498

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

First, similar to the derivation in Equation (B.5) we bound the magnitude of the ∆i function:

|∆i(τ)| ≤ (Fπ,i(u)− Fπ,i(τ))

∫ u

τ

(1− Fi(x))dx+ (Fπ,i(τ)− Fπ,i(ℓ))

∫ τ

ℓ

(1− Fi(x))dx

= (Fπ,i(u)− Fπ,i(τ))(gi(τ)− gi(u)) + (Fπ,i(τ)− Fπ,i(ℓ))(gi(ℓ)− gi(τ))

≤ (Fπ,i(u)− Fπ,i(ℓ))(gi(ℓ)− gi(u))

≤ |δπ,u,ℓ,i(ℓ)|+ |δπ,u,ℓ,i(u)| ≤ 12ϵ,(C.13)

where we use the bound |δπ′,u′,ℓ′,i(τ)| ≤ 6ϵ in Lemma 4.5.

Next, we hope to propose an estimator ∆̂
(k)
i (τ) for the ∆i function which uses N = C · log T

ϵ samples for
C = 105. For k ∈ [N], define

∆̂
(k)
i (τ) =

∫ u

τ

(F̂
(k)
π,i (u)− F̂

(k)
π,i (x))(F̂

(k)
i (x)− 1)dx−

∫ τ

ℓ

(F̂
(k)
π,i (x)− F̂

(k)
π,i (ℓ))(F̂

(k)
i (x)− 1)dx,

where F̂
(k)
π,i (.) and F̂

(k)
i (.) are simple threshold functions at the ith initial sample, which are estimates for the

densities Fπ,i and Fi, respectively. This definition implies ∆̂i(τ) =
1
N

∑
k∈[N] ∆̂

(k)
i (τ), and Equation (C.13) implies

E
[
∆̂

(k)
i (τ)

]
= ∆i(τ) ≤ 12ϵ.(C.14)

Now it is easy to see that F̂
(k)
π,i (x) − F̂

(k)
π,i (y) is a Bernoulli random variable which are one if and only if the

maximum value obtained from Xπ(1), . . . , Xπ(π−1(i)−1) is in [ℓi, ui]. In particular, this implies that ∆̂
(k)
i (τ) is

bounded by 1 since

|∆̂(k)
i (τ)| ≤

∫ u

τ

∣∣∣(F̂ (k)
π,i (u)− F̂

(k)
π,i (x))(F̂

(k)
i (x)− 1)

∣∣∣dx− ∫ τ

ℓ

∣∣∣(F̂ (k)
π,i (x)− F̂

(k)
π,i (ℓ))(F̂

(k)
i (x)− 1)

∣∣∣dx
≤
∫ u

τ

1dx+

∫ τ

ℓ

1dx = u− ℓ ≤ 1.(C.15)

Combining Equations (C.14) and (C.15), we have the variance bound:

Var[∆̂i(τ)] ≤ E
[
∆̂i(τ)

2
]
≤ E

[
∆̂i(τ)

]
≤ 12ϵ.(C.16)

Hence, using Bernstein inequality, we have

Pr
[
|∆̂i(τ)−∆i(τ)| ≥

ϵ

12

]
≤ 2 exp(− Nϵ2/144

2Var[∆̂i(τ)] +
2
3

ϵ
12

) = 2T− C
3464 .(C.17)

Therefore, |∆̂i(τ)−∆i(τ)| ≤ ϵ
12 holds with probability 1 − T−14 when C = 105.

The bound above is only for a single τ . To give the bound for a whole interval, we discretize [ℓi, ui] uniformly
into a discrete set C and make sure that each pair of adjacent τ, τ ′ ∈ C follows |τ − τ ′| ≤ 1

T . Then, there must be

|C| ≤ T and the union bound implies |∆̂i(τ)−∆i(τ)| ≤ ϵ
12 holds with probability 1 − T−13 for all τ ∈ C.

Next, we bound the Lipschitz constant of ∆i (and similarly ∆̂i):∣∣∣∆i(τ)−∆i(τ
′)
∣∣∣ = ∣∣∣ ∫ τ ′

τ

(Fπ,i(u)− Fπ,i(x))(Fi(x)− 1)dx
∣∣∣+ ∣∣∣ ∫ τ ′

τ

(Fπ,i(u)− Fπ,i(x))(Fi(x)− 1)dx
∣∣∣

≤ 2|τ − τ ′|.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited499

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Finally, for every τ ∈ [ℓi, ui], let τ
′ be the closest value in C. Then, we have:∣∣∣∆̂i(τ)−∆i(τ)

∣∣∣ ≤ ∣∣∣∆i(τ)−∆i(τ
′)
∣∣∣+ ∣∣∣∆̂i(τ

′)−∆i(τ
′)
∣∣∣+ ∣∣∣∆̂i(τ

′)− ∆̂i(τ)
∣∣∣ ≤ ϵ

12 + 4
T ≤

ϵ
6 ,

where the last inequality is true because ϵ > T− 1
2 = ω(1

T). Therefore, with probability 1 − T−13, we have∣∣∣∆̂i(τ)−∆i(τ)
∣∣∣ ≤ ϵ

6 for all τ ∈ [ℓi, ui] simultaneously.

Next, we use Hoeffding’s Inequality (Theorem A.1) to bound the accuracy of |Rℓ − R̂ℓ|. In each round,

the reward falls in [-0.5,0.5]. Then, after running N = C · ϵ−2 log T samples, we have Pr
[
|Rℓ − R̂ℓ| > ϵ

6

]
≤

2 exp(−2Nϵ2/36) = 2T−C/18. Therefore, |Rℓ − R̂ℓ| ≤ ϵ
6 with probability 1 − T−13 when C > 1000. Besides, the

proof for |Ru − R̂u| is identical. Combining three parts with union bound finishes the proof.

C.4 Proof of Lemma 4.8 In this section, we show that Algorithm 10 finds an approximately clever threshold
setting. We first introduce the following lemma:

Algorithm 10: Finding Approximately Clever Threshold

Input: (I, S), m, i, F̂1(x), ..., F̂n(x)
1 for P ⊆ [n] do
2 if ∃k : (k, i) ∈ S ∧ k /∈ P or ∃k : (i, k) ∈ S ∧ k ∈ P or ∃k, j : (k, j) ∈ S ∧ k /∈ P ∧ j ∈ P then Skip this

P ;
3 For k ∈ P , let τk = uk

4 For k ∈ [n] \ (T ∪ {i}), let τk = ℓk
5 Let uT = min{ui, τk:k∈T }, ℓT = max{ℓi, τk:k/∈(T∪{i})}
6 Set partial setting πT be: Let τi ∈ [ℓT , uT]. πT sorts the thresholds in a decreasing order. Break the

ties according to the constraints in S.
7 Let F̂πT ,i(x) =

∏
k∈T F̂k(x).

8 Calculate qT := F̂πT ,i(uT)− F̂πT ,i(ℓT)

9 Let T ∗ = argmax qT .

Output: πT∗ , ℓT∗ , uT∗ , F̂πT∗ ,i.

Lemma C.1. Algorithm 10 calculates a clever threshold setting, up to an 4
√
ϵ additive error. The running time

of Algorithm 10 is O(n · 2n).

Proof. The goal of a clever threshold setting is to maximize Fπ,i(u) − Fπ,i(ℓ). Fix i. When the set P , which
represents the distributions in front of Xi is determined, the function Fπ,i(x) is fixed. Therefore, to maximize
Fπ,i(u) − Fπ,i(ℓ), we should maximize u and minimize ℓ. This can be achieved by maximizing the thresholds in
P and minimizing the thresholds in [n] \ (P ∪ {i}), which is exactly lines 8 and 9 in Algorithm 6. Then, after
enumerating all valid subsets P , we can find a setting that maximizes Fπ,i(u)− Fπ,i(ℓ).

There is one missing detail: we only know the value of F̂i(x). From Claim 4.6, we know F̂i(x) is an estimate
of Fi(x) with accuracy

√
ϵ. Therefore, maxπ F̂π,i(u)− F̂π,i(ℓ) is at most 2

√
ϵ different from maxπ Fπ,i(u)−Fπ,i(ℓ).

After getting π′ = argmaxπ F̂π,i(u) − F̂π,i(ℓ), the real value of Fπ′,i(u) − Fπ′,i(ℓ) is at most 2
√
ϵ different from

F̂π′,i(u)− F̂π′,i(ℓ). Combining two errors proves the 4
√
ϵ error bound.

For the running time of Algorithm 10, we need to enumerate a subset S, then calculate the corresponding
Fπ,i(x) function. So the running time is O(n · 2n).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited500

D
ow

nl
oa

de
d

09
/0

1/
24

 to
 1

36
.5

5.
53

.1
90

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Prophet Inequality under Bandit Feedback
	Pandora's Box under Bandit Feedback
	High-Level Techniques
	Further Related Work

	Prophet Inequality and Pandora's Box for n = 2
	Prophet Inequality via an Interval-Shrinking Algorithm
	Doubling Framework for Low-Regret Algorithms
	Extending to Pandora's Box with a Fixed Order
	Prophet Inequality for General n
	Interval-Shrinking Algorithm for General n
	Initialization and Putting Everything Together
	Pandora's Box for General n
	High-Level Approach via Valid Policies.
	Step 1: Interval-Shrinking to Bound Moving Difference
	Step 2: Updating Order Constraints to Bound Swapping Difference
	Converting our Policy to the Optimal Policy in Polynomial Steps
	Putting Everything Together
	Making the Algorithm Efficient

	Lower Bounds
	(T) Lower Bound for Stochastic Input
	(T) Lower Bound for Adversarial Input

	Basic Probabilistic Inequalities
	Missing Proofs from Section 2
	Proof of DoublingBound
	Missing Details of Pandora's Box Algorithm for n = 2
	Proof of mainthmpan
	Proof of PB2Regret

	Missing Proofs from Section 4
	Proof of PBInit
	Proof of PBGenDisAcc
	Proof of AccBoundPBGen
	Proof of Lemma:Clever

