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Abstract

The ever-growing interest in performance-based wind engineering has created a need for

assessment frameworks that can efficiently deal with inelasticity. The computationally ef-

ficient strain-driven dynamic shakedown approach has provided a solution that is not only

capable of identifying failure mechanisms that are potentially critical during extreme winds,

e.g., low cycle fatigue and ratcheting, but also allows direct estimation of inelastic deforma-

tions. This approach, however, can only solve problems at dynamic shakedown, i.e., with

limited nonlinearity, and is not capable of providing response time histories. To address these

limitations, this paper presents an efficient framework for reliability assessment of inelastic

structures at dynamic shakedown and beyond. To this end, a novel step-by-step integration

algorithm is developed for rapid response time history analysis within the setting of dynamic

shakedown. The method is based on advancing fast nonlinear analysis through introducing

schemes for enabling at each time step the adaptive selection of the step size, number of

modes to be included, and number of potentially nonlinear elements. Inelasticity is modeled

as distributed at the level of the stress resultants through a return mapping scheme based

on the Haar-Kàrmàn principle, therefore enabling the integrated estimation of the state of

dynamic shakedown. The scheme is seen to preserve the efficiency of recently developed

strain-driven dynamic shakedown algorithms while providing a full range of response time

histories at and beyond the state of dynamic shakedown. To enable reliability analysis, the

scheme is embedded in a general uncertainty propagation framework.
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1. Introduction

With the recent introduction of performance-based wind engineering, the potential of

designing wind-excited buildings with controlled inelasticity at ultimate load levels has at-

tracted strong interest among practicing engineers [1]. Since the majority of current perfor-

mance assessment procedures for wind excited structures are based on linear elastic analysis,

the reliability of wind excited systems experiencing inelasticity must be carefully investi-

gated to ensure safety against any undesirable failure scenarios. To estimate the reliability

of such systems while treating general high-dimensional uncertainty, e.g., the stochasticity

associated with the record-to-record variability in the external dynamic wind loads as well

as the randomness in the model parameters, schemes based on stochastic simulation are

generally required [e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], with the exception of the approach

recently proposed in [13]. Notwithstanding the use of variance reduction methods for esti-

mation of failure associated with rare events, e.g., stratified sampling [14], the computational

feasibility of schemes based on stochastic simulation require a means to rapidly estimate

inelastic responses for each sample of the simulation. Over the years, various approaches

have been explored for the simulation of the inelastic response of wind excited systems

[15, 16, 6, 17, 18, 7, 19, 20, 21, 22, 11, 23, 24, 25, 12]. To overcome the computational

challenges stemming from the long duration of typical windstorms, which significantly hin-

der the application of existing methods based on direct integration, e.g., incremental dynamic

analysis and is variants [26], as well as the need to capture failure mechanisms associated

with accumulation of damage, which rule out the possibility of using approaches based on

nonlinear static pushover analysis [27], the framework presented in [12] uses recently devel-

oped concepts rooted in the theory of plasticity [21, 22, 12]. In particular, based on the

dynamic shakedown theory, this approach allows not only rapid identification of the safety

against potential failure mechanisms of interest to wind engineering, e.g., low cycle fatigue

and ratcheting, but also direct estimation of inelastic deformations occurring at shakedown.

Despite the completeness and efficiency of this approach, it does not provide the time history
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responses that are vital for directly estimating the hysteretic behavior of the system as well

as the evolution of the inelastic deformations over the duration of the event. In addition, all

inelastic response quantities are estimated at dynamic shakedown. As dynamic shakedown

is an asymptotic behavior of the system after infinite repetition of the loading, the inelastic

response quantities are in general greater than those actually occurring during a windstorm.

This can lead to overly conservative estimates of reliability. Furthermore, this approach can

only provide inelastic deformations if the structure is capable of reaching the state of dynamic

shakedown. For samples for which dynamic shakedown is not achieved, such information re-

mains unknown. Importantly, since the state of dynamic shakedown generally involves only

a limited amount of inelasticity, this limitation hinders the application of the approach to

collapse assessment where large inelastic deformations are expected. To address these issues,

an alternative approach is required for efficiently estimating the inelastic response of wind

excited structures within the setting of dynamic shakedown.

As an efficient alternative to classic direct integration methods, fast nonlinear analysis

(FNA) was developed for rapidly carrying out nonlinear time history analysis where nonlinear

behavior is restricted to a small number of predefined locations within a structure [28]. This

approach solves the nonlinear system through a set of modal equations by treating nonlinear

forces as external loads. This greatly improves the computational efficiency as compared

to classic direct integration methods. Similar to direct integration methods, this approach

provides a full range of global and local time history responses. The major limitation of the

approach is the need to know a priori which structural members will experience inelasticity.

This practically limits the approach to the time history analysis of structural systems that

are equipped with nonlinear energy dissipation devices (components that are expected to

respond with inelastic behavior while the rest of the structure remains elastic). To extend

such an approach to structures without prior knowledge of the locations and extent of inelastic

elements, an adaptive fast nonlinear analysis (AFNA) is proposed in this paper. The scheme

is developed within the setting of stress resultant dynamic shakedown therefore enabling

the benefits of shakedown analysis, i.e., the direct assessment of potential failure due to low

cycle fatigue and ratcheting, to be integrated with the benefits afforded by direct integration

schemes, i.e., knowledge of the evolution of inelasticity over the duration of the wind event
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and beyond the state of dynamic shakedown. Finally, the scheme is integrated into the

reliability assessment framework recently proposed in [12] therefore defining a framework that

is capable of rapidly providing not only comprehensive inelastic time history information, but

also reliability estimates for a full range of limit states, including incipient collapse.

2. The stress resultant setting and dynamic shakedown

2.1. The stress resultant setting and elastic solution

To model plasticity distributed along beam-column elements, a displacement-based for-

mulation is adopted in this work. The displacement fields of the ieth element of the structure

vie(x) = {vx(x), vy(x), vz(x)}T are discretized and interpolated in terms of element end dis-

placements uie through the following equation:

vie(x) = Nie(x)uie (1)

where Nie(x) is a matrix containing interpolation functions for the displacement fields for

the ieth element. Based on the assumption of Euler-Bernoulli beam theory, the associated

deformation fields of the element, die(x), can be expressed as:

die(x) = {εx(x), κy(x), κz(x)}T

=

{

∂vx(x)

∂x
,
∂2vy(x)

∂x2
,−∂2vz(x)

∂x2

}T (2)

where εx, κy and κz are the axial deformation and curvatures in the local x, y and z coordinate

system for the ieth element, which can be expressed in terms of element end displacements

as:

die(x) = Bie(x)uie (3)

with Bie(x) the strain-deformation matrix containing the first and second derivatives of

the displacement interpolation functions. The internal forces at each section along the ieth

element Die(x), including axial force Nx(x) and bending moments My(x) and Mz(x), can be

described by the following constitutive relation:

Die(x) = {Nx(x),My(x),Mz(x)}T

= ks,ie(x)die(x)
(4)
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where ks,ie(x) is the section stiffness matrix. Based on the principle of virtual displacements,

the element end forces can be related to the section forces through the equilibrium condition:

qie =

∫ Lie

0

BT
ie(x)Die(x)dx (5)

where Lie is the length of the ieth element. Replacing die(x) with Eq. (3) in the constitutive

relation of Eq. (4), the linearization of Eq. (5) with respect to the element end displacements

gives the element stiffness matrix kie :

kie =
∂qie

∂uie

=

∫ Lie

0

BT
ie(x)ks,ie(x)Bie(x)dx (6)

It should be observed that the distributed plasticity setting outlined above does not explicitly

contemplate the modeling of plastic hinges which can complicate the modeling of certain types

of problems involving inelasticity, e.g., progressive collapse.

Given the mechanical model described above, the dynamic equilibrium of a structural

system with N degrees of freedom (DOF) subject to stochastic excitation can be written as:

MẌ(t) +CẊ(t) +KX(t) = F(t) (7)

where X(t), Ẋ(t), and Ẍ(t) are the N × 1 dimensional vectors of the displacement, velocity,

and acceleration responses in global coordinates, F(t) is the N × 1 dimensional vector of

stochastic excitation, while M, C, and K are the N × N dimensional mass, damping, and

elastic stiffness matrices of the system. The stiffness matrix K can be determined by as-

sembling the element stiffness matrix of Eq. (6) over the entire structure. The displacement

response X(t) can be solved efficiently through a set of uncoupled equations using the modal

approach, as follows:

ΘŸ(t) +ΛẎ(t) +ΩY(t) = ΦTF(t) (8)

where Φ = [φ1, . . . ,φN ] is a matrix containing the N stiffness normalized mode shapes

(normalization with respect to stiffness is carried out as it avoids the numerical issues

that can arise when treating DOF with zero mass), Y(t) = {Y1(t), . . . , YN(t)}T, Ẏ(t) =

{Ẏ1(t), . . . , ẎN(t)}T, and Ÿ(t) = {Ÿ1(t), . . . , ŸN(t)}T are vectors of the modal displacement,

velocity, and acceleration responses, while Θ, Λ, and Ω are the generalized mass, damping,
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and stiffness matrices calculated as:

Θ = ΦTMΦ, Λ = ΦTCΦ, Ω = ΦTKΦ (9)

It is worth noting that, in this formulation, the N modes of the system can be divided into

dynamic modes, with non-zero masses, and quasi-static modes corresponding to the massless

DOF. For the dynamic modes, the corresponding terms within the generalized damping

matrix Λ are 2ξl/ωl in which ξl and ωl are the lth modal damping ratio and circular frequency

while the terms in the generalized mass matrix Θ are ω−2
l with ωl → ∞ for static modes.

By solving the uncoupled Eq. (8), the response of the system can now be expressed by

transforming the modal responses back to the physical coordinates as:

X(t) = ΦY(t), Ẋ(t) = ΦẎ(t), Ẍ(t) = ΦŸ(t) (10)

2.2. Stress resultant dynamic shakedown

For an external dynamic load that is periodic and of infinite duration, F∞(t), a necessary

and sufficient condition for dynamic shakedown of an elastic-perfectly plastic (EPP) struc-

tural system discretized into ne elements, is that there exists time-independent generalized

self-stress, Dr
ie(x), such that the following condition holds for each integration point, xi, of

each element of the discretization [29]:

Nie(xi)
T
(

De
E,ie(t; xi) +Dr

ie(xi)
)

−Rie(xi) ≤ 0 xi ∈ [0, Lie ] (11)

where Lie is the length of the ie element, Rie(xi) is the plastic resistance vector defined from

the linearization of the stress-resultant yield domains associated with each integration point

of the discretization, Nie(xi) is the matrix that collects the unit external normals associated

with each surface of the linearized yield domains, and Ds
E,ie(t; xi) is the steady-state elastic

generalized stress vector.

The above condition requires the definition of F∞(t). Without loss of generality, F∞(t)

can be defined from F(t) by simply considering F(t) repeated indefinitely:

F∞(t+ kT ) = F(t) for k = 0, 1, ...,+∞ and t ∈ [0, T ) (12)

where T is the original duration of F(t). It should be noted that, as discussed in [21], no

restrictions are placed on F(t) which can represent realizations of both stationary or non-

stationary stochastic excitation. In particular, if it is assumed that F(t) = 0 for t = 0 and a
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period of calm is considered before each repetition of F(t), then the elastic response of the

structure can be considered steady-state from t = 0 and Ds
E,ie(t; xi) can be obtained from

Eqs. (3) and (4) as:

Ds
E,ie(t; xi) = ks,ie(x)Bs,ie(x)ue(t) (13)

In general, to use Eq. (11) to check for the achievement of the state of dynamic shake-

down, it is convenient to introduce a load multiplier s of F∞. The satisfaction of the dynamic

shakedown condition of Eq. (11), can then be evaluated by solving the following linear pro-

gramming problem [18, 7, 21]:

sp = max
s,Dr

s

subject to

D̂
s

E = max
t∈[0,T ]

Ds
E(t)

NT
(

sD̂
s

E +Dr
)

−R ≤ 0

(14)

where Dr is the vector collecting the generalized self-stresses at all integration points of the

discretization; Ds
E(t) is the vector collecting the associated steady-state elastic generalized

stress responses; and R and N are respectively the vectors of plastic resistances associated

with the linearized yield domains and the block diagonal matrix collecting the unit external

normals to the linearized yield domains all integration points. In addition, when solving Eq.

(14), Dr is expected to define a residual stress state that is self-balanced.

A similar linear programming problem can be defined for solving the elastic multiplier, se,

i.e., the load multiplier beyond which nonlinearity will occur. To obtained se, D
r in Eq. (14)

is set to zero. It is important to note that, because high-dimensional linear programming

problems can, in general, be very efficiently solved, evaluating se and sp does not generally

pose a computationally challenging problem. The multipliers se and sp convey plenty of

useful information on structural safety. For instance, sp/se expresses the plastic reserve, i.e.,

the safety margin beyond the system-level first yield [12] before shakedown will no longer

occur and the system becomes potentially susceptible to failure due to low-cycle fatigue and

ratcheting. In addition, se ≥ 1 indicates the structure will remain elastic under a given load

and therefore responses estimated through the modal integration, i.e., by solving Eq. (8),

are accurate. For samples with se < 1, however, nonlinear analyses will, in general, be
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required. The strain-based schemes outlined in [21, 22, 12], serve this need with, however,

the limitations discussed in Sec. 1. In the following, a step-by-step integration scheme will

be developed that overcome these limitations and that can be naturally integrated within

the dynamic shakedown setting outlined above.

3. Proposed adaptive fast nonlinear analysis (AFNA)

3.1. Problem setting

The AFNA approach developed in this work is based on the FNA schemes that were

developed for rapid time history analysis of a special class of nonlinear system (i.e., systems

with predefined locations of inelasticity) [28]. The FNA approach satisfies the fundamental

equations of mechanics, including equilibrium, force-deformation, and compatibility. The

exact force equilibrium of an inelastic system can be expressed by the following equations of

motion:

MẌ(t) +CẊ(t) + FNL(Ẋ,X; t) = F(t) (15)

where FNL(Ẋ,X; t) is a vector of nonlinear forces. By treating the nonlinear force as an

external force and introducing the elastic stiffness matrix K, Eq. (15) can be rewritten in a

form similar to the linear elastic system, as follows:

MẌ(t) +CẊ(t) +KX(t) = F(t)− FNLC(Ẋ,X; t) (16)

where FNLC(Ẋ,X; t) = FNL(Ẋ,X; t)−KX(t) is the nonlinear correction force. Eq. (16) can

then be solved in the modal space as:

ΘŸ(t) +ΛẎ(t) +ΩY(t) = ΦT
[

F(t)− FNLC(Ẏ,Y; t)
]

(17)

Through mode truncation, this formulation greatly reduces the size of the nonlinear system

to be solved. However, unlike the elastic form of Eq. (8), Eq. (17) is not uncoupled because

of the existence of the nonlinear force vector FNLC(Ẏ,Y; t). Hence, it must be solved for all

required modes simultaneously. To improve the efficiency of nonlinear time history analysis,

a piece-wise exact method can be used to solve the modal responses iteratively at each time
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instant t with initial values determined from the following Taylor series expansion:











Y(t+∆t) = Y(t) + Ẏ(t)∆t+ 0.5Ÿ(t)∆t2 +O(∆t3)

Ẏ(t+∆t) = Ẏ(t) + Ÿ(t)∆t+O(∆t2)

(18)

where ∆t is the time step considered in the analysis and O is the big O notation that refers to

the infinitesimal functions of the same order. In particular, by first identifying the locations of

nonlinear elements in the structure, the iterative process within each time step is only carried

out for those predefined locations. This results in a significant reduction in computational

efforts and therefore computer time required to obtain a solution. However, the requirement

to identify a priori the locations of the nonlinear elements is a major limitation as in general

it is not possible to know where nonlinearity may occur in the system.

3.2. The proposed stress resultant adaptive solution process

Based on the mechanical model of Sec. 2.1 and the FNA approach described in Sec.

3.1, an adaptive scheme is defined in this work to efficiently estimate the inelastic response

histories. The key feature of the proposed approach is the capability to update, at each

time step, the potential nonlinear locations, time step sizes, and the number of modes to be

considered in the analysis. In particular, the scheme is based on the possibility of rapidly

evaluating the section deformations that characterize the nonlinearity of the structure at each

integration point. To this end, it is first convenient to introduce the section deformation -

modal coordinate transformation matrix, Ψ, where each column of the matrix, Ψl with

l = 1, ..., N , represents the section deformations, i.e., axial strains and curvatures, at all

integration points of the discretization due to a unit modal displacement at mode l, as

follows:

Ψ = BTΦ (19)

in which T = diag[T1, · · · ,Tie , · · · ,Tne
] is a block diagonal matrix collecting the global to

local coordinate transformation matrices, Tie , for all ne elements of the discretization, while

B = diag[B1, · · · ,Bie , · · · ,Bne
] is a block diagonal matrix collecting the strain-deformation

matrices, Bie , for all ne elements, where Bie = [BT
ie(x1),B

T
ie(x2), · · · ,BT

ie(xns
)]T consists of

the strain-deformation matrices for all ns integration points along the ieth element.
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3.2.1. Elastic solver with large time step

In a given time step, the solution process first solves for the elastic responses considering

a time step ∆t. The elastic solution is estimated through modal analysis while considering

the first md dynamically significant modes as well as an additional mb modes for which

the background response, or quasi-static response, is estimated. A piece-wise exact method

is adopted in calculating the modal response time histories [28, 31]. The corresponding

responses at the section level (local state) can then be determined as:










d(t+∆t) = Ψ̄(Ȳ(t+∆t)− Ȳ(t)) + d(t)

ḋ(t+∆t) = Ψ̄( ˙̄Y(t+∆t)− ˙̄Y(t)) + ḋ(t)

(20)

where d = {d1, · · · ,dne×ns
}T is a vector of section deformations for all integration points of

all elements of the discretization while ḋ represents the rate of change of d; Ψ̄, Ȳ, and ˙̄Y are

respectively truncated versions of Ψ, Y, and Ẏ, with terms related to the first m̄ = md+mb

modes. The elastic predictor of the section forces can then be determined and checked

against the yielding criteria using the linear elastic section constitutive relation of Eq. (4)

for all sections, i.e., DE(t+∆t) = Ksd(t+∆t) where Ks = diag[ks1 , · · · ,ksne×ns
] is the block

diagonal matrix containing the section stiffness matrices ks for all integration points of the

discretization. The solution process moves on to the next time step only if the sum of the

elastic forces and the nonlinear correction forces for all integration points remain within the

yield domain, i.e., the structure remains elastic or is in the linear unloading/reloading stage,

as follows:

NT
(

DE(t+∆t) +DNLC(t)
)

−R ≤ 0 (21)

where DNLC(t) is the nonlinear section correction forces of the previous time step:

DNLC(t) = D(t)−DE(t) = D(t)−Ksd(t) (22)

in which D(t) is the vector of section forces determined from the inelastic constitutive law.

At this juncture, it is important to observe that the dynamic shakedown problem of Sec.

2.2 is based on the assumption, at the level of the stress resultants, of an EPP material

behavior and associated flow rule. Under this assumption, the nonlinear correction forces of

Eq. (22) are constant when the structure is in an elastic unloading/reloading stage, i.e., they

do not need updating when the structure is responding elastically.
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If the condition of Eq. (21) is not met, i.e., inelasticity occurs, the solution process moves

back to the previous step and begins an adaptive solution process with a reduced step size

∆t/η, where η ∈ Z
+ is a step size modifier, to estimate the corresponding nonlinear section

correction force, DNLC(t + ∆t/η). It should be noted that the piece-wise exact method

assumes the change in ΦT[F(t)− FNLC(Ẏ,Y; t)]) within each time step to be linear. While

for F(t) the adequacy of this assumption is related to choosing an appropriate sampling

frequency, for FNLC(Ẏ,Y; t) the adequacy of the assumption is related to the period Tmin,

i.e., the shortest period of the md retained dynamic modes. Numerically, a value of Tmin/2 is

a natural limit as it ensures at least two points to characterize the variation of FNLC(Ẏ,Y; t)

over Tmin. Nevertheless, to ensure the best balance between accuracy and numerical efficiency,

the modified time step ∆t/η should be taken to be less than or equal to Tmin/4, where Tmin

is the smallest period associated with the md dynamic modes.

3.2.2. The adaptive solver

Initial step. In the adaptive process, the modal responses for the adjusted reduced time step,

i.e., Ȳ(t + ∆t/η) and ˙̄Y(t + ∆t/η) are first estimated for the first m̄ modes by the Taylor

series expansion of Eq. (18). The corresponding section forces are once again determined

based on the section constitutive relation of Eq. (4). The locations of the nonlinearity in the

structural system can then be determined by the following criterion:

NT(DE(t+∆t/η) +DNLC(t))− νR ≥ 0 (23)

where ν ∈ [0, 1] is a scaling factor used to ensure the number of elements identified as

potentially inelastic is not unduly affected by the approximations inherent to the Taylor

series expansion of Eq. (18). A smaller value of ν should be used if a more conservative

estimate of potential locations of nonlinearity is desired. If no sections (integration points)

meet the criterion of Eq. (23), the responses at the current time step will be solved directly

through the piece-wise exact method. The solution process then proceeds to the next reduced

time step, t+2∆t/η, and reevaluates Eq. (23). If there is any section identified as a potential

nonlinear location, i.e., any section satisfying Eq. (23), the following iterative approach will

be adopted to evaluate the nonlinear responses.
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The iterative process. The iterative process, indexed k, commences from a first estimate of

the complete modal response, Y(k)(t + ∆t/η) and Ẏ
(k)
(t + ∆t/η), estimated by appending

to Ȳ(t+∆t/η) and ˙̄Y(t+∆t/η) the last computed values of the responses of the additional

(N − m̄) modes, Y(N−m̄) and Ẏ(N−m̄). In particular, if the system is experiencing inelasticity

for the first time, Y(N−m̄) and Ẏ(N−m̄) are simply taken as zero. From the full modal response

and by considering only the potential nonlinear sections identified from Eq. (23), the local

states, i.e., the section deformations, for the current iteration can be determined as:










d̃
(k)
(t+∆t/η) = Ψ̃Y(k)(t+∆t/η)

˙̃d(k)(t+∆t/η) = Ψ̃Ẏ
(k)
(t+∆t/η)

(24)

where d̃(t + ∆t/η), ˙̃d(t + ∆t/η), and Ψ̃ are respectively the subsets of d(t + ∆t/η), ḋ(t +

∆t/η), and Ψ containing only relevant rows for the identified nonlinear sections (for the

remainder of this section, the accent ∼ indicates consideration of the subset of integration

points with identified inelasticity). Based on the responses calculated from Eq. (24) and

the corresponding response increments with respect to the previous time step, the nonlinear

section force increments ∆D̃
(k)
(t +∆t/η), can be estimated from the mechanical properties

and deformation history of each nonlinear section. The associated increment in the correction

forces can then be evaluated as:

∆D̃
(k)

NLC(t+∆t/η) = ∆D̃
(k)
(t+∆t/η)− K̃s∆d̃

(k)
(t+∆t/η) (25)

where ∆d̃
(k)
(t+∆t/η) is the increment of d̃

(k)
(t+∆t/η) at the current time step. Under the

assumption of an EPP materiel and associated flow rule, the increment in nonlinear section

correction forces, ∆D̃
(k)

NLC(t+∆t/η), can be efficiently identified through solving the following

Haar-Kàrmàn condition:

min
∆D̃

(k)
NLC(t+∆t/η)

1

2
∆D̃

(k)

NLC(t+∆t/η)TK̃
−1

s ∆D̃
(k)

NLC(t+∆t/η)

subject to

Ñ
T(

K̃sd̃
(k)
(t+∆t/η) + D̃

(k)

NLC(t+∆t/η)
)

− R̃ ≤ 0

(26)

where D̃
(k)

NLC(t+∆t/η) = D̃NLC(t)+∆D̃
(k)

NLC(t+∆t/η). The use of the Haar-Kàrmàn condition

for finding ∆D̃
(k)

NLC(t+∆t/η) can be traced back to how the problem of Eq. (26) is a quadratic
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programming problem (QPP) that can be very efficiently solved by a number of standard QPP

solvers without loss of generality. The corresponding increment in the nonlinear correction

force vector can then be determined through the following transformation:

∆F
(k)
NLC(t+∆t/η) = T̃

T
∆q̃

(k)
NLC(t+∆t/η) (27)

where ∆q̃
(k)
NLC(t + ∆t/η) is the vector collecting the increments in element end nonlinear

correction forces determined by solving Eq. (5) through an appropriate integration scheme.

The nonlinear correction forces are then updated as:

F
(k+1)
NLC (t+∆t/η) = FNLC(t) + ∆F

(k)
NLC(t+∆t/η) (28)

The modal responses, Y(k+1)(t+∆t/η) and Ẏ
(k+1)

(t+∆t/η), can then be updated through the

piece-wise exact method while considering all modes, i.e., now that the system is responding

inelasticity, the number of modes considered in the solution process is increased from m̄ to

N . In particular, the additional (N − m̄) modes are assumed to respond in a quasi-static

fashion therefore avoiding numerical instability.

Eq. (28) will be updated recursively until a user-defined convergence criterion is met.

This can be defined in terms of any response parameter of interest, e.g., the difference in

nonlinear correction forces, i.e., |F(k+1)
NLC −F

(k)
NLC| < eFNLC

with eFNLC
a convergence tolerance.

3.3. Summary of the proposed AFNA scheme

The scheme commences by seeking to solve the system through elastic modal integration

while considering the first m̄ modes, of which md are considered dynamic with the remaining

mb treated as quasi-static. At each time step, every integration point is checked for potential

inelasticity. If inelasticity is identified at one or more integration points, the time step is

reduced and the iterative process is invoked while considering not only the first m̄ modes but

also all remaining (N − m̄) modes that are treated as quasi-static. Once convergence of the

iterative process is achieved, the solution process proceeds to the next time step and invokes

the iterative process again if necessary, i.e., if Eq.(23) is not satisfied. The process ends once

the time sequence of loading ends, providing a full range of inelastic response histories for

structures modeled within the setting of the stress resultant dynamic shakedown problem of

Sec.2.2. It should be observed that to account for P-Delta effects, a reduced stiffness matrix
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is considered based on the linearized P-Delta model outlined in [33, 28]. The overall solution

process is summarized in the flowchart of Fig. 1.

3.4. Validation

3.4.1. Preamble

In order to validate the proposed AFNA approach, it is applied to the inelastic response

analysis of the steel structure of Fig. 2. In particular, the frame indicated in Fig. 2(a)

is extracted and analyzed in two dimensions (2D). To validate, the results obtained from

AFNA are compared to those obtained from direct integration carried out in OpenSees [34].

To enable this comparison, the extracted steel frame, illustrated in Fig. 2(b), was modeled

using a fiber-based discretization as OpenSees does not have a stress resultant modeling

environment. As such, the AFNA approach was reformulated at the fiber level.

3.4.2. Description

The building was assumed to be located in the Miami region of Florida, USA. As illus-

trated in Fig. 2(b), typical story heights are 6 m at ground level and 4 m for all other levels.

The overall height of the building is 150 m. The moment resisting frame consists of wide

flange standard W×24 beams with 5 m spans and square box columns. In particular, the

dimension of the box column is defined by the centerline diameters, D, with thickness defined

as D/20. Table 1 reports a summary of the section sizes. The steel composing the frame is

assumed to follow an EPP constitutive law with an elastic modulus of 200 GPa and a yield

stress of 355 MPa. The mass of the structure is estimated from its self-weight as well as a

carried mass of 100 kg/m3. Material damping was modeled by Rayleigh damping calibrated

to provide a damping ratio of 2.5% in the first two modes.

Fig. 3 illustrates the fiber discretization used for the sections of the beam and columns.

To ensure consistency with the AFNA approach, the steel frame was modeled in OpenSees

using displacement-based beam-column elements with 5-point Gauss-Legendre integration

scheme. The nonlinear response in OpenSees was obtained using a dynamic updating analysis

scheme based on the average constant acceleration Newmark-beta method. In particular, the

Newton-Raphson (NR) algorithm with line search was first considered with a basic time step,

∆t, of 0.02 s. If the solution failed to converge, the following series of algorithms were then
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adopted sequentially until convergence was achieved: (1) modified NR algorithm with time

step ∆t = 0.002 s; (2) NR with line search algorithm and ∆t = 0.002 s; (3) NR algorithm

with ∆t = 0.001 s; and (4) Broyden algorithm with ∆t = 0.001 s. The convergence criteria

were defined as achieving a norm of the displacement increment of 10−8 and an increment of

total deformation energy of 10−10. The first md = 6 dynamically significant modes, without

additional mb = 0 modes, were considered in the AFNA approach. The initial time step was

taken as ∆t = 0.5 s. In the adaptive process, the scaling factor, ν, was taken as 1.0. A time

step modifier of η = 3 was considered. Maximum absolute increments in fiber strains of 10−6

were chosen as the convergence criteria.

Wind directions of α = 0° and α = 90° were considered, which, as can be seen from

Fig. 2(a), correspond to acrosswind and alongwind loading. To ensure a high and similar

level of nonlinearity, the mean wind speed at the building top, v̄y, was set to 70 m/s in

the acrosswind direction and 65 m/s in the alongwind direction. The dynamic wind loads

acting on the frame for the two wind directions were estimated as random realizations of the

data-informed stochastic spectral proper orthogonal decomposition (POD) model outlined in

[37, 21] (further details on this model are provided in Sec. 4.2.3). The model was calibrated to

a wind tunnel data set obtained from the Tokyo Polytechnic University (TPU) aerodynamic

database [38] for a building geometry consistent with Fig. 2. In particular, the data was

collected on a 1/300 rigid model for a total recorded duration of 32 s using a sampling

frequency of 1000 Hz and wind speed at the model top of 11 m/s. The loads acting on

the 2D frame were estimated as 1/6 of the X-direction loads of the 3D building. The first

five spectral POD modes were considered in simulating the load histories with a sampling

frequency of 2 Hz. To ensure stability and accuracy when carrying out direct integration,

wind loads between two successive sampling points were determined by linear interpolation.

The total length of the wind storm was set to T = 600 s, in which the first and last minute

were linearly ramped.

3.4.3. Results

Fig. 4 reports the time histories of the displacement responses at the three recorder levels

indicated in Fig. 2(b). As can be seen, the two response time histories are almost identical,
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Ground level

6 @ 5 m = 30 m
Level 37
150 m

Level 30
122 m

Level 10
42 m

Level 20
82 m

Level 0

0 m

The frame considered

Strain stress recorder

Displacement recorder

(a)

(b)

X

Y

30 m

60 m

Figure 2: Schematic of the 37-story building: (a) Plan view of the building with the extracted 2D frame

indicated; (b) illustration of the 2D frame.

Table 1: Section sizes of the steel frame.

Wide-flange Beams Box Columns

Level Section size Section size (m)

1-10 W24 × 192 D = 0.5

11-20 W24 × 192 D = 0.5

21-30 W24 × 103 D = 0.4

31-37 W24 × 103 D = 0.35
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(a) (b) (c)

(d) (e)

Figure 3: Fiber discretization of the: (a) Box column with D = 0.35; (b) Box column with D = 0.4m; (c)

Box column with D = 0.5; (d) W24×103 beam; and (e) W24×192 beam.

18



(a)

(b)

(c)

Figure 4: Comparison of the horizontal displacement response at the: (a) 10th; (b) 20th; and (c) 37th floors

for alongwind loads.

demonstrating the accuracy of the proposed AFNA approach. The comparison between the

stress and strain time histories, as well as the hysteretic curves, for alongwind loading is

shown in Fig. 5 for the recorder indicated in Fig. 2(b). Similarly to the global response, it

can be observed that the AFNA approach accurately reproduces the response of the system.

The same level of accuracy is also seen for acrosswind loading, as shown in Figs. 6 and 7

that report the comparison between the displacement and fiber stress-strain responses.

While the comparison of this section was based on two randomly generated alongwind and

acrosswind wind load histories, similar results were seen for a full suite of wind speeds, wind

directions, and wind load realizations, therefore demonstrating the validity of the proposed

AFNA approach.

4. Reliability Assessment Framework through AFNA
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(a)

(b) (c)

Figure 5: Fiber response comparison for a representative fiber of the exterior first-floor column and alongwind

loads: (a) fiber strain; (b) fiber stress; and (c) hysteretic curve.

(a)

(b)

(c)

Figure 6: Comparison of the horizontal displacement response at the: (a) 10th; (b) 20th; and (c) 37th floors

for acrosswind loads.
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(a)

(b) (c)

Figure 7: Fiber response comparison for a representative fiber of the exterior first-floor column and acrosswind

loads: (a) fiber strain; (b) fiber stress; and (c) hysteretic curve.

4.1. Problem setting

The efficiency and accuracy in analyzing inelastic responses, together with the natural

synergy with dynamic shakedown analysis, makes the AFNA scheme an ideal inelastic re-

sponse simulator within the dynamic shakedown-based wind reliability analysis framework

outlined in [12]. To this end, the reliability of a structure against a limit state of interest,

described through a limit state function, g, that by convention assumes negative values when

the limit state is violated, can be directly measured in terms of the probability of g assuming

negative values and therefore as:

Pf = P (g(Z) < 0) =

∫

...

∫

I
[

g(z)
]

fZ(z)dz (29)

where Z is a vector of random variables that include uncertainties in both the structural

system and external loads; fZ(z) is the joint probability density function of Z; and I
[

g(Z)
]

is

the indicator function which assumes the value of unity if failure occurs and zero otherwise.

Based on the estimated value of Pf , the corresponding reliability index can be evaluated

through the first-order reliability method (FORM) as:

β = Φ−1(1− Pf ) (30)

where β is the reliability index associated with the limit state g = 0.

Concerning the limit state functions g, the following four classes of limit states are of

interest [12]:
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1. LS1: component-level yield (traditional limit state used in current design);

2. LS2: system-level first yield;

3. LS3: inability to achieve the state of dynamic shakedown;

4. LS4: inelastic displacement-based limit states.

In particular, as current codes and standards for wind are based on calibration to component-

level first yield limit states, the class LS1 stands as a reference for ensuring design meet

current code requirements. The classes LS2, LS3, and LS4 are consistent with the push

towards explicit system-level evaluation of structural systems that are allowed to experience

controlled inelasticity under extreme winds.

4.2. Model and load uncertainty

4.2.1. Overview

To ensure the reliabilities estimated through solving Eq. (30), and therefore Eq. (29),

are meaningful from a design standpoint, it is important to consider a full range of code-

consistent uncertainties. In general, these will include uncertainty in the model parameters,

gravity loads, and wind loads. Based on the framework outlined in [12], the following sections

will provide an overview of how these uncertainties are treated in this work.

4.2.2. Model and gravity load uncertainty

Of the model uncertainties, the mechanical properties of the materials are of primary

importance. Within the stress resultant setting of this work, these include the yield strength

and Young’s modulus of steel members and the compressive strength of concrete and yield

strength of the steel for reinforced concrete members. These basic random variables, can be

used to completely characterize the uncertainty yield domains, R, of the members composing

the structural system. By observing how the stiffness of reinforced concrete members, can be

directly related to the compressive strength of the concrete, they also define the uncertainty

the structural stiffness K. The systems of this work are dynamic and will therefore be

affected by uncertainty in the damping. By taking advantage of the relationship of the

proposed AFNA scheme with classic modal integration, a straightforward approach to model

this uncertainty, and that will be followed in this work, is to take the damping ratios, ξl, of

the generalized damping matrix of Eq. (9) as basic random variables.
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The uncertainty in the gravity loads affects both the dead and live load. This uncertainty

can be characterized through the probabilistic models outlined in [39, 40] that were developed

explicitly for carrying out reliability analysis. In particular, as this work is focused on the

reliability of systems subject to extreme winds, uncertain “arbitrary point-in-time” live loads

should be considered for combination with the probabilistic dead loads and stochastic wind

loads.

4.2.3. Wind load uncertainty

Wind load uncertainty must be defined at both the climatological and aerodynamic level.

At the climatological level, the intensity of the wind event is generally characterized through

the site-specific maximum mean hourly wind speed, vH , at a reference height of H. To

account for wind directionality, a sector-by-sector approach can be adopted in which the

uncertainty in vH is characterized for a specified number of wind sectors, typically 8 to 16

[41, 42]. Following this approach, the uncertainty in the largest wind speeds to occur over a

life span of y years in wind sector s can be characterized through the following complementary

cumulative distribution function (CCDF):

Gs(vH) = 1− [FVH
(vH |s)]y (31)

where FVH
(vH |s) is the annual cumulative distribution function of vH conditioned on wind

blowing down sector s. The uncertainty in wind direction, α, within a given sector can be

characterized in a similar manner and therefore through an appropriate CCDF, Gs(α|vH).
At the aerodynamic level, for a given wind speed and direction pair, (vH , α), dynamic wind

loads are required that capture record-to-record variability, i.e., stochasticity. As outlined in

[37, 12], this can be achieved through the use of sotchastic wind load models that are based

on calibrating a spectral proper orthogonal decomposition (POD) model to building specific

wind tunnel data. In general, these data need to be collected using the synchronous multi-

pressure sensing system technique as this allows for the direct estimation, through appropriate

integration of the pressures, of the wind loads acting at each floor of the building. The use

of building-specific wind tunnel data ensures the full capture of any complex aerodynamic

features, e.g., vortex shedding and/or detached flow, seen in the wind tunnel. With this
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model, the ith component of the stochastic wind load vector, F(t; vH , α), can be written as:

Fi(t; vH , α) = w1w2w3

Nl
∑

l=1

Nk−1
∑

k=1

2|Υil(ωk;α)|
√

χl(ωk; vH , α)∆ω cos(ωkt+θil(ωk;α)+ θ̂lk) (32)

where: Υil is the ith component of the wind tunnel estimated spectral POD mode; χl is the

corresponding spectral eigenvalue; θil(ωk;α) = tan−1
(

Im(Υil)
Re(Υil)

)

is the phase angle; Nl is the

total number of modes used in the representation; θ̂lk is the random phase angle that follows

a uniform distribution in [0, 2π] and generates the wind load stochasticity; ωk = k∆ω with

∆ω the frequency discretization step size; Nk is the total number of frequency steps of the

discretization; and w1, w2, and w3 are random variables modeling the uncertainty that exist

in estimating Υil and χl from wind tunnel data. Lastly, to ensure reasonable initial and final

conditions, each realization of F(t; vH , α) is generally multiplied by an envelope function that

linearly ramps the first and last two minutes of the load history [17, 22, 12].

4.3. Stochastic simulation scheme for reliability estimation

Following the sector-by-sector approach, the problem of estimating the failure probability,

Pf , of the system reduces to solving Eq. (29) for each sector and then taking, Pf , as the

maximum sectorial failure probability, i.e., as:

Pf = max
1≤s≤Ns

[Pfs ] (33)

where Pfs is the failure probability in sector s and Ns is the total number of wind sectors.

As outlined in [12], Pfs can be efficiently solved for small failure probabilities through Monte

Carlo methods based on stratifying in terms of the vH and therefore writing Pfs as:

Pfs =
Ne
∑

i=1

P (g(Z < 0)|s, EvH ,i)P (EvH ,i) (34)

where: EvH ,i the ith interval of a mutually exclusive and collectively exhaustive partitioning of

the wind speed axis; Ne is the total number of intervals in the partition; P (g(Z < 0)|s, EvH ,i)

is the probability of limit state violation condition on wind speeds belonging to sector s and

wind speed interval EvH ,i; while P (EvH ,i) is the probability of vH belonging to EvH ,i that can

be directly estimated from CCDF of Eq. (31). It should be observed that the formulation

of Eq. (34) is based on the assumption that P (EvH ,i) is known with sufficient accuracy.

24



Basically, the stratification of Eq. (34) is advantageous as it reduces the estimation of Pfs to

the estimation of a series of conditional probabilities, P (g(Z < 0)|s, EvH ,i), that are no longer

rare event problems and can therefore be solved using standard Monte Carlo methods. As

discussed in [12], the efficiency of the scheme depends on the stratification, and therefore the

wind speed intervals EvH ,i. An effective approach for their definition is to first observe that

the lower bound of the first interval, vLH,1, must be zero while the upper bound of the last

interval, vUH,Ne
, must be infinity. The remaining bounds can then be defined by specifying an

equal increment of the square of wind speed, (vUH,i)
2 − (vLH,i)

2 = (vLH,Ne
)2/(Ne − 1), and fixing

vLH,Ne
based on the expected/target failure probabilities associated with the limit states. In

general, experience suggests eight to ten intervals are sufficient [41, 42].

4.4. Integration with AFNA

In integrating the AFNA scheme with the stochastic simulation scheme of Sec. 4.3,

elastic solutions for all samples are first obtained through modal analysis (Eq. 8), based

on which the multipliers se and sp can be efficiently evaluated as outlined in Sec. 2.2.

Subsequently, the AFNA scheme is used to estimate the inelastic response time histories

for all samples in which inelasticity occurs (i.e., se < 1). It is important to note that,

unlike the strain-based scheme used in the framework outlined in [12], the AFNA scheme is

capable of accurately estimating responses for both shakedown and non-shakedown samples.

Therefore, in estimating the probabilities associated with exceeding any displacement-based

limit state, these will no longer be conditioned on the system reaching the state of shakedown,

i.e., the failure probabilities and associated distribution functions will fully capture behavior

subsequent to shakedown. In addition, for each sample of the simulation full responses time

histories are generated for the displacements, velocities, and accelerations at all degrees of

freedom, as well as hysteretic behaviors including deformations and forces at all integration

points of the discretization, therefore providing a far more comprehensive picture of the

inelastic response of the structural system at and beyond the state of dynamic shakedown.

5. Case Study

5.1. Description
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5.1.1. Building system and numerical modeling

A 3D 45-story reinforcement concrete (RC) core building located in New York City and

designed by the ASCE 7-22 committee on performance-based wind engineering is considered

for this case study. As shown in Fig. 8, the core is composed of multiple shear walls that are

connected through the link (coupling) beams at each floor. The total height of the building

is 180.6 m , with a story height of 4 m. The concrete compressive strength, f ′
c, reinforcement

strength, fy, modal damping ratios, ξl, dead loads, D, and “arbitrary point-in time” live

loads, Lapt, are all considered as random variables with the characteristics summarized in

Table 2. In addition, a nominal perimeter cladding surface load of 1.2 kN/m was considered.

The Young’s modulus of the concrete, which is considered of normal strength, is assumed to

be given by Ec = 4700
√

f ′
c (Mpa) and is therefore a derived random variable.

(a)

(b)

(c)

Node

Rigid link
DBE

(d)

Figure 8: The case study building: (a) Core; (b) Plan view; (c) Modeling strategy; (d) 3D finite element

model.

In developing the finite element model of the structure, rigid diaphragm constraints were

used to model the in-plane stiffness of each floor. The shear walls were modeled using equiv-

alent columns (modeled with displacement-based beam-column elements) and rigid links, as
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Table 2: Description of random variables considered for the 45-story reinforced concrete building.

Nominal Mean

Nominal
CoV* Distribution Reference

f ′

c

69 (MPa) 1.09 0.11 Normal [43]

83 (MPa) 1.08 0.11 Normal [43]

fy 414 (MPa) 1.13 0.03 Normal [43]

ξl 2% 1 0.4 Lognormal [44]

D - 1.05 0.1 Normal [39, 40]

Lapt - 0.24 0.6 Gamma [39, 40]

w1 1.0 1.0 0.075** Normal [45]

w2 1.0 1.0 0.05 Normal [46]

w3 1.0 1.0 0.05 Normal [46]

* CoV: coefficient of variation.

** Related to record duration, takes 0.075 since the full-scale loads have a duration of 1 hour.

Table 3: Nominal floor loads of the 45-story reinforced concrete building.

Self Load [kN/m2] Superimposed Dead Load [kN/m2] Live Load [kN/m2]

2.39 0.72 3.11

illustrated in Fig. 8. To properly model the torsional stiffness of the building, the rota-

tional constraints at the ends of each rigid link are released. The link beams were modeled

with displacement-based beam-column elements. All the displacement-based beam-column

elements had five integration points. The natural frequencies of the first three modes were

f1 = 0.246 Hz, f2 = 0.305 Hz, and f3 = 1.01 Hz when all random variables assumed their

nominal values and the structure is modeled as linear elastic. In addition, 3D piecewise

linear yield surfaces with 32 surfaces were considered for modeling the yield domains asso-

ciated with each shear wall and link beam section. Geometric nonlinearity was considered

through the linearized P-Delta model outlined in Sec. 3.3. The subsequent modeling and

new developments were carried out in WiRA (Wind Reliability Analysis), a standalone free-

ware application of the Resilient and Efficient Structures Laboratory (RESLab) that is freely

downloadable at: https://reslab.engin.umich.edu/wira-software.
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5.1.2. Wind loads

The stochastic wind loads were generated through the application of the wind tunnel

informed spectral POD model outlined in Sec. 4.2.3. Wind tunnel data, provided by Cermak

Peterka Petersen (CPP), was collected through the instantaneous measurement of pressures

on the surface of a 1:400 scale building model. Data was collected for 131.04 s at a sam-

pling frequency of 250 Hz and 36 wind directions, α = {0◦, 10◦, ..., 340◦, 350◦}. Through

appropriate scaling based on Strouhal number matching and integration to the floor centers,

the data provided an experimental realization of the two translational forces and torsional

moment (about a vertical axis) acting at the center of mass of each floor. It should be

noted that, although the Strouhal number matching is well-established and widely used, it

unavoidably introduces errors owing primarily to the violation of the Reynolds number sim-

ilarity requirement. However, for bluff bodies, and therefore the majority of buildings, these

errors are generally negligible [47]. From the cross-power spectral density of this data, the

first five frequency-dependent spectral POD modes and eigenvalues were estimated and used

to calibrate the stochastic wind load model of Eq. (32). In particular, given a mean hourly

wind speed of interest, vH , and associated direction, α, the model was calibrated to generate

realizations of the vector-valued stochastic wind loads, F(t; vH , α), with a total duration of

3840 s with a sampling frequency of 2 Hz. The loads were subsequently modified by first

ramping up/down the first/last 2 minutes and then multiplying by w1, w2, and w3 to account

for the uncertainties in the wind tunnel experiments due, respectively, to the finite length of

the wind tunnel data, the use of scale models, and the presence of observational errors. The

probabilistic properties of w1, w2, and w3 are reported in Table 2.

To characterize the intensity of wind events, the probability distribution of the site-specific

annual largest non-directional mean hourly wind speed is required. This was estimated from

the point values of the 3 s gust wind speeds, v3s, reported in the wind speed maps of the

ASCE 7-22 for the mean recurrence intervals of: 300, 700, 1700, 3000, 10000, 100000, and

1000000 years. These were transformed to site-specific mean hourly wind speeds through the

expression:

vH = b̄
(H

10

)ᾱ

v3s (35)

where b̄ and ᾱ are terrain exposure constants respectively taken as 0.45 and 1/4 which cor-
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Table 4: Values of LR for different wind direction sectors.

Sector N NE E SE S SW W NW

LR 0.78 0.78 0.7 0.7 0.7 0.78 1 0.84

respond to Exposure Category B [48], while H is the height of the building. The obtained

annual mean hourly wind speeds were subsequently fit to a Weibull distribution. This dis-

tribution was subsequently transformed, based on the classic assumption of independent

maximum annual wind speeds, to the distribution function of the mean hourly speeds to

occur in an observation period of 50 years, lifespan over which the reliability analysis will be

carried out. The resulting non-directional hazard curve is shown in Fig. 9.

As outlined in Sec. 4.2.3, the sector-by-sector method is adopted for accounting for wind

directionality. In calibrating the approach, eight wind sectors were considered. As illustrated

in Fig. 10, the sectors coincided with the compass directions: N, E, S, W, NE, SE, SW, and

NW. In particular, the mean hourly wind speed occurring in a given sector, ṽH , was linearly

related to the non-directional site-specific mean hourly wind speed, vH , as:

ṽH =
√
LRvH (36)

where LR is a location-specific load ratio. Values of the load ratio for New York City were

provided by CPP and are reported in Table 4. The uncertainty in the wind direction within

a given sector was modeled by considering α as uniformly distributed in each sector.

5.2. Reliability analysis

In calibrating the AFNA-based reliability analysis of Sec. 4, the stratified sampling

scheme was based on dividing the hazard curve into NE = 8 wind speed strata, EvH ,i, of

equal squared wind speed difference, as illustrated in Fig. 9. The lower bound of the 8th

and last strata was calibrated by setting the annual failure probability as 3.0× 10−5, which

corresponds to the annual failure probability of an ASCE 7-22 Risk Category II building [49].

Using this stratification of the non-directional hazard curve together with the relationship of

Eq. (36), 400 samples per sector were used to estimate the failure probability in each sector

for a total of 3,200 samples.
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Figure 9: The hazard curve and stratification of the largest 50-year non-directional mean hourly wind speed

at the reference height.

Bldg.

Figure 10: Illustration of wind direction sectors.
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Failure probabilities, and associated reliability indices, were estimated for the classes of

limit states outlined in Sec. 4.1 and therefore for component yield (LS1), first yield of the

structure (LS2); inability to achieve the state of dynamic shakedown (LS3), and exceedance

of the following limit states on displacement:

1. LS4a: peak interstory drift D̂rX,i or D̂rY,i ≥ hi/100;

2. LS4b: peak drift at the building top X̂X,45 or X̂Y,45 ≥ H/200;

3. LS4c: permanent set D̄rX,i or D̄rY,i ≥ hi/1000.

where hi is the height of the ith floor; H is the total height of the structure; while D̂rX,i,

D̂rY,i, D̄rX,i, and D̄rY,i are respectively the peak interstory drift in the X direction, peak

interstory drift in Y direction, residual interstory drift in X direction, and residual interstory

drift in Y direction at the ith floor. It should be observed that the limit states of LS4b

and LS4c are based on those suggested in [1] for the performance objective of Continuous

Occupancy. Because no explicit threshold is suggested for peak interstory drift, LS4a was

based on discussions with the Authors of [1] and is considered consistent with LS4b.

In estimating the nonlinear responses through the AFNA algorithm, the first three modes

were considered as dynamic (i.e., characterized by both a dynamic and background compo-

nent), with the subsequent three modes considered as background modes, while all remaining

modes were considered quasi-static. The initial time step was taken as ∆t = 0.5 s. In the

adaptive process, the scaling factor ν for identifying nonlinearity was taken as 0.9. The time

step modifier, η, was taken as an integer such that the modified time step, ∆t/η, was less

than or equal to 1/4 of the third dynamic modal period considered in the analysis. The

tolerance for the convergence of the nonlinear correction forces was set to eFNLC
= 1× 10−6.

5.3. Results

5.3.1. Preamble

The results obtained through the reliability analysis are discussed in this section. In

particular, the responses of a representative shakedown and non-shakedown sample are first

discussed in detail. The responses of the shakedown sample obtained through AFNA are

verified by comparing them with those obtained from the strain-driven stress resultant dy-
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namic shakedown scheme [21, 22, 12]. Second, the resulting reliability indices and exceedance

probabilities are discussed.

5.3.2. Responses of representative samples

To illustrate the capability of the AFNA scheme for efficiently simulating a full range of

response time histories for both shakedown and non-shakedown samples, two such samples

are discussed here. In particular, the shakedown sample is for a wind direction of α = 280◦

and wind speed ṽH = 65.22 m/s (mean recurrence interval (MRI) = 10981 years). The

multipliers for this sample are se = 0.83 and sp = 1.16. The peak and residual interstory

drifts obtained through the strain-driven stress resultant shakedown scheme outlined in [12]

and AFNA are comparatively shown in Fig. 11. It is observed that both the peak and

residual interstory drifts by the two schemes are consistent. The residual interstory drifts by

AFNA are smaller than those of the strain-driven stress resultant shakedown scheme. This

can be traced back to how the strain-driven shakedown schemes estimate the asymptotic

response under an infinitely repeated wind load [21, 22, 12], which will in general cause

overestimation, while the AFNA scheme provides estimates of the actual response from the

excitation. In addition, as a step-by-step solution method, the AFNA scheme is capable of

estimating the entire response time history, at any degree of freedom or integration point of

the discretized system. As an illustration, the roof displacement in the X and Y directions,

as well as rotation about the Z direction, are shown in Fig. 12.

The locations of the 68 elements experiencing inelasticity (out of the 585 total displacement-

based beam-column elements of the discretization) are shown in Fig. 13(a). Among the

integration points experiencing inelasticity, the 1st integration point of the 4th element is

selected as representative. Fig. 13(b) reports the section deformation and forces, including

axial deformation εx and force Nx, curvatures κy, κz and moments My, Mz where the inelas-

tic response is clearly visible. Fig. 13(c) illustrates how the force Nx −My −Mz trajectory

moves within the 3D yield domain as the proposed AFNA scheme finds the solution consid-

ering yielding in the 3D domain with plastic deformations governed by the associated flow

rule. Fig. 13(c) also illustrates how yielding occurs with respect to the yield domain of the

selected integration point. Similar information is also available for any integration point of
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(a) (b) (c) (d)

Figure 11: Comparison of the peak (a)-(b) and residual (c)-(d) interstory drifts in the X and Y directions

obtained from the stress resultant shakedown and AFNA schemes.

interest. Moreover, in addition to the full range of response time histories and hysteretic

curves, the AFNA scheme exhibited high efficiency requiring only 16.16 s to find the solu-

tion, which is considerably less than the 124.15 s taken by the strain-driven stress resultant

shakedown approach (times estimated using a personal computer with Intel(R) Core(TM)

i7-8700 @ 3.20 GHz processor).

The strain-based shakedown scheme is not capable of estimating inelastic responses for

non-shakedown samples. The responses of these samples, however, can be solved by the

AFNA scheme. This enables the AFNA approach to analyze samples with strong inelasticity

and facilitates the estimation of reliabilities associated with limit states that are closer to

incipient collapse. To illustrate this, a strongly inelastic non-shakedown sample, caused by

wind loading with α = 270◦ and ṽH = 64.35 m/s (MRI = 8917 years), is discussed in the

following. The multipliers of this sample were se = 0.41 and sp = 0.60. Fig. 14 shows the

nonlinear modal hysteretic curves, i.e., Yi vs φ
T
i FNL, for the three dynamic modes considered

in the analysis. This provides a clear picture of the global inelastic behavior of the system and

is an output that is exclusive to the AFNA approach (i.e., traditional step-by-step integration

schemes do not provide this information as they are not based on model decomposition). In
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(a)

(b)

(c)

Figure 12: Time history of roof displacement estimated by AFNA in: (a) X direction; (b) Y direction; and

(c) rotation about the Z direction.
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Figure 13: (a) Location of the nonlinear elements (marked in red); (b) time histories of section deformations

and forces; and (c) 3D yield domain and trajectory of Nx − My − Mz, estimated by AFNA at the 1st

integration point (red points in (a)) of the 4th element.

particular, it can be seen that all three modes have observable inelasticity, with the second

mode exhibiting extremely strong nonlinearity with significant residual deformation. The

peak and residual interstory drifts are shown in Fig. 15. It is observed from Fig. 15(c) that

the residual interstory drift is large and close to the peak value of Fig. 15(a). This is consistent

with Fig. 16, where, compared to the dynamic component of the roof displacement in X

direction, the residual component is dominant and accumulates throughout the entire history

indicating a ratcheting type failure of the system. In total 411 out of the 585 displacement-

based beam-column elements experienced inelasticity, as illustrated in Fig. 17(a). Fig. 17(b)

reports the section deformations and forces at the 1st integration point of the 4th element.

These include the axial deformation εx and force Nx, curvatures κy and κz, and moments
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Figure 14: The nonlinear modal hysteretic curves, Yi vs φ
T

i FNL, of the three nonlinear dynamic modes.

My, Mz. Consistent with the observation concerning the roof displacement response in the

X direction, this element has experienced extreme axial deformation and bending about

the local y axis that is accumulating with time. In addition, Fig. 13(c) shows how the

force Nx − My − Mz trajectory moves on the yield surface and how yielding occurs with

respect to the yield domain of the selected integration point. It is worth noting that even

for this strongly nonlinear non-shakedown sample, the AFNA algorithm is still capable of

simulating a full range of response time histories, including global displacements as well as

local hysteretic curves. This not only extends the range of responses that can be used in

reliability analysis, as compared to the strain-driven stress resultant shakedown scheme, but

also provides vital insights into the response of individual samples.

5.3.3. Reliability results

With response samples estimated through the AFNA algorithm, reliability indices for

component-level yield (LS1), system-level first yield (LS2), inability to reach the state of

dynamic shakedown (LS3), as well as the displacement-based limit states (LS4) of Sec. 5.2

were estimated and are summarized in Table 5. It is seen that some reliability indices,

e.g., for LS1 and LS2, are smaller than 3.0, the target reliability for the archetype building

of this case study. Notwithstanding how the system does not meet the target component

reliability, it is interesting to observe how the building has a reliability index of nearly 3.3

at dynamic shakedown. This illustrates how the system has an important plastic reserve in

which controlled inelasticity can occur without risk of potential failure due to low cycle fatigue

and ratcheting as the state of dynamic shakedown occurs which, by definition, excludes the
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(a) (b) (c) (d)

Figure 15: Peak (a)-(b) and residual (c)-(d) interstory drifts in the X and Y directions by AFNA.

(a)

(b)

(c)

Figure 16: Time history of roof displacement in: (a) X direction; (b) Y direction; and (c) rotation about Z

direction by AFNA.
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Figure 17: (a) Location of nonlinear elements (marked as red); (b) time histories of section deformations and

forces; and (c) 3D yield domain and trajectory of Nx −My −Mz, estimated by AFNA at the 1st integration

point (red points in (a)) of the 4th element.

possibility of such failure [7, 21].

Fig. 18 reports the conditional (on shakedown occurring) and non-conditional exceedance

probability curves (EPCs) for the residual interstory drifts at the critical floors as well as

the peak roof drift in the X and Y directions estimated from the AFNA scheme and, when

possible, the strain-driven stress resultant dynamic shakedown scheme outlined in [12]. By

comparing the conditional EPCs of the critical peak and residual interstory drifts of Figs.

18(a)-(d), the validity of the AFNA scheme can be clearly seen. Indeed, as would be ex-

pected, both approaches give near identical peak interstory drift conditional EPCs, which is

dominated by the elastic part of the response, with, however, the residual drift conditional

EPCs estimated from AFNA providing smaller exceedance probabilities due to the asymp-
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totic nature of the strain-driven scheme. The sudden change in the conditional EPCs seen

in Fig. 18(d) is a direct consequence of the implementation of the sector-by-sector approach

where a change in the critical sector occurs. Similar results for the conditional EPCs of the

peak roof drift can be seen in Figs. 18(e)-(f).

Concerning the non-conditional EPCs, which are not available for the strain-driven scheme,

the effect of including the non-shakedown samples is clearly evident. Indeed, from Figs. 18(c)-

(d), significantly higher exceedance probabilities are seen for the critical residual interstory

drifts. In addition, from Fig. 18(a) and Fig. 18(e), the residual deformation occurring

in events in which dynamic shakedown does not occur can clearly lead to large increases in

inelastic deformation as the system nears collapse. The estimation of these inelastic deforma-

tions allows for the direct evaluation of performance beyond the state of dynamic shakedown,

an aspect not contemplated by the strain-driven shakedown schemes which, therefore, lack in-

sight into the sensitivity of the inelastic response of the system to load increments beyond the

state of dynamic shakedown. Nevertheless, these results do confirm how the state of dynamic

shakedown ensures the controlled nature of the inelastic deformation occurring in the system

and therefore its use as a system-level performance objective for practical implementation of

performance-based wind design. The possibility to directly estimate this information, while

also estimating the reliability associated with the state of dynamic shakedown without loss of

efficiency as compared to the strain-driven scheme outlined in [12]), highlights the potential

of the proposed AFNA scheme of this work.

6. Summary and conclusions

In this paper, an efficient adaptive fast nonlinear analysis (AFNA) integration scheme was

proposed as a powerful alternative to the recently introduced strain-driven dynamic shake-

down method. The scheme was derived within the setting of stress resultant distributed

plasticity. The method is based on a step-by-step iterative solution process over the entire

duration of the dynamic load history, therefore providing a full range of global and local

response time histories for scenarios both below and above the state of dynamic shakedown.

By developing the scheme within the context of shakedown analysis, the evaluation of the

state of dynamic shakedown is naturally encompassed. The scheme is integrated within a
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Exceedance probability curves for: (a) peak interstory drift in the X direction at floor 36; (b)

peak interstory drift in the Y direction at floor 31; (c) residual interstory drift in the X direction at floor 33;

(d) residual interstory drift in the Y direction at floor 1; (e) peak roof drift in the X direction; and (f) peak

roof drift in the Y direction.
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Table 5: Failure probabilities and reliability indices for the archetype building.

Limit state Description Failure probability Reliability index

LS1 First component yield 0.0026 2.80

LS2 First system yield 0.0029 2.76

LS3 Non-shakedown 5.12×10−4 3.28

LS4a
D̂ri ≥ hi/100 in X 4.49×10−5 3.92

D̂ri ≥ hi/100 in Y 4.05×10−4 3.35

LS4b
X̂X,45 ≥ H/200 7.73×10−5 3.78

X̂Y,45 ≥ H/200 5.05×10−4 3.29

LS4c
D̄ri ≥ hi/1000 in X 2.46×10−4 3.48

D̄ri ≥ hi/1000 in Y 7.56×10−5 3.79

recently developed stochastic simulation framework therefore allowing direct propagation of

uncertainty. This enables the assessment of the reliability against limit states ranging from

component first yield, through dynamic shakedown, to incipient collapse. A full-scale 3D

archetype reinforced concrete tower subject to extreme winds was considered as a case study

for illustration. The AFNA scheme was seen to estimate, without loss of efficiency, inelastic

responses that are consistent in terms of accuracy with the recently proposed strain-driven

dynamic shakedown method. The capability of the scheme to estimate the probabilistic

distributions associated with a full range of inelastic responses beyond shakedown was illus-

trated.
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