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Abstract

The ever-growing interest in performance-based wind engineering has created a need for
assessment frameworks that can efficiently deal with inelasticity. The computationally ef-
ficient strain-driven dynamic shakedown approach has provided a solution that is not only
capable of identifying failure mechanisms that are potentially critical during extreme winds,
e.g., low cycle fatigue and ratcheting, but also allows direct estimation of inelastic deforma-
tions. This approach, however, can only solve problems at dynamic shakedown, i.e., with
limited nonlinearity, and is not capable of providing response time histories. To address these
limitations, this paper presents an efficient framework for reliability assessment of inelastic
structures at dynamic shakedown and beyond. To this end, a novel step-by-step integration
algorithm is developed for rapid response time history analysis within the setting of dynamic
shakedown. The method is based on advancing fast nonlinear analysis through introducing
schemes for enabling at each time step the adaptive selection of the step size, number of
modes to be included, and number of potentially nonlinear elements. Inelasticity is modeled
as distributed at the level of the stress resultants through a return mapping scheme based
on the Haar-Karman principle, therefore enabling the integrated estimation of the state of
dynamic shakedown. The scheme is seen to preserve the efficiency of recently developed
strain-driven dynamic shakedown algorithms while providing a full range of response time
histories at and beyond the state of dynamic shakedown. To enable reliability analysis, the

scheme is embedded in a general uncertainty propagation framework.
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1. Introduction

With the recent introduction of performance-based wind engineering, the potential of
designing wind-excited buildings with controlled inelasticity at ultimate load levels has at-
tracted strong interest among practicing engineers [1]. Since the majority of current perfor-
mance assessment procedures for wind excited structures are based on linear elastic analysis,
the reliability of wind excited systems experiencing inelasticity must be carefully investi-
gated to ensure safety against any undesirable failure scenarios. To estimate the reliability
of such systems while treating general high-dimensional uncertainty, e.g., the stochasticity
associated with the record-to-record variability in the external dynamic wind loads as well
as the randomness in the model parameters, schemes based on stochastic simulation are
generally required [e.g. 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12], with the exception of the approach
recently proposed in [13]. Notwithstanding the use of variance reduction methods for esti-
mation of failure associated with rare events, e.g., stratified sampling [14], the computational
feasibility of schemes based on stochastic simulation require a means to rapidly estimate
inelastic responses for each sample of the simulation. Over the years, various approaches
have been explored for the simulation of the inelastic response of wind excited systems
[15, 16, 6, 17, 18, 7, 19, 20, 21, 22, 11, 23, 24, 25, 12|. To overcome the computational
challenges stemming from the long duration of typical windstorms, which significantly hin-
der the application of existing methods based on direct integration, e.g., incremental dynamic
analysis and is variants [26], as well as the need to capture failure mechanisms associated
with accumulation of damage, which rule out the possibility of using approaches based on
nonlinear static pushover analysis [27], the framework presented in [12] uses recently devel-
oped concepts rooted in the theory of plasticity [21, 22, 12]. In particular, based on the
dynamic shakedown theory, this approach allows not only rapid identification of the safety
against potential failure mechanisms of interest to wind engineering, e.g., low cycle fatigue
and ratcheting, but also direct estimation of inelastic deformations occurring at shakedown.

Despite the completeness and efficiency of this approach, it does not provide the time history



responses that are vital for directly estimating the hysteretic behavior of the system as well
as the evolution of the inelastic deformations over the duration of the event. In addition, all
inelastic response quantities are estimated at dynamic shakedown. As dynamic shakedown
is an asymptotic behavior of the system after infinite repetition of the loading, the inelastic
response quantities are in general greater than those actually occurring during a windstorm.
This can lead to overly conservative estimates of reliability. Furthermore, this approach can
only provide inelastic deformations if the structure is capable of reaching the state of dynamic
shakedown. For samples for which dynamic shakedown is not achieved, such information re-
mains unknown. Importantly, since the state of dynamic shakedown generally involves only
a limited amount of inelasticity, this limitation hinders the application of the approach to
collapse assessment where large inelastic deformations are expected. To address these issues,
an alternative approach is required for efficiently estimating the inelastic response of wind
excited structures within the setting of dynamic shakedown.

As an efficient alternative to classic direct integration methods, fast nonlinear analysis
(FNA) was developed for rapidly carrying out nonlinear time history analysis where nonlinear
behavior is restricted to a small number of predefined locations within a structure [28]. This
approach solves the nonlinear system through a set of modal equations by treating nonlinear
forces as external loads. This greatly improves the computational efficiency as compared
to classic direct integration methods. Similar to direct integration methods, this approach
provides a full range of global and local time history responses. The major limitation of the
approach is the need to know a priori which structural members will experience inelasticity.
This practically limits the approach to the time history analysis of structural systems that
are equipped with nonlinear energy dissipation devices (components that are expected to
respond with inelastic behavior while the rest of the structure remains elastic). To extend
such an approach to structures without prior knowledge of the locations and extent of inelastic
elements, an adaptive fast nonlinear analysis (AFNA) is proposed in this paper. The scheme
is developed within the setting of stress resultant dynamic shakedown therefore enabling
the benefits of shakedown analysis, i.e., the direct assessment of potential failure due to low
cycle fatigue and ratcheting, to be integrated with the benefits afforded by direct integration

schemes, i.e., knowledge of the evolution of inelasticity over the duration of the wind event



and beyond the state of dynamic shakedown. Finally, the scheme is integrated into the
reliability assessment framework recently proposed in [12] therefore defining a framework that
is capable of rapidly providing not only comprehensive inelastic time history information, but

also reliability estimates for a full range of limit states, including incipient collapse.

2. The stress resultant setting and dynamic shakedown

2.1. The stress resultant setting and elastic solution

To model plasticity distributed along beam-column elements, a displacement-based for-
mulation is adopted in this work. The displacement fields of the 7.th element of the structure
vi.(z) = {v.(x),v,(x),v,(x)}T are discretized and interpolated in terms of element end dis-

placements u;_ through the following equation:
vi. () = Ny, (2)u;, (1)

where N;_ (z) is a matrix containing interpolation functions for the displacement fields for
the i.th element. Based on the assumption of Euler-Bernoulli beam theory, the associated

deformation fields of the element, d;_(x), can be expressed as:

di (z) = {ex(2), 5y (), ()}

(T T Ty .

where €., k, and x, are the axial deformation and curvatures in the local z, y and 2z coordinate
system for the i.th element, which can be expressed in terms of element end displacements

as:

d; (z) = B; (7)u, (3)

with B, (z) the strain-deformation matrix containing the first and second derivatives of
the displacement interpolation functions. The internal forces at each section along the i.th
element D;_(x), including axial force N, (z) and bending moments M, (z) and M,(z), can be

described by the following constitutive relation:

D,. (2) = {N,(x), M, (x), M. (x)}"
— k. (2)d, (@)
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where kg ;_ () is the section stiffness matrix. Based on the principle of virtual displacements,

the element end forces can be related to the section forces through the equilibrium condition:

Li,
0, = [ " BL@D, (s )

0
where L;_is the length of the i.th element. Replacing d;_(z) with Eq. (3) in the constitutive

relation of Eq. (4), the linearization of Eq. (5) with respect to the element end displacements

gives the element stiffness matrix k;, :
a . L,
k;, = —e — / B (¢)k, (z)B, (z)dx (6)
0

It should be observed that the distributed plasticity setting outlined above does not explicitly
contemplate the modeling of plastic hinges which can complicate the modeling of certain types
of problems involving inelasticity, e.g., progressive collapse.

Given the mechanical model described above, the dynamic equilibrium of a structural

system with N degrees of freedom (DOF) subject to stochastic excitation can be written as:

MX(t) + CX(t) + KX(t) = F(t) (7)

where X(t), X(t), and X(t) are the N x 1 dimensional vectors of the displacement, velocity,
and acceleration responses in global coordinates, F(t) is the N x 1 dimensional vector of
stochastic excitation, while M, C, and K are the N x N dimensional mass, damping, and
elastic stiffness matrices of the system. The stiffness matrix K can be determined by as-
sembling the element stiffness matrix of Eq. (6) over the entire structure. The displacement
response X(t) can be solved efficiently through a set of uncoupled equations using the modal

approach, as follows:

OY(t) + AY(t) + QY (t) = ®"F(t) (8)

where ® = [¢,,...,¢y] is a matrix containing the N stiffness normalized mode shapes
(normalization with respect to stiffness is carried out as it avoids the numerical issues
that can arise when treating DOF with zero mass), Y(¢) = {Yi(t),...,Yn(t)}", Y(t) =
{(Yi(t),...,Yn(®)}T, and Y (t) = {Yi(t),...,Yn(t)}" are vectors of the modal displacement,

velocity, and acceleration responses, while ®, A, and €2 are the generalized mass, damping,



and stiffness matrices calculated as:
©=3"M® A=3"Ce®, Q=3'Kd (9)

It is worth noting that, in this formulation, the N modes of the system can be divided into
dynamic modes, with non-zero masses, and quasi-static modes corresponding to the massless
DOF. For the dynamic modes, the corresponding terms within the generalized damping
matrix A are 2§ /w; in which & and w; are the {th modal damping ratio and circular frequency
while the terms in the generalized mass matrix © are w; % with w; — oo for static modes.
By solving the uncoupled Eq. (8), the response of the system can now be expressed by

transforming the modal responses back to the physical coordinates as:
X(t) = ®Y (), X(t)=®Y(t), X(t)=®Y(t) (10)

2.2. Stress resultant dynamic shakedown

For an external dynamic load that is periodic and of infinite duration, F(t), a necessary
and sufficient condition for dynamic shakedown of an elastic-perfectly plastic (EPP) struc-
tural system discretized into n. elements, is that there exists time-independent generalized
self-stress, Dj (x), such that the following condition holds for each integration point, x;, of

each element of the discretization [29]:
N, (2:)" (D, (6 25) + Df (2:)) = Ri,(2:) 0w € [0, Ly ] (11)

where L;_ is the length of the i, element, R, (x;) is the plastic resistance vector defined from
the linearization of the stress-resultant yield domains associated with each integration point
of the discretization, IN;_(z;) is the matrix that collects the unit external normals associated
with each surface of the linearized yield domains, and D3, (t; 7;) is the steady-state elastic
generalized stress vector.

The above condition requires the definition of F(t). Without loss of generality, F(t)
can be defined from F(¢) by simply considering F(¢) repeated indefinitely:

Fo(t+kT)=F(t) for k=0,1,..,+00 and t € [0,7) (12)

where T is the original duration of F(¢). It should be noted that, as discussed in [21], no
restrictions are placed on F(t) which can represent realizations of both stationary or non-

stationary stochastic excitation. In particular, if it is assumed that F(¢) = 0 for ¢t =0 and a
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period of calm is considered before each repetition of F(¢), then the elastic response of the
structure can be considered steady-state from ¢ = 0 and D%, (t;7;) can be obtained from
Egs. (3) and (4) as:

D . (& 2:) = Kjio (2) B () 0e(t) (13)

In general, to use Eq. (11) to check for the achievement of the state of dynamic shake-
down, it is convenient to introduce a load multiplier s of F,. The satisfaction of the dynamic
shakedown condition of Eq. (11), can then be evaluated by solving the following linear pro-

gramming problem [18, 7, 21]:

(14)

N'(sDy +D") ~R <0
where D" is the vector collecting the generalized self-stresses at all integration points of the
discretization; D7(¢) is the vector collecting the associated steady-state elastic generalized
stress responses; and R and N are respectively the vectors of plastic resistances associated
with the linearized yield domains and the block diagonal matrix collecting the unit external
normals to the linearized yield domains all integration points. In addition, when solving Eq.
(14), D" is expected to define a residual stress state that is self-balanced.

A similar linear programming problem can be defined for solving the elastic multiplier, s.,
i.e., the load multiplier beyond which nonlinearity will occur. To obtained s, D" in Eq. (14)
is set to zero. It is important to note that, because high-dimensional linear programming
problems can, in general, be very efficiently solved, evaluating s. and s, does not generally
pose a computationally challenging problem. The multipliers s, and s, convey plenty of
useful information on structural safety. For instance, s,/s. expresses the plastic reserve, i.e.,
the safety margin beyond the system-level first yield [12] before shakedown will no longer
occur and the system becomes potentially susceptible to failure due to low-cycle fatigue and
ratcheting. In addition, s, > 1 indicates the structure will remain elastic under a given load
and therefore responses estimated through the modal integration, i.e., by solving Eq. (8),

are accurate. For samples with s, < 1, however, nonlinear analyses will, in general, be



required. The strain-based schemes outlined in [21, 22, 12|, serve this need with, however,
the limitations discussed in Sec. 1. In the following, a step-by-step integration scheme will
be developed that overcome these limitations and that can be naturally integrated within

the dynamic shakedown setting outlined above.

3. Proposed adaptive fast nonlinear analysis (AFNA)

3.1. Problem setting

The AFNA approach developed in this work is based on the FNA schemes that were
developed for rapid time history analysis of a special class of nonlinear system (i.e., systems
with predefined locations of inelasticity) [28]. The FNA approach satisfies the fundamental
equations of mechanics, including equilibrium, force-deformation, and compatibility. The
exact force equilibrium of an inelastic system can be expressed by the following equations of

motion:

MX (t) + CX(t) + Fao(X, X; ) = F(t) (15)

where FNL(X,X;t) is a vector of nonlinear forces. By treating the nonlinear force as an
external force and introducing the elastic stiffness matrix K, Eq. (15) can be rewritten in a

form similar to the linear elastic system, as follows:
MX (t) + CX(t) + KX(t) = F(t) — Fxpo(X, X; t) (16)

where Fnpo(X, X;t) = Fy (X, X; ) — KX(#) is the nonlinear correction force. Eq. (16) can

then be solved in the modal space as:

OY(t) + AY(t) + QY(t) = ®T[F(t) — Fxic(Y,Y;1)] (17)
Through mode truncation, this formulation greatly reduces the size of the nonlinear system
to be solved. However, unlike the elastic form of Eq. (8), Eq. (17) is not uncoupled because
of the existence of the nonlinear force vector Fyr¢ (Y, Y;t). Hence, it must be solved for all
required modes simultaneously. To improve the efficiency of nonlinear time history analysis,

a piece-wise exact method can be used to solve the modal responses iteratively at each time



instant ¢ with initial values determined from the following Taylor series expansion:

Y(t+At) =Y(t) + YAt +0.5Y (1) A2 + O(AE?) )

Y(t+ At) = Y(t) + Y () At + O(A#?)
where At is the time step considered in the analysis and O is the big O notation that refers to
the infinitesimal functions of the same order. In particular, by first identifying the locations of
nonlinear elements in the structure, the iterative process within each time step is only carried
out for those predefined locations. This results in a significant reduction in computational
efforts and therefore computer time required to obtain a solution. However, the requirement
to identify a priori the locations of the nonlinear elements is a major limitation as in general

it is not possible to know where nonlinearity may occur in the system.

3.2. The proposed stress resultant adaptive solution process

Based on the mechanical model of Sec. 2.1 and the FNA approach described in Sec.
3.1, an adaptive scheme is defined in this work to efficiently estimate the inelastic response
histories. The key feature of the proposed approach is the capability to update, at each
time step, the potential nonlinear locations, time step sizes, and the number of modes to be
considered in the analysis. In particular, the scheme is based on the possibility of rapidly
evaluating the section deformations that characterize the nonlinearity of the structure at each
integration point. To this end, it is first convenient to introduce the section deformation -
modal coordinate transformation matrix, ¥, where each column of the matrix, ¥, with
[ = 1,...,N, represents the section deformations, i.e., axial strains and curvatures, at all
integration points of the discretization due to a unit modal displacement at mode [, as
follows:

¥ = BT® (19)

in which T = diag[Ty,---, T, ---,T,.] is a block diagonal matrix collecting the global to
local coordinate transformation matrices, T;_, for all n. elements of the discretization, while
B = diag[B4, -+ ,B,;,, -+ ,B,.] is a block diagonal matrix collecting the strain-deformation
matrices, B;,, for all n, elements, where B;, = [B] (z1), B (22), -, B (2,,)]" consists of

the strain-deformation matrices for all n, integration points along the i.th element.



3.2.1. Elastic solver with large time step

In a given time step, the solution process first solves for the elastic responses considering
a time step At. The elastic solution is estimated through modal analysis while considering
the first my dynamically significant modes as well as an additional m; modes for which
the background response, or quasi-static response, is estimated. A piece-wise exact method
is adopted in calculating the modal response time histories [28, 31]. The corresponding

responses at the section level (local state) can then be determined as:

d(t+At) = (Y(t + At) - Y(t) +d(?) (20)

d(t+ At) = (Y (t + At) = Y(t) +d(t)

where d = {dy, -+ ,d,.xn,}T is a vector of section deformations for all integration points of
all elements of the discretization while d represents the rate of change of d; ¥, Y, and Y are
respectively truncated versions of ¥, Y, and Y, with terms related to the first m = myg + my
modes. The elastic predictor of the section forces can then be determined and checked
against the yielding criteria using the linear elastic section constitutive relation of Eq. (4)
for all sections, i.e., Dg(t +At) = Kd(t + At) where Ky = diaglk,,,--- K, ,,.] is the block
diagonal matrix containing the section stiffness matrices k, for all integration points of the
discretization. The solution process moves on to the next time step only if the sum of the
elastic forces and the nonlinear correction forces for all integration points remain within the
yield domain, i.e., the structure remains elastic or is in the linear unloading/reloading stage,
as follows:

N'(Dg(t + At) + Dyic(t)) —R <0 (21)
where Dyp¢(t) is the nonlinear section correction forces of the previous time step:

Dric(t) = D(t) — Dp(t) = D(t) — K.d(t) (22)

in which D(¢) is the vector of section forces determined from the inelastic constitutive law.
At this juncture, it is important to observe that the dynamic shakedown problem of Sec.
2.2 is based on the assumption, at the level of the stress resultants, of an EPP material
behavior and associated flow rule. Under this assumption, the nonlinear correction forces of
Eq. (22) are constant when the structure is in an elastic unloading/reloading stage, i.e., they

do not need updating when the structure is responding elastically.
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If the condition of Eq. (21) is not met, i.e., inelasticity occurs, the solution process moves
back to the previous step and begins an adaptive solution process with a reduced step size
At/n, where n € Z7 is a step size modifier, to estimate the corresponding nonlinear section
correction force, Dypc(t + At/n). It should be noted that the piece-wise exact method
assumes the change in ®T[F(t) — Fy.o(Y,Y;t)]) within each time step to be linear. While
for F(t) the adequacy of this assumption is related to choosing an appropriate sampling
frequency, for F NLC(Y, Y;t) the adequacy of the assumption is related to the period Ty,
i.e., the shortest period of the my retained dynamic modes. Numerically, a value of Ty, /2 is
a natural limit as it ensures at least two points to characterize the variation of Fy LC(Y, Y;t)
over Thin. Nevertheless, to ensure the best balance between accuracy and numerical efficiency,
the modified time step At/n should be taken to be less than or equal to Ty, /4, where Tinin

is the smallest period associated with the my dynamic modes.

3.2.2. The adaptive solver

Initial step. In the adaptive process, the modal responses for the adjusted reduced time step,
ie., Y(t+ At/n) and Y(t + At/n) are first estimated for the first m modes by the Taylor
series expansion of Eq. (18). The corresponding section forces are once again determined
based on the section constitutive relation of Eq. (4). The locations of the nonlinearity in the

structural system can then be determined by the following criterion:
NY(Dg(t + At/n) + Dnwc(t)) —vR >0 (23)

where v € [0,1] is a scaling factor used to ensure the number of elements identified as
potentially inelastic is not unduly affected by the approximations inherent to the Taylor
series expansion of Eq. (18). A smaller value of v should be used if a more conservative
estimate of potential locations of nonlinearity is desired. If no sections (integration points)
meet the criterion of Eq. (23), the responses at the current time step will be solved directly
through the piece-wise exact method. The solution process then proceeds to the next reduced
time step, t+2At/n, and reevaluates Eq. (23). If there is any section identified as a potential
nonlinear location, i.e., any section satisfying Eq. (23), the following iterative approach will

be adopted to evaluate the nonlinear responses.
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The iterative process. The iterative process, indexed k, commences from a first estimate of
the complete modal response, Y®(t + At/n) and v (t + At/n), estimated by appending
to Y(t + At/n) and Y(t + At/n) the last computed values of the responses of the additional
(N —m) modes, Y (y_m) and Y(me)- In particular, if the system is experiencing inelasticity
for the first time, Y (y_y) and Y( N—m) are simply taken as zero. From the full modal response
and by considering only the potential nonlinear sections identified from Eq. (23), the local

states, i.e., the section deformations, for the current iteration can be determined as:

~ (k)

d"(t+ At/n) = YW (t + At/n)

' (24)
A9t + Atfy) = BYP (¢ + At/n)

where d(t + At/n), d(t + At/n), and ¥ are respectively the subsets of d(t + At/n), d(t +
At/n), and ¥ containing only relevant rows for the identified nonlinear sections (for the
remainder of this section, the accent ~ indicates consideration of the subset of integration
points with identified inelasticity). Based on the responses calculated from Eq. (24) and
the corresponding response increments with respect to the previous time step, the nonlinear
section force increments Aﬁ(k)(t + At/n), can be estimated from the mechanical properties
and deformation history of each nonlinear section. The associated increment in the correction

forces can then be evaluated as:

ADY (t + At/n) = ADY (t + At/n) — K,Ad™ (¢ + At/n) (25)

~(k ~(k
where Ad' )(t—{— At/n) is the increment of a' )(t+ At/n) at the current time step. Under the
assumption of an EPP materiel and associated flow rule, the increment in nonlinear section

correction forces, Af)l(\?L)C (t+At/n), can be efficiently identified through solving the following

Haar-Karman condition:

1 - el
min  ~ADWL(t + At/n) K. ADY L(t + At/n)
AD o (t+At/n)

subject to (26)

(k)( (k)

N (K,d" (t + At/n) + DG ot + At/p)) —R <0

where ljgggc(t—i—At/n) = ]~DNLC(t)—|—A]~31(\?gC(t+At/n). The use of the Haar-Karman condition

for finding A]ﬁl(\fic(t—l—At/n) can be traced back to how the problem of Eq. (26) is a quadratic
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programming problem (QPP) that can be very efficiently solved by a number of standard QPP
solvers without loss of generality. The corresponding increment in the nonlinear correction

force vector can then be determined through the following transformation:
~ T ~
AFLe(t + Atfn) = T Adylo(t + At/n) (27)

where Aqﬁ“ﬁc(t + At/n) is the vector collecting the increments in element end nonlinear
correction forces determined by solving Eq. (5) through an appropriate integration scheme.

The nonlinear correction forces are then updated as:
FUVE+ At/n) =F AFY) A 28
e (E+ At/n) = Fic(t) + AFyo(t + At/n) (28)

The modal responses, Y*+D(t4+At/n) and vy (t+At/n), can then be updated through the
piece-wise exact method while considering all modes, i.e., now that the system is responding
inelasticity, the number of modes considered in the solution process is increased from m to
N. In particular, the additional (N — m) modes are assumed to respond in a quasi-static
fashion therefore avoiding numerical instability.

Eq. (28) will be updated recursively until a user-defined convergence criterion is met.
This can be defined in terms of any response parameter of interest, e.g., the difference in

. . : (k+1) (k) :
nonlinear correction forces, i.e., |Fy; o’ —Fxicl < €ry.e With epy, . a convergence tolerance.

3.8. Summary of the proposed AFNA scheme

The scheme commences by seeking to solve the system through elastic modal integration
while considering the first m modes, of which my are considered dynamic with the remaining
my, treated as quasi-static. At each time step, every integration point is checked for potential
inelasticity. If inelasticity is identified at one or more integration points, the time step is
reduced and the iterative process is invoked while considering not only the first m modes but
also all remaining (N — m) modes that are treated as quasi-static. Once convergence of the
iterative process is achieved, the solution process proceeds to the next time step and invokes
the iterative process again if necessary, i.e., if Eq.(23) is not satisfied. The process ends once
the time sequence of loading ends, providing a full range of inelastic response histories for
structures modeled within the setting of the stress resultant dynamic shakedown problem of

Sec.2.2. It should be observed that to account for P-Delta effects, a reduced stiffness matrix
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is considered based on the linearized P-Delta model outlined in [33, 28]. The overall solution

process is summarized in the flowchart of Fig. 1.

3.4. Validation

3.4.1. Preamble

In order to validate the proposed AFNA approach, it is applied to the inelastic response
analysis of the steel structure of Fig. 2. In particular, the frame indicated in Fig. 2(a)
is extracted and analyzed in two dimensions (2D). To validate, the results obtained from
AFNA are compared to those obtained from direct integration carried out in OpenSees [34].
To enable this comparison, the extracted steel frame, illustrated in Fig. 2(b), was modeled
using a fiber-based discretization as OpenSees does not have a stress resultant modeling

environment. As such, the AFNA approach was reformulated at the fiber level.

3.4.2. Description

The building was assumed to be located in the Miami region of Florida, USA. As illus-
trated in Fig. 2(b), typical story heights are 6 m at ground level and 4 m for all other levels.
The overall height of the building is 150 m. The moment resisting frame consists of wide
flange standard Wx24 beams with 5 m spans and square box columns. In particular, the
dimension of the box column is defined by the centerline diameters, D, with thickness defined
as D/20. Table 1 reports a summary of the section sizes. The steel composing the frame is
assumed to follow an EPP constitutive law with an elastic modulus of 200 GPa and a yield
stress of 355 MPa. The mass of the structure is estimated from its self-weight as well as a
carried mass of 100 kg/m3. Material damping was modeled by Rayleigh damping calibrated
to provide a damping ratio of 2.5% in the first two modes.

Fig. 3 illustrates the fiber discretization used for the sections of the beam and columns.
To ensure consistency with the AFNA approach, the steel frame was modeled in OpenSees
using displacement-based beam-column elements with 5-point Gauss-Legendre integration
scheme. The nonlinear response in OpenSees was obtained using a dynamic updating analysis
scheme based on the average constant acceleration Newmark-beta method. In particular, the
Newton-Raphson (NR) algorithm with line search was first considered with a basic time step,

At, of 0.02 s. If the solution failed to converge, the following series of algorithms were then
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Determine the mode shapes of the linear elastic system |
¥

Create section deformation - modal coordinate transformation through Eq. (19) ‘

ADAPTIVE PROCESS

lt=t+A4t |

| Dyic(t) = Dypc(t — At), Fypc(t) = Fypc(t — A8) |
;

Update responses of only the first m = my + m; modes, i.e.,
Y(t) and Y (¢), using piece-wise exact method

|Update local state using Eq. (20) ‘

Check if any nonlinearity
occurred using Eq. (21)2

t=t—At+At/y

Assign updated
responses and local
states to the time step ¢

| Dyc(t) = Dyt - At/r])iFNLC(t) = Fyc(t — At/n) |

| Predict Y (t) and l_’(t) by Taylor series expansion of Eq. (18) |
1)

| Update local state using Eq. (20) ‘

Check if any nonlinearity
occurred using Eq. (23)2

Estimate Y% (£) and ¥ (¢) from ¥(¢) and ¥(¢)
and the last computed values of ¥ 77y and Y(ﬁ_N)

Evaluate Aﬁkagc for all potential nonlinear locations

based on Y®(¢), Y& ()
3

Evaluate the increment in nonlinear

correction force, AF ,(V’?C, using Eq. (27)
]

Calculate nonlinear correction forces

for the next step, F ;Vk:cl), using Eq. (28)
7

ke 1

Solve for Y**+D () and Y**+D(¢) using piece-wise
exact method and all N modes

No

Yes
Update: local state using Eq. (20) and
all N modes; Dy (t); and Fy;c(t)

Update ¥(t) and ¥(t) using
piece-wise exact method

‘ Update local state using Eq. (20)|

Postprocessing

Figure 1: Flowchart of the proposed AFNA algorithm.
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adopted sequentially until convergence was achieved: (1) modified NR algorithm with time
step At = 0.002 s; (2) NR with line search algorithm and At = 0.002 s; (3) NR algorithm
with At = 0.001 s; and (4) Broyden algorithm with A¢ = 0.001 s. The convergence criteria
were defined as achieving a norm of the displacement increment of 10™® and an increment of
total deformation energy of 10719, The first my = 6 dynamically significant modes, without
additional m, = 0 modes, were considered in the AFNA approach. The initial time step was
taken as At = 0.5 s. In the adaptive process, the scaling factor, v, was taken as 1.0. A time
step modifier of n = 3 was considered. Maximum absolute increments in fiber strains of 107°
were chosen as the convergence criteria.

Wind directions of @ = 0° and a = 90° were considered, which, as can be seen from
Fig. 2(a), correspond to acrosswind and alongwind loading. To ensure a high and similar
level of nonlinearity, the mean wind speed at the building top, v,, was set to 70 m/s in
the acrosswind direction and 65 m/s in the alongwind direction. The dynamic wind loads
acting on the frame for the two wind directions were estimated as random realizations of the
data-informed stochastic spectral proper orthogonal decomposition (POD) model outlined in
[37, 21] (further details on this model are provided in Sec. 4.2.3). The model was calibrated to
a wind tunnel data set obtained from the Tokyo Polytechnic University (TPU) aerodynamic
database [38] for a building geometry consistent with Fig. 2. In particular, the data was
collected on a 1/300 rigid model for a total recorded duration of 32 s using a sampling
frequency of 1000 Hz and wind speed at the model top of 11 m/s. The loads acting on
the 2D frame were estimated as 1/6 of the X-direction loads of the 3D building. The first
five spectral POD modes were considered in simulating the load histories with a sampling
frequency of 2 Hz. To ensure stability and accuracy when carrying out direct integration,
wind loads between two successive sampling points were determined by linear interpolation.
The total length of the wind storm was set to 1" = 600 s, in which the first and last minute

were linearly ramped.

3.4.3. Results

Fig. 4 reports the time histories of the displacement responses at the three recorder levels

indicated in Fig. 2(b). As can be seen, the two response time histories are almost identical,
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Figure 2: Schematic of the 37-story building: (a) Plan view of the building with the extracted 2D frame
indicated; (b) illustration of the 2D frame.

Table 1: Section sizes of the steel frame.

Wide-flange Beams Box Columns
Level Section size Section size (m)
1-10 W24 x 192 D =05
11-20 W24 x 192 D =05
21-30 W24 x 103 D =04
31-37 W24 x 103 D =0.35
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Figure 3: Fiber discretization of the: (a) Box column with D = 0.35; (b) Box column with D = 0.4m; (c)
Box column with D = 0.5; (d) W24x103 beam; and (e) W24x192 beam.
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Figure 4: Comparison of the horizontal displacement response at the: (a) 10th; (b) 20th; and (c¢) 37th floors

for alongwind loads.

demonstrating the accuracy of the proposed AFNA approach. The comparison between the
stress and strain time histories, as well as the hysteretic curves, for alongwind loading is
shown in Fig. 5 for the recorder indicated in Fig. 2(b). Similarly to the global response, it
can be observed that the AFNA approach accurately reproduces the response of the system.
The same level of accuracy is also seen for acrosswind loading, as shown in Figs. 6 and 7
that report the comparison between the displacement and fiber stress-strain responses.
While the comparison of this section was based on two randomly generated alongwind and
acrosswind wind load histories, similar results were seen for a full suite of wind speeds, wind

directions, and wind load realizations, therefore demonstrating the validity of the proposed

AFNA approach.

4. Reliability Assessment Framework through AFNA
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Figure 5: Fiber response comparison for a representative fiber of the exterior first-floor column and alongwind

loads: (a) fiber strain; (b) fiber stress; and (c¢) hysteretic curve.
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Figure 6: Comparison of the horizontal displacement response at the: (a) 10th; (b) 20th; and (c) 37th floors

for acrosswind loads.
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Figure 7: Fiber response comparison for a representative fiber of the exterior first-floor column and acrosswind

loads: (a) fiber strain; (b) fiber stress; and (c¢) hysteretic curve.

4.1. Problem setting

The efficiency and accuracy in analyzing inelastic responses, together with the natural
synergy with dynamic shakedown analysis, makes the AFNA scheme an ideal inelastic re-
sponse simulator within the dynamic shakedown-based wind reliability analysis framework
outlined in [12]. To this end, the reliability of a structure against a limit state of interest,
described through a limit state function, g, that by convention assumes negative values when
the limit state is violated, can be directly measured in terms of the probability of g assuming

negative values and therefore as:

Py =P(g(2) <0) = [ . [ 1]302)) fala)ia (29)

where Z is a vector of random variables that include uncertainties in both the structural
system and external loads; fz(z) is the joint probability density function of Z; and I[g(Z)] is
the indicator function which assumes the value of unity if failure occurs and zero otherwise.
Based on the estimated value of Py, the corresponding reliability index can be evaluated

through the first-order reliability method (FORM) as:
B=o"'(1-P) (30)

where [ is the reliability index associated with the limit state g = 0.
Concerning the limit state functions g, the following four classes of limit states are of

interest [12]:
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1. LS1: component-level yield (traditional limit state used in current design);
2. LS2: system-level first yield;
3. LS3: inability to achieve the state of dynamic shakedown;

4. LS4: inelastic displacement-based limit states.

In particular, as current codes and standards for wind are based on calibration to component-
level first yield limit states, the class LS1 stands as a reference for ensuring design meet
current code requirements. The classes LS2, LS3, and LS4 are consistent with the push
towards explicit system-level evaluation of structural systems that are allowed to experience

controlled inelasticity under extreme winds.

4.2. Model and load uncertainty
4.2.1. Overview

To ensure the reliabilities estimated through solving Eq. (30), and therefore Eq. (29),
are meaningful from a design standpoint, it is important to consider a full range of code-
consistent uncertainties. In general, these will include uncertainty in the model parameters,
gravity loads, and wind loads. Based on the framework outlined in [12], the following sections

will provide an overview of how these uncertainties are treated in this work.

4.2.2. Model and gravity load uncertainty

Of the model uncertainties, the mechanical properties of the materials are of primary
importance. Within the stress resultant setting of this work, these include the yield strength
and Young’s modulus of steel members and the compressive strength of concrete and yield
strength of the steel for reinforced concrete members. These basic random variables, can be
used to completely characterize the uncertainty yield domains, R, of the members composing
the structural system. By observing how the stiffness of reinforced concrete members, can be
directly related to the compressive strength of the concrete, they also define the uncertainty
the structural stiffness K. The systems of this work are dynamic and will therefore be
affected by uncertainty in the damping. By taking advantage of the relationship of the
proposed AFNA scheme with classic modal integration, a straightforward approach to model
this uncertainty, and that will be followed in this work, is to take the damping ratios, &, of

the generalized damping matrix of Eq. (9) as basic random variables.
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The uncertainty in the gravity loads affects both the dead and live load. This uncertainty
can be characterized through the probabilistic models outlined in [39, 40] that were developed
explicitly for carrying out reliability analysis. In particular, as this work is focused on the
reliability of systems subject to extreme winds, uncertain “arbitrary point-in-time” live loads
should be considered for combination with the probabilistic dead loads and stochastic wind

loads.

4.2.3. Wind load uncertainty

Wind load uncertainty must be defined at both the climatological and aerodynamic level.
At the climatological level, the intensity of the wind event is generally characterized through
the site-specific maximum mean hourly wind speed, vy, at a reference height of H. To
account for wind directionality, a sector-by-sector approach can be adopted in which the
uncertainty in vy is characterized for a specified number of wind sectors, typically 8 to 16
[41, 42]. Following this approach, the uncertainty in the largest wind speeds to occur over a
life span of y years in wind sector s can be characterized through the following complementary

cumulative distribution function (CCDF):
Go(vn) =1 = [Fyy (vals)]” (31)

where Fy., (vg|s) is the annual cumulative distribution function of vy conditioned on wind
blowing down sector s. The uncertainty in wind direction, «, within a given sector can be
characterized in a similar manner and therefore through an appropriate CCDF, G4(a|vy).
At the aecrodynamic level, for a given wind speed and direction pair, (vy, «), dynamic wind
loads are required that capture record-to-record variability, i.e., stochasticity. As outlined in
[37, 12], this can be achieved through the use of sotchastic wind load models that are based
on calibrating a spectral proper orthogonal decomposition (POD) model to building specific
wind tunnel data. In general, these data need to be collected using the synchronous multi-
pressure sensing system technique as this allows for the direct estimation, through appropriate
integration of the pressures, of the wind loads acting at each floor of the building. The use
of building-specific wind tunnel data ensures the full capture of any complex aerodynamic

features, e.g., vortex shedding and/or detached flow, seen in the wind tunnel. With this
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model, the ith component of the stochastic wind load vector, F(t; vy, a), can be written as:

N, Ng—1

Fy(t;om, a) = wiwyws Y > 2| Talwi; )|/ xa (@ v, @) Aw cos(wit + 01 (wi; @) + i) (32)

=1 k=1

where: T is the ith component of the wind tunnel estimated spectral POD mode; y; is the

Im(Yy;)
Re(T41)

corresponding spectral eigenvalue; 0;(wy; a) = tan™! ( > is the phase angle; NN; is the
total number of modes used in the representation; élk is the random phase angle that follows
a uniform distribution in [0, 27| and generates the wind load stochasticity; wy = kAw with
Aw the frequency discretization step size; Ny is the total number of frequency steps of the
discretization; and wy, ws, and w3 are random variables modeling the uncertainty that exist
in estimating T;; and x; from wind tunnel data. Lastly, to ensure reasonable initial and final

conditions, each realization of F(t; vy, a) is generally multiplied by an envelope function that

linearly ramps the first and last two minutes of the load history [17, 22, 12].

4.8. Stochastic simulation scheme for reliability estimation

Following the sector-by-sector approach, the problem of estimating the failure probability,
Py, of the system reduces to solving Eq. (29) for each sector and then taking, Py, as the
maximum sectorial failure probability, i.e., as:

Py = max [Py] (33)

1<s< N

where Py, is the failure probability in sector s and N is the total number of wind sectors.
As outlined in [12], Py, can be efficiently solved for small failure probabilities through Monte

Carlo methods based on stratifying in terms of the vy and therefore writing Py, as:

Ne
Pr. = > P(9(Z < O)ls. Buyi) P(Buy) 3
i=1

where: E),, ; the ith interval of a mutually exclusive and collectively exhaustive partitioning of
the wind speed axis; N, is the total number of intervals in the partition; P(g(Z < 0)|s, E,,, ;)
is the probability of limit state violation condition on wind speeds belonging to sector s and
wind speed interval E,,, ;; while P(E,,, ;) is the probability of vy belonging to E,, ; that can
be directly estimated from CCDF of Eq. (31). It should be observed that the formulation

of Eq. (34) is based on the assumption that P(FE,, ;) is known with sufficient accuracy.
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Basically, the stratification of Eq. (34) is advantageous as it reduces the estimation of Py, to
the estimation of a series of conditional probabilities, P(g(Z < 0)|s, E,,, ), that are no longer
rare event problems and can therefore be solved using standard Monte Carlo methods. As
discussed in [12], the efficiency of the scheme depends on the stratification, and therefore the
wind speed intervals E,,, ;. An effective approach for their definition is to first observe that
the lower bound of the first interval, vflﬂl, must be zero while the upper bound of the last
interval, UIU{’ ~., must be infinity. The remaining bounds can then be defined by specifying an
equal increment of the square of wind speed, (vy;)* — (vf;;)? = (vjzn,)?/(Ne — 1), and fixing
UIL{’ ~. based on the expected/target failure probabilities associated with the limit states. In

general, experience suggests eight to ten intervals are sufficient [41, 42].

4.4. Integration with AFNA

In integrating the AFNA scheme with the stochastic simulation scheme of Sec. 4.3,
elastic solutions for all samples are first obtained through modal analysis (Eq. 8), based
on which the multipliers s. and s, can be efficiently evaluated as outlined in Sec. 2.2.
Subsequently, the AFNA scheme is used to estimate the inelastic response time histories
for all samples in which inelasticity occurs (i.e., s, < 1). It is important to note that,
unlike the strain-based scheme used in the framework outlined in [12], the AFNA scheme is
capable of accurately estimating responses for both shakedown and non-shakedown samples.
Therefore, in estimating the probabilities associated with exceeding any displacement-based
limit state, these will no longer be conditioned on the system reaching the state of shakedown,
i.e., the failure probabilities and associated distribution functions will fully capture behavior
subsequent to shakedown. In addition, for each sample of the simulation full responses time
histories are generated for the displacements, velocities, and accelerations at all degrees of
freedom, as well as hysteretic behaviors including deformations and forces at all integration
points of the discretization, therefore providing a far more comprehensive picture of the

inelastic response of the structural system at and beyond the state of dynamic shakedown.

5. Case Study

5.1. Description
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5.1.1. Building system and numerical modeling

A 3D 45-story reinforcement concrete (RC) core building located in New York City and
designed by the ASCE 7-22 committee on performance-based wind engineering is considered
for this case study. As shown in Fig. 8, the core is composed of multiple shear walls that are
connected through the link (coupling) beams at each floor. The total height of the building
is 180.6 m , with a story height of 4 m. The concrete compressive strength, f!, reinforcement
strength, f,, modal damping ratios, ¢, dead loads, D, and “arbitrary point-in time” live
loads, Lgp, are all considered as random variables with the characteristics summarized in
Table 2. In addition, a nominal perimeter cladding surface load of 1.2 kN/m was considered.

The Young’s modulus of the concrete, which is considered of normal strength, is assumed to

be given by £, = 4700\/ﬁ (Mpa) and is therefore a derived random variable.
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Figure 8: The case study building: (a) Core; (b) Plan view; (¢) Modeling strategy; (d) 3D finite element

model.

In developing the finite element model of the structure, rigid diaphragm constraints were
used to model the in-plane stiffness of each floor. The shear walls were modeled using equiv-

alent columns (modeled with displacement-based beam-column elements) and rigid links, as
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Table 2: Description of random variables considered for the 45-story reinforced concrete building.

Nominal Nl(\)/[ri?r‘:al CoV*  Distribution Reference

, 69 (MPa) 1.09 0.11 Normal [43]

¢ 83 (MPa)  1.08 0.11 Normal [43]
fy 414 (MPa) 1.13 0.03 Normal [43]
& 2% 1 0.4 Lognormal [44]
D ; 1.05 0.1 Normal (39, 40]
Lapt - 0.24 0.6 Gamma [39, 40]
w1 1.0 1.0 0.075%* Normal [45]
wo 1.0 1.0 0.05 Normal [46]
ws 1.0 1.0 0.05 Normal [46]

* CoV: coefficient of variation.

** Related to record duration, takes 0.075 since the full-scale loads have a duration of 1 hour.

Table 3: Nominal floor loads of the 45-story reinforced concrete building.

Self Load [kN/m? Superimposed Dead Load [kN/m?] Live Load [kN/m?]
2.39 0.72 3.11

illustrated in Fig. 8. To properly model the torsional stiffness of the building, the rota-
tional constraints at the ends of each rigid link are released. The link beams were modeled
with displacement-based beam-column elements. All the displacement-based beam-column
elements had five integration points. The natural frequencies of the first three modes were
f1 = 0.246 Hz, f, = 0.305 Hz, and f3 = 1.01 Hz when all random variables assumed their
nominal values and the structure is modeled as linear elastic. In addition, 3D piecewise
linear yield surfaces with 32 surfaces were considered for modeling the yield domains asso-
ciated with each shear wall and link beam section. Geometric nonlinearity was considered
through the linearized P-Delta model outlined in Sec. 3.3. The subsequent modeling and
new developments were carried out in WiRA (Wind Reliability Analysis), a standalone free-
ware application of the Resilient and Efficient Structures Laboratory (RESLab) that is freely

downloadable at: https://reslab.engin.umich.edu/wira-software.
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5.1.2. Wind loads

The stochastic wind loads were generated through the application of the wind tunnel
informed spectral POD model outlined in Sec. 4.2.3. Wind tunnel data, provided by Cermak
Peterka Petersen (CPP), was collected through the instantaneous measurement of pressures
on the surface of a 1:400 scale building model. Data was collected for 131.04 s at a sam-
pling frequency of 250 Hz and 36 wind directions, o« = {0°,10°,...,340°,350°}. Through
appropriate scaling based on Strouhal number matching and integration to the floor centers,
the data provided an experimental realization of the two translational forces and torsional
moment (about a vertical axis) acting at the center of mass of each floor. It should be
noted that, although the Strouhal number matching is well-established and widely used, it
unavoidably introduces errors owing primarily to the violation of the Reynolds number sim-
ilarity requirement. However, for bluff bodies, and therefore the majority of buildings, these
errors are generally negligible [47]. From the cross-power spectral density of this data, the
first five frequency-dependent spectral POD modes and eigenvalues were estimated and used
to calibrate the stochastic wind load model of Eq. (32). In particular, given a mean hourly
wind speed of interest, vy, and associated direction, a, the model was calibrated to generate
realizations of the vector-valued stochastic wind loads, F(t; vy, o), with a total duration of
3840 s with a sampling frequency of 2 Hz. The loads were subsequently modified by first
ramping up/down the first /last 2 minutes and then multiplying by w;, wq, and w3 to account
for the uncertainties in the wind tunnel experiments due, respectively, to the finite length of
the wind tunnel data, the use of scale models, and the presence of observational errors. The
probabilistic properties of wq, ws, and ws are reported in Table 2.

To characterize the intensity of wind events, the probability distribution of the site-specific
annual largest non-directional mean hourly wind speed is required. This was estimated from
the point values of the 3 s gust wind speeds, vss, reported in the wind speed maps of the
ASCE 7-22 for the mean recurrence intervals of: 300, 700, 1700, 3000, 10000, 100000, and
1000000 years. These were transformed to site-specific mean hourly wind speeds through the

expression:

vg =b (%)aUSS (35)

where b and & are terrain exposure constants respectively taken as 0.45 and 1/4 which cor-
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Table 4: Values of LR for different wind direction sectors.

Sector N NE E SE S SW W NW
LR 0.78 078 0.7 07 07 078 1 0.84

respond to Exposure Category B [48], while H is the height of the building. The obtained
annual mean hourly wind speeds were subsequently fit to a Weibull distribution. This dis-
tribution was subsequently transformed, based on the classic assumption of independent
maximum annual wind speeds, to the distribution function of the mean hourly speeds to
occur in an observation period of 50 years, lifespan over which the reliability analysis will be
carried out. The resulting non-directional hazard curve is shown in Fig. 9.

As outlined in Sec. 4.2.3, the sector-by-sector method is adopted for accounting for wind
directionality. In calibrating the approach, eight wind sectors were considered. As illustrated
in Fig. 10, the sectors coincided with the compass directions: N, E, S, W, NE, SE, SW, and
NW. In particular, the mean hourly wind speed occurring in a given sector, vy, was linearly

related to the non-directional site-specific mean hourly wind speed, vy, as:
v H =V LR?J H (36>

where LR is a location-specific load ratio. Values of the load ratio for New York City were
provided by CPP and are reported in Table 4. The uncertainty in the wind direction within

a given sector was modeled by considering o as uniformly distributed in each sector.

5.2. Reliability analysis

In calibrating the AFNA-based reliability analysis of Sec. 4, the stratified sampling

scheme was based on dividing the hazard curve into Ny = 8 wind speed strata, FE, of

et
equal squared wind speed difference, as illustrated in Fig. 9. The lower bound of the 8th
and last strata was calibrated by setting the annual failure probability as 3.0 x 10~°, which
corresponds to the annual failure probability of an ASCE 7-22 Risk Category II building [49].
Using this stratification of the non-directional hazard curve together with the relationship of

Eq. (36), 400 samples per sector were used to estimate the failure probability in each sector

for a total of 3,200 samples.
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at the reference height.

Figure 10: Illustration of wind direction sectors.
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Failure probabilities, and associated reliability indices, were estimated for the classes of
limit states outlined in Sec. 4.1 and therefore for component yield (LS1), first yield of the
structure (LS2); inability to achieve the state of dynamic shakedown (LS3), and exceedance

of the following limit states on displacement:

1. LS4a: peak interstory drift DATXJ- or DA?“y,i > h;/100;
2. LS4b: peak drift at the building top Xx .45 or Xy45 > H/200;

3. LS4c: permanent set DTXJ» or ﬁrm > h;/1000.

where h; is the height of the ith floor; H is the total height of the structure; while ljrx,l-,
DAryﬁi, Drx;, and Dry; are respectively the peak interstory drift in the X direction, peak
interstory drift in Y direction, residual interstory drift in X direction, and residual interstory
drift in Y direction at the ith floor. It should be observed that the limit states of LS4b
and LS4c are based on those suggested in [1] for the performance objective of Continuous
Occupancy. Because no explicit threshold is suggested for peak interstory drift, LS4a was
based on discussions with the Authors of [1] and is considered consistent with LS4b.

In estimating the nonlinear responses through the AFNA algorithm, the first three modes
were considered as dynamic (i.e., characterized by both a dynamic and background compo-
nent), with the subsequent three modes considered as background modes, while all remaining
modes were considered quasi-static. The initial time step was taken as At = 0.5 s. In the
adaptive process, the scaling factor v for identifying nonlinearity was taken as 0.9. The time
step modifier, 7, was taken as an integer such that the modified time step, At/n, was less
than or equal to 1/4 of the third dynamic modal period considered in the analysis. The

tolerance for the convergence of the nonlinear correction forces was set to ep,,, = 1 x 107°.

5.3. Results

5.3.1. Preamble

The results obtained through the reliability analysis are discussed in this section. In
particular, the responses of a representative shakedown and non-shakedown sample are first
discussed in detail. The responses of the shakedown sample obtained through AFNA are

verified by comparing them with those obtained from the strain-driven stress resultant dy-
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namic shakedown scheme [21, 22, 12]. Second, the resulting reliability indices and exceedance

probabilities are discussed.

5.3.2. Responses of representative samples

To illustrate the capability of the AFNA scheme for efficiently simulating a full range of
response time histories for both shakedown and non-shakedown samples, two such samples
are discussed here. In particular, the shakedown sample is for a wind direction of o = 280°
and wind speed vy = 65.22 m/s (mean recurrence interval (MRI) = 10981 years). The
multipliers for this sample are s, = 0.83 and s, = 1.16. The peak and residual interstory
drifts obtained through the strain-driven stress resultant shakedown scheme outlined in [12]
and AFNA are comparatively shown in Fig. 11. It is observed that both the peak and
residual interstory drifts by the two schemes are consistent. The residual interstory drifts by
AFNA are smaller than those of the strain-driven stress resultant shakedown scheme. This
can be traced back to how the strain-driven shakedown schemes estimate the asymptotic
response under an infinitely repeated wind load [21, 22, 12|, which will in general cause
overestimation, while the AFNA scheme provides estimates of the actual response from the
excitation. In addition, as a step-by-step solution method, the AFNA scheme is capable of
estimating the entire response time history, at any degree of freedom or integration point of
the discretized system. As an illustration, the roof displacement in the X and Y directions,
as well as rotation about the Z direction, are shown in Fig. 12.

The locations of the 68 elements experiencing inelasticity (out of the 585 total displacement-
based beam-column elements of the discretization) are shown in Fig. 13(a). Among the
integration points experiencing inelasticity, the 1st integration point of the 4th element is
selected as representative. Fig. 13(b) reports the section deformation and forces, including
axial deformation €, and force N,, curvatures x,, ., and moments M,, M, where the inelas-
tic response is clearly visible. Fig. 13(c) illustrates how the force N, — M, — M, trajectory
moves within the 3D yield domain as the proposed AFNA scheme finds the solution consid-
ering yielding in the 3D domain with plastic deformations governed by the associated flow
rule. Fig. 13(c) also illustrates how yielding occurs with respect to the yield domain of the

selected integration point. Similar information is also available for any integration point of
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Figure 11: Comparison of the peak (a)-(b) and residual (c)-(d) interstory drifts in the X and Y directions

obtained from the stress resultant shakedown and AFNA schemes.

interest. Moreover, in addition to the full range of response time histories and hysteretic
curves, the AFNA scheme exhibited high efficiency requiring only 16.16 s to find the solu-
tion, which is considerably less than the 124.15 s taken by the strain-driven stress resultant
shakedown approach (times estimated using a personal computer with Intel(R) Core(TM)
i7-8700 @ 3.20 GHz processor).

The strain-based shakedown scheme is not capable of estimating inelastic responses for
non-shakedown samples. The responses of these samples, however, can be solved by the
AFNA scheme. This enables the AFNA approach to analyze samples with strong inelasticity
and facilitates the estimation of reliabilities associated with limit states that are closer to
incipient collapse. To illustrate this, a strongly inelastic non-shakedown sample, caused by
wind loading with v = 270° and vy = 64.35 m/s (MRI = 8917 years), is discussed in the
following. The multipliers of this sample were s, = 0.41 and s, = 0.60. Fig. 14 shows the
nonlinear modal hysteretic curves, i.e., Y; vs qbiTFNL, for the three dynamic modes considered
in the analysis. This provides a clear picture of the global inelastic behavior of the system and
is an output that is exclusive to the AFNA approach (i.e., traditional step-by-step integration

schemes do not provide this information as they are not based on model decomposition). In
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and forces; and (c¢) 3D yield domain and trajectory of N, — M, — M, estimated by AFNA at the 1st

integration point (red points in (a)) of the 4th element.

particular, it can be seen that all three modes have observable inelasticity, with the second
mode exhibiting extremely strong nonlinearity with significant residual deformation. The
peak and residual interstory drifts are shown in Fig. 15. It is observed from Fig. 15(c) that
the residual interstory drift is large and close to the peak value of Fig. 15(a). This is consistent
with Fig. 16, where, compared to the dynamic component of the roof displacement in X
direction, the residual component is dominant and accumulates throughout the entire history
indicating a ratcheting type failure of the system. In total 411 out of the 585 displacement-
based beam-column elements experienced inelasticity, as illustrated in Fig. 17(a). Fig. 17(b)
reports the section deformations and forces at the 1st integration point of the 4th element.

These include the axial deformation €, and force N, curvatures x, and ., and moments
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Figure 14: The nonlinear modal hysteretic curves, Y; vs (],’)Z-TFNL, of the three nonlinear dynamic modes.

M,, M,. Consistent with the observation concerning the roof displacement response in the
X direction, this element has experienced extreme axial deformation and bending about
the local y axis that is accumulating with time. In addition, Fig. 13(c) shows how the
force N, — M, — M, trajectory moves on the yield surface and how yielding occurs with
respect to the yield domain of the selected integration point. It is worth noting that even
for this strongly nonlinear non-shakedown sample, the AFNA algorithm is still capable of
simulating a full range of response time histories, including global displacements as well as
local hysteretic curves. This not only extends the range of responses that can be used in
reliability analysis, as compared to the strain-driven stress resultant shakedown scheme, but

also provides vital insights into the response of individual samples.

5.3.3. Reliability results

With response samples estimated through the AFNA algorithm, reliability indices for
component-level yield (LS1), system-level first yield (L.S2), inability to reach the state of
dynamic shakedown (LS3), as well as the displacement-based limit states (LS4) of Sec. 5.2
were estimated and are summarized in Table 5. It is seen that some reliability indices,
e.g., for LS1 and LS2, are smaller than 3.0, the target reliability for the archetype building
of this case study. Notwithstanding how the system does not meet the target component
reliability, it is interesting to observe how the building has a reliability index of nearly 3.3
at dynamic shakedown. This illustrates how the system has an important plastic reserve in
which controlled inelasticity can occur without risk of potential failure due to low cycle fatigue

and ratcheting as the state of dynamic shakedown occurs which, by definition, excludes the
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possibility of such failure [7, 21].

Fig. 18 reports the conditional (on shakedown occurring) and non-conditional exceedance
probability curves (EPCs) for the residual interstory drifts at the critical floors as well as
the peak roof drift in the X and Y directions estimated from the AFNA scheme and, when
possible, the strain-driven stress resultant dynamic shakedown scheme outlined in [12]. By
comparing the conditional EPCs of the critical peak and residual interstory drifts of Figs.
18(a)-(d), the validity of the AFNA scheme can be clearly seen. Indeed, as would be ex-
pected, both approaches give near identical peak interstory drift conditional EPCs, which is
dominated by the elastic part of the response, with, however, the residual drift conditional

EPCs estimated from AFNA providing smaller exceedance probabilities due to the asymp-
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totic nature of the strain-driven scheme. The sudden change in the conditional EPCs seen
in Fig. 18(d) is a direct consequence of the implementation of the sector-by-sector approach
where a change in the critical sector occurs. Similar results for the conditional EPCs of the
peak roof drift can be seen in Figs. 18(e)-(f).

Concerning the non-conditional EPCs, which are not available for the strain-driven scheme,
the effect of including the non-shakedown samples is clearly evident. Indeed, from Figs. 18(c)-
(d), significantly higher exceedance probabilities are seen for the critical residual interstory
drifts. In addition, from Fig. 18(a) and Fig. 18(e), the residual deformation occurring
in events in which dynamic shakedown does not occur can clearly lead to large increases in
inelastic deformation as the system nears collapse. The estimation of these inelastic deforma-
tions allows for the direct evaluation of performance beyond the state of dynamic shakedown,
an aspect not contemplated by the strain-driven shakedown schemes which, therefore, lack in-
sight into the sensitivity of the inelastic response of the system to load increments beyond the
state of dynamic shakedown. Nevertheless, these results do confirm how the state of dynamic
shakedown ensures the controlled nature of the inelastic deformation occurring in the system
and therefore its use as a system-level performance objective for practical implementation of
performance-based wind design. The possibility to directly estimate this information, while
also estimating the reliability associated with the state of dynamic shakedown without loss of
efficiency as compared to the strain-driven scheme outlined in [12]), highlights the potential

of the proposed AFNA scheme of this work.

6. Summary and conclusions

In this paper, an efficient adaptive fast nonlinear analysis (AFNA) integration scheme was
proposed as a powerful alternative to the recently introduced strain-driven dynamic shake-
down method. The scheme was derived within the setting of stress resultant distributed
plasticity. The method is based on a step-by-step iterative solution process over the entire
duration of the dynamic load history, therefore providing a full range of global and local
response time histories for scenarios both below and above the state of dynamic shakedown.
By developing the scheme within the context of shakedown analysis, the evaluation of the

state of dynamic shakedown is naturally encompassed. The scheme is integrated within a
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Table 5: Failure probabilities and reliability indices for the archetype building.

Limit state Description Failure probability = Reliability index
LS1 First component yield 0.0026 2.80
LS2 First system yield 0.0029 2.76
LS3 Non-shakedown 5.12x107% 3.28
Dr; > h;/100 in X 4.49%107° 3.92
LS4a R
Dr; > h;/100 in Y 4.05x10~* 3.35
Xx.45 > H/200 7.73x107° 3.78
LS4b N
Xy,a5 > H/200 5.05x10~4 3.29
Dr; > h;/1000 in X 2.46x107% 3.48
LS4c _
Dr; > h;/1000 in Y 7.56x107° 3.79

recently developed stochastic simulation framework therefore allowing direct propagation of
uncertainty. This enables the assessment of the reliability against limit states ranging from
component first yield, through dynamic shakedown, to incipient collapse. A full-scale 3D
archetype reinforced concrete tower subject to extreme winds was considered as a case study
for illustration. The AFNA scheme was seen to estimate, without loss of efficiency, inelastic
responses that are consistent in terms of accuracy with the recently proposed strain-driven
dynamic shakedown method. The capability of the scheme to estimate the probabilistic
distributions associated with a full range of inelastic responses beyond shakedown was illus-

trated.
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