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Abstract

Computing small failure probabilities is often of interest in the reliability analysis of engineer-
ing systems. However, this task can be computationally demanding since many evaluations
of expensive high-fidelity models are often required. To address this, a multi-fidelity ap-
proach is proposed in this work within the setting of stratified sampling. The overall idea
is to reduce the required number of high-fidelity model runs by integrating the information
provided by different levels of model fidelity while maintaining accuracy in estimating the
failure probabilities. More specifically, strata-wise multi-fidelity models are established based
on Gaussian process models to efficiently predict the high-fidelity response and the system
collapse from the low-fidelity response. Due to the reduced computational cost of the low-
fidelity models, the multi-fidelity approach can achieve a significant speedup in estimating
small failure probabilities associated with high-fidelity models. The effectiveness and effi-
ciency of the proposed multi-fidelity stochastic simulation scheme are validated through an
application to a two-story two-bay steel building under extreme winds.

Keywords: Failure probability, Stochastic simulation, Multi-fidelity modeling, Bayesian

nonlinear regression, Wind engineering

1. Introduction

Structural reliability analysis aims to compute the failure probability of a given engineer-
ing system (e.g., building structure) considering randomness in the model inputs. For general
systems, the failure probability can be estimated through Monte Carlo simulation (MCS).
However, to achieve a specified accuracy in estimating a failure probability in the range of
107", the required number of samples is approximately 10¥+2 [1]. As a result, comput-

ing small failure probabilities can fast become computationally intensive as it often involves
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many evaluations of the system which is typically simulated by complex numerical models.
For example, to fully capture the nonlinear behavior of building structures under extreme
winds, high-fidelity finite element models are generally required for capturing aspects such
as material and geometric nonlinearity, including global buckling and material fatigue [2].
To address this, several variance reduction schemes that include, but are not limited to, im-
portance sampling [3], line sampling [4], subset simulation [5], and simulation schemes based
on stratified designs [6, 7, 8] have been proposed in the literature. These techniques aim to
reduce the required number of model evaluations so that the stochastic simulation becomes
efficient. However, when dealing with high-dimensionality (e.g., in the order of thousands)
and the need for simultaneous estimation of multiple small failure probabilities, methods
such as importance sampling and subset simulation can become ineffective. For instance, it
is difficult to identify an effective high-dimensional proposal density for importance sampling,
moreover, when the choice of the form of proposal sampling density adopted is inappropri-
ate, the variability of the estimator cannot be controlled in the presence of a large number
of uncertain parameters [9]. Subset simulation, on the other hand, can quickly turn ineffi-
cient when multiple limit states are considered since each limit state of interest requires an
independent implementation of the subset simulation procedure. In contrast, stratified ran-
dom sampling enables simultaneous estimation of failure probabilities, and has been shown
to be not only efficient but also unbiased, consistent (in the sense that it approaches the
true failure probability for large sample sizes), and asymptotically Gaussian [8]. Another
approach is to increase the computational efficiency of the system model by establishing
low-fidelity versions of the numerical model to approximate the system response/output.
Such low-fidelity models can be created by simplifying the underlying physics, e.g., using
simplified material constitutive models, or establishing reduced-order models or data-driven
surrogate models [10]. Although less computationally demanding, such low-fidelity models
might be inaccurate and may yield biased or distorted estimators if used directly for the
uncertainty propagation [11, 12]. To overcome this difficulty, one solution is to develop a
multi-fidelity model which combines, instead of replaces, the high-fidelity model with the
low-fidelity model. The fundamental idea is to leverage the accuracy of high-fidelity models

and the efficiency of low-fidelity models [13, 14]. Various research efforts have been devoted
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to multi-fidelity assisted stochastic simulation. One class of multi-fidelity methods that have
been thoroughly investigated is the control variate approach [15], including multi-level Monte
Carlo [16, 17, 18] and multi-fidelity Monte Carlo [13, 19, 20]. The multi-level Monte Carlo
method combines the outputs of a hierarchy of coarser grid solutions using control vari-
ates, where the trade-off between computational efficiency and accuracy is adjusted by a
parameter, e.g., the mesh size [19]. The multi-fidelity Monte Carlo extends the multi-level
Monte Carlo by allowing arbitrary low-fidelity models that are not limited to coarse grid dis-
cretizations. Multi-fidelity Monte Carlo has also been examined for seismic risk assessment
applications where the quantity of interest is the expected value of risk consequence measures
[21]. However, one drawback of multi-fidelity Monte Carlo is that it requires a linear depen-
dency between the model response and can only provide asymptotic error estimates [22].
Another category of multi-fidelity methods is based on the use of surrogate models. The idea
underpinning these approaches is to integrate information from the low-fidelity models to
improve the prediction accuracy of a single-fidelity surrogate trained on scarce high-fidelity
data [23]. Once trained, this fast-to-evaluate multi-fidelity surrogate model will be used in
place of the expensive high-fidelity model for the subsequent stochastic simulation. One of
the most popular multi-fidelity surrogate models is the multi-fidelity Gaussian process model
(i.e., Cokriging) [24, 25, 26]. Its application in stochastic simulation is being actively studied
[27, 28]. Nevertheless, since the multi-fidelity surrogate models directly map the model input
to the model output, they often suffer from the well-known curse of dimensionality [29]. This
limits its application to problems involving high stochastic dimensionality [22]. Bayesian
multi-fidelity Monte Carlo, another category of multi-fidelity stochastic simulation, was first
proposed in [30] with accuracy and efficiency in uncertainty quantification demonstrated on
complex and large-scale bio-mechanical problems [31]. Bayesian multi-fidelity Monte Carlo
directly predicts the quantitative relationship between the low-fidelity model output and the
high-fidelity model output using a non-parametric Bayesian model, which is then used to
efficiently compute the statistics of the high-fidelity model output [30, 31]. However, since
it allows a more flexible dependence between the low-fidelity and high-fidelity model (e.g.,
non-Gaussian), the posterior distribution of the high-fidelity output given the corresponding

low-fidelity output is computationally intractable, and thus advanced stochastic simulation
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techniques are required to sample from the posterior distribution. To improve the accu-
racy of the regression model in a small data scenario, the Bayesian multi-fidelity model was
further enhanced by including informative features in the model input [22]. Compared to
the multi-fidelity surrogate model, one significant advantage of these Bayesian multi-fidelity
Monte Carlo methods is that they can address high-dimensional stochastic simulation prob-
lems, as they only operate in the model output space or by only adding small dimensional
features [12, 22]. In addition, they can accommodate more complex correlations between
the low-fidelity and high-fidelity models, and thus are more general than the multi-fidelity
methods based on the control variate.

This work proposes a multi-fidelity stochastic simulation scheme to efficiently compute
small failure probabilities of structural systems within the setting of stratified sampling. More
specifically, a low-fidelity model with a fast approximation of the system model is first devel-
oped. Then a probabilistic relationship between the low-fidelity response and the high-fidelity
response is established based on a small number of high-fidelity runs by applying a Gaussian
process regression (GPR) model to estimate the exceedance probability conditional on non-
collapse. Similarly, a Gaussian process classification (GPC) model is established to predict
whether the system collapses given any low-fidelity response. Active learning strategies are
developed to intelligently generate training data for constructing the multi-fidelity models.
Once calibrated, the multi-fidelity models are used to directly predict the high-fidelity re-
sponse and system collapse from low-fidelity samples, based on which the probabilities of
interest are estimated. The proposed multi-fidelity model offers a distinct advantage over
existing methods by directly predicting the high-fidelity response, or system collapse, based
on the low-fidelity response. Indeed, in contrast to many commonly adopted multi-fidelity
surrogate models that focus on mapping the model input to the model output, the approach
in this work operates solely in the model output space. This enables the proposed scheme to
effectively handle high-dimensional stochastic simulation problems. Nevertheless, it should
be noted that the multi-fidelity stochastic simulation scheme of this work may introduce
bias in the estimation of failure probabilities due to the use of Gaussian process models to

approximate the high-fidelity response and system collapse.
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2. Problem Setting

Consider a high-fidelity structural system that maps input, x = [z, 2@, ... 2(™)] € Q C
R" . to outputs, y,(x) € R, where n, is the input dimension. The model input x is charac-
terized by a probability density function p(x). The high-fidelity system model is assumed to
be based on numerical simulations (e.g., finite element models) and, in order to capture the
system behavior with high accuracy, computationally demanding to evaluate. Alternatively,
a low-fidelity model y;(x;), which is inexpensive to run, can be established to approximate the
high-fidelity model output. Generally, the low-fidelity model may have a different modeling
approach from the high-fidelity model, and some variables in the lower-fidelity model might
be omitted [32]. Therefore, the model input of the low-fidelity model is assumed as a subset
of the model input of the high-fidelity model, i.e., x; = [z 2@ . 20 € Q ¢ R
where n,; < n, and x; C x.

The problem of interest to this work is to develop a multi-fidelity stochastic simulation
scheme for estimating the failure probabilities of the system, described by the probability of
the response, vy, exceeding a threshold 4, i.e., as P(y, > d). Without loss of generality, the
proposed scheme explicitly takes into account both non-collapse samples D,,. and collapse
samples D.. Since D,,. and D, are mutually exclusive, based on the total probability theorem,

the failure probability can be expressed as:
P(yn, > 6) = P(yn > 0|Dpe)(1 — P(D.)) + P(yn > §|D.)P(D,) (1)

where P(y, > 6|Dy.) and P(y, > d|D,.) are the exceedance probabilities conditional on
non-collapse, D,,, and collapse, D.. P(D,.) is the collapse probability (i.e., probability of
system collapse), which can be determined through a combination of indicators such as non-
convergence of the numerical model, the deformed shape of the structure at the last converged
time step, and the peak roof drift [33]. For the sake of simplicity, when the system collapses,
yp is always considered to exceed 0, i.e., P(y, > 6|/D.) = 1. The goal of this work is to
therefore estimate probabilities P(y, > |D,.) and P(D,).

By propagating uncertainties through the high-fidelity model, the exceedance probability

conditional on non-collapse (i.e., P(yy > 6|D,.)) can be directly calculated. For the sake of
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brevity, let P,.(yn, > 6) = P(yn > 0|Dpe). The probability of interest is therefore:

1 (X )
Prc(yn > 0) = /If(yh(X))p(X)dx, I (yn(x)) = )= (2)
0 otherwise

where I;(-) is an indicator function that determines whether the high-fidelity response y,

given x exceeds the threshold d. Similarly, the collapse probability can be estimated as:

1 system collapse
P = [Lidpayix, L) =] ! 3)

0 otherwise

where I.(-) is an indicator function that determines whether the system collapses or not.
Since the probabilities in Eq.(2) and Eq.(3) cannot be calculated in closed form for most ap-
plications, they are typically estimated using stochastic simulation techniques such as Monte
Carlo simulation (MCS). The Monte Carlo estimators for the conditional failure probability

and the collapse probability are given by:

B> 0) % 50 3 Tyl (@)
P(D) ~ 1 Y Lx) = 8

where x; is the ith MCS sample generated from p(x), i.e., regions of €2, N is the total number
of MCS samples, and N, is the total number of collapse samples. Finally, the total failure

probability can be estimated as:

p(yh > 5) = pnc(yh > 5)(1 - p(DC)) + p(Dc)

N—N,

~ e S () (1 -3 Ic<xi>> 5 2o Lx)

=1

(6)

For each generated sample x;, the computationally expensive high-fidelity model needs to be

evaluated to obtain the corresponding model output y(x;). In particular, for the estimation



158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

of small failure probabilities, a large number of samples is generally required, especially if
high accuracy is desired. As a result, MCS-based estimation of P(y, > §) can easily lead to

computational demands that exceed available resources.

3. Stratified Sampling-based Monte Carlo Simulation

Stratified sampling is a well-known variance reduction technique. The basic idea is to
partition € into a set of mutually exclusive and collectively exhaustive events, {€2;}1<j<r 2
Ule Q; = Qand Q;NQ = 0, for j # k, termed strata. Sample allocation entails prescribing
the number of samples, N;, for each jth stratum while ensuring the satisfaction of the con-
straint: Zle N; = N. As shown in [8], the optimal allocation of samples between the strata
can be found by solving a convex optimization problem defined in terms of a preliminary
study. In particular, it can be shown that proportional allocation (i.e. N; = NP(€2;)) guar-
antees variance reduction, however, the efficiency gains are insignificant when the samples
from high-probability strata have a small influence on the failure probability.

Once the samples are drawn from the strata, they are weighted and combined to obtain

the stratified sampling estimator, P (yn > 9) as:

L

Plyn>6) =Y Plyn >8] Q) P() (7)
i=1

If carried out in the space of the input random variables, the process of stratification is

performed by defining a mutually exclusive and collectively exhaustive partitioning of a

partial set of the input uncertainties, x, which are termed stratification variables. This

implies that P(Q;) can be readily calculated using p(x). In Eq. (7), P(y, > d | Q;) is the

estimate of the failure probability conditional on €);, and can be obtained by evaluating

Eq. (6) in the jth stratum, and therefore as:

A

Plyn > 5| Q) = Paclyn > 6| Q)(1 — P(D. | 2)) + P(D. | Q)

LS 1 1 ®)
%Nj_Njc Zl Ly (yn(xi)) 1_E§Ic(xi) +EZIIC<Xi>
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where Po.(y, > 6 | Q;) is the estimate of the exceedance probability conditional on non-
collapse and the ith stratum, P(D, | ;) is the estimate of the collapse probability condi-
tional on the ¢th stratum, while N,. is the number of non-collapse samples drawn from the
jth stratum. In particular, the strata-wise sample generation can be performed from the

conditional sampling density function defined for the i¢th stratum as:

X PQ] X Qj
pyl = PO )
0 x ¢ €,

The gains from stratification are higher when the stratification variables are well-correlated
with the target responses such that the strata are internally more homogeneous (in the re-
sponse values) than € as a whole [8].

It is important to note that a k-dimensional stratification with L strata per variable will
result in L¥ strata. If k and L are high-dimensional, this can lead to significant sampling
demands for achieving near-optimal sample allocation and potentially affect the overall effi-
ciency in the estimation of the failure probabilities [8, 34]. Therefore, it is recommended to
select a limited set of stratification variables that are strongly correlated with the responses
of interest [34]. In natural hazards applications, these can take the form of hazard intensity
measures such as the maximum wind speed and spectral acceleration. Further details on the
choice of stratification variables for reliability problems in natural hazards engineering can be
found in [8, 34]. Despite this, stratified sampling offers several advantages in the estimation of
small failure probabilities. Indeed, it enables simultaneous estimation of failure probabilities
and has been shown to be not only efficient but also unbiased, consistent (in the sense that it

approaches the true failure probability for large sample sizes), and asymptotically Gaussian

[8].

4. A Multi-fidelity Stochastic Simulation Scheme

4.1. Overview

Although significant gains in efficiency can be obtained through the application of strat-

ified sampling, it still requires repeated evaluations of the expensive high-fidelity model. To
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address this, a multi-fidelity stochastic simulation scheme within the setting of the stratified
sampling framework of Sec. 3 is proposed in this section. More specifically, two multi-fidelity
models are developed to predict the conditional exceedance probabilities Pnc(yh >0 ] Q)

and P(D, | ;) for each stratum.

4.2. Conditional Non-collapse Ezxceedance Probability

The first multi-fidelity model aims to construct a quantitative link between the low-
fidelity model response g; and the high-fidelity model response ¥, using a probabilistic re-
gression model. The conditional non-collapse exceedance probability, P,.(y, > d | €;), is
then estimated from low-fidelity evaluations and the calibrated multi-fidelity model.

To achieve this goal, the conditional non-collapse exceedance probability for the jth stra-

tum is expanded to include the low-fidelity model output [30], and therefore written as:

Poc(yn >0 | 8) = /P(?/h > 6 |y, )i () dy

(10)
= [ (] ttmmstonldon) vyt

where p;(y;) is the probability density of the low-fidelity model output conditional on the jth
stratum, and p;(y|y;) is the probability density of the high-fidelity model output y, given
the low-fidelity model output y; evaluated at the same model input x generated from p;(x) of
Eq. (9). Eq. (10) implies that estimating P,.(yn > d | ;) using the inexpensive low-fidelity
model requires two important steps: (i) obtaining p;(y;) by propagating uncertainties through
the low-fidelity model; and (ii) obtaining p,(yn|y:) by constructing a probabilistic relationship
between the low-fidelity model response and the high-fidelity model response. Since the low-
fidelity model is cheap to evaluate, p;(y;) can be efficiently estimated by MCS within the jth
stratum. The non-trivial part is to quantify the underlying relationship between y; and y;, in
a probabilistic sense. A probabilistic regression model is used for this purpose in this work.
The regression model takes the low-fidelity model output y; as input and the high-fidelity
model output y, as output and is therefore referred to as a multi-fidelity model. It should
be noted that the model outputs ¥, and y, have a noisy relationship instead of a one-to-one
mapping. In other words, the same y; may correspond to different g, values, and vice versa,

since the low-fidelity model simplifies certain properties of the high-fidelity model.
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4.2.1. Gaussian Process Regression of the Multi-fidelity Model

In order to infer the conditional probability density p;(ys|y;) from the jth stratum, a prob-
abilistic regression model can be established to predict the underlying relationship between
the low-fidelity model output and the high-fidelity model output. To this end, a Gaussian
process regression (GPR) [35] is used in this work due to its flexibility in modeling complex
functions and its ability to provide a full posterior predictive distribution.

In the current problem, given a specific low-fidelity output y;, the high-fidelity output,
Yn, is non-deterministic due to the noisy relationship between the two models. In contrast
to a typical GPR, which aims to approximate a deterministic function output given a set of
observations, the GPR in this work is used to predict a probabilistic relationship. The core
principle of a typical GPR is to assume the target function y, as a realization of a regression
model m(y;) and a Gaussian process £(y;). To account for the probabilistic/noisy relationship
between 1; and y;, an additional noise term ¢ is explicitly assumed and added to the typical

GPR [36]. The GPR model used in this work is then written as:

yn =m(y) +e(y) + ¢
where e(y;) ~ N0, k(y1,4)), € ~ N(0,02)

(11)

The regression model m(y;) is selected as a linear combination of basis functions, expressed
by m(y,) = f(y)*B, where f(y;) is the g-dimensional vector of basis functions and B =
181, B2, - - ., By]" is the vector of regression coefficients. Typically, polynomials of y; can be
used as the basis functions, e.g., linear or quadratic functions of y;. After the mean function
is set, the property of the GPR model is fully determined by the covariance function, or

2 is the variance and W¥(y;,y;) is the correlation

the kernel, k(y;,v)) = 02¥(y;,y;), where o
function. A commonly used kernel function is the squared exponential kernel (i.e., Gaussian

kernel):
N 2 v — il
k(g y) = 0" exp | == (12)

where 6 is the scale correlation parameter (i.e., length-scale) in the correlation function.
Regarding the noise term ¢, a zero-mean Gaussian noise with variance o2 is typically assumed.

The prior distribution over the GPR-based multi-fidelity model in Eq. (11) is then updated

10
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by a set of given data points, i.e., the calibration of the uncertain model parameters in the
mean function, the covariance function, and the noise term including regression coefficients
B3, variance o2, length-scale #, and noise variance 2. The calibration of the GPR model
first requires the creation of a database of n observations based on the low-fidelity and
high-fidelity models. Specifically, it involves evaluations of the high-fidelity model output
Y, = {yn(x¢);t = 1,...,n;} for different inputs X = {x;;¢ = 1,...,m}, and evaluations of
the low-fidelity model output Y, = {y;(x;);t = 1,...,n;} for different inputs X; = {xy;t =
1,...,n:}. The set {Y;, Y} is the so-called training set. The selection of the training data
will impact the accuracy of the multi-fidelity model. To ensure the model has good accuracy
over the design space, a space-filling strategy combined with an active learning strategy is
adopted. More details on the selection of the training data will be discussed later. Finally,
in order to calibrate the unknown model parameters using the training data, maximum

likelihood estimation (MLE) is used to obtain point estimates of the parameters. Due to the

Gaussian properties, the likelihood function is given by:

1

L 2.0,0%Y),) =
(B,a, ,cr€| h) (2702)’”/2\‘11—1—(02/062)Int|1/2x

1 (13)
exp |~ 5.5 (Yi ~ BB (¥ + (0%/o))L,) " (Y, ~ FB)

where F = [f(y11), f(yi2), - - ., f(ym, )], ¥ is the correlation matrix evaluated over Y;, and I,,,
is the identity matrix of size n; X n;.

Conditional on the observations Y, and the optimal selection of the model parameters,
the GPR model gives a prediction at any new low-fidelity model output ¥, that follows a

Gaussian distribution with mean g5 (y.) and variance o7 (yi.) given by:
In(ye) = £(y) "B + k(y) 'K (Y), — F3") (14)

O-Sh (yl*) = k(yl*a yl*) - k(yl*)TKilk(yl*) + u<yl*)T(FTK71F)_1u(yl*) + (0-62)* (15>

where k(y;.) is the n;-dimensional covariance vector between y;, and each element in Y, given
by k(yi) = (KW, yi1), kW, Y12, - - > K (Y1, Yin, )] 75 K is the covariance matrix evaluated over
Y;; while u(y;,) = FT K 'k(y;,) — f(y1.). Here 8* = (FTK'F)"{(F'K Y},) corresponds to

11



278

279

280

281

282

283

284

286

287

288

289

290

291

292

293

294

295

297

298

299

300

301

302

303

304

305

306

the maximum likelihood estimate of the parameter 3.
Similar to a noise-free GPR model, the predictive variance of the proposed GPR model
contains a part (i.e., the first three terms on the right-hand side of Eq. (15)) that quantifies

the uncertainty on the mean prediction. Apart from this, the predictive variance of the

2

2)*, which corresponds to the contribution from

proposed GPR model also includes a term (o
the noise assumed in Eq. (11). This term captures the inherent uncertainty of the high-
fidelity model output ¥, given a low-fidelity model output y; evaluated at the common model

input x.

4.2.2. Homoscedastic and Heteroscedastic Noise

The above GPR-based multi-fidelity model assumes the variance of the noise term e to be
constant, i.e., homoscedastic. However, in many cases, the noise could vary with the model
input (i.e., y; in this study). Therefore, a GPR with heteroscedastic noise can be constructed
in which the noise € is assumed to follow a zero-mean Gaussian distribution with a non-
constant variance € ~ N(0,0%y(y;)), where v(y;) is a scaling factor. If prior information
about the noise is available, it can be incorporated in selecting v(y;). Otherwise, to avoid
model over-fitting and challenges in optimizing the hyperparameters in v(y;), a parsimonious
selection of ~(y;) is suggested [36]. For this purpose, a second-order polynomial is chosen
in this study to describe the scaling factor, i.e., v(y;) = 81 + B2y + B,3y7. In the scaling
factor, the coefficients (i.e., hyperparameters) 5,1, 5,1, and (3, can be calibrated using MLE,
where the likelihood function is Eq. (13) with the variance of the noise term o2 replaced by
?y(y;). The predictive mean of the heteroscedastic GPR model (i.e., the GPR model with
heteroscedastic noise) is the same as the homoscedastic GPR model (i.e., the GPR with
homoscedastic noise), given by Eq. (14). The predictive variance of the heteroscedastic
GPR model is given by Eq. (15) with (02)* replaced by (0%)*(8%, + By + Bisy), where

(o?)*, "1, B39, B3 are the maximum likelihood estimates of the unknown parameters.

4.2.8. Active Learning for Optimal Selection of Training Data
The quality of the estimated conditional exceedance probability largely depends on the
predictive accuracy of the constructed GPR model in terms of both the predictive mean

and the variance. Typically, to ensure good accuracy over the entire design space (i.e. all

12
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possible low-fidelity model outputs), a selection that evenly fills the design space can be used.
Due to the significant computational cost of the high-fidelity model, it is of interest to use a
small number of training data to obtain the desired prediction accuracy for approximating
the underlying relationship between y; and y,. As a result, randomly selecting low-fidelity
model output samples to label (i.e., identify for corresponding high-fidelity model runs) is
not sufficient, since non-informative samples can be selected while informative samples (e.g.,
in the region with higher uncertainty in ;) could be overlooked [37].

To address this issue, an active learning sampling strategy, which enables a more wise

allocation of the training data, is proposed. The overall idea of the sampling strategy is

2
Yn’

to thoroughly explore the region where the prediction uncertainty (i.e., variance), oz , is
large. The active learning process begins by constructing a candidate pool comprising strata-
wise MCS samples of x; (representing the low-fidelity model input). The low-fidelity model
is evaluated to obtain corresponding responses of these samples. Subsequently, a learning
function (introduced subsequently) is computed for each low-fidelity response to assess its
informativeness. Guided by the learning function, the optimal low-fidelity sample is chosen.
It is important to note that the low-fidelity model input, x;, is assumed to be a subset of
the high-fidelity model input, x;,. To acquire the corresponding high-fidelity response of the
optimal sample, x; is augmented by randomly sampling the missing components defining x;,.
By evaluating the high-fidelity model for the augmented sample, the corresponding response is
obtained. The resulting pairs of low-fidelity and high-fidelity responses are then incorporated
into the training set for model refinement. The GPR model is subsequently updated using
the expanded training data set. The active learning process follows an iterative approach,

where the steps outlined above are repeated until a predefined stopping criterion is satisfied.

More specifically, The sampling strategy adopted here is mathematically expressed as:

yl** :argmaxyleYl,candiU(yl) (16>

where U(y,) = aygh (y:) is the learning function, and Y .una; are the strata-wise MCS samples
from the low-fidelity model in each active learning iteration, excluding those already selected.

The philosophy underlying the active learning strategy is that the region with higher predic-
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tion variance is not only where uncertainty exists on the mean prediction, but also where a
high level of noise in the underlying relationship between y; and y;, exists. Allocating train-
ing samples to this region will, therefore, be more efficient in producing a globally accurate
model. However, a disadvantage of such an active learning scheme is that it can lead to
clustering of the added samples. To avoid clustered samples, the following adjusted learning

function based on the weighted predictive variance is proposed:

dmin i
Ulyi) = o0, (41i) (17)

N )
Ei:C(lmdl dmin,i

where y;; is the ith sample from the candidate pool Y ungi, and dpp,,; is the minimum
distance between the ith candidate sample and all the training samples in Y;. The adjusted
learning function penalizes the candidate samples which are very close to the samples that
are already in the training set and thus avoids adding samples with similar g; values.
Before applying active learning sampling, an initial set of training data is required. In
surrogate modeling, Latin Hypercube Sampling (LHS) is often used to this end. However,
in the proposed GPR-based multi-fidelity model, the input is the low-fidelity output, ¥,

¢

which has an unknown design space. Therefore, a “near” space-filling sampling strategy [22]
is applied in which the low-fidelity samples, y;, are first sorted and divided into a number
of bins. Subsequently, an equal number of samples are randomly selected from each bin,
therefore, ensuring the initial training data has adequate space-filling properties.

The active learning process continues until a stopping criterion is satisfied. Different
types of stopping criteria have been proposed for reliability analysis applications. They
can be grouped into learning function-based criterion, accuracy of failure probability-based
criterion, and criteria based on the stability of failure probability or limit state surface [38].
In this work, the following stopping criterion based on the stability of the multi-fidelity model
is adopted:

Azlvz;;_vp—ﬂga (18)
Up + Qi

where 0, and ©0,_; are the average predictions over the selected inputs, y;, in the pth and
(p — 1)th iterations; «, is a small value to avoid numerical issue in calculating A when 0, is

zero which can be chosen as 1078 [39]; while « is the convergence threshold. The selected
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y; values are uniformly distributed between an interval determined by the minimum and
maximum y; of the non-collapse MCS samples from each stratum. Eq. (18) is satisfied when
the difference between the averaged prediction in two consecutive iterations is smaller than
a, i.e., the prediction becomes stable. A potential issue is an early termination when the
initial GPR model is inaccurate [38]. One remedy is to track the variation of the prediction

in multiple iterations through the modification:

A= B (19)

Up +
where for Eq. (19) to be deemed satisfied, it must be satisfied for ¢ = 1,2, ..., N. where N, is
set by the user. It should be noted that the adaptive sampling stops only when the criterion

in Eq. (19) is satisfied for both the predictive mean g, and standard deviation oy, .

4.8. Conditional Collapse Probability

4.3.1. Quverview

The estimation of the probability of system collapse conditional on the jth stratum can
be described as a binary classification task. In this task, collapse is labeled as 1 while non-
collapse is labeled as 0. Similar to the estimation of the conditional non-collapse exceedance
probability, it is proposed to efficiently evaluate the low-fidelity model to obtain MCS so-
lutions in each stratum, which are then used to inform through a constructed classification
model whether the system collapses and estimate the stratum conditional collapse probabil-
ity. The multi-fidelity model takes the low-fidelity response, y;, as the model input while
providing as output the outcome of the indicator function I, = 1 or 0. To associate the low-
fidelity response with system collapse, the conditional collapse probability, P(D,|€;), can be

rewritten as:

P(D.|Q;) = /Ic(yl)pj(yl)dyl (20)

For a given sample x, the low-fidelity model is first evaluated to obtain y;(x). Then, based
on the constructed classification model, whether the system collapses or not (i.e., I.) can
be quickly predicted from the low-fidelity response y;(x). The estimator of the conditional
collapse probability remains the same as that reported in Eq. (8).
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4.83.2. Gaussian Process Classifier of the Multi-fidelity Model

The multi-fidelity model aims to construct a classifier to predict the indicator function I..
given any low-fidelity response y;. To this end, a Gaussian process classification (GPC) model
is used here. In contrast to other classification models, such as support vector machines, GPC
provides a full predictive distribution that can be further used for active learning [40]. The
idea behind the GPC is to assume a Gaussian process prior over a latent function, f(y;),
and then transform it through a logit or probit function to obtain the prior over the target
function I. [35].

It should be noted that f(y;) cannot be observed which, however, is not an issue. The
adoption of f(y;) is only for the convenience of formulating the GPC model. Following GPC
convention, a zero-mean Gaussian process is assumed over the latent function, f(y), i.e.,
fy) ~ N(0,k(y;,y')) where k(y;, ) is again the kernel function with length-scale 6 and
variance o2. The Bayesian inference of GPC involves firstly calculating the predictive distri-
bution over the latent function f over any new low-fidelity output y;. and subsequently using
this distribution to compute the probabilistic prediction over the corresponding indicator
function I, i.e., p(I.. = 1|Y;,Z.,yi.). More details on the GPC inference are presented in
the Appendix. Finally, the predicted class label, ic(yl*), (i.e., whether or not the system col-
lapses) from the multi-fidelity classification model can be obtained by applying a threshold to
the predictive class probability, i.e., ic(yl*) =1if p(I.. = 1Y, Z., y1x) > 0.5 and ic(yl*) =0,

otherwise.

4.3.3. Active Learning for Optimal Selection of Training Data

Since the GPC provides a probabilistic prediction over the class labels, an active learning
strategy can be used to adaptively select the training data. The goal is to add samples that
can maximize the capability of the classification model in terms of discriminating collapse
samples from non-collapse samples, which ultimately reduces the cost of running the high-
fidelity model. The most commonly used active learning for classification is to use the
uncertainty measure which selects the sample where the classification model is the most
uncertain to label [37]. For the GPC model, the sample with posterior predictive class
probability, p(I.. = 1|Y;, Z., yi.), close to 0.5 should be where the classification model is the
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close to 0 [40, 41]. The learning function of active learning for GPC is written subsequently

most uncertain. Based on Eq. (26), this learning function is then transformed to

written as:

yl** :argmaxyleYl,candiU(yl> (21>

where Ul(y;) = % The active learning process continues until a stopping criterion is
i

reached. A similar stopping criterion as reported in Eq. (19) is used in this work.

4.4. Quverall Algorithm

The overall algorithm of the proposed multi-fidelity stochastic simulation scheme is shown
in Fig. 1. The algorithm starts with training the classification model (described in Sec. 4.3.2)
using the active learning described in Sec. 4.3.3. Once the classification model is calibrated,
the algorithm proceeds to the regression part which trains the regression model (described in
Sec. 4.2.1) with the active learning strategy described in Sec. 4.2.3. It is noteworthy to point
out that the regression model can be pre-trained using the non-collapse samples when the
classification model is being trained, or it can start to be trained after the classification model
is calibrated. In addition, the trained classification model is used during the training of the
regression model to determine if a selected sample is a collapse or non-collapse sample. The
high-fidelity model is then only evaluated if the selected sample is predicted as non-collapse.
This helps in reducing the computational effort of running the high-fidelity model. To avoid
confusion, in the following, the GPR-based multi-fidelity model will be referred to as the
multi-fidelity regression model, and the GPC-based multi-fidelity model as the multi-fidelity
classification model. It should be noted that this multi-fidelity stochastic simulation scheme is
performed within each stratum of the stratification. Once the multi-fidelity classification and
regression models are trained, they can be used directly to predict the conditional collapse
probability, ]—é’(DC | ©2;), and the conditional non-collapse exceedance probability, pnc(yh >0 |
Q;), of Eq. (8). More specifically, N; MCS samples of x are first generated from p;(x), and
then the low-fidelity model is evaluated to obtain samples of y;(x). The next step is to use
the trained multi-fidelity models to predict the conditional collapse probability P(D, | Q)

A

and the conditional non-collapse exceedance probability, P,.(y, > 0 | €2;), given respectively
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Figure 1: Flowchart of the proposed multi-fidelity stochastic simulation scheme.

by: A
N—Nje .
Puln >0~ ——— S @ (M) 2
Nj = Nje o oy, (y1(x5))
N, .

~ 1 i N
P<Dc | Q) ~ Ic(yl(xz)> _ 1'je (23>

R/ ; N;

where x; is the ith sample, and Njc is the estimated number of collapse samples; g, (y;(x;))
and oy, (yi(x;)) are the predictive mean (Eq. (14)) and standard deviation (Eq. (15)) at v (x;)
from the multi-fidelity regression model; and ic(yl (x;)) is the predicted class label from the
multi-fidelity classification model given y;(x;). It follows that the estimator of the conditional
failure probability for the jth stratum using the multi-fidelity stochastic simulation scheme
is given by by Eq. (8) after plugging in Eqs. (22) and (23). After obtaining the conditional
failure probabilities for all the strata, the total failure probability can be calculated from

Eq. (7).

5. IMlustrative Example

To illustrate the proposed multi-fidelity stochastic simulation scheme, it is applied to the
two-story two-bay steel frame subject to extreme winds outlined in [42]. The building is

assumed to be located in an urban region of Miami, USA, and has a total height of H = 10
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Figure 2: Two-story two-bay steel frame under wind excitation (from [42]).

m. As illustrated in Fig. 2, the structural system of the building is defined by four moment-
resisting (MR) frames (two acting along the short side of the building and two acting in the
long direction). Of interest to this work is the performance of the MR frame acting along
the short side of the building for which the critical wind direction is perpendicular to the
long side of the building. As reported in [42], the MR frame is composed of two unique box
sections for columns (C1 and C2) and two unique W x24 sections for the beams (B1 and B2).
The dynamic wind loads are assumed to act at each level of the building. Gravity loads are
indicated in Fig. 2. The section sizes were selected to achieve an elastic response under a
700-year return period wind load and satisfy a peak roof displacement limit of H/300 under
a 25-year return period wind load.

Limit states are considered on the maximum interstory drift ratio and ductility ratio of
the members. In particular, the ductility ratio is defined as the maximum strain (during the
wind event) over the yield stain of the most critical element in the structure. System collapse

is defined as the maximum interstory drift ratio exceeding 5% [43].

5.1. Implementation Details

5.1.1. High-fidelity model
The steel frame shown in Fig. 2 was modeled in OpenSees. Each member was modeled
using two nonlinear force-based fiber elements. Five integration points were used for each

element and fourteen fibers were used for each section (fiber discretization illustrated in [42]).
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Fiber damage resulting from low-cycle fatigue and potential fiber fracture was considered
and modeled according to the linear damage accumulation rule and the modified rain flow
cycle algorithm [44]. The cyclic behavior of steel was simulated by the Menegotto-Pinto
material model [45]. Large displacement effects were considered in the high-fidelity model
by adopting a corotational transformation. These settings were implemented to ensure that
the high-fidelity model accurately captures the nonlinear behavior, including the collapse, of
the structure subjected to extreme winds. For the nonlinear analysis, a Rayleigh damping
model was adopted to represent the inherent structural damping [46]. The first two natural
frequencies of the structure were approximately f; = 0.51 Hz and f; = 1.22 Hz, which ensures
a certain degree of dynamic excitation by the wind loads. However, the modal frequencies
will be affected by the structural uncertainties described in Sec. 5.1.3, leading to deviations

from the above-mentioned values.

5.1.2. Stochastic Wind Model

A local wind climate model, for describing the mean wind speed profile, and a spec-
tral representation model, for describing the fluctuating component of the wind speed, were
adopted in defining the wind loads. For the wind speed profile, the widely used power law
was adopted, while for the fluctuating component of the wind speeds, the target cross power
spectral density matrix proposed by Kaimal was adopted [47] with coherence functions as
outlined in [48]. The wind forces were considered to act laterally in the frame’s plane at
the level of each floor. A quasi-steady model was used to transform the spatio-temporally
varying wind speeds to wind load histories acting at the two floors [49, 50]. In particular,
the quasi-steady model was calibrated assuming an influence width of 15.24 m for each floor,
a quasi-steady pressure coefficient of 1.2, and air density 1.25 kg/m®. The stochastic wind
loads were simulated with a time step of 0.01 s and total duration 10-minutes. In order to
accurately simulate the initial conditions as well as ensure the possibility of directly estimat-
ing residual deformation, the first and last two minutes of the loads were linearly ramped up

and down.
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Table 1: Summary of the basic random variables (CoV = coefficient of variation).

Parameter Mean CoV  Distribution  Reference
E 200 Gpa 0.04  Lognormal [53, 54]
F, 380 Mpa 0.06  Lognormal [53, 54]
b 0.001 0.01  Lognormal [45, 55]
€0 0.077 0.161 Lognormal [45]
Ro 20 0.166 Normal [45]
ay 0.01 2 Lognormal [45]
as 0.02 0.5 Lognormal [45]
01/L 0.056%  0.77 Normal [56, 57]
¢ 0.015 0.4 Lognormal  [58, 59, 60]

5.1.3. Uncertain Model and Load Parameters

The random variables associated with the structural system and their governing distri-
butions are listed in Table 1. The random variables were divided into three groups: (i)
seven material model parameters, uniquely defined for each structural section in the frame,
including Young’s modulus F, yield strength F),, strain hardening ratio b, fatigue material
parameter €g, elastic-to-plastic transition parameter Ry, and the two hardening parameters
a; and ag [45]; (ii) damping ratio, ¢, of the first two modes, which are considered to be equal;
and (iii) the initial camber, uniquely defined for each column at mid-length, described by a
random scale factor, d;, and a random sign, (£1) based on the first buckling mode.

The uncertainties considered in the wind loads consist of the mean hourly wind speed
at the building top, vy, and the independent and uniformly distributed phase angles used
in the spectral representation model [51]. The wind speed oy is considered to follow a
Type-I extreme value distribution with parameters calibrated to the Type-I distribution with
parameters estimated through calibration to the wind speeds provided in [52] for Miami, F1I.
The total number the random variables associated with structural parameters and wind loads
is in the order of 10, illustrating the high-dimensionality of the stochastic simulation problem

of this case study.

5.1.4. Stratified Sampling

Since wind speed is the dominant variable affecting the structural performance associated
with the considered limit states, it is selected as the stratification variable. Considering that
the load effect is approximately proportional to the square of the wind speed, the partitioning

of the stratified sampling was based on imposing an equal squared difference in wind speed
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Table 2: Sample allocation.

WSIL 999" [m/s] 07" [m/s] n;
1 0.00 21.08 5,000
2 21.08 29.82 5,000
3 29.82 36.52 5,000
4 36.52 42.17 95,000
) 42.17 47.15 5,000
6 47.15 51.65 5,000
7 51.65 55.78 5,000
8 55.78 00 5,000

[61, 62, 63, 8]. To ensure the collective completeness of the wind speed intervals (WSIs), the
lower bound defining the first WSI is assumed to be zero, while the last WSI from above
is assumed to be unbounded. The lower limit of the last WSI was chosen to correspond
to an annual exceedance probability of 7 x 1077, a specified value in [52] that corresponds
to collapse for a risk Category II structure. A uniform sample allocation was adopted in
this application with 5000 samples in each stratum. The final sample allocation is shown in

Table 2 along with the lower and upper bound wind speeds defining the partition.

5.1.5. Low-fidelity Models

The low-fidelity model adopted an elastic-perfectly plastic material model to simulate
the steel therefore significantly simplifying its yielding behavior. In addition, fiber damage
due to low-cycle fatigue and potential fiber fracture, and large displacement effects, were
ignored. Therefore, uncertain input parameters of the low-fidelity model only include the
modulus of Young F, the yield strength F}, and the damping ratio (. To further reduce
the computational cost of the low-fidelity model, a larger time step in solving the dynamic
equations was adopted. Due to these simplifications, this elastic-perfectly plastic low-fidelity
model, denoted LF?2, is approximately 10 times faster to evaluate than the corresponding
high-fidelity model. For comparison purposes, an even more efficient low-fidelity model, which
is developed based on modal integration, was also developed. This low-fidelity model ignores
the material and geometric non-linearity of the structure and thus only provides a rough
approximation of the structural behavior. This elastic model, denoted LF1, is approximately

300 times faster to evaluate than the corresponding high-fidelity model.
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5.1.6. Calibration of the Multi-fidelity Scheme

To train the multi-fidelity models, only a small subset of the samples from each stratum
were selected, for which the high-fidelity model was evaluated. The active learning strategy
was used to determine the number and the location of the samples needed for the model
training. To set up the initial training set, the “uniform” sampling plan (described in Sec.
4.2.3) was adopted. In particular, ny, = 5 were used and two samples were chosen from
each bin to form the initial training set. To monitor the convergence of the multi-fidelity
regression model, 25 evenly distributed values were initially picked from the low-fidelity
response range in each WSI. It should be noted that the low-fidelity response ranges were
defined by the minimum and maximum predicted non-collapse low-fidelity responses from the
trained multi-fidelity classification model. Furthermore, the predictive means and standard
deviations over the selected low-fidelity responses were averaged to obtain a measure of the
overall convergence of the multi-fidelity regression model in each WSI. In this study, the
maximum interstory drift ratio was identified as the key structural performance measure and

thus was used to determine the training data.

5.2. Results and Discussion

5.2.1. Performance of Multi-fidelity Models

This section reports the results from the multi-fidelity stochastic simulation using the
elastic-perfectly-plastic low-fidelity model (LF2). To differentiate the multi-fidelity regres-
sion models constructed based on the heteroscedastic and homoscedastic Gaussian process
model, they are referred to as the HGP-based multi-fidelity model and the GP-based multi-
fidelity model. Fig. 3 shows the variation of the averaged predictive means and standard
deviations for the maximum interstory drift ratio over the active learning iterations, where
the predictions are from the HGP-based multi-fidelity model. From Fig. 3, it can observe
that the average predictive means and standard deviations show variation at the beginning
of the active learning indicating how the multi-fidelity regression models require additional
samples before becoming stable. This is especially true for higher WSIs, e.g., the 6th and 7th
WSIs, since p;(yn|yi) is more complex for higher winds due to the significant non-linearity in

the system. Based on the variation of the trained multi-fidelity regression models and the
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Figure 3: Variation of the HGP-based multi-fidelity models with the number of active learning iterations
(std: standard deviation).

convergence criterion defined in Eq. (19), the active learning process stopped at the 101th,
124nd, 93th, 99th, 89nd, 169th, and 220th iteration, respectively, for the 1st to the 7th WSIs.

Regarding the 8th WSI, the multi-fidelity classification model predicted collapse for all
samples, and thus no regression model was trained. In summary, the multi-fidelity regression
models converge quickly, which ensures the computational efficiency of the multi-fidelity
stochastic simulation scheme. For the GP-based multi-fidelity models, the variation of the
averaged predictive means and standard deviations for the maximum interstory drift ratio
with the iterations showed similar convergence behavior to the HGP-based multi-fidelity
model.

Similar to the multi-fidelity regression models, the strata-wise multi-fidelity classification

models for predicting the system collapse improve iteratively until the stopping criterion is
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Figure 4: True versus predicted collapse/non-collapse given any low-fidelity maximum interstory drift ratios.

met. The number of iterations for the multi-fidelity classification models determined by the
stopping criterion is 21 for the first 4 WSIs, and 32, 68, 84, 68 for the 5th to 8h WSIs,
respectively. In order to show the performance of the multi-fidelity classification model,
Fig. 4 compares the true and the predicted collapse/non-collapse samples for all low-fidelity
maximum interstory drift ratio samples of WSIs 6 and 7. As can be observed from Fig. 4, the
predicted collapse/non-collapse matches well with the true collapse/non-collapse, verifying
the effectiveness of the established multi-fidelity classification models. Results for the other
WSIs are not shown as for these WSI all samples do not collapse, or collapse, therefore
facilitating the classification.

Fig. 5 presents the predictive means and the associated uncertainties for any given low-
fidelity maximum interstory drift ratio from the strata-wise multi-fidelity regression models
together with the training data. It can be seen that the maximum interstory drift ratios from
the low-fidelity model correlate well with those from the high-fidelity model when the WSI is
low. This is because the frame is still elastic at low wind speeds, and the low-fidelity model

should offer similar solutions to the high-fidelity model. The variability of the high-fidelity
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response, given a specific low-fidelity response, is mainly attributed to the difference in time
step used to solve the dynamic equations in two numerical models. In contrast, the maximum
interstory drift ratios are less correlated as wind speeds increase. This is to be expected since
high wind speeds generally result in significant non-linear behavior of the frame which the
low-fidelity model cannot accurately describe. Overall, the HGP-based multi-fidelity models
can fairly accurately capture the mean trend as well as the variability of the high-fidelity
response given any low-fidelity response. Similarly, the predictive distributions given by the
GP-based multi-fidelity models are shown in Fig. 6. By comparing the HGP-based and
GP-based multi-fidelity models, it can be seen that the HGP-based multi-fidelity models
can capture the varying uncertainty of y; given y; for the first 5 WSIs, while the GP-based
multi-fidelity model predicts the uncertainty to be constant as y; changes. Consequently,
the GP-based models can either overestimate or underestimate the uncertainty of y; given a
y;. For the 6th and 7th WSIs, the HGP-based and GP-based multi-fidelity models provide
similar predictive mean and standard deviation, as it is observed that the uncertainty of y,

at any y; is almost constant.

To further demonstrate the predictive performance of the multi-fidelity regression models,
the true conditional distribution p;(ys|y;) was compared with the predictive distribution from
the multi-fidelity models. The true conditional distribution p;(ys|y;) is unknown but can be
estimated using the non-collapse samples from the 5000 samples generated in each WSI.
Fig. 7 and Fig. 8 show the true and predicted p;(yn|y:) for each WSI, where y;, was chosen as
the median of the low-fidelity maximum interstory drift ratios of the non-collapse samples in
each WSI. The figures show that the predictive mean from the multi-fidelity models agrees
well with the mean of the true conditional distribution p(ys|y;). Although it can be observed
that the predictive variance is overestimated at low WSIs while it is underestimated at high
WSIs, the predictive variance can be estimated with relatively high accuracy. In comparison,
the GP-based multi-fidelity models overestimate the uncertainty of y; at a y; more than the
HGP-based multi-fidelity models in the first 4 WSIs, while the difference between the two

model types becomes smaller as the wind speed becomes large (e.g., in WSI 6 and 7). Overall,
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Figure 5: Trained HGP-based multi-fidelity regression models for the maximum interstory drift ratio (std:
standard deviation).

the results indicate that with only one to two hundred evaluations of the high-fidelity model

in each WSI, the predicted conditional distribution p;(ys|y;) is reasonably accurate.

5.2.2. Estimation of Failure Probability

In this section, the failure probabilities, P(y, > 0), were estimated using Eq. (7) and
Eqgs. (22)-(23), where different response limits, 6 = {2%, 3%, 4%, 5%}, were considered for
the maximum interstory drift ratio. This section includes the results from the multi-fidelity
stochastic simulation using both low-fidelity models. Table 3 summarizes the correspond-
ing predicted failure probabilities, where: LFI1-MF-GP = multi-fidelity model with elastic
low-fidelity model and homoscedastic GPR model; LFI-MF-HGP = multi-fidelity model

27



640

641

642

643

644

645

646

647

648

649

650

0.8

O Training data

Predictive mean

0.6 Predictive mean +/- 1.96 std| ©
£o

yn (%]
yn [%]

WSI 3

04 06 08 1 12 08 1 12 14 16 18 2
y (%] w %]

yn [%]
yn (%)

yn [%)]

WSI7

1
22 24 26 28 3 32 34
e [%]

Figure 6: Trained GP-based multi-fidelity regression models for the maximum interstory drift ratio (std:
standard deviation).

with elastic low-fidelity model and heteroscedastic GPR model; LF2-MF-GP = multi-fidelity
model with elastic-perfectly-plastic low-fidelity model and homoscedastic GPR model; LF2-
MF-HGP = multi-fidelity model with elastic-perfectly-plastic low-fidelity model and het-
eroscedastic GPR model. For comparison purposes, the failure probabilities were also esti-
mated from single-fidelity stochastic simulation, including using LF1 = elastic low-fidelity
model; LF2 = elastic-perfectly-plastic low-fidelity model; HF' = high-fidelity model using
stratified sampling. The single-fidelity stochastic simulation is based on stratified sampling,
where 5000 low-fidelity or high-fidelity samples were generated in each stratum. It is worth
mentioning that the estimated failure probabilities from “HF” were used as reference results
(i.e., ground truth). The use of stratified sampling, instead of a standard Monte Carlo (MC)

scheme, for generating the reference solution was simply due to how it enables significant
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Figure 8: True versus predicted conditional distribution p;(yp|y;) from the GP-based multi-fidelity model.

variance reduction while maintaining the desirable statistical properties of the MC estima-
tor, i.e., unbiased, consistent, and normally distributed estimates of the failure probability,
as demonstrated in [8]. Therefore, the use of stratified sampling in generating a reference
solution can be considered equivalent to the use of an MC scheme with, however, a significant
reduction in the number of samples necessary to estimate the small failure probabilities of
interest to this work. To reinforce this, subset simulation was also used to estimate failure
probabilities associated with the maximum interstory drift ratio. To ensure similarly small
coefficients of variation between the reference solutions estimated from subset simulation and
stratified sampling, a total of 33,000 high-fidelity model runs were considered in implementing
subset simulation. Specifically, 9 subsets were considered with a level probability of 0.3 and
5,000 samples in each subset. The results from subset simulation are also presented in Table 3

and labeled HF (SuS). As would be expected, the failure probabilities estimated from subset
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simulation are closely aligned with those estimated from stratified sampling. In addition, to
highlight the computational advantages of the proposed approach, Table 3 also includes the
total number of high-fidelity model (# of HF runs) and low-fidelity (# of LF runs) model

runs used in the evaluations for each case. To further compare the results, the percentage

P(yn>0195)—P(yn>6|2;)

Plonso0,) x 100%), was also defined in terms of the stratified sampling

error: err =
target solution and is shown in Fig. 9.

From Table 3 and Fig. 9, several interesting findings can be summarized. Firstly, al-
though highly efficient to evaluate, LF1 provides an extremely biased estimation of the
failure probabilities if it is directly used in replace of the high-fidelity model. However, dra-
matic improvements can be seen using either the LF1-MF-GP or LF1-MF-HGP models.
Secondly, LF2 offers a better estimation of the failure probabilities as it can describe the
structural behavior more realistically than LF'1. However, this increased accuracy is achieved
by sacrificing computational efficiency. Indeed, LF2 is approximately 30 times slower than
LF1. Similarly to above, using either LF2-MF-GP or LF2-MF-HGP, the estimated failure
probabilities see a considerable improvement in accuracy. Thirdly, by comparing results from
LF1-MF-GP/HGP and LF2-MF-GP/HGP, it can be observed that the multi-fidelity mod-
els based on LF2 provide a better estimation of the failure probabilities than the models
based on LF1 in most cases. This is expected since LF2 provides more accurate informa-
tion about the high-fidelity model than LF1. Lastly, the computational advantages of the
proposed multi-fidelity framework over existing state-of-the-art approaches, e.g., subset sim-
ulation (HF' (SuS)) or stratified sampling (HF), is clearly evident from the total high-fidelity
model runs necessary for estimating the failure probabilities using either HF' or HF' (SuS) as
compared to those necessary using any of the four multi-fidelity model setups. Indeed, in all
cases, over 30 times as many high-fidelity model runs are necessary when implementing HF
or HF' (SuS) for obtaining failure probability estimates of similar accuracy.

Finally, the difference between the GP-based and HGP-based multi-fidelity models is
negligible in general, although the HGP-based multi-fidelity models provide a slightly better
estimation of the failure probabilities when the threshold is small. The reason is that the
GP-based multi-fidelity models add additional uncertainty to the conditional distribution
P;(yn|yi) given small y; values in WSIs associated with low wind speeds, while the GP and
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Table 3: Estimated failure probabilities for the maximum interstory drift ratio.

5 # of LF runs  # of HF runs 2% 3% 4% 5%
LF1 40,000 0 430x107° 1.86x107% 1.59x10~7 1.93x10°%
LF1-MF-GP 40,000 918 1.61 x 107 281 x107° 852x 1076 4.41x1076
LF1-MF-HGP 40,000 957 157 x 107% 276 x 107° 8.53 x 1076 4.43 x 1076
LF2 40,000 0 1.18 x 107* 1.88x107° 6.55x107% 3.42 x 106
LF2-MF-GP 40,000 938 1.69 x 107*  2.79x107° 9.63x 1076 4.85 x 10~¢
LF2-MF-HGP 40,000 963 1.58 x 107% 2.79x107° 9.62x 1076 4.89 x 107¢
HF 0 40,000 147 x107*% 271 x107° 1.01x107° 5.17x 1076
HF (SuS) 0 33,000 1.79x 107% 3.23x107° 1.12x107° 6.13x 107°
100
—O—LFI
—O©— LFI-MF-GP
80 —O— LFI-MF-HGP| |
—-©-—LF2
—-©-—LF2-MF-GP
_ 60 —-©-—LF2-MF-HGP | -
IS

Threshold for maximum inter-story drift ratio [%]

Figure 9: Percentage error of the estimated failure probabilities for maximum interstory drift ratio.
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Table 4: Estimated failure probabilities for the ductility ratio.

5 2% 3% 4% 5%
LF1 257x107% 810x107% 193 x10°% 1.93x 1078
LFI-MF-GP 101 x10~* 3.88x107° 1.85x107° 9.92x 106
LF1-MF-HGP 1.00x10~% 3.80x107° 1.83x107° 9.98 x 106
LF2 221 x1075 572x107% 3.43x107% 3.42x 1076
LF2-MF-GP  1.19x10% 4.06x10"° 211x10"° 1.19x107°
LF2-MF-HGP 1.02x10~* 385x107° 199x 1075 1.15x10°°
HF 9.65x 107° 3.68x107° 2.06x107° 1.25x107°
100 g———"0 : o)
_ e PSS S
80 3__,-/‘ \>\‘\~\.
60 [ —O—LFI]

—O&— LFI-MF-GP
—©— LFI-MF-HGP
—=:0=—LF2
—-©-—LF2-MF-GP
—-©-— LF2-MF-HGP

err (%]

40

2 3 4 5
Threshold for ductility ratio [%]

Figure 10: Percentage error of the estimated of failure probabilities for the maximum ductility ratio.

HGP predicted noise/uncertainty convergences to similar values in WSIs with higher wind
speeds.

An important property of the proposed multi-fidelity framework is that the samples al-
ready evaluated using the high-fidelity model for one limit state can be reused for other limit
states. This is illustrated here for the maximum element-level ductility ratio. Table 4 lists
the predicted failure probabilities using the multi-fidelity models outlined above while Fig. 10
shows the percentage errors. Similar conclusions to the limit state of the maximum interstory
drift ratio can be drawn from these results. Overall, the proposed multi-fidelity stochastic
simulation scheme is able to estimate small failure probabilities (e.g., in the order of 1079)

with high accuracy while using only a small number of high-fidelity evaluations.
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6. Conclusion

This paper introduced a multi-fidelity stochastic simulation scheme for the estimation of
small failure probabilities within the setting of stratified sampling. The core idea is to leverage
an inaccurate but inexpensive low-fidelity version of a system model to provide information
about the high-fidelity system model and therefore speed up failure probability estimation.
For collapse estimation, a Gaussian process classification model, calibrated by a small number
of high-fidelity runs, was constructed to predict collapse or non-collapse given any low-fidelity
response. For non-collapse samples, the underlying probabilistic relationship between the
low-fidelity and high-fidelity response was established through a Gaussian process regression
model requiring again a small number of high-fidelity runs for calibration. These multi-
fidelity models were established in each stratum, therefore, allowing low-fidelity model runs
to provide estimations of failure probabilities with accuracy akin to considering a high-fidelity
model. To illustrate the effectiveness of the proposed scheme, it was applied to estimate
the failure probabilities of a 2D steel frame subject to extreme winds. The results showed
that the multi-fidelity regression models can capture the probabilistic relationship between
the low-fidelity and high-fidelity response with only a small number of high-fidelity model
evaluations. The advantage of the proposed scheme is that even with a crude low-fidelity
model, the corresponding multi-fidelity model can yield a significant improvement in the
estimation of the failure probabilities. Moreover, the proposed multi-fidelity scheme is able to
simultaneously estimate failure probabilities associated with multiple limit states. While the
presented two-story, two-bay steel frame example effectively demonstrated the capabilities
of the proposed methodology, the need for further validation in the context of high-rise
structures under wind loads is recognized. This validation forms part of ongoing research
projects and is included as a future direction to enhance the robustness and applicability of

the proposed multi-fidelity stochastic scheme.
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Appendix: Bayesian inference of Gaussian process classification (GPC)

The Bayesian inference of the GPC model again requires a training set {Y;,Z.}, where
the model input is Y; = {y(x¢);t = 1,...,n:} and the model output (i.e., label) is Z, =
{I.(x¢);t =1,...,m:}. The probabilistic prediction over the indicator function, I, given any

new low-fidelity output 1, can be obtained as:

p(Ic* = 1|Y17I07yl*) = /p<Ic* = 1|f*)p<f*|Yl7IC7yl*)df* (24)

where p(I.. = 1|f.) is the prior assumed over the target function I., given by ®(f,), and
p(f«| Y1, Ze, yix) is the predictive distribution over f given y., expressed as:

p(f*|YlaIC7yl*) = /p<f*|Yl7fyyl*)p(ﬂYlaIc)df (25>

where p(f.|Y:, £, yi.) takes the form of a GPR predictive distribution, and p(f]Y;,Z.) =
p(£1Y)p(Z.|f)/p(Z.Y,) is the posterior distribution over f.

Unlike the GPR, the Bayesian inference of the GPC is analytically intractable [64] since
a non-Gaussian likelihood p(Z.|f) (i.e., probit function in this work) is assumed considering
that the target function, I.., produces discrete class labels. Therefore, approximation methods
are often used to estimate, p(f|Y;,Z.), with commonly used ones including the Laplace
approximation [65] and expectation propagation [66]. More details about the derivation of
the integral in Eq. (25) can be found in [35]. Once p(f|Y;,Z.) is approximated, the predictive
distribution over f is computed by Eq. (25), with which the GPC probabilistic prediction can
be obtained by solving Eq. (24). Depending on the link function, Eq. (24) can be calculated
analytically (e.g., when the link function is a probit function) or not (e.g., when the link
function is a logit function). If a probit function is used and the Laplace approximation is

adpoted, the GPC probabilistic prediction is given by:

p<Ic* = 1|Yl71.cayl*) = M (26)

1+ O-;%(yl*)
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with
i(yn) =k K 'm (27)

o2 () = Ky, yi) — kL (K+ A7) 'k, (28)

where the parameters m and A can be found in [35]. In terms of the calibration of the
hyperparameters in the GPC model, i.e., length-scale # and variance o2, MLE is also used,

where the likelihood function is given by:

p(Z.|f) = HP (i (x)|f (e(x))) (29)
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