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Abstract5

Computing small failure probabilities is often of interest in the reliability analysis of engineer-6

ing systems. However, this task can be computationally demanding since many evaluations7

of expensive high-fidelity models are often required. To address this, a multi-fidelity ap-8

proach is proposed in this work within the setting of stratified sampling. The overall idea9

is to reduce the required number of high-fidelity model runs by integrating the information10

provided by different levels of model fidelity while maintaining accuracy in estimating the11

failure probabilities. More specifically, strata-wise multi-fidelity models are established based12

on Gaussian process models to efficiently predict the high-fidelity response and the system13

collapse from the low-fidelity response. Due to the reduced computational cost of the low-14

fidelity models, the multi-fidelity approach can achieve a significant speedup in estimating15

small failure probabilities associated with high-fidelity models. The effectiveness and effi-16

ciency of the proposed multi-fidelity stochastic simulation scheme are validated through an17

application to a two-story two-bay steel building under extreme winds.18

Keywords: Failure probability, Stochastic simulation, Multi-fidelity modeling, Bayesian19

nonlinear regression, Wind engineering20

1. Introduction21

Structural reliability analysis aims to compute the failure probability of a given engineer-22

ing system (e.g., building structure) considering randomness in the model inputs. For general23

systems, the failure probability can be estimated through Monte Carlo simulation (MCS).24

However, to achieve a specified accuracy in estimating a failure probability in the range of25

10−N , the required number of samples is approximately 10N+2 [1]. As a result, comput-26

ing small failure probabilities can fast become computationally intensive as it often involves27
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many evaluations of the system which is typically simulated by complex numerical models.28

For example, to fully capture the nonlinear behavior of building structures under extreme29

winds, high-fidelity finite element models are generally required for capturing aspects such30

as material and geometric nonlinearity, including global buckling and material fatigue [2].31

To address this, several variance reduction schemes that include, but are not limited to, im-32

portance sampling [3], line sampling [4], subset simulation [5], and simulation schemes based33

on stratified designs [6, 7, 8] have been proposed in the literature. These techniques aim to34

reduce the required number of model evaluations so that the stochastic simulation becomes35

efficient. However, when dealing with high-dimensionality (e.g., in the order of thousands)36

and the need for simultaneous estimation of multiple small failure probabilities, methods37

such as importance sampling and subset simulation can become ineffective. For instance, it38

is difficult to identify an effective high-dimensional proposal density for importance sampling,39

moreover, when the choice of the form of proposal sampling density adopted is inappropri-40

ate, the variability of the estimator cannot be controlled in the presence of a large number41

of uncertain parameters [9]. Subset simulation, on the other hand, can quickly turn ineffi-42

cient when multiple limit states are considered since each limit state of interest requires an43

independent implementation of the subset simulation procedure. In contrast, stratified ran-44

dom sampling enables simultaneous estimation of failure probabilities, and has been shown45

to be not only efficient but also unbiased, consistent (in the sense that it approaches the46

true failure probability for large sample sizes), and asymptotically Gaussian [8]. Another47

approach is to increase the computational efficiency of the system model by establishing48

low-fidelity versions of the numerical model to approximate the system response/output.49

Such low-fidelity models can be created by simplifying the underlying physics, e.g., using50

simplified material constitutive models, or establishing reduced-order models or data-driven51

surrogate models [10]. Although less computationally demanding, such low-fidelity models52

might be inaccurate and may yield biased or distorted estimators if used directly for the53

uncertainty propagation [11, 12]. To overcome this difficulty, one solution is to develop a54

multi-fidelity model which combines, instead of replaces, the high-fidelity model with the55

low-fidelity model. The fundamental idea is to leverage the accuracy of high-fidelity models56

and the efficiency of low-fidelity models [13, 14]. Various research efforts have been devoted57
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to multi-fidelity assisted stochastic simulation. One class of multi-fidelity methods that have58

been thoroughly investigated is the control variate approach [15], including multi-level Monte59

Carlo [16, 17, 18] and multi-fidelity Monte Carlo [13, 19, 20]. The multi-level Monte Carlo60

method combines the outputs of a hierarchy of coarser grid solutions using control vari-61

ates, where the trade-off between computational efficiency and accuracy is adjusted by a62

parameter, e.g., the mesh size [19]. The multi-fidelity Monte Carlo extends the multi-level63

Monte Carlo by allowing arbitrary low-fidelity models that are not limited to coarse grid dis-64

cretizations. Multi-fidelity Monte Carlo has also been examined for seismic risk assessment65

applications where the quantity of interest is the expected value of risk consequence measures66

[21]. However, one drawback of multi-fidelity Monte Carlo is that it requires a linear depen-67

dency between the model response and can only provide asymptotic error estimates [22].68

Another category of multi-fidelity methods is based on the use of surrogate models. The idea69

underpinning these approaches is to integrate information from the low-fidelity models to70

improve the prediction accuracy of a single-fidelity surrogate trained on scarce high-fidelity71

data [23]. Once trained, this fast-to-evaluate multi-fidelity surrogate model will be used in72

place of the expensive high-fidelity model for the subsequent stochastic simulation. One of73

the most popular multi-fidelity surrogate models is the multi-fidelity Gaussian process model74

(i.e., Cokriging) [24, 25, 26]. Its application in stochastic simulation is being actively studied75

[27, 28]. Nevertheless, since the multi-fidelity surrogate models directly map the model input76

to the model output, they often suffer from the well-known curse of dimensionality [29]. This77

limits its application to problems involving high stochastic dimensionality [22]. Bayesian78

multi-fidelity Monte Carlo, another category of multi-fidelity stochastic simulation, was first79

proposed in [30] with accuracy and efficiency in uncertainty quantification demonstrated on80

complex and large-scale bio-mechanical problems [31]. Bayesian multi-fidelity Monte Carlo81

directly predicts the quantitative relationship between the low-fidelity model output and the82

high-fidelity model output using a non-parametric Bayesian model, which is then used to83

efficiently compute the statistics of the high-fidelity model output [30, 31]. However, since84

it allows a more flexible dependence between the low-fidelity and high-fidelity model (e.g.,85

non-Gaussian), the posterior distribution of the high-fidelity output given the corresponding86

low-fidelity output is computationally intractable, and thus advanced stochastic simulation87
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techniques are required to sample from the posterior distribution. To improve the accu-88

racy of the regression model in a small data scenario, the Bayesian multi-fidelity model was89

further enhanced by including informative features in the model input [22]. Compared to90

the multi-fidelity surrogate model, one significant advantage of these Bayesian multi-fidelity91

Monte Carlo methods is that they can address high-dimensional stochastic simulation prob-92

lems, as they only operate in the model output space or by only adding small dimensional93

features [12, 22]. In addition, they can accommodate more complex correlations between94

the low-fidelity and high-fidelity models, and thus are more general than the multi-fidelity95

methods based on the control variate.96

This work proposes a multi-fidelity stochastic simulation scheme to efficiently compute97

small failure probabilities of structural systems within the setting of stratified sampling. More98

specifically, a low-fidelity model with a fast approximation of the system model is first devel-99

oped. Then a probabilistic relationship between the low-fidelity response and the high-fidelity100

response is established based on a small number of high-fidelity runs by applying a Gaussian101

process regression (GPR) model to estimate the exceedance probability conditional on non-102

collapse. Similarly, a Gaussian process classification (GPC) model is established to predict103

whether the system collapses given any low-fidelity response. Active learning strategies are104

developed to intelligently generate training data for constructing the multi-fidelity models.105

Once calibrated, the multi-fidelity models are used to directly predict the high-fidelity re-106

sponse and system collapse from low-fidelity samples, based on which the probabilities of107

interest are estimated. The proposed multi-fidelity model offers a distinct advantage over108

existing methods by directly predicting the high-fidelity response, or system collapse, based109

on the low-fidelity response. Indeed, in contrast to many commonly adopted multi-fidelity110

surrogate models that focus on mapping the model input to the model output, the approach111

in this work operates solely in the model output space. This enables the proposed scheme to112

effectively handle high-dimensional stochastic simulation problems. Nevertheless, it should113

be noted that the multi-fidelity stochastic simulation scheme of this work may introduce114

bias in the estimation of failure probabilities due to the use of Gaussian process models to115

approximate the high-fidelity response and system collapse.116
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2. Problem Setting117

Consider a high-fidelity structural system that maps input, x = [x(1), x(2), . . ., x(nx)] ∈ Ω ⊂118

Rnx , to outputs, yh(x) ∈ R, where nx is the input dimension. The model input x is charac-119

terized by a probability density function p(x). The high-fidelity system model is assumed to120

be based on numerical simulations (e.g., finite element models) and, in order to capture the121

system behavior with high accuracy, computationally demanding to evaluate. Alternatively,122

a low-fidelity model yl(xl), which is inexpensive to run, can be established to approximate the123

high-fidelity model output. Generally, the low-fidelity model may have a different modeling124

approach from the high-fidelity model, and some variables in the lower-fidelity model might125

be omitted [32]. Therefore, the model input of the low-fidelity model is assumed as a subset126

of the model input of the high-fidelity model, i.e., xl = [x(1), x(2), . . ., x(nxl)] ∈ Ωl ⊂ Rnxl
127

where nxl ≤ nx and xl ⊆ x.128

The problem of interest to this work is to develop a multi-fidelity stochastic simulation129

scheme for estimating the failure probabilities of the system, described by the probability of130

the response, yh, exceeding a threshold δ, i.e., as P (yh > δ). Without loss of generality, the131

proposed scheme explicitly takes into account both non-collapse samples Dnc and collapse132

samples Dc. Since Dnc and Dc are mutually exclusive, based on the total probability theorem,133

the failure probability can be expressed as:134

P (yh > δ) = P (yh > δ|Dnc)(1− P (Dc)) + P (yh > δ|Dc)P (Dc) (1)

where P (yh > δ|Dnc) and P (yh > δ|Dc) are the exceedance probabilities conditional on135

non-collapse, Dnc, and collapse, Dc. P (Dc) is the collapse probability (i.e., probability of136

system collapse), which can be determined through a combination of indicators such as non-137

convergence of the numerical model, the deformed shape of the structure at the last converged138

time step, and the peak roof drift [33]. For the sake of simplicity, when the system collapses,139

yh is always considered to exceed δ, i.e., P (yh > δ|Dc) ≡ 1. The goal of this work is to140

therefore estimate probabilities P (yh > δ|Dnc) and P (Dc).141

By propagating uncertainties through the high-fidelity model, the exceedance probability142

conditional on non-collapse (i.e., P (yh > δ|Dnc)) can be directly calculated. For the sake of143
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brevity, let Pnc(yh > δ) ≡ P (yh > δ|Dnc). The probability of interest is therefore:144

Pnc(yh > δ) =

∫

If (yh(x))p(x)dx, If (yh(x)) =











1 yh(x) > δ

0 otherwise

(2)

where If (·) is an indicator function that determines whether the high-fidelity response yh145

given x exceeds the threshold δ. Similarly, the collapse probability can be estimated as:146

P (Dc) =

∫

Ic(x)p(x)dx, Ic(x) =











1 system collapse

0 otherwise

(3)

where Ic(·) is an indicator function that determines whether the system collapses or not.147

Since the probabilities in Eq.(2) and Eq.(3) cannot be calculated in closed form for most ap-148

plications, they are typically estimated using stochastic simulation techniques such as Monte149

Carlo simulation (MCS). The Monte Carlo estimators for the conditional failure probability150

and the collapse probability are given by:151

P̂nc(yh > δ) ≈ 1

N −Nc

N−Nc
∑

i=1

If (yh(xi)) (4)

152

P̂ (Dc) ≈
1

N

N
∑

i=1

Ic(xi) =
Nc

N
(5)

where xi is the ith MCS sample generated from p(x), i.e., regions of Ω, N is the total number153

of MCS samples, and Nc is the total number of collapse samples. Finally, the total failure154

probability can be estimated as:155

P̂ (yh > δ) = P̂nc(yh > δ)(1− P̂ (Dc)) + P̂ (Dc)

≈ 1

N −Nc

N−Nc
∑

i=1

If (yh(xi))

(

1− 1

N

N
∑

i=1

Ic(xi)

)

+
1

N

N
∑

i=1

Ic(xi)
(6)

For each generated sample xi, the computationally expensive high-fidelity model needs to be156

evaluated to obtain the corresponding model output yh(xi). In particular, for the estimation157
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of small failure probabilities, a large number of samples is generally required, especially if158

high accuracy is desired. As a result, MCS-based estimation of P (yh > δ) can easily lead to159

computational demands that exceed available resources.160

3. Stratified Sampling-based Monte Carlo Simulation161

Stratified sampling is a well-known variance reduction technique. The basic idea is to162

partition Ω into a set of mutually exclusive and collectively exhaustive events, {Ωj}1≤j≤L 3163

⋃L
j=1 Ωj = Ω and Ωj ∩Ωk = ∅, for j 6= k, termed strata. Sample allocation entails prescribing164

the number of samples, Nj, for each jth stratum while ensuring the satisfaction of the con-165

straint:
∑L

j=1 Nj = N . As shown in [8], the optimal allocation of samples between the strata166

can be found by solving a convex optimization problem defined in terms of a preliminary167

study. In particular, it can be shown that proportional allocation (i.e. Nj = NP (Ωj)) guar-168

antees variance reduction, however, the efficiency gains are insignificant when the samples169

from high-probability strata have a small influence on the failure probability.170

Once the samples are drawn from the strata, they are weighted and combined to obtain171

the stratified sampling estimator, P̂ (yh > δ) as:172

P̂ (yh > δ) =
L
∑

i=1

P̂ (yh > δ | Ωj)P (Ωj) (7)

If carried out in the space of the input random variables, the process of stratification is173

performed by defining a mutually exclusive and collectively exhaustive partitioning of a174

partial set of the input uncertainties, χ, which are termed stratification variables. This175

implies that P (Ωj) can be readily calculated using p(x). In Eq. (7), P̂ (yh > δ | Ωj) is the176

estimate of the failure probability conditional on Ωj, and can be obtained by evaluating177

Eq. (6) in the jth stratum, and therefore as:178

P̂ (yh > δ | Ωj) = P̂nc(yh > δ | Ωj)(1− P̂ (Dc | Ωj)) + P̂ (Dc | Ωj)

≈ 1

Nj −Njc

Nj−Njc
∑

i=1

If (yh(xi))



1− 1

Nj

Nj
∑

i=1

Ic(xi)



+
1

Nj

Nj
∑

i=1

Ic(xi)
(8)
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where P̂nc(yh > δ | Ωj) is the estimate of the exceedance probability conditional on non-179

collapse and the ith stratum, P̂ (Dc | Ωj) is the estimate of the collapse probability condi-180

tional on the ith stratum, while Njc is the number of non-collapse samples drawn from the181

jth stratum. In particular, the strata-wise sample generation can be performed from the182

conditional sampling density function defined for the ith stratum as:183

pj(x) =











p(x)/P (Ωj) x ∈ Ωj

0 x /∈ Ωj

(9)

The gains from stratification are higher when the stratification variables are well-correlated184

with the target responses such that the strata are internally more homogeneous (in the re-185

sponse values) than Ω as a whole [8].186

It is important to note that a k-dimensional stratification with L strata per variable will187

result in Lk strata. If k and L are high-dimensional, this can lead to significant sampling188

demands for achieving near-optimal sample allocation and potentially affect the overall effi-189

ciency in the estimation of the failure probabilities [8, 34]. Therefore, it is recommended to190

select a limited set of stratification variables that are strongly correlated with the responses191

of interest [34]. In natural hazards applications, these can take the form of hazard intensity192

measures such as the maximum wind speed and spectral acceleration. Further details on the193

choice of stratification variables for reliability problems in natural hazards engineering can be194

found in [8, 34]. Despite this, stratified sampling offers several advantages in the estimation of195

small failure probabilities. Indeed, it enables simultaneous estimation of failure probabilities196

and has been shown to be not only efficient but also unbiased, consistent (in the sense that it197

approaches the true failure probability for large sample sizes), and asymptotically Gaussian198

[8].199

4. A Multi-fidelity Stochastic Simulation Scheme200

4.1. Overview201

Although significant gains in efficiency can be obtained through the application of strat-202

ified sampling, it still requires repeated evaluations of the expensive high-fidelity model. To203
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address this, a multi-fidelity stochastic simulation scheme within the setting of the stratified204

sampling framework of Sec. 3 is proposed in this section. More specifically, two multi-fidelity205

models are developed to predict the conditional exceedance probabilities P̂nc(yh > δ | Ωj)206

and P̂ (Dc | Ωj) for each stratum.207

4.2. Conditional Non-collapse Exceedance Probability208

The first multi-fidelity model aims to construct a quantitative link between the low-209

fidelity model response yl and the high-fidelity model response yh using a probabilistic re-210

gression model. The conditional non-collapse exceedance probability, Pnc(yh > δ | Ωj), is211

then estimated from low-fidelity evaluations and the calibrated multi-fidelity model.212

To achieve this goal, the conditional non-collapse exceedance probability for the jth stra-213

tum is expanded to include the low-fidelity model output [30], and therefore written as:214

Pnc(yh > δ | Ωj) =

∫

P (yh > δ | yl,Ωj)pj(yl)dyl

=

∫

(

∫

If (yh)pj(yh|yl)dyh
)

pj(yl)dyl

(10)

where pj(yl) is the probability density of the low-fidelity model output conditional on the jth215

stratum, and pj(yh|yl) is the probability density of the high-fidelity model output yh given216

the low-fidelity model output yl evaluated at the same model input x generated from pj(x) of217

Eq. (9). Eq. (10) implies that estimating Pnc(yh > δ | Ωj) using the inexpensive low-fidelity218

model requires two important steps: (i) obtaining pj(yl) by propagating uncertainties through219

the low-fidelity model; and (ii) obtaining pj(yh|yl) by constructing a probabilistic relationship220

between the low-fidelity model response and the high-fidelity model response. Since the low-221

fidelity model is cheap to evaluate, pj(yl) can be efficiently estimated by MCS within the jth222

stratum. The non-trivial part is to quantify the underlying relationship between yl and yh in223

a probabilistic sense. A probabilistic regression model is used for this purpose in this work.224

The regression model takes the low-fidelity model output yl as input and the high-fidelity225

model output yh as output and is therefore referred to as a multi-fidelity model. It should226

be noted that the model outputs yl and yh have a noisy relationship instead of a one-to-one227

mapping. In other words, the same yl may correspond to different yh values, and vice versa,228

since the low-fidelity model simplifies certain properties of the high-fidelity model.229
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4.2.1. Gaussian Process Regression of the Multi-fidelity Model230

In order to infer the conditional probability density pj(yh|yl) from the jth stratum, a prob-231

abilistic regression model can be established to predict the underlying relationship between232

the low-fidelity model output and the high-fidelity model output. To this end, a Gaussian233

process regression (GPR) [35] is used in this work due to its flexibility in modeling complex234

functions and its ability to provide a full posterior predictive distribution.235

In the current problem, given a specific low-fidelity output yl, the high-fidelity output,236

yh, is non-deterministic due to the noisy relationship between the two models. In contrast237

to a typical GPR, which aims to approximate a deterministic function output given a set of238

observations, the GPR in this work is used to predict a probabilistic relationship. The core239

principle of a typical GPR is to assume the target function yh as a realization of a regression240

model m(yl) and a Gaussian process ε(yl). To account for the probabilistic/noisy relationship241

between yl and yh, an additional noise term ε is explicitly assumed and added to the typical242

GPR [36]. The GPR model used in this work is then written as:243

yh = m(yl) + ε(yl) + ε

where ε(yl) ∼ N (0, k(yl, yl
′)), ε ∼ N (0, σ2

ε )
(11)

The regression model m(yl) is selected as a linear combination of basis functions, expressed244

by m(yl) = f(yl)
Tβ, where f(yl) is the q-dimensional vector of basis functions and β =245

[β1, β2, . . . , βq]
T is the vector of regression coefficients. Typically, polynomials of yl can be246

used as the basis functions, e.g., linear or quadratic functions of yl. After the mean function247

is set, the property of the GPR model is fully determined by the covariance function, or248

the kernel, k(yl, y
′
l) = σ2Ψ(yl, y

′
l), where σ2 is the variance and Ψ(yl, y

′
l) is the correlation249

function. A commonly used kernel function is the squared exponential kernel (i.e., Gaussian250

kernel):251

k (yl, y
′
l) = σ2 exp

(

−|yl − y′l|2
2θ2

)

(12)

where θ is the scale correlation parameter (i.e., length-scale) in the correlation function.252

Regarding the noise term ε, a zero-mean Gaussian noise with variance σ2
ε is typically assumed.253

The prior distribution over the GPR-based multi-fidelity model in Eq. (11) is then updated254
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by a set of given data points, i.e., the calibration of the uncertain model parameters in the255

mean function, the covariance function, and the noise term including regression coefficients256

β, variance σ2, length-scale θ, and noise variance σ2
ε . The calibration of the GPR model257

first requires the creation of a database of n observations based on the low-fidelity and258

high-fidelity models. Specifically, it involves evaluations of the high-fidelity model output259

Yh = {yh(xt); t = 1, . . . , nt} for different inputs X = {xt; t = 1, . . . , nt}, and evaluations of260

the low-fidelity model output Yl = {yl(xlt); t = 1, . . . , nt} for different inputs Xl = {xlt; t =261

1, . . . , nt}. The set {Yl,Yh} is the so-called training set. The selection of the training data262

will impact the accuracy of the multi-fidelity model. To ensure the model has good accuracy263

over the design space, a space-filling strategy combined with an active learning strategy is264

adopted. More details on the selection of the training data will be discussed later. Finally,265

in order to calibrate the unknown model parameters using the training data, maximum266

likelihood estimation (MLE) is used to obtain point estimates of the parameters. Due to the267

Gaussian properties, the likelihood function is given by:268

L(β, σ2, θ, σ2
ε |Yh) =

1

(2πσ2)nt/2|Ψ+ (σ2/σ2
ε )Int

|1/2×

exp

[

− 1

2σ2
(Yh − Fβ)T (Ψ+ (σ2/σ2

ε )Int
)−1(Yh − Fβ)

] (13)

where F = [f(yl1), f(yl2), . . . , f(ylnt
)]T , Ψ is the correlation matrix evaluated over Yl, and Int

269

is the identity matrix of size nt × nt.270

Conditional on the observations Yh and the optimal selection of the model parameters,271

the GPR model gives a prediction at any new low-fidelity model output yl∗ that follows a272

Gaussian distribution with mean ŷh(yl∗) and variance σ2
ŷh
(yl∗) given by:273

ŷh(yl∗) = f(yl∗)
Tβ∗ + k(yl∗)

TK−1(Yh − Fβ∗) (14)

274

σ2
ŷh
(yl∗) = k(yl∗, yl∗)− k(yl∗)

TK−1k(yl∗) + u(yl∗)
T (FTK−1F)−1u(yl∗) + (σ2

ε )
∗ (15)

where k(yl∗) is the nt-dimensional covariance vector between yl∗ and each element inYl, given275

by k(yl∗) = [k(yl∗, yl1), k(yl∗, yl2), . . . , k(yl∗, ylnt
)]T ; K is the covariance matrix evaluated over276

Yl; while u(yl∗) = FTK−1k(yl∗)− f(yl∗). Here β
∗ = (FTK−1F)−1(FTK−1Yh) corresponds to277
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the maximum likelihood estimate of the parameter β.278

Similar to a noise-free GPR model, the predictive variance of the proposed GPR model279

contains a part (i.e., the first three terms on the right-hand side of Eq. (15)) that quantifies280

the uncertainty on the mean prediction. Apart from this, the predictive variance of the281

proposed GPR model also includes a term (σ2
ε )

∗, which corresponds to the contribution from282

the noise assumed in Eq. (11). This term captures the inherent uncertainty of the high-283

fidelity model output yh given a low-fidelity model output yl evaluated at the common model284

input x.285

4.2.2. Homoscedastic and Heteroscedastic Noise286

The above GPR-based multi-fidelity model assumes the variance of the noise term ε to be287

constant, i.e., homoscedastic. However, in many cases, the noise could vary with the model288

input (i.e., yl in this study). Therefore, a GPR with heteroscedastic noise can be constructed289

in which the noise ε is assumed to follow a zero-mean Gaussian distribution with a non-290

constant variance ε ∼ N (0, σ2γ(yl)), where γ(yl) is a scaling factor. If prior information291

about the noise is available, it can be incorporated in selecting γ(yl). Otherwise, to avoid292

model over-fitting and challenges in optimizing the hyperparameters in γ(yl), a parsimonious293

selection of γ(yl) is suggested [36]. For this purpose, a second-order polynomial is chosen294

in this study to describe the scaling factor, i.e., γ(yl) = βγ1 + βγ2yl + βγ3y
2
l . In the scaling295

factor, the coefficients (i.e., hyperparameters) βγ1, βγ1, and βγ1 can be calibrated using MLE,296

where the likelihood function is Eq. (13) with the variance of the noise term σ2
ε replaced by297

σ2γ(yl). The predictive mean of the heteroscedastic GPR model (i.e., the GPR model with298

heteroscedastic noise) is the same as the homoscedastic GPR model (i.e., the GPR with299

homoscedastic noise), given by Eq. (14). The predictive variance of the heteroscedastic300

GPR model is given by Eq. (15) with (σ2
ε )

∗ replaced by (σ2)∗(β∗
γ1 + β∗

γ2yl + β∗
γ3y

2
l ), where301

(σ2)∗, β∗
γ1, β

∗
γ2, β

∗
γ3 are the maximum likelihood estimates of the unknown parameters.302

4.2.3. Active Learning for Optimal Selection of Training Data303

The quality of the estimated conditional exceedance probability largely depends on the304

predictive accuracy of the constructed GPR model in terms of both the predictive mean305

and the variance. Typically, to ensure good accuracy over the entire design space (i.e. all306
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possible low-fidelity model outputs), a selection that evenly fills the design space can be used.307

Due to the significant computational cost of the high-fidelity model, it is of interest to use a308

small number of training data to obtain the desired prediction accuracy for approximating309

the underlying relationship between yl and yh. As a result, randomly selecting low-fidelity310

model output samples to label (i.e., identify for corresponding high-fidelity model runs) is311

not sufficient, since non-informative samples can be selected while informative samples (e.g.,312

in the region with higher uncertainty in yl) could be overlooked [37].313

To address this issue, an active learning sampling strategy, which enables a more wise314

allocation of the training data, is proposed. The overall idea of the sampling strategy is315

to thoroughly explore the region where the prediction uncertainty (i.e., variance), σ2
ŷh
, is316

large. The active learning process begins by constructing a candidate pool comprising strata-317

wise MCS samples of xl (representing the low-fidelity model input). The low-fidelity model318

is evaluated to obtain corresponding responses of these samples. Subsequently, a learning319

function (introduced subsequently) is computed for each low-fidelity response to assess its320

informativeness. Guided by the learning function, the optimal low-fidelity sample is chosen.321

It is important to note that the low-fidelity model input, xl, is assumed to be a subset of322

the high-fidelity model input, xh. To acquire the corresponding high-fidelity response of the323

optimal sample, xl is augmented by randomly sampling the missing components defining xh.324

By evaluating the high-fidelity model for the augmented sample, the corresponding response is325

obtained. The resulting pairs of low-fidelity and high-fidelity responses are then incorporated326

into the training set for model refinement. The GPR model is subsequently updated using327

the expanded training data set. The active learning process follows an iterative approach,328

where the steps outlined above are repeated until a predefined stopping criterion is satisfied.329

More specifically, The sampling strategy adopted here is mathematically expressed as:330

y∗∗l =argmaxyl∈Yl,candi
U(yl) (16)

where U(yl) = σ2
ŷh
(yl) is the learning function, and Yl,candi are the strata-wise MCS samples331

from the low-fidelity model in each active learning iteration, excluding those already selected.332

The philosophy underlying the active learning strategy is that the region with higher predic-333
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tion variance is not only where uncertainty exists on the mean prediction, but also where a334

high level of noise in the underlying relationship between yl and yh exists. Allocating train-335

ing samples to this region will, therefore, be more efficient in producing a globally accurate336

model. However, a disadvantage of such an active learning scheme is that it can lead to337

clustering of the added samples. To avoid clustered samples, the following adjusted learning338

function based on the weighted predictive variance is proposed:339

U(yli) =
dmin,i

ΣNcandi

i=1 dmin,i

σ2
ŷh
(yli) (17)

where yli is the ith sample from the candidate pool Yl,candi, and dmin,i is the minimum340

distance between the ith candidate sample and all the training samples in Yl. The adjusted341

learning function penalizes the candidate samples which are very close to the samples that342

are already in the training set and thus avoids adding samples with similar yl values.343

Before applying active learning sampling, an initial set of training data is required. In344

surrogate modeling, Latin Hypercube Sampling (LHS) is often used to this end. However,345

in the proposed GPR-based multi-fidelity model, the input is the low-fidelity output, yl,346

which has an unknown design space. Therefore, a “near” space-filling sampling strategy [22]347

is applied in which the low-fidelity samples, yl, are first sorted and divided into a number348

of bins. Subsequently, an equal number of samples are randomly selected from each bin,349

therefore, ensuring the initial training data has adequate space-filling properties.350

The active learning process continues until a stopping criterion is satisfied. Different351

types of stopping criteria have been proposed for reliability analysis applications. They352

can be grouped into learning function-based criterion, accuracy of failure probability-based353

criterion, and criteria based on the stability of failure probability or limit state surface [38].354

In this work, the following stopping criterion based on the stability of the multi-fidelity model355

is adopted:356

∆ =
|v̂p − v̂p−1|
v̂p + αv

≤ α (18)

where v̂p and v̂p−1 are the average predictions over the selected inputs, yl, in the pth and357

(p− 1)th iterations; αv is a small value to avoid numerical issue in calculating ∆ when v̂p is358

zero which can be chosen as 10−8 [39]; while α is the convergence threshold. The selected359
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yl values are uniformly distributed between an interval determined by the minimum and360

maximum yl of the non-collapse MCS samples from each stratum. Eq. (18) is satisfied when361

the difference between the averaged prediction in two consecutive iterations is smaller than362

α, i.e., the prediction becomes stable. A potential issue is an early termination when the363

initial GPR model is inaccurate [38]. One remedy is to track the variation of the prediction364

in multiple iterations through the modification:365

∆t =
|v̂p − v̂p−q|
v̂p + αv

≤ α (19)

where for Eq. (19) to be deemed satisfied, it must be satisfied for q = 1, 2, . . . , Nc where Nc is366

set by the user. It should be noted that the adaptive sampling stops only when the criterion367

in Eq. (19) is satisfied for both the predictive mean ŷh and standard deviation σŷh .368

4.3. Conditional Collapse Probability369

4.3.1. Overview370

The estimation of the probability of system collapse conditional on the jth stratum can371

be described as a binary classification task. In this task, collapse is labeled as 1 while non-372

collapse is labeled as 0. Similar to the estimation of the conditional non-collapse exceedance373

probability, it is proposed to efficiently evaluate the low-fidelity model to obtain MCS so-374

lutions in each stratum, which are then used to inform through a constructed classification375

model whether the system collapses and estimate the stratum conditional collapse probabil-376

ity. The multi-fidelity model takes the low-fidelity response, yl, as the model input while377

providing as output the outcome of the indicator function Ic = 1 or 0. To associate the low-378

fidelity response with system collapse, the conditional collapse probability, P (Dc|Ωj), can be379

rewritten as:380

P (Dc|Ωj) =

∫

Ic(yl)pj(yl)dyl (20)

For a given sample x, the low-fidelity model is first evaluated to obtain yl(x). Then, based381

on the constructed classification model, whether the system collapses or not (i.e., Ic) can382

be quickly predicted from the low-fidelity response yl(x). The estimator of the conditional383

collapse probability remains the same as that reported in Eq. (8).384
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4.3.2. Gaussian Process Classifier of the Multi-fidelity Model385

The multi-fidelity model aims to construct a classifier to predict the indicator function Ic386

given any low-fidelity response yl. To this end, a Gaussian process classification (GPC) model387

is used here. In contrast to other classification models, such as support vector machines, GPC388

provides a full predictive distribution that can be further used for active learning [40]. The389

idea behind the GPC is to assume a Gaussian process prior over a latent function, f(yl),390

and then transform it through a logit or probit function to obtain the prior over the target391

function Ic [35].392

It should be noted that f(yl) cannot be observed which, however, is not an issue. The393

adoption of f(yl) is only for the convenience of formulating the GPC model. Following GPC394

convention, a zero-mean Gaussian process is assumed over the latent function, f(yl), i.e.,395

f(yl) ∼ N (0, k(yl, yl
′)) where k(yl, yl

′) is again the kernel function with length-scale θ and396

variance σ2. The Bayesian inference of GPC involves firstly calculating the predictive distri-397

bution over the latent function f over any new low-fidelity output yl∗ and subsequently using398

this distribution to compute the probabilistic prediction over the corresponding indicator399

function Ic∗, i.e., p(Ic∗ = 1|Yl,Ic, yl∗). More details on the GPC inference are presented in400

the Appendix. Finally, the predicted class label, Îc(yl∗), (i.e., whether or not the system col-401

lapses) from the multi-fidelity classification model can be obtained by applying a threshold to402

the predictive class probability, i.e., Îc(yl∗) = 1 if p(Ic∗ = 1|Yl,Ic, yl∗) > 0.5 and Îc(yl∗) = 0,403

otherwise.404

4.3.3. Active Learning for Optimal Selection of Training Data405

Since the GPC provides a probabilistic prediction over the class labels, an active learning406

strategy can be used to adaptively select the training data. The goal is to add samples that407

can maximize the capability of the classification model in terms of discriminating collapse408

samples from non-collapse samples, which ultimately reduces the cost of running the high-409

fidelity model. The most commonly used active learning for classification is to use the410

uncertainty measure which selects the sample where the classification model is the most411

uncertain to label [37]. For the GPC model, the sample with posterior predictive class412

probability, p(Ic∗ = 1|Yl,Ic, yl∗), close to 0.5 should be where the classification model is the413
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most uncertain. Based on Eq. (26), this learning function is then transformed to |µ̂(yl)|√
1+σ2

µ̂
(yl)

414

close to 0 [40, 41]. The learning function of active learning for GPC is written subsequently415

written as:416

y∗∗l =argmaxyl∈Yl,candi
U(yl) (21)

where U(yl) =
|µ̂(yl)|√
1+σ2

µ̂
(yl)

. The active learning process continues until a stopping criterion is417

reached. A similar stopping criterion as reported in Eq. (19) is used in this work.418

4.4. Overall Algorithm419

The overall algorithm of the proposed multi-fidelity stochastic simulation scheme is shown420

in Fig. 1. The algorithm starts with training the classification model (described in Sec. 4.3.2)421

using the active learning described in Sec. 4.3.3. Once the classification model is calibrated,422

the algorithm proceeds to the regression part which trains the regression model (described in423

Sec. 4.2.1) with the active learning strategy described in Sec. 4.2.3. It is noteworthy to point424

out that the regression model can be pre-trained using the non-collapse samples when the425

classification model is being trained, or it can start to be trained after the classification model426

is calibrated. In addition, the trained classification model is used during the training of the427

regression model to determine if a selected sample is a collapse or non-collapse sample. The428

high-fidelity model is then only evaluated if the selected sample is predicted as non-collapse.429

This helps in reducing the computational effort of running the high-fidelity model. To avoid430

confusion, in the following, the GPR-based multi-fidelity model will be referred to as the431

multi-fidelity regression model, and the GPC-based multi-fidelity model as the multi-fidelity432

classification model. It should be noted that this multi-fidelity stochastic simulation scheme is433

performed within each stratum of the stratification. Once the multi-fidelity classification and434

regression models are trained, they can be used directly to predict the conditional collapse435

probability, P̂ (Dc | Ωj), and the conditional non-collapse exceedance probability, P̂nc(yh > δ |436

Ωj), of Eq. (8). More specifically, Nj MCS samples of x are first generated from pj(x), and437

then the low-fidelity model is evaluated to obtain samples of yl(x). The next step is to use438

the trained multi-fidelity models to predict the conditional collapse probability P̂ (Dc | Ωj)439

and the conditional non-collapse exceedance probability, P̂nc(yh > δ | Ωj), given respectively440
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Figure 1: Flowchart of the proposed multi-fidelity stochastic simulation scheme.

by:441

P̂nc(yh > δ | Ωj) ≈
1

Nj − N̂jc

N−N̂jc
∑

i=1

Φ

(

ŷh(yl(xi))− δ

σŷh(yl(xi))

)

(22)

442

P̂ (Dc | Ωj) ≈
1

Nj

Nj
∑

i=1

Îc(yl(xi)) =
N̂jc

Nj

(23)

where xi is the ith sample, and N̂jc is the estimated number of collapse samples; ŷh(yl(xi))443

and σŷh(yl(xi)) are the predictive mean (Eq. (14)) and standard deviation (Eq. (15)) at yl(xi)444

from the multi-fidelity regression model; and Îc(yl(xi)) is the predicted class label from the445

multi-fidelity classification model given yl(xi). It follows that the estimator of the conditional446

failure probability for the jth stratum using the multi-fidelity stochastic simulation scheme447

is given by by Eq. (8) after plugging in Eqs. (22) and (23). After obtaining the conditional448

failure probabilities for all the strata, the total failure probability can be calculated from449

Eq. (7).450

5. Illustrative Example451

To illustrate the proposed multi-fidelity stochastic simulation scheme, it is applied to the452

two-story two-bay steel frame subject to extreme winds outlined in [42]. The building is453

assumed to be located in an urban region of Miami, USA, and has a total height of H = 10454
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Figure 2: Two-story two-bay steel frame under wind excitation (from [42]).

m. As illustrated in Fig. 2, the structural system of the building is defined by four moment-455

resisting (MR) frames (two acting along the short side of the building and two acting in the456

long direction). Of interest to this work is the performance of the MR frame acting along457

the short side of the building for which the critical wind direction is perpendicular to the458

long side of the building. As reported in [42], the MR frame is composed of two unique box459

sections for columns (C1 and C2) and two unique W×24 sections for the beams (B1 and B2).460

The dynamic wind loads are assumed to act at each level of the building. Gravity loads are461

indicated in Fig. 2. The section sizes were selected to achieve an elastic response under a462

700-year return period wind load and satisfy a peak roof displacement limit of H/300 under463

a 25-year return period wind load.464

Limit states are considered on the maximum interstory drift ratio and ductility ratio of465

the members. In particular, the ductility ratio is defined as the maximum strain (during the466

wind event) over the yield stain of the most critical element in the structure. System collapse467

is defined as the maximum interstory drift ratio exceeding 5% [43].468

5.1. Implementation Details469

5.1.1. High-fidelity model470

The steel frame shown in Fig. 2 was modeled in OpenSees. Each member was modeled471

using two nonlinear force-based fiber elements. Five integration points were used for each472

element and fourteen fibers were used for each section (fiber discretization illustrated in [42]).473
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Fiber damage resulting from low-cycle fatigue and potential fiber fracture was considered474

and modeled according to the linear damage accumulation rule and the modified rain flow475

cycle algorithm [44]. The cyclic behavior of steel was simulated by the Menegotto-Pinto476

material model [45]. Large displacement effects were considered in the high-fidelity model477

by adopting a corotational transformation. These settings were implemented to ensure that478

the high-fidelity model accurately captures the nonlinear behavior, including the collapse, of479

the structure subjected to extreme winds. For the nonlinear analysis, a Rayleigh damping480

model was adopted to represent the inherent structural damping [46]. The first two natural481

frequencies of the structure were approximately f1 = 0.51 Hz and f2 = 1.22 Hz, which ensures482

a certain degree of dynamic excitation by the wind loads. However, the modal frequencies483

will be affected by the structural uncertainties described in Sec. 5.1.3, leading to deviations484

from the above-mentioned values.485

5.1.2. Stochastic Wind Model486

A local wind climate model, for describing the mean wind speed profile, and a spec-487

tral representation model, for describing the fluctuating component of the wind speed, were488

adopted in defining the wind loads. For the wind speed profile, the widely used power law489

was adopted, while for the fluctuating component of the wind speeds, the target cross power490

spectral density matrix proposed by Kaimal was adopted [47] with coherence functions as491

outlined in [48]. The wind forces were considered to act laterally in the frame’s plane at492

the level of each floor. A quasi-steady model was used to transform the spatio-temporally493

varying wind speeds to wind load histories acting at the two floors [49, 50]. In particular,494

the quasi-steady model was calibrated assuming an influence width of 15.24 m for each floor,495

a quasi-steady pressure coefficient of 1.2, and air density 1.25 kg/m3. The stochastic wind496

loads were simulated with a time step of 0.01 s and total duration 10-minutes. In order to497

accurately simulate the initial conditions as well as ensure the possibility of directly estimat-498

ing residual deformation, the first and last two minutes of the loads were linearly ramped up499

and down.500
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Table 1: Summary of the basic random variables (CoV = coefficient of variation).
Parameter Mean CoV Distribution Reference

E 200 Gpa 0.04 Lognormal [53, 54]
Fy 380 Mpa 0.06 Lognormal [53, 54]
b 0.001 0.01 Lognormal [45, 55]
ε0 0.077 0.161 Lognormal [45]
R0 20 0.166 Normal [45]
a1 0.01 2 Lognormal [45]
a3 0.02 0.5 Lognormal [45]

δ1/L 0.056% 0.77 Normal [56, 57]
ζ 0.015 0.4 Lognormal [58, 59, 60]

5.1.3. Uncertain Model and Load Parameters501

The random variables associated with the structural system and their governing distri-502

butions are listed in Table 1. The random variables were divided into three groups: (i)503

seven material model parameters, uniquely defined for each structural section in the frame,504

including Young’s modulus E, yield strength Fy, strain hardening ratio b, fatigue material505

parameter ε0, elastic-to-plastic transition parameter R0, and the two hardening parameters506

a1 and a3 [45]; (ii) damping ratio, ζ, of the first two modes, which are considered to be equal;507

and (iii) the initial camber, uniquely defined for each column at mid-length, described by a508

random scale factor, δ1, and a random sign, (±1) based on the first buckling mode.509

The uncertainties considered in the wind loads consist of the mean hourly wind speed510

at the building top, v̄H , and the independent and uniformly distributed phase angles used511

in the spectral representation model [51]. The wind speed v̄H is considered to follow a512

Type-I extreme value distribution with parameters calibrated to the Type-I distribution with513

parameters estimated through calibration to the wind speeds provided in [52] for Miami, Fl.514

The total number the random variables associated with structural parameters and wind loads515

is in the order of 105, illustrating the high-dimensionality of the stochastic simulation problem516

of this case study.517

5.1.4. Stratified Sampling518

Since wind speed is the dominant variable affecting the structural performance associated519

with the considered limit states, it is selected as the stratification variable. Considering that520

the load effect is approximately proportional to the square of the wind speed, the partitioning521

of the stratified sampling was based on imposing an equal squared difference in wind speed522
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Table 2: Sample allocation.
WSI v̄lower

H [m/s] v̄upperH [m/s] ni

1 0.00 21.08 5,000
2 21.08 29.82 5,000
3 29.82 36.52 5,000
4 36.52 42.17 5,000
5 42.17 47.15 5,000
6 47.15 51.65 5,000
7 51.65 55.78 5,000
8 55.78 ∞ 5,000

[61, 62, 63, 8]. To ensure the collective completeness of the wind speed intervals (WSIs), the523

lower bound defining the first WSI is assumed to be zero, while the last WSI from above524

is assumed to be unbounded. The lower limit of the last WSI was chosen to correspond525

to an annual exceedance probability of 7 × 10−7, a specified value in [52] that corresponds526

to collapse for a risk Category II structure. A uniform sample allocation was adopted in527

this application with 5000 samples in each stratum. The final sample allocation is shown in528

Table 2 along with the lower and upper bound wind speeds defining the partition.529

5.1.5. Low-fidelity Models530

The low-fidelity model adopted an elastic-perfectly plastic material model to simulate531

the steel therefore significantly simplifying its yielding behavior. In addition, fiber damage532

due to low-cycle fatigue and potential fiber fracture, and large displacement effects, were533

ignored. Therefore, uncertain input parameters of the low-fidelity model only include the534

modulus of Young E, the yield strength Fy, and the damping ratio ζ. To further reduce535

the computational cost of the low-fidelity model, a larger time step in solving the dynamic536

equations was adopted. Due to these simplifications, this elastic-perfectly plastic low-fidelity537

model, denoted LF2, is approximately 10 times faster to evaluate than the corresponding538

high-fidelity model. For comparison purposes, an even more efficient low-fidelity model, which539

is developed based on modal integration, was also developed. This low-fidelity model ignores540

the material and geometric non-linearity of the structure and thus only provides a rough541

approximation of the structural behavior. This elastic model, denoted LF1, is approximately542

300 times faster to evaluate than the corresponding high-fidelity model.543
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5.1.6. Calibration of the Multi-fidelity Scheme544

To train the multi-fidelity models, only a small subset of the samples from each stratum545

were selected, for which the high-fidelity model was evaluated. The active learning strategy546

was used to determine the number and the location of the samples needed for the model547

training. To set up the initial training set, the “uniform” sampling plan (described in Sec.548

4.2.3) was adopted. In particular, nbin = 5 were used and two samples were chosen from549

each bin to form the initial training set. To monitor the convergence of the multi-fidelity550

regression model, 25 evenly distributed values were initially picked from the low-fidelity551

response range in each WSI. It should be noted that the low-fidelity response ranges were552

defined by the minimum and maximum predicted non-collapse low-fidelity responses from the553

trained multi-fidelity classification model. Furthermore, the predictive means and standard554

deviations over the selected low-fidelity responses were averaged to obtain a measure of the555

overall convergence of the multi-fidelity regression model in each WSI. In this study, the556

maximum interstory drift ratio was identified as the key structural performance measure and557

thus was used to determine the training data.558

5.2. Results and Discussion559

5.2.1. Performance of Multi-fidelity Models560

This section reports the results from the multi-fidelity stochastic simulation using the561

elastic-perfectly-plastic low-fidelity model (LF2 ). To differentiate the multi-fidelity regres-562

sion models constructed based on the heteroscedastic and homoscedastic Gaussian process563

model, they are referred to as the HGP-based multi-fidelity model and the GP-based multi-564

fidelity model. Fig. 3 shows the variation of the averaged predictive means and standard565

deviations for the maximum interstory drift ratio over the active learning iterations, where566

the predictions are from the HGP-based multi-fidelity model. From Fig. 3, it can observe567

that the average predictive means and standard deviations show variation at the beginning568

of the active learning indicating how the multi-fidelity regression models require additional569

samples before becoming stable. This is especially true for higher WSIs, e.g., the 6th and 7th570

WSIs, since pj(yh|yl) is more complex for higher winds due to the significant non-linearity in571

the system. Based on the variation of the trained multi-fidelity regression models and the572
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Figure 3: Variation of the HGP-based multi-fidelity models with the number of active learning iterations
(std: standard deviation).

convergence criterion defined in Eq. (19), the active learning process stopped at the 101th,573

124nd, 93th, 99th, 89nd, 169th, and 220th iteration, respectively, for the 1st to the 7th WSIs.574

Regarding the 8th WSI, the multi-fidelity classification model predicted collapse for all575

samples, and thus no regression model was trained. In summary, the multi-fidelity regression576

models converge quickly, which ensures the computational efficiency of the multi-fidelity577

stochastic simulation scheme. For the GP-based multi-fidelity models, the variation of the578

averaged predictive means and standard deviations for the maximum interstory drift ratio579

with the iterations showed similar convergence behavior to the HGP-based multi-fidelity580

model.581

Similar to the multi-fidelity regression models, the strata-wise multi-fidelity classification582

models for predicting the system collapse improve iteratively until the stopping criterion is583
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Figure 4: True versus predicted collapse/non-collapse given any low-fidelity maximum interstory drift ratios.

met. The number of iterations for the multi-fidelity classification models determined by the584

stopping criterion is 21 for the first 4 WSIs, and 32, 68, 84, 68 for the 5th to 8th WSIs,585

respectively. In order to show the performance of the multi-fidelity classification model,586

Fig. 4 compares the true and the predicted collapse/non-collapse samples for all low-fidelity587

maximum interstory drift ratio samples of WSIs 6 and 7. As can be observed from Fig. 4, the588

predicted collapse/non-collapse matches well with the true collapse/non-collapse, verifying589

the effectiveness of the established multi-fidelity classification models. Results for the other590

WSIs are not shown as for these WSI all samples do not collapse, or collapse, therefore591

facilitating the classification.592

Fig. 5 presents the predictive means and the associated uncertainties for any given low-593

fidelity maximum interstory drift ratio from the strata-wise multi-fidelity regression models594

together with the training data. It can be seen that the maximum interstory drift ratios from595

the low-fidelity model correlate well with those from the high-fidelity model when the WSI is596

low. This is because the frame is still elastic at low wind speeds, and the low-fidelity model597

should offer similar solutions to the high-fidelity model. The variability of the high-fidelity598
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response, given a specific low-fidelity response, is mainly attributed to the difference in time599

step used to solve the dynamic equations in two numerical models. In contrast, the maximum600

interstory drift ratios are less correlated as wind speeds increase. This is to be expected since601

high wind speeds generally result in significant non-linear behavior of the frame which the602

low-fidelity model cannot accurately describe. Overall, the HGP-based multi-fidelity models603

can fairly accurately capture the mean trend as well as the variability of the high-fidelity604

response given any low-fidelity response. Similarly, the predictive distributions given by the605

GP-based multi-fidelity models are shown in Fig. 6. By comparing the HGP-based and606

GP-based multi-fidelity models, it can be seen that the HGP-based multi-fidelity models607

can capture the varying uncertainty of yh given yl for the first 5 WSIs, while the GP-based608

multi-fidelity model predicts the uncertainty to be constant as yl changes. Consequently,609

the GP-based models can either overestimate or underestimate the uncertainty of yh given a610

yl. For the 6th and 7th WSIs, the HGP-based and GP-based multi-fidelity models provide611

similar predictive mean and standard deviation, as it is observed that the uncertainty of yh612

at any yl is almost constant.613

614

615

To further demonstrate the predictive performance of the multi-fidelity regression models,616

the true conditional distribution pj(yh|yl) was compared with the predictive distribution from617

the multi-fidelity models. The true conditional distribution pj(yh|yl) is unknown but can be618

estimated using the non-collapse samples from the 5000 samples generated in each WSI.619

Fig. 7 and Fig. 8 show the true and predicted pj(yh|yl) for each WSI, where yl was chosen as620

the median of the low-fidelity maximum interstory drift ratios of the non-collapse samples in621

each WSI. The figures show that the predictive mean from the multi-fidelity models agrees622

well with the mean of the true conditional distribution p(yh|yl). Although it can be observed623

that the predictive variance is overestimated at low WSIs while it is underestimated at high624

WSIs, the predictive variance can be estimated with relatively high accuracy. In comparison,625

the GP-based multi-fidelity models overestimate the uncertainty of yh at a yl more than the626

HGP-based multi-fidelity models in the first 4 WSIs, while the difference between the two627

model types becomes smaller as the wind speed becomes large (e.g., in WSI 6 and 7). Overall,628
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Figure 5: Trained HGP-based multi-fidelity regression models for the maximum interstory drift ratio (std:
standard deviation).

the results indicate that with only one to two hundred evaluations of the high-fidelity model629

in each WSI, the predicted conditional distribution pj(yh|yl) is reasonably accurate.630

631

632

5.2.2. Estimation of Failure Probability633

In this section, the failure probabilities, P̂ (yh > δ), were estimated using Eq. (7) and634

Eqs. (22)-(23), where different response limits, δ = {2%, 3%, 4%, 5%}, were considered for635

the maximum interstory drift ratio. This section includes the results from the multi-fidelity636

stochastic simulation using both low-fidelity models. Table 3 summarizes the correspond-637

ing predicted failure probabilities, where: LF1-MF-GP = multi-fidelity model with elastic638

low-fidelity model and homoscedastic GPR model; LF1-MF-HGP = multi-fidelity model639

27



0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8
Training data

Predictive mean

Predictive mean +/- 1.96 std

0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

1 1.5 2 2.5 3
0

1

2

3

4

2 3 4 5 6
0

1

2

3

4

5

6

2 2.5 3 3.5 4
1

2

3

4

5

6

2.2 2.4 2.6 2.8 3 3.2 3.4
1

2

3

4

5

6

WSI 7

WSI 6WSI 5WSI 4

WSI 1 WSI 3WSI 2

Figure 6: Trained GP-based multi-fidelity regression models for the maximum interstory drift ratio (std:
standard deviation).

with elastic low-fidelity model and heteroscedastic GPR model; LF2-MF-GP = multi-fidelity640

model with elastic-perfectly-plastic low-fidelity model and homoscedastic GPR model; LF2-641

MF-HGP = multi-fidelity model with elastic-perfectly-plastic low-fidelity model and het-642

eroscedastic GPR model. For comparison purposes, the failure probabilities were also esti-643

mated from single-fidelity stochastic simulation, including using LF1 = elastic low-fidelity644

model; LF2 = elastic-perfectly-plastic low-fidelity model; HF = high-fidelity model using645

stratified sampling. The single-fidelity stochastic simulation is based on stratified sampling,646

where 5000 low-fidelity or high-fidelity samples were generated in each stratum. It is worth647

mentioning that the estimated failure probabilities from “HF” were used as reference results648

(i.e., ground truth). The use of stratified sampling, instead of a standard Monte Carlo (MC)649

scheme, for generating the reference solution was simply due to how it enables significant650
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Figure 7: True versus predicted conditional distribution pj(yh|yl) from the HGP-based multi-fidelity model.
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Figure 8: True versus predicted conditional distribution pj(yh|yl) from the GP-based multi-fidelity model.

variance reduction while maintaining the desirable statistical properties of the MC estima-651

tor, i.e., unbiased, consistent, and normally distributed estimates of the failure probability,652

as demonstrated in [8]. Therefore, the use of stratified sampling in generating a reference653

solution can be considered equivalent to the use of an MC scheme with, however, a significant654

reduction in the number of samples necessary to estimate the small failure probabilities of655

interest to this work. To reinforce this, subset simulation was also used to estimate failure656

probabilities associated with the maximum interstory drift ratio. To ensure similarly small657

coefficients of variation between the reference solutions estimated from subset simulation and658

stratified sampling, a total of 33,000 high-fidelity model runs were considered in implementing659

subset simulation. Specifically, 9 subsets were considered with a level probability of 0.3 and660

5,000 samples in each subset. The results from subset simulation are also presented in Table 3661

and labeled HF (SuS). As would be expected, the failure probabilities estimated from subset662

29



simulation are closely aligned with those estimated from stratified sampling. In addition, to663

highlight the computational advantages of the proposed approach, Table 3 also includes the664

total number of high-fidelity model (# of HF runs) and low-fidelity (# of LF runs) model665

runs used in the evaluations for each case. To further compare the results, the percentage666

error: err =
P̂ (yh>δ|Ωj)−P (yh>δ|Ωj)

P (yh>δ|Ωj)
× 100%, was also defined in terms of the stratified sampling667

target solution and is shown in Fig. 9.668

From Table 3 and Fig. 9, several interesting findings can be summarized. Firstly, al-669

though highly efficient to evaluate, LF1 provides an extremely biased estimation of the670

failure probabilities if it is directly used in replace of the high-fidelity model. However, dra-671

matic improvements can be seen using either the LF1-MF-GP or LF1-MF-HGP models.672

Secondly, LF2 offers a better estimation of the failure probabilities as it can describe the673

structural behavior more realistically than LF1. However, this increased accuracy is achieved674

by sacrificing computational efficiency. Indeed, LF2 is approximately 30 times slower than675

LF1. Similarly to above, using either LF2-MF-GP or LF2-MF-HGP, the estimated failure676

probabilities see a considerable improvement in accuracy. Thirdly, by comparing results from677

LF1-MF-GP/HGP and LF2-MF-GP/HGP, it can be observed that the multi-fidelity mod-678

els based on LF2 provide a better estimation of the failure probabilities than the models679

based on LF1 in most cases. This is expected since LF2 provides more accurate informa-680

tion about the high-fidelity model than LF1. Lastly, the computational advantages of the681

proposed multi-fidelity framework over existing state-of-the-art approaches, e.g., subset sim-682

ulation (HF (SuS)) or stratified sampling (HF ), is clearly evident from the total high-fidelity683

model runs necessary for estimating the failure probabilities using either HF or HF (SuS) as684

compared to those necessary using any of the four multi-fidelity model setups. Indeed, in all685

cases, over 30 times as many high-fidelity model runs are necessary when implementing HF686

or HF (SuS) for obtaining failure probability estimates of similar accuracy.687

Finally, the difference between the GP-based and HGP-based multi-fidelity models is688

negligible in general, although the HGP-based multi-fidelity models provide a slightly better689

estimation of the failure probabilities when the threshold is small. The reason is that the690

GP-based multi-fidelity models add additional uncertainty to the conditional distribution691

pj(yh|yl) given small yl values in WSIs associated with low wind speeds, while the GP and692
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Table 3: Estimated failure probabilities for the maximum interstory drift ratio.
δ # of LF runs # of HF runs 2% 3% 4% 5%

LF1 40,000 0 4.30× 10−5 1.86× 10−6 1.59× 10−7 1.93× 10−8

LF1-MF-GP 40,000 918 1.61× 10−4 2.81× 10−5 8.52× 10−6 4.41× 10−6

LF1-MF-HGP 40,000 957 1.57× 10−4 2.76× 10−5 8.53× 10−6 4.43× 10−6

LF2 40,000 0 1.18× 10−4 1.88× 10−5 6.55× 10−6 3.42× 10−6

LF2-MF-GP 40,000 938 1.69× 10−4 2.79× 10−5 9.63× 10−6 4.85× 10−6

LF2-MF-HGP 40,000 963 1.58× 10−4 2.79× 10−5 9.62× 10−6 4.89× 10−6

HF 0 40,000 1.47× 10−4 2.71× 10−5 1.01× 10−5 5.17× 10−6

HF (SuS) 0 33,000 1.79× 10−4 3.23× 10−5 1.12× 10−5 6.13× 10−6

Figure 9: Percentage error of the estimated failure probabilities for maximum interstory drift ratio.
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Table 4: Estimated failure probabilities for the ductility ratio.
δ 2% 3% 4% 5%

LF1 2.57× 10−6 8.10× 10−8 1.93× 10−8 1.93× 10−8

LF1-MF-GP 1.01× 10−4 3.88× 10−5 1.85× 10−5 9.92× 10−6

LF1-MF-HGP 1.00× 10−4 3.80× 10−5 1.83× 10−5 9.98× 10−6

LF2 2.21× 10−5 5.72× 10−6 3.43× 10−6 3.42× 10−6

LF2-MF-GP 1.19× 10−4 4.06× 10−5 2.11× 10−5 1.19× 10−5

LF2-MF-HGP 1.02× 10−4 3.85× 10−5 1.99× 10−5 1.15× 10−5

HF 9.65× 10−5 3.68× 10−5 2.06× 10−5 1.25× 10−5

Figure 10: Percentage error of the estimated of failure probabilities for the maximum ductility ratio.

HGP predicted noise/uncertainty convergences to similar values in WSIs with higher wind693

speeds.694

An important property of the proposed multi-fidelity framework is that the samples al-695

ready evaluated using the high-fidelity model for one limit state can be reused for other limit696

states. This is illustrated here for the maximum element-level ductility ratio. Table 4 lists697

the predicted failure probabilities using the multi-fidelity models outlined above while Fig. 10698

shows the percentage errors. Similar conclusions to the limit state of the maximum interstory699

drift ratio can be drawn from these results. Overall, the proposed multi-fidelity stochastic700

simulation scheme is able to estimate small failure probabilities (e.g., in the order of 10−6)701

with high accuracy while using only a small number of high-fidelity evaluations.702

703
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6. Conclusion704

This paper introduced a multi-fidelity stochastic simulation scheme for the estimation of705

small failure probabilities within the setting of stratified sampling. The core idea is to leverage706

an inaccurate but inexpensive low-fidelity version of a system model to provide information707

about the high-fidelity system model and therefore speed up failure probability estimation.708

For collapse estimation, a Gaussian process classification model, calibrated by a small number709

of high-fidelity runs, was constructed to predict collapse or non-collapse given any low-fidelity710

response. For non-collapse samples, the underlying probabilistic relationship between the711

low-fidelity and high-fidelity response was established through a Gaussian process regression712

model requiring again a small number of high-fidelity runs for calibration. These multi-713

fidelity models were established in each stratum, therefore, allowing low-fidelity model runs714

to provide estimations of failure probabilities with accuracy akin to considering a high-fidelity715

model. To illustrate the effectiveness of the proposed scheme, it was applied to estimate716

the failure probabilities of a 2D steel frame subject to extreme winds. The results showed717

that the multi-fidelity regression models can capture the probabilistic relationship between718

the low-fidelity and high-fidelity response with only a small number of high-fidelity model719

evaluations. The advantage of the proposed scheme is that even with a crude low-fidelity720

model, the corresponding multi-fidelity model can yield a significant improvement in the721

estimation of the failure probabilities. Moreover, the proposed multi-fidelity scheme is able to722

simultaneously estimate failure probabilities associated with multiple limit states. While the723

presented two-story, two-bay steel frame example effectively demonstrated the capabilities724

of the proposed methodology, the need for further validation in the context of high-rise725

structures under wind loads is recognized. This validation forms part of ongoing research726

projects and is included as a future direction to enhance the robustness and applicability of727

the proposed multi-fidelity stochastic scheme.728
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Appendix: Bayesian inference of Gaussian process classification (GPC)732

The Bayesian inference of the GPC model again requires a training set {Yl,Ic}, where733

the model input is Yl = {yl(xt); t = 1, . . . , nt} and the model output (i.e., label) is Ic =734

{Ic(xt); t = 1, . . . , nt}. The probabilistic prediction over the indicator function, Ic, given any735

new low-fidelity output yl∗ can be obtained as:736

p(Ic∗ = 1|Yl,Ic, yl∗) =

∫

p(Ic∗ = 1|f∗)p(f∗|Yl,Ic, yl∗)df∗ (24)

where p(Ic∗ = 1|f∗) is the prior assumed over the target function Ic, given by Φ(f∗), and737

p(f∗|Yl,Ic, yl∗) is the predictive distribution over f given yl∗, expressed as:738

p(f∗|Yl,Ic, yl∗) =

∫

p(f∗|Yl, f, yl∗)p(f|Yl,Ic)df (25)

where p(f∗|Yl, f, yl∗) takes the form of a GPR predictive distribution, and p(f|Yl,Ic) =739

p(f|Yl)p(Ic|f)/p(Ic|Yl) is the posterior distribution over f.740

Unlike the GPR, the Bayesian inference of the GPC is analytically intractable [64] since741

a non-Gaussian likelihood p(Ic|f) (i.e., probit function in this work) is assumed considering742

that the target function, Ic, produces discrete class labels. Therefore, approximation methods743

are often used to estimate, p(f|Yl,Ic), with commonly used ones including the Laplace744

approximation [65] and expectation propagation [66]. More details about the derivation of745

the integral in Eq. (25) can be found in [35]. Once p(f|Yl,Ic) is approximated, the predictive746

distribution over f is computed by Eq. (25), with which the GPC probabilistic prediction can747

be obtained by solving Eq. (24). Depending on the link function, Eq. (24) can be calculated748

analytically (e.g., when the link function is a probit function) or not (e.g., when the link749

function is a logit function). If a probit function is used and the Laplace approximation is750

adpoted, the GPC probabilistic prediction is given by:751

p(Ic∗ = 1|Yl,Ic, yl∗) = Φ





µ̂(yl∗)
√

1 + σ2
µ̂(yl∗)



 (26)
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with752

µ̂(yl∗) = kT
∗K

−1m (27)
753

σ2
µ̂(yl∗) = k(yl∗, yl∗)− kT

∗ (K+A−1)−1k∗ (28)

where the parameters m and A can be found in [35]. In terms of the calibration of the754

hyperparameters in the GPC model, i.e., length-scale θ and variance σ2, MLE is also used,755

where the likelihood function is given by:756

p(Ic|f) =
∏

p(Ic(yl(xi))|f(yl(xi))) (29)
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