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Abstract

The ever-growing interest in performance-based wind engineering (PBWE) can be traced

back to the potential to deliver more rational and economical designs. The computational

effort involved in the probabilistic performance assessments underpinning PBWE is, however,

a major barrier to wider applicability. This is especially true in light of the reliance of PBWE

on nonlinear dynamic analysis. This work is centered on alleviating this barrier through the

development of a deep learning metamodeling technique for rapidly predicting the nonlinear

dynamic response of structural systems subject to stochastic wind loads. The metamodel-

ing technique is based on first identifying a reduced space by Galerkin projection that is

subsequently learned through the application of long short-term memory (LSTM) neural

networks. Methods are proposed that enable the training of the deep learning metamodel to

multiple wind directions using short-duration segments of nonlinear dynamic response time

histories. The potential of the framework is demonstrated through application to a 37-story

steel frame modeled with fiber-based distributed plasticity and subject to stochastic wind

excitation. The calibrated deep learning metamodel is seen to be capable of accurately si-

multaneously reproducing both the displacement and fiber response at all degrees of freedom

with speedups of over four orders of magnitude.
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1. Introduction

Performance-based wind engineering (PBWE) has gained significant attention over the

last two decades as a methodology for rationally ensuring predetermined performance goals

are met by designs that offer increased safety at reduced costs. Significant research has

been devoted to the development of frameworks for the implementation of PBWE, e.g.,

[1, 2, 3, 4, 5, 6, 7, 8, 9]. These efforts have resulted in great interest from industry for

the implementation in practice of PBWE leading to the recent publication by the American

Society of Civil Engineers of the Prestandard for Performance-Based Wind Design [10]. One

of the key concepts that has emerged for implementing PBWE is the need for performance

evaluations supported by nonlinear dynamic response analysis.

Notwithstanding the significant computational cost, direct integration is generally consid-

ered for the estimation of the nonlinear dynamic response [11, 12, 13, 14, 15, 16], To overcome

the massive computational burden associated with integrating over the long duration of typ-

ical windstorms, in the order of hours, more efficient methods have been prospered including

static pushover analysis [17, 12], dynamic shakedown [18, 19], and reduced models [20, 21].

Nevertheless, static pushover analysis is not capable of capturing cumulative damage mech-

anisms, e.g., ratcheting and low cycle fatigue, due to its static nature. While the dynamic

shakedown method is free of the aforementioned issues and is highly efficient, it is limited

to simple constitutive material laws and is not capable of providing response time histories.

Reduced order modeling is, on the other hand, a powerful approach that can, however, be lim-

ited in terms of potential speedup due to the need to solve a system that, although reduced,

is still nonlinear. Recently, Li et al. [22, 23] extended the dynamic shakedown method to

enable the estimation of response time histories while maintaining a computational speedup,

compared to direct integration, of around an order of magnitude. However, due to the need

to evaluate probabilistic metrics for describing performance, and therefore the need to eval-

uate thousands of nonlinear time histories, the aforementioned speedups are not adequate

for general probabilistic performance assessments. An approach that has the potential to

offer far greater speedups is that associated with the machine learning-based metamodeling

of dynamic systems.

Typical metamodeling techniques centered on creating efficient function mappings, using,
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for example, polynomials, neural networks, and Kriging, between the parameters character-

izing uncertainty in both structure and excitation and a set of response metrics, for example,

peak values or their statistics. These methods, however, only reconstruct a few response

metrics and are not capable of providing estimates of response time histories which can be

essential for the evaluation of coupled damage mechanisms or damage accumulation [7]. In

response to this limitation, autoregressive models have been proposed for defining metamod-

els of the response trajectories of nonlinear dynamic systems [24, 25, 26]. More recently,

through the aid of model order reduction, this method was extended for the estimation of

the response trajectories of full-scale nonlinear structural systems [27, 28]. Alternatively,

metamodeling techniques based on deep learning have been proposed [29, 30, 31] and suc-

cessfully applied for the response estimation of wind excited structures [32, 33]. To facilitate

application to high-dimensional systems and avoid the need to train individual metamodels

for each response trajectory of interest, deep learning has been combined with model order

reduction and shown to provide superior performance compared to traditional autoregressive

models in estimating seismic responses [34]. Despite the progress in response time history

metamodeling, this technique has not been systematically applied for the estimation of non-

linear dynamic response trajectories of wind-excited structural systems subject to general

stochastic wind excitation.

This research is aimed at bridging this gap by introducing a deep learning-based response

time history metamodeling framework that is capable of rapidly predicting the long-duration

dynamic response trajectories at all degrees of freedom of nonlinear wind excited structural

systems subject to general stochastic excitation modeling wind loading from various wind

directions. The approach is illustrated within the context of probabilistic performance assess-

ment with a focus on the massive speedups that can be achieved in evaluating the nonlinear

dynamic response of the system.

2. Problem Definition and Underlying Models

2.1. Preamble

This work is focused on developing methods for rapidly characterizing the uncertainty in

the nonlinear dynamic response of systems caused by wind directionality and the inherent
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record-to-record variability of wind load histories calibrated to wind speeds with target mean

return intervals (MRIs). This is a key problem in probabilistic wind assessments [10], and

requires a significant computational budget due to the numerical effort associated with prop-

agating uncertainty through nonlinear dynamic systems driven by stochastic excitation with

a duration of at least 1-hour (standard length for a wind load history used in PBWE [10]).

This work seeks to provide methods to overcome this key hurdle by leveraging metamodeling

based on deep learning. Using seismic engineering terminology, i.e., [35], while assuming

wind speed as an “intensity measure”, as is common in PBWE [10], this type of analysis

can be termed an “intensity-based” performance assessment as the results are conditional on

a specified value of the wind speed. The capability to perform intensity-based assessments

can be used to directly infer performance over all wind intensities by carrying out a limited

suite of intensity-based assessments with subsequent convolution, through the total probabil-

ity theorem, with the “hazard curve” (defined in PBWE as the complementary cumulative

distribution function of the maximum mean hourly wind speed). Therefore, the capability

to carry out intensity-based assessments is key.

2.2. Intensity-based performance assessment and the sector-by-sector approach

Performance evaluation is generally formulated as a probabilistic problem associated with

evaluating the failure probabilities, at the component or system level, against several prede-

fined limit states. In wind engineering, both the aerodynamics of the building as well as the

target wind speed vary considerably with direction. Many approaches have been developed

to capture the effects of wind direction, e.g., the upper bound method, the sector-by-sector

approach, the up-crossing method, and the storm passage method [36, 37]. Among these, the

sector-by-sector approach is popular due to its simplicity and has been adopted in several

PBWE frameworks [e.g. 38] as it does not require any assumptions on the response behavior

of the system, i.e., linear and nonlinear systems are equally treatable. In the sector-by-sector

approach, the space of wind direction is divided into Nsec exhaustive and non-overlapping

sets, i.e., the sectors Sk = [αL,k, αU,k] for k = 1, 2, ..., Nsec where αL,k and αU,k are the upper

and lower bound of wind direction, α, for sector k. The intensity-based performance of the
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system can then be evaluated as:

Pf |vH = max
k

[

Pf |Sk,vH,k

]

(1)

where Pf |vH is the failure probability conditional on the non-directional wind speed vH of

target return period while Pf |Sk,vH,k
is the failure probability conditional on sector k and the

sectorial wind speed, vH,k, associated with target non-directional wind speed, vH . Consis-

tently with prevailing approaches, e.g., [5, 6, 13, 10, 38], the sector-by-sector approach is

based on a worst case scenario model under the assumption of a constant wind direction

during each windstorm. This approach is also adopted in the Prestandard for Performance-

based Wind Design [10] for modeling wind direction during the inelastic assessment of the

structural system. Nevertheless, it should be observed that the sector-by-sector approach

does not contemplate multiple events over the lifespan of the structure nor does it consider

wind direction change during a windstorm. From Eq. (1), it can be seen that in the sector-

by-sector based approach, Pf |vH is evaluated as the maximum conditional sectorial failure

probability. Key to the sector-by-sector approach is therefore the estimation of Pf |Sk,vH,k

that can be written in the following general form:

Pf |Sk,vH,k
=

∫

...

∫

g(y,α,vH,k)≤0

f(Y|α, vH,k)dy|dH(α|Sk, vH,k)| (2)

where: Y is the high-dimensional vector collecting the random variables modeling the stochas-

ticity (record-to-record variability) of the external dynamic wind loads; f(Y|α) is the prob-

ability density function of Y conditioned on α and vH,k; H(α|Sk) is the complementary

cumulative distribution function (CCDF) of α conditioned on Sk and vH,k; g(y) denotes a

limit state function of interest with g(y) ≤ 0 indicating failure, e.g., interstory drift exceeding

a predefined limit. The evaluation of Eq. (2) is often carried out using stochastic simula-

tion schemes, e.g., stratified sampling [39, 40], and therefore generally requires the repeated

evaluation of the long-duration nonlinear dynamic response of the system therefore creating

a significant computational bottleneck.

2.3. Structural and wind load model

2.3.1. Nonlinear structural model

The nonlinear dynamic response of a wind-excited structural system can be estimated by

solving the following equations of motion:
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Mü(t) +Cu̇(t) + Fnl(t) = F(t;α, vH ,y) (3)

where M and C are respectively the N ×N structural mass and damping matrices with N

the total number of degrees of freedom (DOFs) of the system; u(t), u̇(t) and ü(t) are the

N × 1 displacement, velocity, and acceleration response vectors respectively; Fnl(t) is the

N × 1 nonlinear restoring force vector; F(t;α, vH ,y) is a realization of the N × 1 stochastic

wind excitation vector defined for the wind direction, α, and wind speed, vH , as well as y, a

realization of Y.

2.3.2. Stochastic wind load model

Given α and vH , various models can be adopted for representing F(t;α, vH ,y). In this

work, the data-driven spectral proper orthogonal decomposition model outlined in Duarte

et al. [41] is adopted as it enables the direct capture of the complex aerodynamics seen in

the wind tunnel, e.g., vortex shedding and detached flow, in the stochastic wind loads. This

model is based on representing the ith component of F(t;α, vH ,y) in the following form

[42, 41]:

Fi(t; vH , α,y) =

NΥ
∑

lΥ=1

Nω−1
∑

kω=1

2|ΥilΥ(ωkω ;α)|
√

χlΥ(ωkω ; vH , α)∆ω cos(ωkωt+ ϑilΥ(ωkω ;α) + YlΥkω)

(4)

where: ΥilΥ(ωkω ;α) is the ith component of the lΥth eigenvector at frequency ωkω with

χlΥ(ωkω ; v̄H , α) the corresponding eigenvalue; NΥ is the number of spectral modes considered

in the representation; Nω is the total number of discrete frequency steps of the decomposition;

ϑilΥ(ωkω ;α) is a complex angle that can be written in the following form ϑilΥ(ωkω ;α) =
Imag(ΥilΥ

(ωkω ;α))

Real(ΥilΥ
(ωkω ;α))

; while YlΥkω is a random phase angle uniformly distributed in [0, 2π) and

constituting a component of Y modeling the stochasticity of F(t). To ensure reasonable

initial and final conditions, F(t) is generally multiplied by an appropriate envelope function,

e(t). A common choice for defining e(t) is to consider a linear ramp over the first few minutes

of F (t) and a linear ramp over the last few minutes of F(t) [19, 38].

2.4. Discussion and challenges

Solving Eq. (3) is usually not a trivial task, especially in the case of complex and high-

dimensional nonlinear systems. Moreover, the excitation associated with extreme wind events
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has durations in the order of hours further exacerbating computational demand. This com-

putational challenge is compounded if stochastic simulation schemes are used for propagating

uncertainty through the models in estimating Eq. (2). This research aims to alleviate this

issue through implementing deep learning metamodeling techniques, the theory of which will

be outlined in the next section.

3. The LSTM-based metamodeling framework

3.1. Preamble

This section introduces the metamodeling approach underpinning the framework of this

work. The approach is based on first using a data-driven model order reduction scheme by

leveraging proper orthogonal decomposition (POD) over a set of response samples estimated

through solving from Eq. (3). Subsequently, the reduced space is learned by a LSTM neural

network which, once trained, is capable of reproducing the time response of the nonlinear

system for a given wind speed and direction with negligible computational effort.

3.2. Model order reduction

In general, structural systems of practical interest have many thousands of DOFs that

feed into the limit state functions, g, of Eq. (2) in determining the performance of the system.

However, learning such high-dimensional systems can be extremely complex. To overcome

this difficulty, a Galerkin model order reduction is considered before attempting to learn the

dynamics of the system. A coordinate transformation matrix, φ, is therefore used to reduce

Eq. (3) to the form:

mq̈(t) + cq̇(t) + fnl(t) = p(t;y, α, vH) (5)

where: m = φTMφ and c = φTCφ are the reduced mass and damping matrices, respectively;

q(t), q̇(t), and q̈(t) are the displacement, velocity, and acceleration vectors in the reduced

space; while fnl(t) = φTFnl(t) and p(t;Y, α, vH) = φTF(t;Y, α, vH) are respectively the

reduced nonlinear restoring force vector and excitation force vector. In particular, an appro-

priately constructed transformation, φ, ensures an accurate approximation of u(t) ≈ φq(t)

can be achieved from only a few reduced coordinates. An effective approach for estimating

the coordinate transformation, φ, is to apply POD on a response matrix, U, defined by
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collecting a series of response snapshots of the system estimated by solving Eq. (3) for a

limited set of excitation samples. In particular, POD is generally implemented by applying

the singular value decomposition:

U = ΦΛΨT (6)

where Φ and Ψ are unitary matrices collecting respectively the left and right singular vectors;

Λ is a pseudo diagonal matrix with the diagonal entries, Λ(i, i), the ith largest singular value

λi. In particular, λ2
i indicates the energy of U projected onto the ith left singular vector.

To define φ, it is, therefore, reasonable to keep the first m significant left singular vectors,

which define a subspace that captures the majority of the energy in the structural response.

Through this process, the original N -dimensional problem of Eq. (3) is reduced to the

m-dimensional system of Eq. (5) where in general m � N . Despite the significantly reduced

size of the problem, the evaluation of fnl(t) at each time step generally requires evaluating

the high-dimensional model therefore limiting the computational advantage of Eq. (5). The

idea on which the framework of this work is based is to learn the dynamic input and output

relationship of the reduced space, i.e., the relationship between p(t) and q(t) through the

use of LSTM deep neural networks.

3.3. LSTM configurations

Typically an LSTM neural network consists of one or more LSTM layers, that can be

used to learn the dynamics of a time series, and a fully connected layer for transferring

the hidden states into outputs of correct dimension. In particular, the LSTM layer can be

mathematically described as follows:

gf(τ) = σg(θ
T
f,Hy(τ − 1) + θT

f,Ix(τ) + bf) (7)

gi(τ) = σg(θ
T
i,Hy(τ − 1) + θT

i,Ix(τ) + bi) (8)

go(τ) = σg(θ
T
o,Hy(τ − 1) + θT

o,Ix(τ) + bo) (9)

∆C(τ) = σs(θ
T
c,Hy(τ − 1) + θT

c,Ix(τ) + bc) (10)

C(τ) = gf(τ) ◦C(τ − 1) + gi(τ) ◦∆C(τ) (11)

y(τ) = go(τ) ◦ σs(C(τ)) (12)
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where x and y are respectively the input and output series of the LSTM layer; τ denotes

the time step of the input/output sequence; gf(τ), gi(τ), and go(τ) are the forget, input, and

output gates, respectively; C(τ) is the current cell state with C(τ−1) the previous cell state;

∆C(τ) is the new information on the cell state; σg(·) and σo(·) are respectively the gate and

state activation functions (typically sigmoid and/or hyperbolic tangent functions); ◦ is the

Hadamard (element-wise) product operator; while θf,H, θi,H, θo,H, θc,H, θf,I, θi,I, θo,I, θc,I, bf,

bi, bo, and bc are the tunable parameters of the LSTM network that are to be calibrated

during training and are collected in the vector θ in the following. The fundamental property

of an LSTM architecture that makes it suitable for learning the long time sequences of this

work can be traced back to how the cell state flows through the network using only linear

operations. This ensures straightforward back-propagation of gradient information therefore

helping avoid gradient vanishing and exploding problems.

The length of the input and output series, p(t) and q(t), in wind engineering can be sig-

nificant therefore hindering the training of the LSTM and operation in simulation mode once

trained. To overcome this, p(t) and q(t) can be approximated through the wavelet transfor-

mation and therefore represented in terms of much shorter sequences of wavelet coefficients

Ws,p(τ) and Ws,q(τ) [43, 32, 34]. Within this context, the LSTM neural network takes

Ws,p(τ) as input and predicts Ws,q(τ), while the training of the LSTM can be formulated

as:

θ∗ = argmin
θ

L(θ) (13)

where θ∗ is the optimal parameter vector and L(θ) is the following loss function describing

the goodness of fit:

L(θ) =
1

2
Eτ

[

∑

j

(Ws,qj(τ)−Wθ,s,qj(τ))
2

]

(14)

where Eτ is the operator of the expectation over τ while Wθ,s,qj(τ) is the predicted output

for the jth reduced coordinate from the LSTM neural network with parameters θ.

Eq. (13) can be efficiently solved by gradient-based algorithms by targeting the predicted

outputs of a set of ground truth data. The parameters θ are tuned through an iterative step-

by-step process until the discrepancy between the predicted outputs and the ground truth

data is reduced to a satisfying level. Once trained, and given a new wind excitation, the
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LSTM neural network can be used to predict the wavelet coefficients of the reduced outputs

from which the response of the system at all DOFs can be directly estimated by applying

the inverse wavelet and coordinate transformations. It should be noted that the LSTM

neural network requires neither computation in the full space nor iterations. In addition,

the evaluation of neural networks can easily be performed using Graphics Processing Units

(GPUs). This leads to massive speedups in predicting response time histories of nonlinear

systems once the LSTM is trained.

4. The Training and Simulation Scheme

4.1. Preamble

The LSTM metamodel of Sec. 3 potentially represents a powerful response simulator for

dramatically speeding up the assessment of Eq. (1) by facilitating the stochastic simulation-

based assessment of Pf |Sk,vH,k
. However, the following two major challenges exist:

1. Wind excitation in different wind directions can vary significantly. For example, the

mean component of wind excitation varies from zero for acrosswind type loading to a

considerable portion of the overall load for alongwind type loading. As a result, the

mechanisms related to the accumulation of inelastic deformation can vary significantly.

Indeed, wind excitation with an important mean component can lead to a ratcheting-

type failure mechanism while zero-mean wind excitation can lead to low cycle fatigue

failure. This variation in loading and subsequent response complicates the training of

the LSTM metamodel as it must be capable of capturing the intricacies of the responses

for not only alongwind/acrosswind type loading, but also loading from all other wind

directions.

2. Unlike typical seismic records that have durations in the order of minutes, wind ex-

citation typically has durations in the order of hours leading to long response time

histories. Ensuring an adequate time step for capturing the high-frequency content of

the response (e.g., less than 0.5 seconds), can lead to time sequences of excessive length

(even after wavelet transformation) that can cause significant memory issues during

training due to the need for back-propagation. This is especially true if GPUs are used

as they typically have limited memory capacity.
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The possibility of training a single LSTM metamodel capable of addressing the points

outlined above has not been explored up to date. The next section will outline a training

scheme to this end.

4.2. Training

To address the first challenge outlined in Sec. 4.1, it is proposed to train the LSTM

network considering a set of data that contains an equal number, Nα, of randomly gener-

ated samples for each discrete wind direction, αi, considered in modeling the aerodynamic

response of the system. Generally, Nd wind directions are considered for characterizing the

aerodynamic response of the system resulting in αi varying between i = 1, ..., Nd. It should

be noted that, because of aspects such as symmetry in loading, the wind directions used

in training do not necessarily represent an equidistant discretization of wind direction as

this would lead to duplicate training data. Each sample is generated considering the non-

directional wind speed, vH , as the sectorial wind speeds satisfy the condition vH,k ≤ vH (i.e.,

by considering vH , the network will be trained on data presenting an upper bound on wind

intensity). By following this scheme, a total of NT = Nα ×Nd samples are used to train the

LSTM network within the reduced space. Because an equal number of samples are considered

for each unique wind direction during training, the LSTM experiences the type of response

variability expected due to the variability in wind direction and therefore should be capable

of predicting the expected variability in nonlinear responses.

To address the second challenge, it is proposed to train the LSTM network using response

samples of reduced duration, ts, as compared to the simulation horizon, T , i.e., the duration

of the stochastic wind loads F(t). The reasoning underpinning this idea can be traced back

to how wind excitation is generally modeled as stationary. Therefore, for a given wind speed

and direction, it is hypothesized that the damage accumulation experienced by the system

in [0, ts] will be similar to that experienced in (ts, T ] therefore allowing the LSTM network

to sufficiently learn the system from a total of NT truncated response samples.

4.3. Simulation strategy

Once trained, the LSTM metamodel can be used to directly estimate the sectorial failure

probabilities, Pf |Sk,vH,k
for k = 1, 2, ..., Nsec, using direct Monte Carlo simulation and therefore
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as:

Pf |Sk,vH,k
= P (g ≤ 0|Sk, vH,k) ≈

Nmc
∑

i=1

κ(0; gi|Sk, vH,k) (15)

where κ(·; gk|Sk, vH,k) is a kernel function constructed from the response samples of the limit

state function gk evaluated using the trained LSTM metamodel for wind directions in Sk

and a wind speed of vH,k, while Nmc is the total number of samples used in the Monte Carlo

simulation.

The massive computational speedups generally enjoyed by LSTM metamodels (in the

order of magnitudes) make the evaluation of Eq. (15) a trivial computational task even for

large values of Nmc and therefore Monte Carlo samples. It should also be observed that the

estimator of Eq. (15) can be used to directly estimate probability distributions, such as the

CCDF, by simply replacing g with the response of interest and evaluating Eq. (15) for a

suite of threshold values.

The proposed deep learning-based framework for estimating Pf |vH , including the training

phase, is summarized in Fig. 1.

5. Case Study

The proposed framework is illustrated through application to a 37-story steel moment-

resisting frame subject to stochastic wind excitation. In particular, the building is assumed

to be located in New York City and has a first story height of 6 m with all subsequent floors

having a height of 4 m leading to a total height of 150 m. The frame considered in this study

is one of the six identical X-direction moment resisting frames, as indicated in Fig. 2. The

frame has square box sections as columns and standard W24 wide flange sections as beams.

The variation of section size over the height of the building is summarized in Table 1. Both

the columns and beams are considered to be manufactured from Grade 50 steel. In addition,

the structural mass is calculated as the sum of the structural self-weight and a carried mass

of 100 kg/m3 considered acting over the influence area of the frame. Because the frame is

considered as part of a 3D building, the wind loading, taken as 1/6 of the total X-direction

loading, can be estimated for all wind directions.
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Figure 1: Schematic of the proposed deep learning-based metamodeling framework for rapid intensity-based

probabilistic wind performance assessment.
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Table 1: Section sizes of the steel frame.

Wide-flange Beams Box Columns

Level Section size Plastic modulus (m3) Section size (m) Plastic modulus (m3)

1-10 W24 × 192 0.0092 D = 0.5 0.0094

11-20 W24 × 192 0.0092 D = 0.5 0.0094

21-30 W24 × 103 0.0046 D = 0.4 0.0048

31-37 W24 × 103 0.0046 D = 0.35 0.0032

5.1. High-fidelity model

The structure is modeled in the finite element environment OpenSees (Open System for

Earthquake Engineering Simulation) [44]. Fiber-based displacement-based elements with a

5-point Gauss-Legendre integration scheme are adopted for modeling the frame. Distributed

plasticity is therefore considered. For the steel fibers, an elastic perfectly plastic constitutive

law is adopted, with Young’s modulus of 200 GPa and the yield strength of 355 MPa. In

addition, a rigid diaphragm constraint is enforced and the structural mass is lumped at the

Ground level

6 @ 5 m = 30 m

Level 37

150 m

Level 30

122 m

Level 10

42 m

Level 20

82 m

Level 0

0 m

X

Y

30 m

60 m

X

Z

North

D=0.35
D=0.4

D=0.5

W24 103 W24 192

(a)

(b)

(c)

Figure 2: Layout of the case study building.
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master node of each floor. The first two natural frequencies are respectively 0.19 Hz and 0.53

Hz. A Rayleigh damping model is adopted, with the damping ratio fixed at 2.5% for the first

two natural frequencies.

5.2. Wind load

For this case study, the wind directions are separated into 8 equally sized sectors, as

illustrated in Fig. 3. In particular, as adopted in Chuang and Spence [38], the sectorial wind

speeds are linearly related to their non-directional counterparts through the relationship

vH,k = KkvH where Kk are site-specific wind directionality factors. The Kk values used in

this study are those found in Chuang and Spence [38] and reported in Table 2. It should be

observed that because the Kk values are identified from the relationship: vH,k/vH = Kk with

vH,k estimated by fitting a wind speed distributions to directional sector specific wind data,

the directionality factors explicitly account for any phenomenological wind climate effects,

e.g., likelihood of windstorms occurring in a particular sector. The non-directional mean

hourly wind speed, vH , at which the performance assessment was carried out was 56.48 m/s

for a stationary time horizon of T = 3600 s. This was estimated from the ASCE 7-22 [45]

hazard maps for exposure B and corresponded to a mean recurrence interval (MRI) of 10000

years. Considering how the building was designed to be predominately elastic for a wind

loading corresponding to a wind speed with 1700 MRI (risk category II structure [45]), this

level of wind loading is expected to cause a noticeable inelastic response.

The stochastic wind load model of Eq. (4) was calibrated to wind tunnel data collected

on a 1/300 scaled rigid model of the building and part of the Tokyo Polytechnic Univer-

sity’s (TPU) aerodynamic database [46]. The data was measured using 512 synchronously

measured pressure taps at a sampling frequency of 1000 Hz and a mean wind speed at the

model top of 11 m/s. The measured data was further processed to estimate two time-varying

translational floor loads acting in the X and Y directions and a torsional moment around

the vertical Z direction. This raw data was scaled by matching the reduced frequency at the

model and full scale. Spectral interpolation was then used to ensure all wind load samples

generated from Eq. (4) had a cutoff frequency of 1 Hz, i.e., a sampling frequency of 0.5 Hz.

It is noted that the wind tunnel test data was only available for α = 0◦, 10◦, ..., 90◦. Symme-

try was therefore used to extend the data to all 36 wind directions, α = 0◦, 10◦, ..., 360◦, as
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Figure 3: Illustration of how symmetry was used to assign F(t; v̄H , α,y) for α ∈ {100◦, 110◦, ..., 360◦} from

the knowledge of F(t; v̄H , α,y) for α ∈ {0◦, 10◦, ..., 90◦}. Red arrows indicate when a change of sign was also

needed.

Table 2: Directionality factors of the wind sectors.

Sector N E S W NE SE SW NW

Kk 0.88 0.88 0.84 0.84 0.84 0.88 1.00 0.92

illustrated in Fig. 3.

5.3. Configuration and training of the LSTM metamodel

5.3.1. Training Data

As outlined in Sec. 5.2, wind tunnel data is available in ten-degree increments, i.e.,

∆α = 10◦. Due to the symmetry of the problem, unique loading conditions are experienced

by the structure only for the following Nd = 19 wind directions {0◦, ..., 90◦, 270◦, ..., 350◦}.

Training was therefore carried out for this set of wind directions. In particular, Nα = 43 was

considered leading to a total of NT = Nα ×Nd = 817 training samples. A reduced duration

(compared to the T = 3600 s stationary duration of the performance assessment) of ts = 600
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s was considered in training (this included a 60 s initial and final load ramp and 60 s of

appended zero loading for estimating the residual response). Consistently with ASCE 7-22

[45], the target mean hourly wind speed, vH = 56.48 m/s, was multiplied by 1.06 to ensure

it represented the maximum 10-minute average wind speed. The high-fidelity response of

the system was obtained by solving Eq. (3) by direct integration using the adaptive solver

outlined in Li and Spence [34] with a default time step of 0.02 s.

The singular vectors defining the reduced space were estimated from the calibration set

using 1200 evenly spaced snapshots for each response sample. A threshold of η = 99.999%

for mode truncation was implemented, and a three-dimensional reduced space was seen to

be sufficient for all wind directions. The reduced responses are estimated by solving Eq. (5)

with a 4th order Runge-Kutta scheme by enforcing a relative error tolerance of 10−5.

5.3.2. LSTM configuration

The deep neural network considered in this work had an LSTM layer with 200 hidden

units, a dropout layer with a dropout probability of 50% to alleviate potential overfitting is-

sues, and a fully connected layer. Both the input and output dimensions are three, consistent

with the dimensionality of the reduced system. For the LSTM training, both the reduced

excitation and response in the calibration set are preprocessed by the wavelet transform with

the 6th-order Daubechies function. Further, the preprocessed calibration set is randomly

divided into a training set with 750 samples and a validation set of 67 samples. The adaptive

moment estimation (Adam) algorithm with a constant learning rate of 0.005 is used to train

the LSTM neural network. In every training iteration, a randomly selected mini-batch of

75 samples from the training set is used to calculate the gradient. Every 50 iterations, the

loss value over the validation set is evaluated to monitor potential overfitting issues, and an

early stop is triggered if unacceptably high overfitting is detected. The training is performed

until a maximum epoch of 4000 is reached or the loss function ceases to show a decreasing

trend. All the computations involved in this work were performed on a personal computer

with Intel(R) Xeon(R) E-2236 CPU @3.40 GHz, NVIDIA Quadro RTX 4000 GPU, and 32

Gb RAM.

The loss associated with the training and validation set for the training process is shown
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Figure 4: Loss curve for the training and validation data set.

in Fig. 4. It is seen that both the training and validation loss progressively decrease with

the training epochs until convergence. The validation loss is slightly higher than the training

loss but does not indicate a significant overfitting issue.

5.3.3. Test data results

Five samples for each wind direction were considered for testing leading to a total of 180

test samples. Example displacement time histories at two locations and a wind direction of

α = 270◦ are shown in Fig. 5 together with the peak values over all wind directions esti-

mated by the LSTM metamodel and the high-fidelity OpenSees model. In comparing the

extreme values, a statistical peak was used defined by the mean plus one standard deviation

(mean and standard deviation estimated from the response corresponding to the unramped

stationary portion of loading). It is seen that, even in the presence of important nonlinearity

(observable from the noticeable residual displacement at the end of the time histories), the

LSTM metamodel was capable of reconstructing the entire response time history with re-

markable accuracy. The comparison of the peak values shows how high accuracy holds over

the entire test data set. In addition, Fig. 4 also shows how the LSTM metamodel is capable

of accurately reproducing the fiber strain and stress response of the system, illustrated for a

column fiber at the base of the structure in terms of example time histories, hysteretic curve,

and peak values over all test data. Finally, the calibrated LSTM metamodel was seen to be
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over 70000 times faster than the high-fidelity OpenSees model.

5.4. Intensity-based performance assessment by LSTM metamodel

5.4.1. Nonlinear time history prediction

As mentioned in Sec. 5.2, the stationary time horizon of interest to the performance

assessment of this work is T = 3600 s (to which 3 minutes are added in terms of a linear

initial and final ramp of 1-minute duration and a free vibration of 1 minute at the end to

enable direct estimation of the residual response of the system). To verify the capability

of the LSTM metamodel to predict responses over this time horizon notwithstanding how

it was trained over a reduced time horizon of ts = 600 s, a set of 210 load histories was

generated with stationary duration T = 3600 s. These samples were evenly distributed

in the three critical sectors highlighted in Fig. 6 as, due to the symmetry of the problem

and the directionality factors of Table 2, all other sectors will have responses strictly less

than or equal to these sectors. Each sector was therefore assigned 70 randomly generated

stochastic load histories with wind direction varying following a uniform probability mass

function. Example displacement time histories estimated by the LSTM metamodel and the

high-fidelity OpenSees model are shown in Fig. 7 for two locations and the South West sector

together with the sample peak values over all the wind directions of the three critical sectors.

It is seen that, even in the presence of important nonlinearity (observable from the noticeable

residual displacement at the end of the time histories), the LSTM metamodel was capable

of reconstructing over the entire time horizon the response time histories with remarkable

accuracy. The comparison of the peak values shows how high accuracy holds for all three of

the sectors. In addition, Fig. 7 also shows how the LSTM metamodel is capable of accurately

reproducing the fiber strain and stress response of the system, illustrated for a column fiber

at the base of the structure in terms of example time histories, hysteretic curve, and peak

values estimated for all three of the sectors.

5.4.2. Probabilistic performance assessment

In this section, the LSTM metamodel is used to estimate the performance of the system

through the sector-by-sector framework outlined in Sec. 2.2. In particular, leveraging how

the critical sectors are North, South West, and East, the failure probabilities were estimated
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Figure 5: Test data performance of the trained LSTMmetamodel. Example time histories for a wind direction

of α = 270◦ and horizontal, vertical, and rotational responses at two locations of the structure as well as the

stress and strain fiber response for a column at the base of the structure (corresponding hysteretic curve also

shown). Peak values over all test data are also shown.
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Figure 6: The critical sectors.

for these three sectors. Response parameters considered for performance evaluation were

the peak interstory drift D̂ri, residual interstory drift D̄ri, and peak top drift. A total of

400 stochastic wind load samples were considered in each sector with sectoral wind direction

variability modeled once again using a uniform probability mass function. Response samples

were estimated using both the LSTM metamodel and the high-fidelity OpenSees model from

which the sectoral CCDFs were estimated using Eq. (15).

The resulting CCDF are compared in Fig. 8. It is seen that the CCDF by the LSTM

metamodel matches remarkably well with the high-fidelity reference. Indeed, the envelope

and sectorial CCDFs estimated from the LSTM metamodel overlap those estimated from

directly integrating the high-fidelity OpenSees model. This is an expected result since it was

shown in Sec. 5.4.1 that the LSTM metamodel is capable of accurately reproducing time

history responses of the structural system. It is remarkable to note that the high accuracy

holds even for residual interstory drifts, which are challenging to reproduce due to their

sensitivity to the accumulation of inelastic deformation. Last, it should be noted that the

CCDFs illustrated in Fig. 8 represent a fraction of the information provided by the LSTM

metamodel that allows CCDFs to be constructed for any response of interest as it represents

a global metamodel of the system (i.e., time history responses at all DOFs are available).

This feature makes the LSTM metamodeling framework of this work extremely powerful for
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Figure 7: Performance of the trained LSTM metamodel in the critical sectors and a stationary time horizon

of T = 3600 s. Example time histories for the East sector and horizontal, vertical, and rotational responses

at two locations of the structure as well as the stress and strain fiber response for a column at the base of

the structure (corresponding hysteretic curve also shown). Peak values over all three of the critical sectors

also shown.
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Figure 8: The CCDF curves of: (a) peak interstory drift at floor 20; (b) residual interstory drift at floor 20;

(c) peak interstory drift at floor 37; (d) residual interstory drift at floor 37; and (e) peak roof displacement.

general-purpose performance assessments.

Finally, it should be observed that the trained LSTM metamodel was well over 4 orders

of magnitude faster at generating the nonlinear response time histories than the high-fidelity

OpenSees reference model. This remarkable efficiency coupled with the accuracy demon-

strated in this example illustrated the tremendous potential of the proposed approach in

applications such as PBWE where uncertainty propagation is essential.
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6. Summary and Conclusions

This work introduced a framework enabling the rapid intensity-based probabilistic per-

formance assessment of nonlinear and dynamic structural systems subject to stochastic wind

excitation. The framework is centered on a deep learning-based response time history meta-

modeling scheme which entails model order reduction by POD-based Galerkin projection and

dynamic behavior learned through LSTM neural networks applied within the reduced space.

To address the two key issues of applying such a metamodeling scheme to wind engineer-

ing applications, namely the significant variability seen in the wind excitation for different

wind directions and the huge computational demand and memory requirements necessary for

training LSTM neural networks to long-duration (order of hours) nonlinear dynamic wind

response samples, a method is proposed to calibrate the metamodel to data generated for

all critical wind directions while considering a reduced wind load duration. The proposed

approach is demonstrated on a full-scale fiber-discretized structure subject to stochastic wind

loads of one-hour duration causing strong inelasticity. The LSTM metamodel is calibrated to

response samples of only a ten-minute duration and is seen to be able to simulate nonlinear

time history responses of up to one-hour duration without any accumulation of error. The

efficiency gains of the trained LSTM metamodel is seen to be over four orders of magnitude as

compared to the high-fidelity modeling environment therefore enabling uncertainty propaga-

tion using direct Monte Carlo methods. This is illustrated on the case study where sectorial

CCDFs of a range of response parameters of interest, including peak interstory and residual

drift, are rapidly estimated with remarkable accuracy. These features demonstrate the im-

mense potential of the proposed scheme for applications in which uncertainty propagation is

key, for example, PBWE.
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