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Abstract

The ever-growing interest in performance-based wind engineering (PBWE) can be traced
back to the potential to deliver more rational and economical designs. The computational
effort involved in the probabilistic performance assessments underpinning PBWE is, however,
a major barrier to wider applicability. This is especially true in light of the reliance of PBWE
on nonlinear dynamic analysis. This work is centered on alleviating this barrier through the
development of a deep learning metamodeling technique for rapidly predicting the nonlinear
dynamic response of structural systems subject to stochastic wind loads. The metamodel-
ing technique is based on first identifying a reduced space by Galerkin projection that is
subsequently learned through the application of long short-term memory (LSTM) neural
networks. Methods are proposed that enable the training of the deep learning metamodel to
multiple wind directions using short-duration segments of nonlinear dynamic response time
histories. The potential of the framework is demonstrated through application to a 37-story
steel frame modeled with fiber-based distributed plasticity and subject to stochastic wind
excitation. The calibrated deep learning metamodel is seen to be capable of accurately si-
multaneously reproducing both the displacement and fiber response at all degrees of freedom

with speedups of over four orders of magnitude.
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1. Introduction

Performance-based wind engineering (PBWE) has gained significant attention over the
last two decades as a methodology for rationally ensuring predetermined performance goals
are met by designs that offer increased safety at reduced costs. Significant research has
been devoted to the development of frameworks for the implementation of PBWE, e.g.,
1, 2,3, 4,5 6,7 8 9. These efforts have resulted in great interest from industry for
the implementation in practice of PBWE leading to the recent publication by the American
Society of Civil Engineers of the Prestandard for Performance-Based Wind Design [10]. One
of the key concepts that has emerged for implementing PBWE is the need for performance
evaluations supported by nonlinear dynamic response analysis.

Notwithstanding the significant computational cost, direct integration is generally consid-
ered for the estimation of the nonlinear dynamic response [11, 12, 13, 14, 15, 16|, To overcome
the massive computational burden associated with integrating over the long duration of typ-
ical windstorms, in the order of hours, more efficient methods have been prospered including
static pushover analysis [17, 12], dynamic shakedown [18, 19], and reduced models [20, 21].
Nevertheless, static pushover analysis is not capable of capturing cumulative damage mech-
anisms, e.g., ratcheting and low cycle fatigue, due to its static nature. While the dynamic
shakedown method is free of the aforementioned issues and is highly efficient, it is limited
to simple constitutive material laws and is not capable of providing response time histories.
Reduced order modeling is, on the other hand, a powerful approach that can, however, be lim-
ited in terms of potential speedup due to the need to solve a system that, although reduced,
is still nonlinear. Recently, Li et al. [22, 23] extended the dynamic shakedown method to
enable the estimation of response time histories while maintaining a computational speedup,
compared to direct integration, of around an order of magnitude. However, due to the need
to evaluate probabilistic metrics for describing performance, and therefore the need to eval-
uate thousands of nonlinear time histories, the aforementioned speedups are not adequate
for general probabilistic performance assessments. An approach that has the potential to
offer far greater speedups is that associated with the machine learning-based metamodeling
of dynamic systems.

Typical metamodeling techniques centered on creating efficient function mappings, using,



for example, polynomials, neural networks, and Kriging, between the parameters character-
izing uncertainty in both structure and excitation and a set of response metrics, for example,
peak values or their statistics. These methods, however, only reconstruct a few response
metrics and are not capable of providing estimates of response time histories which can be
essential for the evaluation of coupled damage mechanisms or damage accumulation [7]. In
response to this limitation, autoregressive models have been proposed for defining metamod-
els of the response trajectories of nonlinear dynamic systems [24, 25, 26]. More recently,
through the aid of model order reduction, this method was extended for the estimation of
the response trajectories of full-scale nonlinear structural systems [27, 28]. Alternatively,
metamodeling techniques based on deep learning have been proposed [29, 30, 31] and suc-
cessfully applied for the response estimation of wind excited structures [32, 33]. To facilitate
application to high-dimensional systems and avoid the need to train individual metamodels
for each response trajectory of interest, deep learning has been combined with model order
reduction and shown to provide superior performance compared to traditional autoregressive
models in estimating seismic responses [34]. Despite the progress in response time history
metamodeling, this technique has not been systematically applied for the estimation of non-
linear dynamic response trajectories of wind-excited structural systems subject to general
stochastic wind excitation.

This research is aimed at bridging this gap by introducing a deep learning-based response
time history metamodeling framework that is capable of rapidly predicting the long-duration
dynamic response trajectories at all degrees of freedom of nonlinear wind excited structural
systems subject to general stochastic excitation modeling wind loading from various wind
directions. The approach is illustrated within the context of probabilistic performance assess-
ment with a focus on the massive speedups that can be achieved in evaluating the nonlinear

dynamic response of the system.

2. Problem Definition and Underlying Models

2.1. Preamble

This work is focused on developing methods for rapidly characterizing the uncertainty in

the nonlinear dynamic response of systems caused by wind directionality and the inherent



record-to-record variability of wind load histories calibrated to wind speeds with target mean
return intervals (MRIs). This is a key problem in probabilistic wind assessments [10], and
requires a significant computational budget due to the numerical effort associated with prop-
agating uncertainty through nonlinear dynamic systems driven by stochastic excitation with
a duration of at least 1-hour (standard length for a wind load history used in PBWE [10]).
This work seeks to provide methods to overcome this key hurdle by leveraging metamodeling
based on deep learning. Using seismic engineering terminology, i.e., [35], while assuming
wind speed as an “intensity measure”, as is common in PBWE [10], this type of analysis
can be termed an “intensity-based” performance assessment as the results are conditional on
a specified value of the wind speed. The capability to perform intensity-based assessments
can be used to directly infer performance over all wind intensities by carrying out a limited
suite of intensity-based assessments with subsequent convolution, through the total probabil-
ity theorem, with the “hazard curve” (defined in PBWE as the complementary cumulative
distribution function of the maximum mean hourly wind speed). Therefore, the capability

to carry out intensity-based assessments is key.

2.2. Intensity-based performance assessment and the sector-by-sector approach

Performance evaluation is generally formulated as a probabilistic problem associated with
evaluating the failure probabilities, at the component or system level, against several prede-
fined limit states. In wind engineering, both the aerodynamics of the building as well as the
target wind speed vary considerably with direction. Many approaches have been developed
to capture the effects of wind direction, e.g., the upper bound method, the sector-by-sector
approach, the up-crossing method, and the storm passage method [36, 37]. Among these, the
sector-by-sector approach is popular due to its simplicity and has been adopted in several
PBWE frameworks [e.g. 38] as it does not require any assumptions on the response behavior
of the system, i.e., linear and nonlinear systems are equally treatable. In the sector-by-sector
approach, the space of wind direction is divided into Ny exhaustive and non-overlapping
sets, 1.e., the sectors Sy, = [apk, aug] for k= 1,2, ..., Neo where ay,j and oy are the upper

and lower bound of wind direction, «, for sector k. The intensity-based performance of the



system can then be evaluated as:

Pf|UH - m]?X [Pflskﬂ)H,k} (1)

where Py, is the failure probability conditional on the non-directional wind speed vy of
target return period while Pfs, ., is the failure probability conditional on sector k and the
sectorial wind speed, vp, associated with target non-directional wind speed, vy. Consis-
tently with prevailing approaches, e.g., [5, 6, 13, 10, 38], the sector-by-sector approach is
based on a worst case scenario model under the assumption of a constant wind direction
during each windstorm. This approach is also adopted in the Prestandard for Performance-
based Wind Design [10] for modeling wind direction during the inelastic assessment of the
structural system. Nevertheless, it should be observed that the sector-by-sector approach
does not contemplate multiple events over the lifespan of the structure nor does it consider
wind direction change during a windstorm. From Eq. (1), it can be seen that in the sector-
by-sector based approach, Py, is evaluated as the maximum conditional sectorial failure
probability. Key to the sector-by-sector approach is therefore the estimation of Pyg,

VH k

that can be written in the following general form:

Py s = / / F (Y|, vz )dy|dH (0]Sp, vsy) 2)
g(yaasz,k)SO

where: Y is the high-dimensional vector collecting the random variables modeling the stochas-
ticity (record-to-record variability) of the external dynamic wind loads; f(Y|«) is the prob-
ability density function of Y conditioned on a and vgy; H(a|Sk) is the complementary
cumulative distribution function (CCDF) of a conditioned on Sy and vy y; ¢(y) denotes a
limit state function of interest with g(y) < 0 indicating failure, e.g., interstory drift exceeding
a predefined limit. The evaluation of Eq. (2) is often carried out using stochastic simula-
tion schemes, e.g., stratified sampling [39, 40], and therefore generally requires the repeated
evaluation of the long-duration nonlinear dynamic response of the system therefore creating

a significant computational bottleneck.

2.3. Structural and wind load model
2.3.1. Nonlinear structural model
The nonlinear dynamic response of a wind-excited structural system can be estimated by

solving the following equations of motion:



Mii(t) + Ca(t) + Fu(t) = F(t; a, vg, y) (3)

where M and C are respectively the N x N structural mass and damping matrices with N
the total number of degrees of freedom (DOFs) of the system; u(t), u(t) and a(t) are the
N x 1 displacement, velocity, and acceleration response vectors respectively; Fy(t) is the
N x 1 nonlinear restoring force vector; F(t; o, vy,y) is a realization of the N x 1 stochastic
wind excitation vector defined for the wind direction, «, and wind speed, vy, as well as y, a

realization of Y.

2.3.2. Stochastic wind load model

Given a and vy, various models can be adopted for representing F(¢; a, vy, y). In this
work, the data-driven spectral proper orthogonal decomposition model outlined in Duarte
et al. [41] is adopted as it enables the direct capture of the complex aerodynamics seen in
the wind tunnel, e.g., vortex shedding and detached flow, in the stochastic wind loads. This
model is based on representing the ith component of F(¢;, vy, y) in the following form
(42, 41]:

Ny N,—-1

Fitom,a,y) = Y Y 2Ty (ke )V Xty (Wies v, 0) Aw cos(wi, t + Pty (s @) + Vigr, )
Ir=1 ky,=1
(4)

where: Ty (wg,;«) is the ith component of the Iyth eigenvector at frequency wy, with

Xiy (Wk,; Um, @) the corresponding eigenvalue; Ny is the number of spectral modes considered
in the representation; N, is the total number of discrete frequency steps of the decomposition;

ity (Wi, ;) is a complex angle that can be written in the following form ¥, (wg,; o) =

Imag(Yiry (Wk,,52))
Real(TilT (Why )

; while Y, is a random phase angle uniformly distributed in [0,27) and
constituting a component of Y modeling the stochasticity of F(¢). To ensure reasonable
initial and final conditions, F(t) is generally multiplied by an appropriate envelope function,
e(t). A common choice for defining e(t) is to consider a linear ramp over the first few minutes

of F'(t) and a linear ramp over the last few minutes of F(¢) [19, 38].

2.4. Discussion and challenges

Solving Eq. (3) is usually not a trivial task, especially in the case of complex and high-

dimensional nonlinear systems. Moreover, the excitation associated with extreme wind events



has durations in the order of hours further exacerbating computational demand. This com-
putational challenge is compounded if stochastic simulation schemes are used for propagating
uncertainty through the models in estimating Eq. (2). This research aims to alleviate this
issue through implementing deep learning metamodeling techniques, the theory of which will

be outlined in the next section.

3. The LSTM-based metamodeling framework

3.1. Preamble

This section introduces the metamodeling approach underpinning the framework of this
work. The approach is based on first using a data-driven model order reduction scheme by
leveraging proper orthogonal decomposition (POD) over a set of response samples estimated
through solving from Eq. (3). Subsequently, the reduced space is learned by a LSTM neural
network which, once trained, is capable of reproducing the time response of the nonlinear

system for a given wind speed and direction with negligible computational effort.

3.2. Model order reduction

In general, structural systems of practical interest have many thousands of DOFs that
feed into the limit state functions, g, of Eq. (2) in determining the performance of the system.
However, learning such high-dimensional systems can be extremely complex. To overcome
this difficulty, a Galerkin model order reduction is considered before attempting to learn the
dynamics of the system. A coordinate transformation matrix, ¢, is therefore used to reduce

Eq. (3) to the form:

mq(t) + cq(t) + fu(t) = p(t;y, o, vg) (5)

where: m = ¢"M¢ and ¢ = ¢ C¢ are the reduced mass and damping matrices, respectively;
q(t), q(t), and q(t) are the displacement, velocity, and acceleration vectors in the reduced
space; while f1(t) = ¢ Fu(t) and p(t;Y,o,vg) = ¢ F(t; Y, vy) are respectively the
reduced nonlinear restoring force vector and excitation force vector. In particular, an appro-
priately constructed transformation, ¢, ensures an accurate approximation of u(t) ~ ¢q(t)
can be achieved from only a few reduced coordinates. An effective approach for estimating

the coordinate transformation, ¢, is to apply POD on a response matrix, U, defined by



collecting a series of response snapshots of the system estimated by solving Eq. (3) for a
limited set of excitation samples. In particular, POD is generally implemented by applying

the singular value decomposition:

U= ®AU" (6)

where ® and ¥ are unitary matrices collecting respectively the left and right singular vectors;
A is a pseudo diagonal matrix with the diagonal entries, A(4,4), the ith largest singular value
Ai. In particular, A\? indicates the energy of U projected onto the ith left singular vector.
To define ¢, it is, therefore, reasonable to keep the first m significant left singular vectors,
which define a subspace that captures the majority of the energy in the structural response.

Through this process, the original N-dimensional problem of Eq. (3) is reduced to the
m-dimensional system of Eq. (5) where in general m < N. Despite the significantly reduced
size of the problem, the evaluation of f,;(¢) at each time step generally requires evaluating
the high-dimensional model therefore limiting the computational advantage of Eq. (5). The
idea on which the framework of this work is based is to learn the dynamic input and output
relationship of the reduced space, i.e., the relationship between p(¢) and q(¢) through the

use of LSTM deep neural networks.

3.8. LSTM configurations

Typically an LSTM neural network consists of one or more LSTM layers, that can be
used to learn the dynamics of a time series, and a fully connected layer for transferring
the hidden states into outputs of correct dimension. In particular, the LSTM layer can be

mathematically described as follows:

g(7) = 0g(Ony (T — 1) + 05;x(7) + by) (7)
g(7) = 0g(0luy (1 — 1) + 6,x(7) + by) (8)
8o(T) = 0Oy (T — 1) + 05,1x(7) + bo) (9)
AC(T) = 04(0,yy(r — 1) + 6. ,x(7) + b,) (10)
C(7) = gi(7) o C(7 — 1) + gi(7) c AC(7) (11)
y(7) = 8,(7) 0 05(C(7)) (12)



where x and y are respectively the input and output series of the LSTM layer; 7 denotes
the time step of the input/output sequence; g¢(7), g;(7), and g, (7) are the forget, input, and
output gates, respectively; C(7) is the current cell state with C(7 — 1) the previous cell state;
AC(7) is the new information on the cell state; o,(-) and o,(-) are respectively the gate and
state activation functions (typically sigmoid and/or hyperbolic tangent functions); o is the
Hadamard (element-wise) product operator; while Oy, 0; 11, 0o 11, Oc 1, 051, 0i1, 001, 0.1, by,
b;, b,, and b, are the tunable parameters of the LSTM network that are to be calibrated
during training and are collected in the vector 8 in the following. The fundamental property
of an LSTM architecture that makes it suitable for learning the long time sequences of this
work can be traced back to how the cell state flows through the network using only linear
operations. This ensures straightforward back-propagation of gradient information therefore
helping avoid gradient vanishing and exploding problems.

The length of the input and output series, p(t) and q(¢), in wind engineering can be sig-
nificant therefore hindering the training of the LSTM and operation in simulation mode once
trained. To overcome this, p(t) and q(¢) can be approximated through the wavelet transfor-
mation and therefore represented in terms of much shorter sequences of wavelet coefficients
W, p(7) and W, o(7) [43, 32, 34]. Within this context, the LSTM neural network takes
W, (1) as input and predicts W (7), while the training of the LSTM can be formulated
as:

0" = arg n%in L(0) (13)

where 0" is the optimal parameter vector and £(8) is the following loss function describing

the goodness of fit:

E(H) =K, Z(W&Qj (T) - WG,S,qg‘ (7—))2 (14>
J
where E. is the operator of the expectation over 7 while W ;4. (7) is the predicted output
for the jth reduced coordinate from the LSTM neural network with parameters 6.
Eq. (13) can be efficiently solved by gradient-based algorithms by targeting the predicted
outputs of a set of ground truth data. The parameters 6 are tuned through an iterative step-

by-step process until the discrepancy between the predicted outputs and the ground truth

data is reduced to a satisfying level. Once trained, and given a new wind excitation, the



LSTM neural network can be used to predict the wavelet coefficients of the reduced outputs
from which the response of the system at all DOFs can be directly estimated by applying
the inverse wavelet and coordinate transformations. It should be noted that the LSTM
neural network requires neither computation in the full space nor iterations. In addition,
the evaluation of neural networks can easily be performed using Graphics Processing Units
(GPUs). This leads to massive speedups in predicting response time histories of nonlinear

systems once the LSTM is trained.

4. The Training and Simulation Scheme

4.1. Preamble

The LSTM metamodel of Sec. 3 potentially represents a powerful response simulator for
dramatically speeding up the assessment of Eq. (1) by facilitating the stochastic simulation-

based assessment of Pys, ., . However, the following two major challenges exist:

1. Wind excitation in different wind directions can vary significantly. For example, the
mean component of wind excitation varies from zero for acrosswind type loading to a
considerable portion of the overall load for alongwind type loading. As a result, the
mechanisms related to the accumulation of inelastic deformation can vary significantly.
Indeed, wind excitation with an important mean component can lead to a ratcheting-
type failure mechanism while zero-mean wind excitation can lead to low cycle fatigue
failure. This variation in loading and subsequent response complicates the training of
the LSTM metamodel as it must be capable of capturing the intricacies of the responses
for not only alongwind/acrosswind type loading, but also loading from all other wind
directions.

2. Unlike typical seismic records that have durations in the order of minutes, wind ex-
citation typically has durations in the order of hours leading to long response time
histories. Ensuring an adequate time step for capturing the high-frequency content of
the response (e.g., less than 0.5 seconds), can lead to time sequences of excessive length
(even after wavelet transformation) that can cause significant memory issues during
training due to the need for back-propagation. This is especially true if GPUs are used

as they typically have limited memory capacity.
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The possibility of training a single LSTM metamodel capable of addressing the points
outlined above has not been explored up to date. The next section will outline a training

scheme to this end.

4.2. Training

To address the first challenge outlined in Sec. 4.1, it is proposed to train the LSTM
network considering a set of data that contains an equal number, N,, of randomly gener-
ated samples for each discrete wind direction, «;, considered in modeling the aerodynamic
response of the system. Generally, N; wind directions are considered for characterizing the
aerodynamic response of the system resulting in a; varying between ¢ = 1, ..., Ny. It should
be noted that, because of aspects such as symmetry in loading, the wind directions used
in training do not necessarily represent an equidistant discretization of wind direction as
this would lead to duplicate training data. Each sample is generated considering the non-
directional wind speed, vy, as the sectorial wind speeds satisfy the condition vy < vy (i.e.,
by considering vy, the network will be trained on data presenting an upper bound on wind
intensity). By following this scheme, a total of N = N, x Ny samples are used to train the
LSTM network within the reduced space. Because an equal number of samples are considered
for each unique wind direction during training, the LSTM experiences the type of response
variability expected due to the variability in wind direction and therefore should be capable
of predicting the expected variability in nonlinear responses.

To address the second challenge, it is proposed to train the LSTM network using response
samples of reduced duration, t,, as compared to the simulation horizon, T, i.e., the duration
of the stochastic wind loads F(¢). The reasoning underpinning this idea can be traced back
to how wind excitation is generally modeled as stationary. Therefore, for a given wind speed
and direction, it is hypothesized that the damage accumulation experienced by the system
in [0, ¢s] will be similar to that experienced in (¢, 7| therefore allowing the LSTM network

to sufficiently learn the system from a total of Ny truncated response samples.

4.8. Sitmulation strategy

Once trained, the LSTM metamodel can be used to directly estimate the sectorial failure

probabilities, Pps, o, for k = 1,2, ..., Niec, using direct Monte Carlo simulation and therefore

11



as:
N

Ppiscm, = P9 < 0[Sk, vmr) = > k(0; il Sk, vir) (15)

i=1
where £(+; gk|Sk, v x) is a kernel function constructed from the response samples of the limit
state function g; evaluated using the trained LSTM metamodel for wind directions in Sy
and a wind speed of vy, while Ny, is the total number of samples used in the Monte Carlo
simulation.

The massive computational speedups generally enjoyed by LSTM metamodels (in the
order of magnitudes) make the evaluation of Eq. (15) a trivial computational task even for
large values of N, and therefore Monte Carlo samples. It should also be observed that the
estimator of Eq. (15) can be used to directly estimate probability distributions, such as the
CCDF, by simply replacing g with the response of interest and evaluating Eq. (15) for a
suite of threshold values.

The proposed deep learning-based framework for estimating Py, , including the training

phase, is summarized in Fig. 1.

5. Case Study

The proposed framework is illustrated through application to a 37-story steel moment-
resisting frame subject to stochastic wind excitation. In particular, the building is assumed
to be located in New York City and has a first story height of 6 m with all subsequent floors
having a height of 4 m leading to a total height of 150 m. The frame considered in this study
is one of the six identical X-direction moment resisting frames, as indicated in Fig. 2. The
frame has square box sections as columns and standard W24 wide flange sections as beams.
The variation of section size over the height of the building is summarized in Table 1. Both
the columns and beams are considered to be manufactured from Grade 50 steel. In addition,
the structural mass is calculated as the sum of the structural self-weight and a carried mass
of 100 kg/m? considered acting over the influence area of the frame. Because the frame is
considered as part of a 3D building, the wind loading, taken as 1/6 of the total X-direction

loading, can be estimated for all wind directions.

12
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Table 1: Section sizes of the steel frame.

Wide-flange Beams Box Columns

Level Section size Plastic modulus (m®) Section size (m) Plastic modulus (m?)

1-10 W24 x 192 0.0092 D =0.5 0.0094
11-20 W24 x 192 0.0092 D =05 0.0094
21-30 W24 x 103 0.0046 D =04 0.0048
31-37 W24 x 103 0.0046 D =0.35 0.0032

5.1. High-fidelity model

The structure is modeled in the finite element environment OpenSees (Open System for
Earthquake Engineering Simulation) [44]. Fiber-based displacement-based elements with a
5-point Gauss-Legendre integration scheme are adopted for modeling the frame. Distributed
plasticity is therefore considered. For the steel fibers, an elastic perfectly plastic constitutive
law is adopted, with Young’s modulus of 200 GPa and the yield strength of 355 MPa. In

addition, a rigid diaphragm constraint is enforced and the structural mass is lumped at the
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Figure 2: Layout of the case study building.
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master node of each floor. The first two natural frequencies are respectively 0.19 Hz and 0.53
Hz. A Rayleigh damping model is adopted, with the damping ratio fixed at 2.5% for the first

two natural frequencies.

5.2. Wind load

For this case study, the wind directions are separated into 8 equally sized sectors, as
illustrated in Fig. 3. In particular, as adopted in Chuang and Spence [38], the sectorial wind
speeds are linearly related to their non-directional counterparts through the relationship
vk = Kyvyg where K, are site-specific wind directionality factors. The Kj values used in
this study are those found in Chuang and Spence [38] and reported in Table 2. It should be
observed that because the K, values are identified from the relationship: vy /vy = K with
v i, estimated by fitting a wind speed distributions to directional sector specific wind data,
the directionality factors explicitly account for any phenomenological wind climate effects,
e.g., likelihood of windstorms occurring in a particular sector. The non-directional mean
hourly wind speed, vy, at which the performance assessment was carried out was 56.48 m/s
for a stationary time horizon of 7' = 3600 s. This was estimated from the ASCE 7-22 [45]
hazard maps for exposure B and corresponded to a mean recurrence interval (MRI) of 10000
years. Considering how the building was designed to be predominately elastic for a wind
loading corresponding to a wind speed with 1700 MRI (risk category II structure [45]), this
level of wind loading is expected to cause a noticeable inelastic response.

The stochastic wind load model of Eq. (4) was calibrated to wind tunnel data collected
on a 1/300 scaled rigid model of the building and part of the Tokyo Polytechnic Univer-
sity’s (TPU) aerodynamic database [46]. The data was measured using 512 synchronously
measured pressure taps at a sampling frequency of 1000 Hz and a mean wind speed at the
model top of 11 m/s. The measured data was further processed to estimate two time-varying
translational floor loads acting in the X and Y directions and a torsional moment around
the vertical Z direction. This raw data was scaled by matching the reduced frequency at the
model and full scale. Spectral interpolation was then used to ensure all wind load samples
generated from Eq. (4) had a cutoff frequency of 1 Hz, i.e., a sampling frequency of 0.5 Hz.
It is noted that the wind tunnel test data was only available for o = 0°,10°,...,90°. Symme-

try was therefore used to extend the data to all 36 wind directions, a = 0°,10°, ..., 360°, as
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Figure 3: Illustration of how symmetry was used to assign F(t; 0y, a,y) for a € {100°,110°,...,360°} from
the knowledge of F(t; vp, o, y) for a € {0°,10°,...,90°}. Red arrows indicate when a change of sign was also

needed.

Table 2: Directionality factors of the wind sectors.

Sector N E S w NE SE SW NW
K 0.88 0.88 0.84 0.84 0.84 0.88 1.00 0.92

illustrated in Fig. 3.

5.3. Configuration and training of the LSTM metamodel
5.3.1. Training Data

As outlined in Sec. 5.2, wind tunnel data is available in ten-degree increments, i.e.,
Aa = 10°. Due to the symmetry of the problem, unique loading conditions are experienced
by the structure only for the following N; = 19 wind directions {0°, ...,90°,270°, ..., 350°}.
Training was therefore carried out for this set of wind directions. In particular, N, = 43 was
considered leading to a total of Ny = N, x Ny = 817 training samples. A reduced duration

(compared to the T' = 3600 s stationary duration of the performance assessment) of ¢, = 600
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s was considered in training (this included a 60 s initial and final load ramp and 60 s of
appended zero loading for estimating the residual response). Consistently with ASCE 7-22
[45], the target mean hourly wind speed, vy = 56.48 m/s, was multiplied by 1.06 to ensure
it represented the maximum 10-minute average wind speed. The high-fidelity response of
the system was obtained by solving Eq. (3) by direct integration using the adaptive solver
outlined in Li and Spence [34] with a default time step of 0.02 s.

The singular vectors defining the reduced space were estimated from the calibration set
using 1200 evenly spaced snapshots for each response sample. A threshold of n = 99.999%
for mode truncation was implemented, and a three-dimensional reduced space was seen to
be sufficient for all wind directions. The reduced responses are estimated by solving Eq. (5)

with a 4th order Runge-Kutta scheme by enforcing a relative error tolerance of 107°.

5.3.2. LSTM configuration

The deep neural network considered in this work had an LSTM layer with 200 hidden
units, a dropout layer with a dropout probability of 50% to alleviate potential overfitting is-
sues, and a fully connected layer. Both the input and output dimensions are three, consistent
with the dimensionality of the reduced system. For the LSTM training, both the reduced
excitation and response in the calibration set are preprocessed by the wavelet transform with
the 6th-order Daubechies function. Further, the preprocessed calibration set is randomly
divided into a training set with 750 samples and a validation set of 67 samples. The adaptive
moment estimation (Adam) algorithm with a constant learning rate of 0.005 is used to train
the LSTM neural network. In every training iteration, a randomly selected mini-batch of
75 samples from the training set is used to calculate the gradient. Every 50 iterations, the
loss value over the validation set is evaluated to monitor potential overfitting issues, and an
early stop is triggered if unacceptably high overfitting is detected. The training is performed
until a maximum epoch of 4000 is reached or the loss function ceases to show a decreasing
trend. All the computations involved in this work were performed on a personal computer
with Intel(R) Xeon(R) E-2236 CPU @3.40 GHz, NVIDIA Quadro RTX 4000 GPU, and 32
Gb RAM.

The loss associated with the training and validation set for the training process is shown
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Figure 4: Loss curve for the training and validation data set.

in Fig. 4. It is seen that both the training and validation loss progressively decrease with
the training epochs until convergence. The validation loss is slightly higher than the training

loss but does not indicate a significant overfitting issue.

5.3.3. Test data results

Five samples for each wind direction were considered for testing leading to a total of 180
test samples. Example displacement time histories at two locations and a wind direction of
a = 270° are shown in Fig. 5 together with the peak values over all wind directions esti-
mated by the LSTM metamodel and the high-fidelity OpenSees model. In comparing the
extreme values, a statistical peak was used defined by the mean plus one standard deviation
(mean and standard deviation estimated from the response corresponding to the unramped
stationary portion of loading). It is seen that, even in the presence of important nonlinearity
(observable from the noticeable residual displacement at the end of the time histories), the
LSTM metamodel was capable of reconstructing the entire response time history with re-
markable accuracy. The comparison of the peak values shows how high accuracy holds over
the entire test data set. In addition, Fig. 4 also shows how the LSTM metamodel is capable
of accurately reproducing the fiber strain and stress response of the system, illustrated for a
column fiber at the base of the structure in terms of example time histories, hysteretic curve,

and peak values over all test data. Finally, the calibrated LSTM metamodel was seen to be
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over 70000 times faster than the high-fidelity OpenSees model.

5.4. Intensity-based performance assessment by LSTM metamodel

5.4.1. Nonlinear time history prediction

As mentioned in Sec. 5.2, the stationary time horizon of interest to the performance
assessment of this work is 7' = 3600 s (to which 3 minutes are added in terms of a linear
initial and final ramp of 1-minute duration and a free vibration of 1 minute at the end to
enable direct estimation of the residual response of the system). To verify the capability
of the LSTM metamodel to predict responses over this time horizon notwithstanding how
it was trained over a reduced time horizon of t, = 600 s, a set of 210 load histories was
generated with stationary duration 7" = 3600 s. These samples were evenly distributed
in the three critical sectors highlighted in Fig. 6 as, due to the symmetry of the problem
and the directionality factors of Table 2, all other sectors will have responses strictly less
than or equal to these sectors. Fach sector was therefore assigned 70 randomly generated
stochastic load histories with wind direction varying following a uniform probability mass
function. Example displacement time histories estimated by the LSTM metamodel and the
high-fidelity OpenSees model are shown in Fig. 7 for two locations and the South West sector
together with the sample peak values over all the wind directions of the three critical sectors.
It is seen that, even in the presence of important nonlinearity (observable from the noticeable
residual displacement at the end of the time histories), the LSTM metamodel was capable
of reconstructing over the entire time horizon the response time histories with remarkable
accuracy. The comparison of the peak values shows how high accuracy holds for all three of
the sectors. In addition, Fig. 7 also shows how the LSTM metamodel is capable of accurately
reproducing the fiber strain and stress response of the system, illustrated for a column fiber
at the base of the structure in terms of example time histories, hysteretic curve, and peak

values estimated for all three of the sectors.

5.4.2. Probabilistic performance assessment
In this section, the LSTM metamodel is used to estimate the performance of the system
through the sector-by-sector framework outlined in Sec. 2.2. In particular, leveraging how

the critical sectors are North, South West, and East, the failure probabilities were estimated
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Figure 5: Test data performance of the trained LSTM metamodel. Example time histories for a wind direction

of o = 270° and horizontal, vertical, and rotational responses at two locations of the structure as well as the

stress and strain fiber response for a column at the base of the structure (corresponding hysteretic curve also

shown). Peak values over all test data are also shown.
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Figure 6: The critical sectors.

for these three sectors. Response parameters considered for performance evaluation were
the peak interstory drift eri, residual interstory drift Dr;, and peak top drift. A total of
400 stochastic wind load samples were considered in each sector with sectoral wind direction
variability modeled once again using a uniform probability mass function. Response samples
were estimated using both the LSTM metamodel and the high-fidelity OpenSees model from
which the sectoral CCDFs were estimated using Eq. (15).

The resulting CCDF are compared in Fig. 8. It is seen that the CCDF by the LSTM
metamodel matches remarkably well with the high-fidelity reference. Indeed, the envelope
and sectorial CCDF's estimated from the LSTM metamodel overlap those estimated from
directly integrating the high-fidelity OpenSees model. This is an expected result since it was
shown in Sec. 5.4.1 that the LSTM metamodel is capable of accurately reproducing time
history responses of the structural system. It is remarkable to note that the high accuracy
holds even for residual interstory drifts, which are challenging to reproduce due to their
sensitivity to the accumulation of inelastic deformation. Last, it should be noted that the
CCDFs illustrated in Fig. 8 represent a fraction of the information provided by the LSTM
metamodel that allows CCDF's to be constructed for any response of interest as it represents
a global metamodel of the system (i.e., time history responses at all DOFs are available).

This feature makes the LSTM metamodeling framework of this work extremely powerful for
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Figure 7: Performance of the trained LSTM metamodel in the critical sectors and a stationary time horizon
of T = 3600 s. Example time histories for the East sector and horizontal, vertical, and rotational responses
at two locations of the structure as well as the stress and strain fiber response for a column at the base of
the structure (corresponding hysteretic curve also shown). Peak values over all three of the critical sectors

also shown.
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general-purpose performance assessments.

Finally, it should be observed that the trained LSTM metamodel was well over 4 orders
of magnitude faster at generating the nonlinear response time histories than the high-fidelity
OpenSees reference model. This remarkable efficiency coupled with the accuracy demon-
strated in this example illustrated the tremendous potential of the proposed approach in

applications such as PBWE where uncertainty propagation is essential.
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6. Summary and Conclusions

This work introduced a framework enabling the rapid intensity-based probabilistic per-
formance assessment of nonlinear and dynamic structural systems subject to stochastic wind
excitation. The framework is centered on a deep learning-based response time history meta-
modeling scheme which entails model order reduction by POD-based Galerkin projection and
dynamic behavior learned through LSTM neural networks applied within the reduced space.
To address the two key issues of applying such a metamodeling scheme to wind engineer-
ing applications, namely the significant variability seen in the wind excitation for different
wind directions and the huge computational demand and memory requirements necessary for
training LSTM neural networks to long-duration (order of hours) nonlinear dynamic wind
response samples, a method is proposed to calibrate the metamodel to data generated for
all critical wind directions while considering a reduced wind load duration. The proposed
approach is demonstrated on a full-scale fiber-discretized structure subject to stochastic wind
loads of one-hour duration causing strong inelasticity. The LSTM metamodel is calibrated to
response samples of only a ten-minute duration and is seen to be able to simulate nonlinear
time history responses of up to one-hour duration without any accumulation of error. The
efficiency gains of the trained LSTM metamodel is seen to be over four orders of magnitude as
compared to the high-fidelity modeling environment therefore enabling uncertainty propaga-
tion using direct Monte Carlo methods. This is illustrated on the case study where sectorial
CCDFs of a range of response parameters of interest, including peak interstory and residual
drift, are rapidly estimated with remarkable accuracy. These features demonstrate the im-
mense potential of the proposed scheme for applications in which uncertainty propagation is

key, for example, PBWE.
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