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1. Introduction

Optimal control has lots of applications in control engineering,
especially in space engineering. An optimal control problem can
be solved with the aid of the dynamic programming (DP) or
the Pontryagin’s maximum principle. In the DP, by solving the
Hamilton–Jacobi–Bellman (HJB) equation backward in time
an optimal controller can be obtained. However, in practice it
is extremely hard to solve the HJB equation because the HJB
equation is a partial diferential equation which contains the
information of the dynamics of the system. In order to overcome
this dioculty, approximate dynamic programming (ADP) and
adaptive dynamic programming (ADP) have been proposed by
Werbos (1992), Bertsekas (1995), Powell (2007).

Reinforcement learning (RL) is one of the efective methods
to solve the optimal control problems. RL is inspired by natural
learning mechanisms, where animals adjust their actions based
on rewards and punishment stimuli received from the envi-
ronment (Mendel & McLaren, 1970). In RL an actor or agent
interacts with its environment and modioes its actions based
on the stimuli received in response to its actions (Lewis, Vra-
bie & Vamvoudakis et al., 2012). A RL algorithm is designed
based on the idea that a successful control decision should be
a decision that increases the reward or decreases the punish-
ment. RF learning algorithms have diferent forms in dealing
with diferent optimal problems. RL can be applied to solve the
optimal problems and the dynamic programming (DP) prob-
lems. Adaptive online controllers can be obtained. One type of
RL algorithms employs the actor-critic structure. In this struc-
ture, the critic evaluates the reward or punishment based on
the measured data and the actor onds an improved action and
applies the action to the environment. Noting that DP problems
can be solved by the approximate/adaptive dynamic program-
ming (ADP) techniques, in literature the terms RL and ADP are
used interchangeably (Liu et al., 2021).

RL has been studied for continuous-time systems under the
assumption that the systemmodel information is well-known in
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Doya (2000), Murray et al. (2001). The value iteration method
and the policy iteration method have been proposed. However,
in practice, the information of the model may not be avail-
able. In order to deal with this case, two types of methods have
been proposed: the identioer-based RL (Bhasin et al., 2013) and
the integral RL (Jiang & Jiang, 2012; Lewis, Vrabie & Syrmos
et al., 2012; Lewis, Vrabie & Vamvoudakis et al., 2012; Vrabie
& Lewis, 2009). In the identioer-based reinforcement learning
(Bhasin et al., 2013) an identioer system is designed for the
uncertain system and then reinforcement learning algorithms
are proposed with the aid of the identioer system in which there
is no uncertainty. In IRL, RL algorithms are proposed with the
aid of integrating the value function over a period of time to
partially circumvent or circumvent the unknown dynamics of
the plant. In this method, there is no explicit identiocation of
the unknown dynamics though there are calculations of some
parameters using input-output data along the trajectory of the
system state. In Vrabie et al. (2008), Vrabie et al. (2009), Vra-
bie and Lewis (2009), IRL algorithms are proposed when partial
information of the dynamics is known. For linear systems with
unknown dynamics an adaptive optimal algorithm is proposed
by Jiang and Jiang (2012), Gao et al. (2022). For nonlinear sys-
tems with unknown dynamics, IRL algorithms are proposed in
Jiang and Jiang (2014, 2015). In Gao et al. (2016), IRL algo-
rithms are proposed for output feedback systems with unknown
dynamics.

In this paper, we consider the optimal control of a second-
order nonlinear system with partially unknown dynamics. A
new reinforcement learning approach is proposed. In this
approach, the idea of direct adaptive control is applied and the
unknown dynamics is estimated by a neural network during the
reinforcement learning controller design. In the proposed RL
controller, three neural networks are designed for the actor, the
critic, and the unknown dynamics, respectively. Compared with
the identioer-actor-critic reinforcement learning and IRL, in
our proposed reinforcement learning approach there is neither
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explicit identiocation of the unknown plant nor integrating the
value function over a period of time. Furthermore, the proposed
approach can be extended to solve the optimal control problem
of more general nonlinear systems.

The organisation of the remaining part of this paper is as
follows. In Section 2, the problem considered in this paper is
deoned. In Section 3, the reinforcement learning algorithm is
proposed. The simulation is presented in Section 4. The last
section concludes this paper.

2. Problem statement

Consider the following second-order nonlinear system

ẋ1 = x2 (1)

ẋ2 = f (x) + g(x)u (2)

where x1 ∈ Rn and x2 ∈ Rn are the states, x� = [x�
1 , x

�
2 ]

� ∈

� ⊂ R2n, u ∈ U ⊂ Rn is the input, f (x) ∈ Rn with f (0) = 0
being an unknown vector function, and g(x) ∈ Rn is a known
input matrix function. It is assumed that f (x) + g(x)u is Lip-
schitz continuous and the system (1)-(2) is stabilisable. For the
purpose of control, it is assumed that g(x) is nonsingular for any
state x. Let

F =

[

F1
F2

]

=

[

x2
f (x)

a

]

, G =

[

0n×n

g(x)

]

(1)–(2) can be written in a compact form

ẋ = F(x) + G(x)u. (3)

The control problem considered in this paper is deoned as
follows.

Optimal Control Problem: Design a control law u for sys-
tem (1)–(2) such that the state x converges to zero and the
cost

J =

∫ ∞

0
(Q(x) + u�Pu)dτ (4)

is minimised, where Q(x) ∈ R is a positive deonite function of
x and P is a positive deonite matrix.

In order to solve the optimal problem, the value function at
time t for an input u and the state x(t) is deoned as

V(x(t), u(t)) =

∫ ∞

t
(Q(x) + u�Pu)dτ . (5)

The Hamiltonian function corresponding to the above optimal
control problem is

H(x, u,V) = ∇V�(F + Gu) + Q(x) + u�Pu. (6)

Let V∗ be the value function, i.e.

V∗(x(t)) = inf
u

∫ ∞

t
(Q + u�Pu)dτ . (7)

The optimal control u∗ for system (1)-(2) with the cost func-
tion (4) can be obtained with the aid of the Hamiltonian (6)

as

u∗ = argmin
u

H(x, u,V) = −
1

2
P−1G�∇xV

∗. (8)

The value function and the optimal control satisfy the following
Hamilton–Jacobi–Bellman (HJB) equation

H∗(x, u∗,V∗) = ∇xV
∗�

(F + Gu∗) + Q(x) + u∗�Pu∗ (9)

= Q(x) + ∇xV
∗�F −

1

4
∇xV

∗�GP−1G�∇xV
∗

= 0. (10)

In order to apply the optimal control law (8), it is required
to solve the nonlinear partial diferential Equation (10). Gen-
erally, it is impossible to ond the analytic solution V∗. To
overcome this dioculty, iterative methods have been proposed
in the past decades. For example, if f (x) is known the opti-
mal controller can be obtained by solving (10) with the aid of
the value iteration (VI) or the policy iteration (PI) algorithms
(Lewis, Vrabie & Syrmos et al., 2012). If f (x) is unknown, the
VI and PI iteration methods do not work. In order to solve the
optimisation problem, the identioer-actor-critic reinforcement
learning-based algorithms and the IRL algorithms have been
proposed. In this paper, we propose a new actor-critic reinforce-
ment learning-based algorithm with the aid of the idea of direct
adaptive control.

3. Actor-critic reinforcement learning controller
design

In order to solve the optimal control problem, the following
assumptions are made (Vamvoudakis & Lewis, 2010).

Assumption 3.1: The solution V∗ to (10) is smooth and positive
deonite.

Assumption 3.2: ‖f (x)‖ f γ1x
�x + γ2‖x‖, where γ1 and γ2

are non-negative constants.

The value function can be written as

V∗ = V∗
1 + V∗

2 (11)

where

V∗
1 = 2

∫ x2

0
[g−�(x1, τ)Pg−1(x1, τ)f (x1, τ)]�dτ

V∗
2 = V∗ − V∗

1

and we use the notations f (x) = f (x1, x2) and g(x) = g(x1, x2).
V∗
1 is chosen in this way because we want to make sure there

is one term to cancel f in the optimal control. Since f (x1, x2)
is smooth, with the aid of the universal approximation theo-
rems of functions in Cybenko (1989), Hornik et al. (1989), and
Stone (1948), there exists a vector Sf such that

f (x) = W�
f Sf (x) + εf (x) (12)

where Wf is the ideal weight vector and εf is the residue error
and can be made as small as possible by choosing the basis
matrix Sf carefully.
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Since V∗ is smooth, V∗
2 is also smooth. There exists a vector

φ such that

V∗
2 = W�

V φ(x) + ε(x) (13)

where WV is the ideal weight vector and ε is the residue error
and can bemade as small as possible by choosing the basis vector
φ carefully.

The gradient of V∗ is

∇xV
∗ = ∇xV

∗
1 + ∇xV

∗
2

= 2� + ∇xφ
�WV + ∇xε

= 2� + S�
VWV + εV (14)

where

� = 0.5∇xV
∗
1 =

[

0.5∇x1V
∗
1

g−�Pg−1f

]

=

[

Y�Wf + ε2
g−�Pg−1(S�

f Wf + εf )

]

SV = ∇xφ

εV = ∇xε

Y =

∫ x2

0
∇x1[Sf (x1, τ)g−�(x1, τ)Pg−1(x1, τ)]dτ

ε2 = ∇x1

∫ x2

0
[g−�(x1, τ)Pg−1(x1, τ)εf (x1, τ)]�dτ

and we apply the notations Sf (x) = Sf (x1, x2) and εf (x) =

εf (x1, x2). The optimal control input is

u∗ = −
1

2
P−1G�(2� + S�

VWV + εV)

= −P−1G�� −
1

2
P−1G�S�

VWV −
1

2
P−1G�εV . (15)

The Hamiltonian in (9) can be written as

H∗(x, u∗,∇xV
∗)

= Q(x) + (u∗)�Pu∗ + [2� + S�
VWV + εV ]

�

[F − GP−1G��

−
1

2
GP−1G�S�

VWV −
1

2
GP−1G�εV ] (16)

= Q(x) + (u∗)�Pu∗ + [2� + S�
VWV

+ εV ]
�[F − P̄� −

1

2
P̄S�

VWV −
1

2
P̄εV ] (17)

where

P̄ = GP−1G� =

[

0n×n 0

0 gP−1g�

]

.

Since εV , Wf , and WV are unknown, it is impossible to imple-
ment the optimal control u∗ in (15). In order tomake the control
input implementable, we employ the actor-critic architecture of
the reinforcement learning to implement the controller (15).

Let the estimate of the unknown function f (x) be

f̂ (x) = Ŵ�
f Sf (x) (18)

where Ŵf is an estimate of Wf and will be proposed later. Let
an estimate of the gradient of V∗ be

∇xV̂
∗ = 2�̂ + S�

VWc (19)

where Wc is an estimate of WV for the critic (13) and will be
proposed later, and

�̂ =

[

�̂1

�̂2

]

=

[

Y�Ŵf

g−�Pg−1S�
f Ŵf

]

.

With the aid of the approximations of f (x) and ∇xV
∗, the

optimal control input is

u = −P−1G��̂ −
1

2
P−1G�S�

VWa

= −P−1g��̂2 −
1

2
P−1G�S�

VWa (20)

where Wa is an estimate of WV for the actor (15) and will be
proposed later.

With the aid of (18)–(20), the approximation of the Hamil-
tonian in (9) is

H∗(x, u,∇xV̂
∗)

= Q + u�Pu + (2�̂ + S�
VWc)(F̂ + Gu)

= Q(x) + �̂�P̄�̂ + �̂�P̄S�
VWa +

1

4
W�

a SV P̄S
�
VWa

+ 2�̂�(F̂ − P̄�̂) − �̂�P̄S�
VWa + Ŵ�

c ξ

where F̂ = [ x�
2 , (S

�
f Ŵf )

� ]� and ξ = SV(F̂ + Gu) = SV [F̂ −

P̄�̂ − 1
2 P̄S

�
VWa].

The Bellman residue error is deoned as

z = H∗(x, u,∇V̂∗) − H∗(x, u∗,∇V∗)

= H∗(x, u,∇V̂∗). (21)

In order to solve the problem, the following assumption ismade.

Assumption 3.3 ((Uniform Approximations)): The vector
functions Sf and SV , the value function approximation errors εf ,
and εV , and the Hamiltonian residual error z are all uniformly
bounded on the set � ⊂ R2n, in the sense that there exist onite
positive constants δf , δV , δz, αV , αg , and αf such that ‖Sf ‖ f

αf , ‖g
−�Pg−1‖ f αg , ‖SV‖ f αV , ‖εf ‖ f δf , ‖εV‖ f δV , and

|z| f δz.

In order to ond the critic update law Wc, we minimise the
residue error z2 by the gradient descentmethod. The update law
Wc is proposed as

Ẇc = −kc
∂z2

∂Wc
= −2kcz

∂z

∂Wc
= −2kcξz (22)

where kc is a positive constant.
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In order to ond the actor update lawsWa and Ŵf , we choose
a Lyapunov function

V3 = V∗ +
1

2
W̃�

a �aW̃a +
1

2
W̃�

c �cW̃c +
1

2
W̃�

f �f W̃f

where W̃a = WV − Wa, W̃c = WV − Wc, W̃f = Wf − Ŵf ,
�a, �f , and �c are positive deonite matrices. With the control
law (20), we have

V̇3 = ∇V∗�
(F + Gu∗) + ∇V∗�G(u − u∗)

+ W̃�
a �a

˙̃Wa + W̃�
c �c

˙̃Wc + W̃�
f �f

˙̃Wf

= −Q − (u∗)�Pu∗ + (2� + S�
VWV + εV)�

P̄(�̃ + 0.5S�
VW̃a + 0.5εV)

+ W̃�
a �a

˙̃Wa + W̃�
c �c

˙̃Wc + W̃�
f �f

˙̃Wf

= −Q − (u∗)�Pu∗ + (2�̂ + S�
VWc)

�

[

0

I

]

S�
f W̃f

+ 0.5(2�̂ + S�
VWc)

�P̄S�
VW̃a + 2�̃�P̄�̃

+ �̃�P̄S�
VW̃a + W̃�

c SV P̄�̃

+ 0.5W̃�
c SV P̄S

�
VW̃a + ��P̄εV + 0.5W�

V SV P̄εV

+ ε�
V P̄�̃ + 0.5ε�

V P̄S
�
VW̃a

+ 0.5ε�
V P̄εV + W̃�

a �a
˙̃Wa + W̃�

c �c
˙̃Wc + W̃�

f �f
˙̃Wf .

We choose

˙̂Wf = �−1
f Sf [0, I]

(

2�̂ + S�
VWc

)

− kf�
−1
f Sf S

�
f Ŵf (23)

Ẇa =
1

2
�−1
a SV P̄

(

2�̂ + S�
VWc

)

− ka�
−1
a SVS

�
V (Wa − Wc)

− ke�
−1
a SVS

�
VWa (24)

and modify the update law forWc in (22) as follows:

Ẇc = −2kc�
−1
c ξz − ka�

−1
c SVS

�
V (Wc − Wa)

− �−1
c kdSVS

�
VWc. (25)

Then

V̇3 = −Q + W̃�
f Sf [0, I]S

�
VW̃a + 2W̃�

f Sf g
−�Pg−1S�

f W̃f

+ W̃�
c SV

[

0

I

]

S�
f W̃f

− (u∗)�Pu∗ +
1

2
W̃�

c SV P̄S
�
VW̃a + f�[0, I]εV

+
1

2
W�

V SV P̄εV + ε�
V

[

0

I

]

S�
f W̃f

+ 0.5ε�
V P̄S

�
VW̃a + 0.5ε�

V P̄εV

− kaW̃
�
a SVS

�
VW̃a − kaW̃

�
c SVS

�
VW̃c

+ kaW̃
�
a SVS

�
VW̃c + kaW̃

�
c SVS

�
VW̃a

−
kf

2
W̃�

f Sf S
�
f W̃f −

kf

2
Ŵ�

f Sf S
�
f Ŵf

+
kf

2
W�

f Sf S
�
f Wf −

ke

2
W̃�

a SVS
�
VW̃a

−
ke

2
W�

a SVS
�
VWa +

ke

2
W�

V SVS
�
VWV

−
kd

2
W̃�

c SVS
�
VW̃c −

kd

2
W�

c SVS
�
VWc

+
kd

2
W�

V SVS
�
VWV + 2kczW̃

�
c SV

[

x2
0

]

+ kczW̃
�
c SV P̄S

�
VW̃a − kczW̃

�
c SV P̄S

�
VWV .

Since Q(x) is positive deonite, there exists a positive matrix q
such that Q(x) g x�Q̄x for x ∈ �. Then

V̇3 f −x�Q̄x − (u∗)�Pu∗ + W̃�
f Sf [0, I]S

�
VW̃a

+ 2W̃�
f Sf g

−�Pg−1S�
f W̃f + W̃�

c SV

[

0

I

]

S�
f W̃f

+ 0.5W̃�
c SV P̄S

�
VW̃a + γ1δVx

�x + γ2‖x‖δV

+ 0.5W�
V SV P̄εV + ε�

V

[

0

I

]

S�
f W̃f

+ 0.5ε�
V P̄S

�
VW̃a + 0.5ε�

V P̄εV − kaW̃
�
a SVS

�
VW̃a

− kaW̃
�
c SVS

�
VW̃c

+ kaW̃
�
a SVS

�
VW̃c + kaW̃

�
c SVS

�
VW̃a

−
kf

2
W̃�

f Sf S
�
f W̃f −

kf

2
Ŵ�

f Sf S
�
f Ŵf

+
kf

2
W�

f Sf S
�
f Wf −

ke

2
W̃�

a SVS
�
VW̃a

−
ke

2
W�

a SVS
�
VWa +

ke

2
W�

V SVS
�
VWV

−
kd

2
W̃�

c SVS
�
VW̃c −

kd

2
W�

c SVS
�
VWc

+
kd

2
W�

V SVS
�
VWV + 2kczW̃

�
c SV

[

x2
0

]

+ kczW̃
�
c SV P̄S

�
VW̃a − kczW̃

�
c SV P̄S

�
VWV .

Let

y =

£

¤

¤

¥

y1
y2
y3
y4

¦

§

§

¨

=

£

¤

¤

¥

x

S�
f W̃f

S�
VW̃c

S�
VW̃a

¦

§

§

¨

then

V̇3 f −y�
1 Q̄y1 − (u∗)�Pu∗ + 2αgy

�
2 y2

+ y�
2 [0, I]y4 + y�

3

[

0

I

]

y2

+ 0.5y�
3 P̄y4 + γ1δVy

�
1 y1 + γ2δV‖y1‖ − kay

�
4 y4

− kay
�
3 y3 + 2kay

�
4 y3

−
kf

2
y�
2 y2 −

ke

2
y�
4 y4 −

kd

2
y�
3 y3 + 2kczy

�
3

[

0 I

0 0

]

y1

+ kczy
�
3 P̄y4
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− kczy
�
3 P̄S

�
VWV + 0.5W�

V SV P̄εV + ε�
V

[

0

I

]

y2

+ 0.5ε�
V P̄y4 + 0.5ε�

V P̄εV

−
kf

2
Ŵ�

f Sf S
�
f Ŵf +

kf

2
W�

f Sf S
�
f Wf

−
ke

2
W�

a SVS
�
VWa +

ke

2
W�

V SVS
�
VWV

−
kd

2
W�

c SVS
�
VWc +

kd

2
W�

V SVS
�
VWV

f −y�
1 Q̄y1 − (u∗)�Pu∗ + 2αgy

�
2 y2

+ y�
2 [0, I]y4 + y�

3

[

0

I

]

y2

+ 0.5y�
3 P̄y4 + γ1δVy

�
1 y1 + γ2δV‖y1‖

− kay
�
4 y4 − kay

�
3 y3 + 2kay

�
4 y3

−
kf

2
y�
2 y2 −

ke

2
y�
4 y4 −

kd

2
y�
3 y3

+ kcδzy
�
3 y3 + kcδzy

�
1 y1 + 0.5kcδzy

�
3 y3 + 0.5kcδzy

�
4 y4

− kczy
�
3 P̄S

�
VWV + 0.5W�

V SV P̄εV

+ ε�
V

[

0

I

]

y2 + 0.5ε�
V P̄y4 + 0.5ε�

V P̄εV

−
kf

2
Ŵ�

f Sf S
�
f Ŵf +

kf

2
W�

f Sf S
�
f Wf

−
ke

2
W�

a SVS
�
VWa +

ke

2
W�

V SVS
�
VWV

−
kd

2
W�

c SVS
�
VWc +

kd

2
W�

V SVS
�
VWV

f −y�Hy + y�D + γ2δV‖y1‖ + ε1 (26)

where

H =

£

¤

¤

¥

H11 0 0 0

0
kf −4αg

2 I H23 H24

0 H�
23 H33 H34

0 H�
24 H�

34 H44

¦

§

§

¨

H11 = Q̄ − γ1δV I − kcδz, H23 = −[0, 0.5I]

H24 = −[0, 0.5I]

H34 = −
0.5P̄ + 2kaI

2

H33 = (ka + 0.5kd − 1.5kcδz)I

H44 = (ka + 0.5ke − 0.5kcδz)I

D =

£

¤

¤

¥

0

[0, I] εV
−kczP̄S

�
VWV

0.5P̄εV

¦

§

§

¨

ε1 = 0.5ε�
V P̄εV +

kf

2
W�

f Sf S
�
f Wf

+
ke

2
W�

V SVS
�
VWV +

kd

2
W�

V SVS
�
VWV

+ 0.5WVSV P̄εV

Based on the above procedure, we have the following results.

Theorem 3.4: The controller in (20) with the critic-actor weight
update laws in (24)–(25) and the learning update law (23) of
uncertainty f (x) in the model ensure that the state x and the
weight errors W̃c, W̃a, and W̃f uniformly ultimately bounded
(UUB) if the control parameters are chosen such that H is pos-
itive deonite. Furthermore, the state x can be made as small as
possible by choosing large control parameters.

Proof: Based on (26), we have

V̇3 f −‖y‖2σm + ‖D‖‖y‖ + γ2δV‖y1‖ + ‖ε1‖

f −‖y‖2σm + (‖D‖ + γ2δV)‖y‖ + ‖ε1‖.

where σm is the smallest eigenvalue of H. If

‖y‖ >
‖D‖ + δVγ2

2σm
+

√

(‖D‖ + δVγ2)2

4σ 2
m

+
‖ε1]

σm
,

V̇3 is negative. Therefore, the state and the estimate errors of
the weights Wf , Wa, and Wc are UUB. Furthermore, the state
x can be made as small as possible by choosing large control
parameters.

The block diagram of the proposed controller is shown in
Figure 1. Diferent from the Identioer-Actor-Crtic RL and the
IRL, in Theorem 1 the unknown dynamics f (x) is estimated
online with the aid of direct adaptive theory. An identioer
system is not required.

In (12) and (13) the vectors Sf and φ should be chosen
carefully such that εf and ε are small. One can choose each
element of Sf and φ to be a sigmoid function with appropriate
weights (see Cybenko, 1989; Hornik et al., 1989) or high-order
polynomials of x (see Stone, 1948).

In this paper, we considered the second-order nonlinear sys-
tem. The proposedmethod can be applied to the optimal control
of the high-order nonlinear system. �

4. Simulation

In order to show the efectiveness of the proposed results, two
examples are considered.

Example 4.1: Consider a second-order system in (1)–(2) where

f (x) = −(x1 + x2)

(

9

4
−

cos 2(x1 + x2)

2

)

, g(x) = 1.

In the optimal control problem, we choose P = 1 and

Q(x) = x21 + (x1 + x2)
2 + (x1 + x2)

2 sin2(x1 + x2).

If f (x) is known, it can be verioed that

V∗ =
1

2
x21 +

1

2
(x1 + x2)

2.

and

V∗
1 = −

9

4
(x1 + x2)

2 +
9

4
x21
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Figure 1. The block diagram of the proposed controller.

Figure 2. Time response of x.

+
(x1 + x2) sin 2(x1 + x2)

2
−

x1 sin 2x1

2

+
cos 2(x1 + x2)

4
−

cos 2x1

4

Since f (x) is unknown, V∗ and V∗
1 are unknown. We apply

the proposed method in the last section to design a reinforce-
ment learning-based controller. We choose Sf and φ as Sf =

[x1, x2, x
2
1, x

2
2, x1x2]

� and φ = [x21, x
2
2, x1x2, x

3
1, x

3
2, x

2
1x2, x1x

2
2]

�.
By Theorem 3.4, the control input is (20) and the update laws for
Ŵf ,Wc, andWa are (23), (25), and (24), respectively. Simulation
was done with the aid ofMATLAB Simulink. Figure 2 shows the
response of the state. It shows that the state converges to a small

neighbourhood of the origin. Figure 3 shows the control input
u. Figures 4– 6 show the response of Ŵf , Wc, and Wa, respec-

tively. These ogures show that Ŵf , Wc, and Wa are bounded.
The simulation results conorm the statement in Theorem 3.4.

Example 4.2: Consider the system

[

ẋ1
ẋ2
a

]

=

[

x2
−0.5x1 − 0.5(x1 + x2)(1 − (cos(2x1) + 2)2)

]

+

[

0
cos(2x1) + 2

]

u (27)
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Figure 3. Time response of the input u.

Figure 4. Time response of Ŵf .
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Figure 5. Time response ofWc .

Figure 6. Time response ofWa .
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Figure 7. Time response of x.

Figure 8. Time response of the input u.
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Figure 9. Time response of Ŵf .

Figure 10. Time response ofWc .
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Figure 11. Time response ofWa .

the optimal control problem is to ond an optimal control u such
that the cost J is minimised where Q(x) = x21 + (x1 + x2)

2 and
P = 1. This optimal control problem has been studied in Vrabie
and Lewis (2009) with a state transformation y1 = x1 and y2 =

x1 + x2. Here we solve this problem using the results proposed
in this paper.

Since f (x) is unknown, V∗, V∗
1 , and V

∗
2 are unknown. In the

simulation, we choose Sf and φ as Sf = [1, x1, x2, x
2
1, x

2
2, x1x2]

�

and φ = [x21, x
2
2, x1x2, x

3
1, x

3
2, x

2
1x2, x1x

2
2]

�. The control input

is (20) and the update laws for Ŵf ,Wc, andWa are in (23), (25),
and (24), respectively. The simulation was done by Matlab
Simulink for a group of control parameters. Figure 7 shows the
response of the state which converges to a small neighbourhood
of the origin. Figure 8 shows the control input u. Figures 9– 11
show the response of Ŵf , Wc, and Wa, respectively. From the

simulation results, it is shown that Ŵf , Wc, and Wa are all
bounded. The simulation results verify the statement in the last
section.

The proposed results can be applied to solve optimal atti-
tude control of unmanned aerial vehicles, optimal cruise control
of autonomous vehicles, etc. The applications of the proposed
results will be presented in the future.

5. Conclusion

This paper considered the optimal control of a second-order
nonlinear system with unknown dynamics. A new reinforce-
ment learning algorithm was proposed with the aid of direct
adaptive control. Future research is on how to extend the results
in this paper tomore general nonlinear systemwith uncertainty.
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