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ABSTRACT

This paper considers the optimal control of a second-order nonlinear system with unknown dynamics. A
new reinforcement learning based approach is proposed with the aid of direct adaptive control. By the new
approach, actor-critic reinforcement learning algorithms are proposed with neural network approximation.
Simulation results are presented to show the effectiveness of the proposed algorithms.

1. Introduction

Optimal control has lots of applications in control engineering,
especially in space engineering. An optimal control problem can
be solved with the aid of the dynamic programming (DP) or
the Pontryagin’s maximum principle. In the DP, by solving the
Hamilton-Jacobi-Bellman (HJB) equation backward in time
an optimal controller can be obtained. However, in practice it
is extremely hard to solve the HJB equation because the HJB
equation is a partial differential equation which contains the
information of the dynamics of the system. In order to overcome
this difficulty, approximate dynamic programming (ADP) and
adaptive dynamic programming (ADP) have been proposed by
Werbos (1992), Bertsekas (1995), Powell (2007).

Reinforcement learning (RL) is one of the effective methods
to solve the optimal control problems. RL is inspired by natural
learning mechanisms, where animals adjust their actions based
on rewards and punishment stimuli received from the envi-
ronment (Mendel & McLaren, 1970). In RL an actor or agent
interacts with its environment and modifies its actions based
on the stimuli received in response to its actions (Lewis, Vra-
bie & Vamvoudakis et al., 2012). A RL algorithm is designed
based on the idea that a successful control decision should be
a decision that increases the reward or decreases the punish-
ment. RF learning algorithms have different forms in dealing
with different optimal problems. RL can be applied to solve the
optimal problems and the dynamic programming (DP) prob-
lems. Adaptive online controllers can be obtained. One type of
RL algorithms employs the actor-critic structure. In this struc-
ture, the critic evaluates the reward or punishment based on
the measured data and the actor finds an improved action and
applies the action to the environment. Noting that DP problems
can be solved by the approximate/adaptive dynamic program-
ming (ADP) techniques, in literature the terms RL and ADP are
used interchangeably (Liu et al., 2021).

RL has been studied for continuous-time systems under the
assumption that the system model information is well-known in
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Doya (2000), Murray et al. (2001). The value iteration method
and the policy iteration method have been proposed. However,
in practice, the information of the model may not be avail-
able. In order to deal with this case, two types of methods have
been proposed: the identifier-based RL (Bhasin et al., 2013) and
the integral RL (Jiang & Jiang, 2012; Lewis, Vrabie & Syrmos
et al., 2012; Lewis, Vrabie & Vamvoudakis et al., 2012; Vrabie
& Lewis, 2009). In the identifier-based reinforcement learning
(Bhasin et al., 2013) an identifier system is designed for the
uncertain system and then reinforcement learning algorithms
are proposed with the aid of the identifier system in which there
is no uncertainty. In IRL, RL algorithms are proposed with the
aid of integrating the value function over a period of time to
partially circumvent or circumvent the unknown dynamics of
the plant. In this method, there is no explicit identification of
the unknown dynamics though there are calculations of some
parameters using input-output data along the trajectory of the
system state. In Vrabie et al. (2008), Vrabie et al. (2009), Vra-
bie and Lewis (2009), IRL algorithms are proposed when partial
information of the dynamics is known. For linear systems with
unknown dynamics an adaptive optimal algorithm is proposed
by Jiang and Jiang (2012), Gao et al. (2022). For nonlinear sys-
tems with unknown dynamics, IRL algorithms are proposed in
Jiang and Jiang (2014, 2015). In Gao et al. (2016), IRL algo-
rithms are proposed for output feedback systems with unknown
dynamics.

In this paper, we consider the optimal control of a second-
order nonlinear system with partially unknown dynamics. A
new reinforcement learning approach is proposed. In this
approach, the idea of direct adaptive control is applied and the
unknown dynamics is estimated by a neural network during the
reinforcement learning controller design. In the proposed RL
controller, three neural networks are designed for the actor, the
critic, and the unknown dynamics, respectively. Compared with
the identifier-actor-critic reinforcement learning and IRL, in
our proposed reinforcement learning approach there is neither
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explicit identification of the unknown plant nor integrating the
value function over a period of time. Furthermore, the proposed
approach can be extended to solve the optimal control problem
of more general nonlinear systems.

The organisation of the remaining part of this paper is as
follows. In Section 2, the problem considered in this paper is
defined. In Section 3, the reinforcement learning algorithm is
proposed. The simulation is presented in Section 4. The last
section concludes this paper.

2. Problem statement

Consider the following second-order nonlinear system

5(1 = X2 (1)

X =f(x) +g)u (2)
where x; € R" and x, € R" are the states, x| = [xlT,xzT 1T e
Q C R, ue UCR"is the input, f(x) € R" with f(0) =0
being an unknown vector function, and g(x) € R” is a known
input matrix function. It is assumed that f(x) 4+ g(x)u is Lip-

schitz continuous and the system (1)-(2) is stabilisable. For the
purpose of control, it is assumed that g(x) is nonsingular for any

state x. Let
_ P _ | = | Ouxn
P=lnl= L] =[5

(1)-(2) can be written in a compact form
x = F(x) + G(x)u. (3)

The control problem considered in this paper is defined as
follows.

Optimal Control Problem: Design a control law u for sys-
tem (1)-(2) such that the state x converges to zero and the
cost

o0
7= [ Q-+ uTpur @
0
is minimised, where Q(x) € R is a positive definite function of
x and P is a positive definite matrix.

In order to solve the optimal problem, the value function at
time ¢ for an input u and the state x(¢) is defined as

V(x(t), u(t)) = / (Q(x) + u' Pu)dr. (5)
t

The Hamiltonian function corresponding to the above optimal
control problem is

H(x,u, V) = VV' (F+4 Gu) + Q(x) + u' Pu. (6)

Let V* be the value function, i.e.
o
V*(x(t)) = inf [ (Q+ u' Puydr. (7)
o Jt

The optimal control u* for system (1)-(2) with the cost func-
tion (4) can be obtained with the aid of the Hamiltonian (6)

as
1
u* =argmin H(x,u, V) = —EP_IGTVXV*. (8)
u

The value function and the optimal control satisfy the following
Hamilton-Jacobi-Bellman (HJB) equation

H*(x, u*, V*) = V, V¥ (F + Gu*) + Q(x) + u* "Pu*  (9)
1
= Q(x) + V,V*TF — ZVXV*TGP_IGTVXV*

=0. (10)

In order to apply the optimal control law (8), it is required
to solve the nonlinear partial differential Equation (10). Gen-
erally, it is impossible to find the analytic solution V*. To
overcome this difficulty, iterative methods have been proposed
in the past decades. For example, if f(x) is known the opti-
mal controller can be obtained by solving (10) with the aid of
the value iteration (VI) or the policy iteration (PI) algorithms
(Lewis, Vrabie & Syrmos et al., 2012). If f(x) is unknown, the
VI and PI iteration methods do not work. In order to solve the
optimisation problem, the identifier-actor-critic reinforcement
learning-based algorithms and the IRL algorithms have been
proposed. In this paper, we propose a new actor-critic reinforce-
ment learning-based algorithm with the aid of the idea of direct
adaptive control.

3. Actor-critic reinforcement learning controller
design

In order to solve the optimal control problem, the following
assumptions are made (Vamvoudakis & Lewis, 2010).

Assumption 3.1: The solution V* to (10) is smooth and positive
definite.

Assumption 3.2: |[f(x)] < nx'x+ y|ixl, where y1 and y»
are non-negative constants.

The value function can be written as

VE=Vi4+V] (11)

where

x2

vi=2 f g DB (e, 1)f (s, 1] e
0

Vi= ViV

and we use the notations f(x) = f(x1,x2) and g(x) = g(x1,x2).
V7§ is chosen in this way because we want to make sure there
is one term to cancel f in the optimal control. Since f(x;,x2)
is smooth, with the aid of the universal approximation theo-
rems of functions in Cybenko (1989), Hornik et al. (1989), and
Stone (1948), there exists a vector Sy such that

f) = Wi Sp(0 + ¢ (x) (12)
where Wy is the ideal weight vector and ¢ is the residue error
and can be made as small as possible by choosing the basis
matrix Sy carefully.



Since V* is smooth, V7 is also smooth. There exists a vector

¢ such that
Vi =Wyéx) + e (13)

where Wy is the ideal weight vector and € is the residue error
and can be made as small as possible by choosing the basis vector
¢ carefully.

The gradient of V* is

V V¥ =V, Vi 4 V, Vi
=2A 4 Vip Wy + Ve

=2A+S-|\;Wv+fv (14)

where

0.5V, Vi
A =05V, Vi = |:g_T };‘g‘_lﬂ

YTWr+ e
T g TPe (ST Wy + €f)
& F8 o WyTef

SV = Vx¢

ey = Vye

X2
Y=/ Vxl[Sf(x1,r)g*T(xl,r)Pg*I(xl,r)]df
0

x
€ = V)q/ [g_T(xl,T)Pg_l(xbf)éf(xl,f)]TdT
0

and we apply the notations Sp(x) = Sf(x1,x2) and €f(x) =
€f(x1,x2). The optimal control input is

1
u* = —EP_IGT(ZA + SV Wy +evy)

1 1
=P IGTA - EP_IGTQWV —~ 5P—IGTeV. (15)

The Hamiltonian in (9) can be written as
H*(x,u*, V, V")
= Q@) + () "Pu* + [2A + Sy Wy +ev]’
[F—GP'G™A

1 1
_ 5Gp—lc;TgWV - EGP_IGTEV] (16)

= Q(x) + () TPu* 4 [2A + S|, Wy

_ 1. 1-
+ey]T[F=PA — EPS\T,WV - EPGV] (17)

where
p=cpiGgh = | O
0 gP—l gT .
Since ey, Wy, and Wy are unknown, it is impossible to imple-
ment the optimal control u* in (15). In order to make the control

input implementable, we employ the actor-critic architecture of
the reinforcement learning to implement the controller (15).
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Let the estimate of the unknown function f(x) be

Foo = W) (18)

where Wf is an estimate of Wy and will be proposed later. Let
an estimate of the gradient of V* be

V, V¥ =2A + S| W, (19)

where W, is an estimate of Wy for the critic (13) and will be

proposed later, and
'd Wf
g "PgISf Wy |

A= [{‘1} _
s
With the aid of the approximations of f(x) and V,V*, the
optimal control input is

A 1
u=—-P'G"A - PG s, W,
2

A 1
=-PlgTA, - EP_IGTS‘T,WQ (20)

where W, is an estimate of Wy for the actor (15) and will be
proposed later.

With the aid of (18)-(20), the approximation of the Hamil-
tonian in (9) is

H*(x, u, Vi V)
=Q+u'Pu+ QA + S, W) (F + Gu)

A=A AT = 1 -
=Q(x)+ ATPA + ATPS| W, + ZWJSVPSJ W,
+2AT(F—PA)— ATPS; W, + W /¢

where F = [ x,,(S{ W)™ 1T and & = Sy (F + Gu) = Sy[F —
PA — 1Psw,].
The Bellman residue error is defined as

z = H*(x,u, VV*) — H* (x, u*, VV*)

= H*(x,u, VV). (21)

In order to solve the problem, the following assumption is made.

Assumption 3.3 ((Uniform Approximations)): The vector
functions Sy and Sy, the value function approximation errors €y,
and ey, and the Hamiltonian residual error z are all uniformly
bounded on the set Q@ C R*", in the sense that there exist finite
positive constants 8¢, 8y, 8z, ay, g, and ay such that ||Sf| <
af, lIg7 TPl < ag, ISVl < av, llefll < 8, llevll < 8v, and
|z| <&,

In order to find the critic update law W,, we minimise the
residue error z2 by the gradient descent method. The update law
W, is proposed as

922 9z
o =~k = ~2kkz

W, = —k
oW,

(22)

where k. is a positive constant.
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In order to find the actor update laws W, and Wf, we choose
a Lyapunov function

Vs = V4 W, W4 W T W, + 2WT T, W
3 = +Eaaﬂ+§cCC+5fff
where W, = Wy — W,, We=Wy — W, Wy= Wy — Wy,

[y, T'y, and I, are positive definite matrices. With the control
law (20), we have

Vs = VV* T (F+ Gu*) + VV* ' G(u — u*)
+WIT, W, + W T W, + W T W
ata'Va ctcWWe frrvs
=—Q— (") Pu* + QA+ Sy Wy + €)'
P(A + 0.58) W, + 0.5¢y)
+ W T W, + WIT W, + W T, W,
ata'Va ctcWe frrvs
T A TwaT [0 «Tri
=—Q— W "Pu+ QA+ Sy Wo) |:Ii| Sf Wy
+0.5QA + Sy W) TP, W, +2ATPA
+ ATPS| W, + W] SyPA
77l pel 1 Tp T D
+ O.SWC SVPSVWa + A Pey + O.SWVSVPEV
+ ey PA + 0.5¢ PS| W,
+0.5¢] Pey + W, TaW, + W] TW, + W] TrWy.
We choose

Wy =17 s/00.1] (2[\ + S$Wc) —kT7SSTW (23)

1 - o
Wo = TSP (28 + STW) — ko' 'SUST(Wa — Wo)

— kL 1SyST W, (24)
and modify the update law for W, in (22) as follows:
W, = —2k T ez — ko UL Sy SH(W, — W)
— T kaSy Sy We. (25)

Then
Vs = —Q+ W/ (0,118} W, + 2W/ g™ " Pg™"'S] Wy

- 0 -

+ W/ Sy H S; Wy

1.~ g

— ") Pt + EWI SyPSy W, + £ [0,T]ey
e T 0 [¢Ti

+ EWVSVPG\/—FGV I Sf Wf

+ 0.5¢y, PS|, W, + 0.5¢]; Pey

— koW, SySy W, — koW, SySyWe

+ kW, SySy W, + k, W/ SyS| W,

kf ot o ki oTo oTrh

e

kf To.oT ke -+ T 1

+ WSS Wy — S WSSy Wa
ke T oT ke e oT

— W SvSyWa+ S WySyS, Wy
ka ~ -k

- waj SySTW, — ?dWCT SyST W,
k _

+ de‘TSVS‘T,WV + 2k W] Sy [ Y ]

+ kezW/ SyPS\, W, — k.zW. SyPS|, Wy.

Since Q(x) is positive definite, there exists a positive matrix g
such that Q(x) > x " Qx for x € Q. Then

Vs < —x"Qx — (u*) " Pu* + WfTSf[O, 1]53 W,
+2W/ S~ T PgTI S Wy + W/ Sy [ (I) } S} Wy
+0.5W, SyPS) W, + y18yx " x + yalxll8y
+0.5W ] SyPey + €] [ (I) } S Wy
+ 0.5¢, PS|, W, + 0.5¢ ], Peyy — k, W, Sy S|, W,
— kW[ SyS, W,
+ kg WJSVSQ; W, + kaW;rSVs—‘; W,

ks

~ ~ k
Te.oT f i Te T

kit T ke or o Tw
ke T o ke T T
ki~ _ kK

- waj SySTW, — fwj SyST W,
k 8

+ fw&svsng + 2k 2 W] Sy [ s ]

+ kezW. SyPSy, W, — k.zW. SyPS|, Wy.

Let
) x
T
Y3 SV Ve
V4 Sy Wa
then

Vi < —y] Qn — () "Pu* + Zagy;yz
0
+ 5 [0, Tlys + y5 [ \ ]yz

+0.593 Pys + v18vy] y1 + v28v Iyl — kayg ya

— kay3 y3 + 2kay, y3

kf ke

ka 0 I
= D= Sy = Sy + ks [ 0 0 }yl

+ kezy] Py



— kczy;rl_’S—‘;WV + O.SW‘—;SVPGV + e‘—,r |: (I) ]yz
+ 0.5¢y, Pys + 0.5€, Pey

ke ot ke

Wf Sfo Wf + = Wf Sfo Wf

ke To T ke To T

ka oo T ka o oTo T
< =y Qn — ") Pu* + 204y 2

0

+; 0, Tys +y5 [ I }yz

+0.593 Pys + midvy] y1 + v28viiyill

— ka4 ya — kay3 y3 + 2kayi 3
k k ka
- —fsz V2= SVAYE— 3030

+ kc5zJ’3 3+ kc5z)/1T;V1 + 0.5kc3z}’3T)/3 + 0~5kc62)/:|1—y4
- kczy;f’sg Wy + O.SW‘ISVpév

0 _ _
+ 6;; |: I }yz + 0.56;1)}/4 + 0.56;/|—P6V
kf ke
ke Te T ke Te oT
— W SvSyWa + S Wy Syt Wy
Lk kq
d SWISySiWe+ stvsT Wy

< —yTHy +y'D+ 7/25V||y1 I+ e (26)

where

Hi 0 0 o
go| 0 Ty Hy
0 H);, Hiy; Ha
0 H), Hj, Hu
Hy = Q— y1dyl — kS,  Haz = —[0,0.51]
Hys = —[0,0.51]
0.5P + 2k,I
Hyy = _#
2
Hs3 = (ko + 0.5k; — 1.5k:8,)1
Hys = (kg + 0.5k, — 0.5k.5,)I
0
D— [0,_I]$V
—kezPS| Wy
0.5Pey

ok
€1 = 05¢] Pey + < W[ §;S] Wy
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k k
+ ?QW;SVS—‘;WV + ?dW‘ISVSEWV
+ O.SWVSVPGV

Based on the above procedure, we have the following results.

Theorem 3.4: The controller in (20) with the critic-actor weight
update laws in (24)-(25) and the learning update law (23) of
uncertainty f(x) in the model ensure that the state x and the
weight errors We, W, and Wy uniformly ultimately bounded
(UUB) if the control parameters are chosen such that H is pos-
itive definite. Furthermore, the state x can be made as small as
possible by choosing large control parameters.

Proof: Based on (26), we have
Vs < —lyl*om + DIyl + v28viyill + lledll
—lylPom + (DI + y28) Iyl + llerll-

where oy, is the smallest eigenvalue of H. If

A

IA

Iyl >

DIl + dvy2 (DIl + 8vy2)? el
+ )
20, 40?2 Om

Vs is negative. Therefore, the state and the estimate errors of
the weights Wy, W,, and W, are UUB. Furthermore, the state
x can be made as small as possible by choosing large control
parameters.

The block diagram of the proposed controller is shown in
Figure 1. Different from the Identifier-Actor-Crtic RL and the
IRL, in Theorem 1 the unknown dynamics f(x) is estimated
online with the aid of direct adaptive theory. An identifier
system is not required.

In (12) and (13) the vectors S and ¢ should be chosen
carefully such that €/ and € are small. One can choose each
element of Sy and ¢ to be a sigmoid function with appropriate
weights (see Cybenko, 1989; Hornik et al., 1989) or high-order
polynomials of x (see Stone, 1948).

In this paper, we considered the second-order nonlinear sys-
tem. The proposed method can be applied to the optimal control
of the high-order nonlinear system. ]

4. Simulation

In order to show the effectiveness of the proposed results, two
examples are considered.

Example4.1: Consider a second-order system in (1)—(2) where

cos 2 + %2) x2)> , g =1

FG) = — (1 + 32) (Z e

In the optimal control problem, we choose P = 1 and
QW) = xi + (1 +x2)” + (11 +x2)” sin’ (x1 + x2).
If f (x) is known, it can be verified that
1 1
‘/>’< = EX% + E(XI +x2)2.
and

9 9
V*Z—— 2 7.2
1 4(x1+x2) +4x1
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nput U

v

V; .
V5 =
. T I
state x
—> System

Figure 1. The block diagram of the proposed controller.

2 T T T T

1.5

10 12 14 16 18 20

time (sec)

Figure 2. Time response of x.

(x1 + x3) sin2(x; + x2) X1 sin2x;
* 2 2
cos2(x1 +x3)  cos2x
4 4

Since f(x) is unknown, V* and V7§ are unknown. We apply
the proposed method in the last section to design a reinforce-

ment learning-based controller. We choose Sy and ¢ as Sy =

2 2 T 2 2 3.3 .2 21T
[x1, %2, X7, x5, x1%2] ' and ¢ = [x7], x5, X1X2, X7, X3, X[ X2, X1 %3]

By Theorem 3.4, the control input is (20) and the update laws for
Wf, W, and W, are (23), (25), and (24), respectively. Simulation
was done with the aid of MATLAB Simulink. Figure 2 shows the
response of the state. It shows that the state converges to a small

neighbourhood of the origin. Figure 3 shows the control input
u. Figures 4- 6 show the response of Wy, W, and W,, respec-

tively. These figures show that Wf, W,, and W, are bounded.
The simulation results confirm the statement in Theorem 3.4.

Example 4.2: Consider the system

L 2
3% | = [ 05x — 05(x, +x2)(1 — (cos@x1) +2)%)

0
+ [cos(2x1) + 2i| u (27)
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Control input

A+ .

_3 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time (sec)

Figure 3. Time response of the input u.

_3 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20

time (sec)

Figure 4. Time response of Wf.
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4

0 2 4 6 8 10 12 14 16 18 20
time (sec)

Figure 5. Time response of W,.

_2 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20

time (sec)

Figure 6. Time response of W,.
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1.5 T T T T T T T T T

051 4

X, and X,
S
[&)]
1

Figure 7. Time response of x.

20 T T T T T T T T T

15 -

10 - -

Control input
o

10 F 4

1s) -

time (sec)

Figure 8. Time response of the input u.
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4.5

3.5

Figure 9. Time response of Wf.

time (sec)

10

Figure 10. Time response of W,.

time (sec)

10
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time (sec)

Figure 11. Time response of Wj.

the optimal control problem is to find an optimal control u such
that the cost J is minimised where Q(x) = x% + (x1 + %)% and
P = 1. This optimal control problem has been studied in Vrabie
and Lewis (2009) with a state transformation y; = xj and y, =
X1 + x,. Here we solve this problem using the results proposed
in this paper.

Since f(x) is unknown, V*, V}, and V7 are unknown. In the
simulation, we choose St and ¢ as S = [1,x1, %2, x%, x%,xlxz]—r
and ¢ = [x%,x%, xlxz,x?,xg,x%xz, xlx%]—'—. The control input
is (20) and the update laws for Wf, W, and W, are in (23), (25),
and (24), respectively. The simulation was done by Matlab
Simulink for a group of control parameters. Figure 7 shows the
response of the state which converges to a small neighbourhood
of the origin. Figure 8 shows the control input u. Figures 9- 11
show the response of Wf, W, and W,, respectively. From the
simulation results, it is shown that Wf, W, and W, are all
bounded. The simulation results verify the statement in the last
section.

The proposed results can be applied to solve optimal atti-
tude control of unmanned aerial vehicles, optimal cruise control
of autonomous vehicles, etc. The applications of the proposed
results will be presented in the future.

5. Conclusion

This paper considered the optimal control of a second-order
nonlinear system with unknown dynamics. A new reinforce-
ment learning algorithm was proposed with the aid of direct
adaptive control. Future research is on how to extend the results
in this paper to more general nonlinear system with uncertainty.
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