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1 Introduction

Design space exploration (DSE) involves systematically search-
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are not fully known [5]. Through this method, DSE aims to uncover
the best possible solutions, navigating within defined constraints

ing and examining various design alternatives that meet specifica-
tions and constraints to find the best design [1]. This contrasts
with gradient-based optimization algorithms, which require prede-
fined objectives and utilize derivatives to guide their search.
Unlike methods such as gradient descent [2], stochastic gradient
descent [3], and Adam (Adaptive Moment Estimation) [4], which
operate based on gradient information to find optimal solutions,
DSE adopts a more sequential and heuristic approach. It incremen-
tally develops knowledge of the design space by sequentially eval-
uating design alternatives due to the black-box nature of the design
problem. This happens because, in many cases, the objective func-
tion is not clearly defined or too complex for an analytical descrip-
tion. Black-box optimization addresses this by sequentially and
iteratively testing and learning about the design space through tar-
geted sampling, even when the underlying functional relationships
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and specifications to find those that are optimal or as close to
optimal as possible.

DSE for black-box problems exhibits three main characteris-
tics. First, complex design problems often require a team of
designers or computer agents to work together to solve them.
The effectiveness and efficiency of a design team are related to
the efforts of every team member and the coordination between
them. This is particularly true when navigating complex design
spaces with many local optima. Second, the unknown design
space is often accompanied by unknown constraints, such as tech-
nical and environmental limits or specific project requirements, so
that viable design alternatives are limited [6,7]. DSE for such
problems requires agents to adapt and learn about those
unknown constraints dynamically. Third, every sampling decision
made in DSE comes with an intricate balance between cost man-
agement and team collaboration. Each sampling decision incurs
specific costs, be it time or resources, necessitating efficient
resource management to stay within budgetary limits, as high-
lighted by Panchal et al. [8]. The dynamic between cost and col-
laboration significantly influences the decision-making process in
DSE. In previous studies [9-11], they indicate that budget con-
straints  significantly affect group performance. Therefore,
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effective teamwork, in which members share information and
resources, is crucial to optimize resource use and ensure that
DSE meets budget constraints.

In this article, we quantitatively investigate the impact of cost on
design decisions in teams for problems with unknown objective and
constraints. We present a novel and unified framework that incorpo-
rates the three characteristics mathematically. Assuming idealized
decision-making behaviors, we use this framework to define how
design teams should work under different cost scenarios. This
framework consists of a cost-aware multi-agent system (MAS)
based on Bayesian optimization (BO) and reinforcement learning
to model the sequential decision-making process of a rational
design team in the exploration of complex design spaces with
unknown constraints. Figure 1 shows an overview of this MAS.
In particular, our study answers the following research question:
What impact would the cost-aware stopping criteria have on col-
laboration between multiple agents in design space exploration?

The core contributions of this article revolve around three
decision-making principles in a cost-aware MAS strategy to find
the global optimum.

(1) Where to sample: Each agent in the MAS decides where to
sample based on a multi-agent Bayesian optimization [12], a strategy
to identify optimal solutions within complex design spaces by
enabling information exchange between agents, which enhances
the collective intelligence and effectiveness of an MAS. (2) Where
not to sample: We address the issue of unknown constraints using
MARL formulated based on multi-agent deep deterministic policy
gradient (MADDPG) [13]. This approach enables agents to recog-
nize and adapt to constraints autonomously. If the suggested points
of the multi-agent Bayesian optimization (MABO) fall within
those recognized constraints, agents sample around the infeasible
regions. (3) When to stop: We develop a cost-aware stopping criterion
for each agent based on two elements: information gain (IG) and per-
formance gain (PG). IG is the potential improvement that the agent
could get in the future, while PG is the performance that the agent
has already received. By adjusting the parameters of IG and PG,
the agent can balance between what it has already gained (PG) and
potential new improvements (IG). Each agent is equipped with
knowledge of its own stopping criterion based on the gains it has
achieved in relation to the cost it has incurred.

The remainder of the article is structured as follows. Section 2
presents an overview of existing computational approaches in
DSE and presents the contribution. Section 3 presents the technical
background on BO and multi-agent reinforcement learning as pre-
liminaries for the proposed model. Next, Sec. 4 delves into the
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technical details of the main proposed framework, presenting the
problem formulation and how the MAS navigates in the design
space. Section 5 presents the experimental settings and results
under different design scenarios with varying complexity. Section
6 provides a discussion of the research findings and draws insight
into the impact of cost on collaboration in design teams. Finally,
Sec. 7 concludes the article with a summary of the findings and lim-
itations that lead to the future work.

2 Bayesian Models of Design Decision-Making

DSE often presents itself as a black-box optimization challenge,
particularly when the configuration space or the form of the function
is unknown or not well defined. In such scenarios, the process of
sampling subsequent design candidates for evaluation becomes a
crucial decision-making task that is highly dependent on experi-
ences. BO employs knowledge-based reasoning to navigate these
unknown design spaces, using insights obtained from historical
data and experiences [14], which offers a systematic approach to
providing informed design recommendations that guide sampling
decisions. In what follows, we discuss the three challenges that
this study aims to address within the BO literature.

2.1 Team-Based Decisions. BO is a commonly employed
methodology to model design search in black-box problems. Con-
ventionally, BO treats each design experiment sequentially, with a
new one proposed only after completing the previous one [6].
However, this method can be time consuming when dealing with
complex design spaces due to the step-by-step approach to finding
the optimum. Advancements in computational and communication
technologies, as detailed by Kontar et al. [15], have made it possible
for MAS as a design team to handle complex DSE based on BO. In
another study, Peralta et al. [16] develop an MABO for multi-
objective optimization, with the aim of enhancing the availability
and affordability of water quality monitoring. Since solving such
complex problems requires teams in practice, we introduce the
MABO framework as a model of teamwork in our recent study
[12]. This MABO framework can significantly improve convergence
through the global-local communication strategy, enabling faster
identification of optimal solutions in complex design spaces.

2.2 Design Constraints. In many practical design problems,
certain regions of the space are infeasible due to design constraints
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[7]. If the constraints are predefined, they can be integrated into the
acquisition function (AF) to be maximized in the BO process.
However, the cases where constraints are not previously predicted
pose a greater challenge. In response to this challenge, many
constraint-handling techniques have been developed. The augmented
Lagrangian relaxation method is one such technique that integrates
constraints into a Lagrangian function to be optimized, making
them amenable to BO. Although originally developed for gradient-
based optimization, it has been used in black-box optimization
without requiring an explicit formulation of the constraints [17].
However, this approach involves nonstationary surrogate models
that lead to modeling complexities, as highlighted in Ref. [18]. The
second technique integrates AFs with a probability of feasibility
such as constrained expected improvement (cEI) or constraint-
weighted expected improvement (EI) [7,19]. However, this method
requires the best current observation, which poses difficulties for
noisy experiments. Letham et al. [20] addressed this by extending
cEl to noisy observations, although it remains sensitive to highly con-
strained problems. Bernardo et al. [21] proposed an integrated
expected conditional improvement AF, which defines an expected
reduction in EI with limited satisfaction probability to allow infeasi-
ble regions to provide information. Despite existing methodologies
that reduce the likelihood of sampling within infeasible regions, a sig-
nificant degree of uncertainty persists. In this study, we present an
approach that integrates MARL into the proposed MABO framework
to prevent the agent from sampling in infeasible regions. In this
approach, while direct sampling is prohibited in infeasible areas,
agents still obtain information at the place that is closest to the infea-
sible regions as their best attempts of samples.

2.3 Cost of Design Search. Most BO processes work for a
predefined number of iterations. This approach, while beneficial
for comparative studies, does not realistically reflect the constraints
in team decision-making scenarios, where the number of design
evaluations is often bound by budget constraints [22,23]. In tradi-
tional BO, the next sample is chosen solely based on the maximiza-
tion of an AF, such as EI [24,25], without considering the budget.
However, a more practical alternative, which aligns with the
purpose of the present article, is to incorporate the cost of sampling
into the decision-making process [26]. By selecting the option with
the highest net value, calculated as the maximum EI minus the cost
of further evaluation, we address the practical challenge of limited
resources. This strategy underscores the necessity of including sam-
pling costs in the stopping criteria for each agent in BO. In this
article, we develop a cost-aware stopping criterion aligned with
the design team’s decision-making process.

In this article, a cost-aware stopping criterion is represented by a
net value or utility score. This score is calculated as the cumulative
gain minus the total cost incurred so far. Therefore, evaluating the
cumulative gain is essential for the decision-making process. In
most BO studies, the decision on where to sample next is usually
based on an AF, as mentioned previously. The rationale behind
this approach is that the AF determines the potential net value or
information gain that can be achieved in the subsequent step.
However, focusing solely on AF overlooks a crucial aspect of the
decision-making process: the actual performance achieved by the
agent in previous iterations. This performance is often quantified
as “regret,” a metric used to determine when to terminate the BO
process. A study by Lorenz et al. [27] suggests an approach
based on the Euclidean distance (ED) as their regret. They recom-
mend terminating the BO algorithm when the ED between the
point of the most recent observation and the forthcoming observa-
tion falls below a certain threshold. A notable method proposed
by Ref. McLeod et al. [28] involves the concept of regret, splitting
it into local and global components as the stopping criterion for BO.
However, it is plausible that even though regret falls below a certain
threshold, indicating the performance gain in the system, the value
of the AF, as a measure of potential gain, might still be large. In
[29], it was found that when human designers make the decision
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to stop evaluating, they tend to look a few steps further after achiev-
ing the best design to reduce uncertainty in the process. In this
study, we propose a similar cost-aware stopping criterion based
on a combination of both actual performance gains and information
gains (value of the AF).

3 Preliminaries

3.1 Bayesian Optimization. Commonly used as a global opti-
mization method, BO searches for the optimum of a black-box
objective function f(x), where x € A; A is a domain of d dimen-
sional design space, where A C R?. BO relies on two main compo-
nents: (1) a statistical inference method, typically a Gaussian
process (GP) regression, to model the unknown objective function
value based on the collected data, and (2) an acquisition function
(AF) to determine where to sample within the design space [30].

3.1.1 Gaussian Process. Gaussian process is a commonly used
statistical inference model, which defines a distribution over possi-
ble unknown functions [31]. BO realizes the reasoning about f(x)
by choosing an appropriate Gaussian process prior:

£(x1:0) ~ GP (o (X1:4)s Zo(X1:4, X14)) (1

where the set of observations is D= (Xj.x, f(X1.4)), Xj4=
[XtoeXe]s £ =[F XD, f KO, o) = [ o (XD (X0 |
is the mean vector by evaluating a mean function p, at
each xi,....X;, and Zo(X1.5,X1:6)=[Z0(X1,X1),..., 20(X1,Xk);.. .}
20Xk, X1),..., 20(Xk,X¢)] is constructed by covariance Xo(-,-)
between each observation. Given the observation data D, the poste-
rior probability distribution is defined as follows [30]:

F&) | £(x1:0) ~ GP(u(x), 6*(x))
H(X) = Zo(X, X1:1) Zo(X1: 4 X120~ (FX1:0) — Bo(X1:4)) + po(X)
o2 (X) = Zo(X, X) — Zo(X, X1 :)Z0(X1 45 X1:4) ™ Zo(X1 4, X)

(@)

where pi(x) denotes the posterior mean and 6%(x) denotes the poste-
rior variance.

3.1.2  Acquisition Function. AF is used to identify the next
point to sample within the design space. This function utilizes the
probabilistic surrogate model, which is described in Sec. 3.1.1
and approximates the objective function. When choosing the next
observation, an AF is optimized [30]. AFs are developed to
balance the exploration of new areas in the design space and the
exploitation of areas already known to provide high-value results.

Chaudhari et al. [32] categorize AFs primarily into two groups:
expected utility (EU) based and heuristic based. A widely used
EU-based model is EI, while lower confidence bound (LCB) [33]
is representative of a heuristic model. In Ref. [32], they show that
the heuristic model provides the best descriptive model of the
sequential information acquisition process. Furthermore, it is possi-
ble to create distinct sampling strategies for different agents by
adjusting the LCB parameter, which is instrumental in managing
the balance between exploitation and exploration. Thus, we
adopted the LCB as a typical acquisition function of the heuristic
model in this study. Its formulation is given as follows:

arc(X) = p(x) — 16(x) 3

where u represents the mean function of the posterior probability
distribution for f and o is its standard deviation. In addition, 4 >0
is a parameter that determines the trade-off between exploitation
and exploration.

With AF apcp presented in Eq. (3), the next sampling point X is
chosen as the one that minimizes this LCB. The main idea behind
LCB is to find a balance between evaluating points where the func-
tion value (mean) is expected to be low (exploitation) and evaluat-
ing points where the uncertainty about the function value is high
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(exploration). By subtracting a scaled version of the uncertainty
from the mean, LCB encourages the algorithm to explore regions
of the search space where there is a lot of uncertainty, but it also
tends to exploit regions with low expected function values.

3.2 Multi-Agent Reinforcement Learning. In this article, we
apply an MARL based on a MADDPG [13] to implement a con-
straint handling mechanism for MAS when sampling in a con-
strained design space autonomously. By this model, agents can
find the shortest path to targets suggested by the global evaluator
and avoid sampling in infeasible regions.

The MADDPG framework for training the MAS is shown in
Fig. 2. The core idea of this framework is centralized training and
decentralized execution. Within this framework, each agent in
MAS has a specific actor-critic network, which is trained through
the deep deterministic policy gradient algorithm [34]. During the
training process, a centralized critic network for each agent Q; is
updated using shared observations o; and actions a; of all agents
in the MAS. This network evaluates the efficacy of the actions a;
proposed by the actor network to optimize the policy z; using a
policy gradient methodology. In the execution process, each agent
relies solely on its actor network to offer a deterministic policy
#;. This policy guides the updates of actions a; based on environ-
mental observations o;.

Assume that N agents are set for exploration in the design space,
0=1[0,, 0,,..., Oy] are the parameters for deterministic policies for
N agents W= [uy,, Hy,, - - - » Hg, ], then the policy gradient for agent i
can be given as follows:

Vo, J () = Exap, [ Vo, mi(ailo;)
Vo Q% a1, a0l amron) “

where X = [0, ..., oy] denotes the state of MAS, Q! is the value
function, a; and o; are the action and observation, respectively, of
agent i. D, represents the experience replay buffer containing a
series of tuples (x, X', ai,..., ay, r1,..., ry), where X’ is the new
state. The critic network Q% is updated by the loss function as
follows:

L) =E(Q/(x, ai,..., an) = y)'] (&)

where y=R; + ny/ (%', d, ..., dy), R;is the reward for the agent i,
designed by the tasks for the MAS in a specific scenario. The actor
network is updated by minimizing the policy gradient as follows:

1
Vo % 5D Vomi0]) Va B als s @)lamniry  (©)
n

where S is a random minibatch size and » is its index.

execution

-t
ﬂa=.

Fig.2 MADDPG framework [13]
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4 Methods

4.1 Problem Setup. In this section, we show a problem formu-
lation to find the minimum black-box function in a d dimensional
design space A C RY with N agents in a team (i.e., an MAS). The
goal of agent i, where i € {1, 2,..., N}, is to find the location of
global minimum x*:

X" = argmin f(x) )

X

where f(-) represents a black-box objective function and x =
(X1, X2, . .., xg) € R% is an element of the set A.

We assume that the design space is partitioned into N local
regions a priori, with each agent assigned to a unique region A;
within the design space A for the division of labor between agents
in the MAS. In this search process, agents are not allowed to
extend their search beyond their local regions. Instead, they com-
municate by sharing sampled local points with a global evaluator.
There exist infeasible regions (constraints) in the design space,
denoted as D; C A;.

(@)

A :
0
v 3
-4
-2
0
+;

N

W 3 =2 4

X1
Fig. 3 Design space exploration with objective and constraints

unknown to the agents. The star denotes the global minimum:
(a) objective function and (b) contour plot.
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Figure 3 shows an example of this design space exploration with
unknown constraints based on an MAS with three agents. In this
example, the objective function is shown in Fig. 3(a). The design
space has been arbitrarily divided into three regions, as shown in
Fig. 3(b). In each region, only one agent is responsible for searching
the local space to find the global minimum (star in Area 3). Agents
are not allowed to sample points within infeasible regions D;
(circles in Area 1, 2, and 3) in each local space A;. It is worth
noting that the impact of design space partitioning on MAS perfor-
mance is not within the scope of this study. We adopt a particular
strategy that divides the design space into N regions in every sce-
nario to illustrate our approach and study the impact of cost on coor-
dination between design agents.

4.2 Three Decisions for Design Space Exploration. The
decision-making process of each agent in the proposed MAS
involves three key decisions: where to sample, where not to
sample, and when to stop. Initially, the MAS is trained via
MARL, utilizing MARL to facilitate the identification of infeasible
regions by the MAS in the decision of where not to sample. Subse-
quent to training, during implementation, MABO is adopted to
determine where to sample next, and a proposed cost-aware stop-
ping criterion guides each agent in deciding when to stop.

4.2.1 Decision 1: Where to Sample. In this study, we apply
MABO to model each agent’s decision-making process about
where to sample within a team, aiming to optimize an unknown
objective function by assigning local regions to each agent [12].
By enabling collaboration between agents, the system can search
the complex design space more efficiently.

We use the MABO framework shown in Fig. 4 from our previous
study [12]. First, the search space is divided into local regions. The
number of these regions corresponds to the number of agents partic-
ipating in exploration. Each region has an agent performing a local
search on a specific segment of the objective function. To foster col-
laboration and information exchange among agents, a global-local
communication strategy is enabled. This mechanism allows each
local agent to share its sampling points with a global evaluator.
This global evaluator consolidates data across all local searches,
ensuring that the search process benefits from all the individual
agents’ information. When determining the next sample point,
each agent works within its local region. However, rather than
having access to the evaluation of the acquisition function across
the entire design space, each agent is restricted to the evaluation
of the acquisition function within its local region. Consequently,
each agent makes its decision about the design that maximizes
the value of the local acquisition function.

4.2.2  Decision 2: Where Not to Sample. Prior to implementing
the MAS for DSE, it is initially trained using the MARL framework,
as introduced in Sec. 3.2. After training, the objective of MARL is
path planning, transitioning from one assigned sampling point to the
next as directed by a global evaluator while avoiding infeasible
areas during the sampling process.

MAS agents in the DSE need to learn how to take action a; in a
state x; based on the system reward R they receive [35]. In this
context, the state x; is defined as the location of the agent in the
design space, which is the value of the design variables. a; indicates
how much the design variable x; needs to be increased or decreased.

In Sec. 3.2, we introduced that MADDPG contains a centralized
training process and decentralized execution. This centralized train-
ing process generates optimal policies 7t; for each agent through this
framework. Every agent has the ability to perform actions a; to
reach a specific target x; in its local region. In the training
process, we define x; as a random location in the design space
that excludes unknown infeasible regions. In the implementation
of MAS after training, the target X! is set as the location where to
sample next suggested by the global evaluator. After taking
action a; € RY, the agent updates its current state x;=xi+ai.
During the decentralized execution in each episode, agents do not
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necessarily need to communicate or synchronize their actions
with each other. Each agent independently decides its action
based on its current state and the policy learned through the
MADDPG algorithm.

This training process is described in Algorithm 1. During this
process, the MAS undertakes the following two fasks:

(1) Target tracking, enabling agents to execute actions within the
design space;
(2) Infeasible region detection, determining whether the targets
are located in infeasible regions.
In order to complete the two tasks, a well-structured system reward
R is required, which measures the quality of the action a; for each
agent. Therefore, we develop a reward mechanism specifically for
target tracking and infeasible region detection as follows:

(1) Target tracking reward, R?, is calculated according to the dis-

tance between the agent and the target X,

R =—\/lIx; = x} 1%, where x; is the location of the agent i;

(2) Reward for infeasible region detection RY, is calculated as

R{ = —N,, where N, the number of collision times.
The rationale for not structuring the reward for detecting unknown
infeasible regions as the distance between agents and these areas is
that the agents need to sample points close to infeasible regions,
which could be the potential global optimum.

Note that this model is configured in a cooperative setting. This
means that each agent within the system is not only concerned with
maximizing its own reward R; but also contributes towards maxi-
mizing the total system reward R. The total system reward R is
defined as the aggregate of individual rewards R; obtained by
each agent in the system.

Algorithm 1 MARL training process via MADDPG

Initialize the locations of constraints D; Vi = {1, 2, N},
MAX — episode and MAX — step
for k = 1 to MAX — episode do
Initialize R < 0, R{ < 0,
for agenti=1to N do
Receive initial state x;
Random generate sampling point X}
for r = 1 to MAX — step
Select action a; based on policy &;
Update new state X; < X; + a;

Calculate R? = —, /|| x; — xf||?
if Collide to the constraint then
RS <R —1
else
R{ < R -0
end if
Ri < R+ K
end for
R<R+R;
Return system reward R
Store experience in replay buffer
Sample a random minibatch of S in replay buffer
Update the critic network by minimizing the loss in Eq. (5)
Update the actor network by policy gradient in Eq. (6)
end for
end for

> calculate the collision times N,

4.2.3 Decision 3: When to Stop. To include cost considerations
in the design process, we establish a stopping criterion for each
agent based on a cost-aware utility function that we propose, pre-
sented as Eq. (8). Each agent stops the search if the utility score
U is less than or equal to 0.

U=G-Kc ®)

In this equation, the total number of iterations taken is repre-
sented by K, while ¢ indicates the cost associated with each
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Global evaluator

Fig. 4 MABO framework

sample to be defined. G refers to the cumulative gain achieved by
the agent, defined as G = wpg PG + w;c1G. Here, IG is information
gain, calculated as I1G = Z,’le arcs, k- Here, arcg,  represents the
normalized value of the acquisition function at the kth step. Perfor-
mance gain is represented by PG and calculated as
PG =- Z,’f:l (fy —fi=1). Here, f;° represents the normalized best
value at step k. Intuitively, PG represents the cumulative perfor-
mance each agent already achieves in each step, and IG indicates
the potential gain it can achieve in the next sampling iteration. It
is important to note that we use normalized values for both PG
and IG to ensure a fair trade-off between performance gain and
information gain. The tunable parameters wpg and @i help to
strike a balance between these two elements.

A key parameter in this article is the value of ¢, which has a sig-
nificant impact on the agents’ decision about when to stop. In par-
ticular, agents within the MAS exhibit varying sampling behaviors
and influence overall system performance. Specifically, we

experiment with both the same and agent-specific cost configura-
tions. Furthermore, variations in the weights of IG and PG, repre-
sented by wpg and wjg, affect cumulative gains and the stopping
criterion. Exploring cost settings in different wpg and wig configu-
rations plays an essential role in observing agent behaviors about
when to stop in the MAS.

In this study, three cost-setting strategies are designed in this
cost-aware approach:

e Strategy A: Different costs for each value of wpg and wyg, dif-
ferent costs for each agent;

e Strategy B: Same cost for each agent, different costs for each
value of wpg and wig;

e Strategy C: Different costs for each agent, same costs for each
value of wpg and wig.

By adjusting the costs, we observe variations in the sampling
behavior of individual agents and the interactions between agents
within the MAS.

4.3 Cost-Aware Multi-Agent System for Design Space
Exploration. In this section, we build the cost-aware MAS for
design space exploration and integrate the process of making
three decisions in this method. The structure of the design space
exploration process with an MAS we propose is illustrated in
Fig. 5. Algorithm 2 presents our cost-aware search strategy.

We begin by training the MAS to identify unknown constraints
using the MADDPG framework, as outlined in Algorithm 1.
After training, the agents can sample points within the design
space. Before MAS starts sampling this design space, the design
space A is divided into local areas A;, and each is assigned to a spe-
cific agent i. Within their local region, each agent receives a prior
Gaussian process given the initial observations D.

Our algorithm allows MAS agents to navigate a series of sam-
pling iterations K. For each iteration, a global evaluator calculates
the posterior mean and variance using all points sampled by local
agents. The acquisition function is then calculated using the poste-
rior mean and variance to guide the next sampling decisions for
local agents. Each local agent only has access to the acquisition
function evaluated in its local area. The agents select the design
that offers the highest value of the acquisition function within this
local space.

Next, we employ a cost-aware stopping criterion, which facili-
tates a balance between PG and IG, to quantify the utility scores

Global evaluator

Terminal location

—{Stopping criterion?
x5 . ;

Yes

—'} Acquisition function
Gaussian process };

—’< End search }'—

topping criterion? 3 ;
Stopping P Terminal location

No XN

Yes

Fig. 5 Process flow for the cost-aware search

011703-6 / Vol. 147, JANUARY 2025

Transactions of the ASME

¥20z Jequiides |0 uo Jasn Ausieniun ybiys Aqipd-€02L L0 L ZPL PW/6L0G9EL/E0L L LO/L/LYLAPd-8lonie/ubisapleslueyosw/Bio swse uoyos|joofenbipswse//:dpy woly papeojumoq



Fig.6 An example of a sampling process involving three agents
that possess global information, with each sampling point (filled
points) labeled by its index. The dashed lines are the sampling
trajectories of three agents. When the suggested points (hollow
points, e.g., index 5 in area 2, index 0 and 11 in area 3) are
located in the constraints (the gray circle areas), the agents
can sample the corresponding points closest to the constraints
in the feasible regions (filled points, index 5 in area 2, index 0
and 11 in area 3).

of points the agents sampled and decide when to stop. If the value of
the utility function in Eq. (8) exceeds zero, the relevant x; suggested
by the global evaluator is communicated to the trained agent. This
allows agents to take action within the design space, meaning that
they can transition from the current points to the next suggested
points and sample. In cases where the suggested points fall within
infeasible regions, agents are restricted from sampling within
those areas. However, they can still observe the function f at the
destination x; around the infeasible regions and send this informa-
tion back to the global evaluator. Following the agents’ actions,
all associated data, including points and their associated function
values, are collected into the global evaluator. If the value of the
cost-aware utility function falls below or is equal to zero, which
means that further sampling will not yield beneficial outcomes,
the sampling process is terminated.

For a practical demonstration of Algorithm 2, refer to Fig. 3(a)
that showcases the objective function, and the contour plot shown
in Fig. 3(b). Figure 6 shows the corresponding sampling process
under these constraints, involving three agents that are equipped
with global information. These agents perform tasks in unique
local regions, and dashed lines represent the paths of their operation.
We present the sampling point in each iteration as a filled point,
each of which is distinctly labeled by a numerical index. The

interaction of the agents with their respective environments is crit-
ical to address the unknown constraints. For instance, when the
agents get the points suggested by the global evaluator (represented
as hollow points), like the point with index 5 in area 2, the points
with index O and 11 in area 3, these points may sometimes fall
within certain constraints, as shown by the gray circle. Accordingly,
the agents have the capacity to sample points close to these con-
straints within feasible regions, like the filled points with index 5
in area 2, with index O and 11 in area 3, although the suggested
points are located in the constraints. As a result, MAS has the
ability to interact with the environment, allowing agents to
address constraints without wasteful sampling steps and to send
information about locations close to constraints to global
evaluators.

Algorithm 2 Cost-aware search strategy

Training MAS via MADDPG framework as Algorithm 1
Initialize I, wpg, i, ¢ in Eq. (8)
Set local region A; for each agent in an unknown design space A
Place a Gaussian process prior D; = (Xj, f(X;)) in A; for each agent
Observe f at the initial step in the design space A
for k =1to K do
Update the posterior probability distribution with all available data on
each local region A; as Eq. (2)
Update the acquisition function Eq. (3)
for agent i,i =1 to N do
Let x; be an optimizer of acquisition function Eq. (3) in the local
region A;
Calculate cost-aware utility function as Eq. (8)
If U > 0 then
input X} to the trained agent
Agent take action a;
Agent sends back terminal state x; and observes f (X;)
end if
end for
Collect all data (x;, f (x;)) from agents
end for
Return a solution: the point x* evaluated with the global optimum f*(x).

5 Experiments
5.1 Experimental Setups

5.1.1 MARL Settings. We use multi-agent particle environ-
ments to perform the experiments based on the environment pre-
sented by Ref. [13]. This environment is set in a two-dimensional
space and is equipped with three agents and three infeasible
regions, serving as a representation of a 2D unknown design
space. During the training process, as detailed in Algorithm 1,
we set specific parameters, MAX — episode = 100,000 and
MAX - step = 20, in each episode.

5.1.2 MABO Settings. Three benchmark functions of varying
complexity, from simple to complex, were evaluated: (1) the
Cosines function, (2) the Michalewicz function, and (3) the
Eggholder function, as illustrated in Table 1 and Fig. 7,to

Table 1 Three black-box functions

Name Formula

Global minimum Global domain A

Cosines
Michalewicz

= 0 (X
f(x)=— ; sin(x;) sin <7>

Eggholder

f&)=1- (2 +x3 —0.3 cos 3zx;) — 0.3 cos (37x2))

fx)=—(x, +47) sin( {xz +35+ 47| — X sin( [x1 — (2 +47)|

f(0.314, 0.303) = —1.596 {x|-1<x<1}

f(2.201, 1.572) = -1.801 {x| -4<x<4}

£(512, 404.232) = —959.641 {x] — 520 < x < 520}

Journal of Mechanical Design
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Fig. 7 Three benchmark functions. The Eggholder function is
much more complex than the cosine and Michalewicz functions,
with much more local optima: (a) cosines function, (b) Michale-
wicz function, and (c) Eggholder function.

understand the impact of the cost-aware stopping criterion on
the collaborative search behaviors between agents. Specifically,
the Eggholder function introduces greater complexity than the
Cosines and Michalewicz functions because of its numerous
local minima and maxima within the search space. These functions
were selected on the basis of their distinct mathematical properties,
which present various challenges to optimization algorithms.
These functions serve as benchmarks in the BO literature

011703-8 / Vol. 147, JANUARY 2025

and are widely recognized in the global optimization context
[36-38].

For each scenario, we applied LCB as the acquisition function,
represented by Eq. (3), and 4 is fixed as 2.5 in each scenario. The
initial number of samples for the Gaussian prior distribution, D; =
(X1:4, £(X1.%)) in A; is set to k =5 in Algorithm 2.

5.2 Experimental Results

5.2.1 Results Without a Stopping Criterion. By executing the
proposed method with a predefined number of iterations without
specifying any cost information for the agents, our objective is to
understand how many steps it would take to achieve the conver-
gence and therefore to identify the appropriate cost ¢ to be set in dif-
ferent objective functions of varying complexities. Note that in a
real-world design problem, the cost of design iterations for a
designer is set externally by the problem context. However, in
our theoretical (context-free) study, we need to choose a meaningful
value for the cost to study its impact on team collaboration. Instead
of choosing arbitrary values for the cost, we set the cost for sam-
pling a new design based on a baseline study in which agents
work together without any consideration of cost. On the basis of
convergence results of this baseline study, we choose different
values for ¢ following the three strategies described earlier. In this
context, the convergence of the MAS is characterized by the
ability of the agents to achieve the global optimum. When the
global optimum falls within the infeasible region, the convergence
is then defined by the MAS’s inability to achieve further improve-
ment. The experimental results with fixed iterations of these objec-
tive functions are shown in Figs. 8-10.

(1) Cosines function. Each local region to which each agent is
assigned and the infeasible region defined in each local
region are shown in Table 2. The sampling process and the
search trajectory (indicated by the number index) of each
agent in its own region are displayed in Fig. 8(a). The best
f(x) (i.e., f* in Eq. (3)) observed so far in each step shown
in Fig. 8(b) describes the convergence speed for an MAS,
and agent 2 reached the global minimum at the 13th step.
Agent 1 and agent 3 found their local minima at the fourth
and ninth steps, respectively.

Michalewicz function. In this scenario, the division of the
design space and the infeasible regions are set consistent
with those of the Cosines function. As shown in Fig. 9(a),
the global minimum of the Michalewicz function is
located in area 2, denoted by f(2.201, 1.572) =—1.801.
Figure 9(b) shows that agent 2 successfully reached this
global minimum at the 18th iteration. Agents 1 and 3
cannot achieve better improvement after the 6th and 25th
iterations, respectively.

Eggholder function. Figure 10(a) illustrates the sampl-
ing process of MAS in the Eggholder function, and the
global minimum is located in area 3, given by
f(512,404.232) = —959.641. The Eggholder function is
more complex than the cosines and Michalewicz functions,
making it harder to find the global minimum with MABO.
Specifically, agent 3 achieves the global optimum after 27
iterations, as shown in Fig. 10(b). Agents 1 and 2 see no
further improvement after the 30th and 40th iterations,
respectively.

Q

~

@3

~

The trends of cumulative gains G defined in Eq. (8) during
search are shown in Figs. 8(c), 9(c), and 10(c). Specifically, the
cosines function shows a linear increase in cumulative gain
across iterations (see Fig. 8(c)). On the other hand, the Michale-
wicz function follows a convex trend (see Fig. 9(c)), indicating
an increase in growth with a decreasing rate in each iteration.
Meanwhile, the Eggholder function exhibits a stepwise behavior
(see Fig. 10(c)), with significant gains at certain iterations and
minimal gains at others. These varying cumulative gain patterns
can affect individual agents in the system in deciding when to
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Fig. 8 Results for cosines function after 20 sampling steps with
agents converging at steps 3, 13, and 9, where wpg =0, w;g = 1:
(a) sampling process, (b) convergence speed, and (c) cumulative
gain

stop and the convergence in the MAS. The unique trend of each
cumulative gain exhibited in these three tested objective functions
is another reason we chose them in this study, besides the varying
complexity of the three functions.
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Fig. 9 Results for Michalewicz function after 50 sampling steps
with agents converging at steps 6, 18, and 25, where wpg =0,
wig =1: (@) sampling process, (b) convergence speed, and
(c) cumulative gain

5.2.2  Results With Stopping Criterion. We evaluated three
cost-aware strategies, introduced in Sec. 4.2.3, on three objective
functions with varying complexities. Table 3 presents detailed strat-
egies along with their corresponding tables for three benchmark
functions.

JANUARY 2025, Vol. 147 / 011703-9

$20z Jequisldas L0 uo Jesn Ausisniun ybiye1Aq pd €021 L0 L LYL PW/6L0SIEL/C0LL LO/L/ LY L/PA-Bo1e/UBISEplROIUBYDSW/BI0 8 WSE  UoROs||0oleYBIpsWSE//:d)y woy papeojumoq



200 Agent 2
—— Agent3
—400 |
5
[Ty
B 600
M
~800
bssssses b
-1000
0 10 20 30 40 50
Step
()
51 —=— Agent]
+«— Agent2 r’
—— Agent3 |
4 |
4
q /
O3 y
o 4 ST gea, SIS
i £ N R o2
£ o I
= e
g2
=
U . Jw‘)—u.oﬁ*"" ooooooo
1
| 4
01 +4
0 10 20 30 40 50
Step

Fig. 10 Results for Eggholder function after 50 sampling steps
with agents converging at steps 30, 40, and 27, where wpg =0,
wig =1: (@) sampling process, (b) convergence speed, and
(c) cumulative gain

Each table details the various parameter settings and perfor-
mance of MAS tested on the cosines (Tables 4—6), Michalewicz
(Tables 7-9), and Eggholder functions (Tables 10-12).
Columns wpg and wjg indicate the values of the complementary
parameters of PG and IG in Eq. (8)—as the weight of PG

011703-10 / Vol. 147, JANUARY 2025

decreases from 1 to 0 in 0.1 steps, the weight of IG increases in
the same increment. Columns Cost 1, Cost 2, and Cost 3 represent
the cost ¢ in Eq. (8) for each of the three agents in these
settings. The number of iterations taken by each agent during
the search process is shown in the agent I Iter, 2 Iter, and 3
Iter columns. The column Global optimum? indicates whether
the global optimum is reached, and if so, the number of iterations
at which the global optimum was achieved is reported. In Figs.
11-13, we demonstrate a few examples of convergence
speed of the cosines, Michalewicz, and Eggholder functions
with a particular stopping criterion configuration, wpg = 0.5 and
wIG = 0.5.

(1) Cosines function

Strategy A. Agents have different costs, and the costs are different
in each setting of the parameters, wpg and wig. We determine the
appropriate cost values (e.g., not too high or too low) using the
average gain observed when an agent converges in the scenario
without stopping criteria, as detailed in Sec. 5.2.1. For example,
in the results of the cosines function (Fig. 8), agents identify their
local optima at the 3th, 13th, and 9th steps, respectively. At these
steps, the corresponding cumulative gains G are 0.016, 7.35, and
0.461 (Fig. 8(c)) under the conditions of wpg =0 and wig =1.
The average gains derived from these are 0.004, 0.525, and
0.461. It should be noted that varying the values of wpg and wig
can lead to different cumulative gains and, consequently, different
cost settings, as presented in Table 4.

We summarize three key observations from Table 4. First, we
pinpointed an optimal approach to setting cost values. By adopt-
ing the first cost-aware strategy, we achieved consistent conver-
gence, and the convergence speed of the global optimum was
stable around 11 steps in all parameter settings of wpg and
wig. Second, we observed that the agents did not stop sampling
as expected in the scenario without a stopping criterion, although
we set the cost as the average gain when the agents converged.
For example, agents did not stop at the 3rd, 13th, and 9th itera-
tions. This behavior links to agent 1 stopping early in the sam-
pling process, which left agent 2 and agent 3 without getting
essential information from agent 1’s local region for the search
of global minimum. As a result, these agents extended their sam-
pling, as IG from their own local region increased and costs were
relatively low. Third, by setting the cost according to the average
gain upon agents’ convergence and noting the cost’s increase
with the growing weight of IG, it is clear that IG takes prece-
dence over PG.

Strategy B. Agents have the same cost, but the costs are different
in each parameter setting, wpg and wig. In Table 4, we assign
varying costs to each agent. Taking the average of these costs, we
set the same cost for all three agents, as shown in Table 5. In the
initial three settings, agent 2 and agent 3 registered small PG, result-
ing in limited sampling due to higher cost and therefore negative
utility scores. Consequently, they ended their search in their local
region, hindering the convergence of MAS to find the global
optimum. As the weight of IG increases, from the fourth setting,
agent 2 and agent 3 can achieve a higher cumulative gain and, there-
fore, a positive utility score, and the search process can continue
until the global optimum is found.

Strategy C. Agents have different costs, but the costs are the same
in each setting of the parameters, wpg and wig. In Table 6, we
applied the same cost for each setting of wpg and wig but kept dif-
ferent costs for each agent. These cost values were derived from the
averages in Table 4. For instance, we used the average of cost 1
across all settings of wpg and wig from Table 4 for the value of
cost 1 in Table 6. Therefore, we obtain the costs for each agent as
0.159, 0.288, and 0.288, respectively. With this cost-setting strat-
egy, the system did not achieve convergence in the first five set-
tings. However, it succeeded in the next five. This is due to the
same reason observed in Table 5 that, as the weight of IG increased,
agent 2 and agent 3 obtained higher gains in their local regions. This
led to positive utility scores; thus, the agents will not stop sampling
before reaching the global optimum.
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Table 2 Cosines function

MAS Local domain A; Infeasible area D;

Agent 1 {X| = 2x +x,+2 <0} {x|(x; +0.75)% + (x2 + 0.75)* < 0.15%}
Agent 2 (x| =2x; —x, —2<0,2x; —x, —2 <0} {x\x%+(xz—0.25)2 <0.15%}
Agent 3 {x| =2x +x, +2 <0} {x|(x; = 0.6)* + (x2 +0.5)> < 0.15%}

Note: Local design space domain and infeasible areas for three agents.

Table 3 Three cost-setting strategies and associated results under three benchmark functions

Strategies  Unit costs are different for each agent  Unit costs are different for each value of wpg and wig Associated tables

A Yes Yes Cosines: 4, Michalewicz: 7, Eggholder: 10
B No Yes Cosines: 5, Michalewicz: 8, Eggholder: 11
C Yes No Cosines: 6, Michalewicz: 9, Eggholder: 12

Table 4 Cosines function

wpG wiG Cost 1 Cost 2 Cost 3 Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.313 0.051 0.115 6 16 12 12

0.9 0.1 0.282 0.098 0.149 5 16 12 11

0.8 0.2 0.251 0.146 0.184 5 16 12 11

0.7 0.3 0.22 0.193 0.218 5 16 12 11

0.6 04 0.19 0.241 0.253 5 16 12 11

0.5 0.5 0.159 0.288 0.288 4 15 11 11

0.4 0.6 0.128 0.335 0.322 4 15 11 11

0.3 0.7 0.097 0.382 0.357 4 15 11 11

0.2 0.8 0.066 0.43 0.392 5 15 11 11

0.1 0.9 0.035 0.478 0.426 5 16 12 11

0 1 0.004 0.525 0.461 6 16 12 12

Note: Strategy A: Agents have different costs, and the costs are different in each setting of the parameters, wpg and wig. Columns wpg and wyg indicate the
values of PG and IG in Eq. (8). Columns Cost 1, Cost 2, and Cost 3 represent cost ¢ in Eq. (8) for each of the three agents. The number of iterations taken by
each agent during the search process is shown in the agent 1 Iter, 2 Iter, and 3 Iter columns. The column Global optimum? indicates if the global optimum is
reached, and if so, the number of iterations at which the global optimum was achieved is reported. The same notation applies to Tables 5-12.

Table 5 Cosines function

wpG w16 Cost Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.16 8 3 7 No
0.9 0.1 0.176 7 5 8 No
0.8 0.2 0.193 7 9 10 No
0.7 0.3 0.21 5 12 13 12
0.6 0.4 0.228 5 17 14 11
0.5 0.5 0.245 5 22 15 11
0.4 0.6 0.262 5 24 17 11
0.3 0.7 0.279 5 27 18 11
0.2 0.8 0.296 5 30 19 11
0.1 0.9 0.313 5 32 20 11
0 1 0.33 5 34 21 11

Note: Strategy B: Agents have the same cost, but the costs are different in each setting of the parameters, wpg and wig.

(2) Michalewicz function

Strategy A. Agents have different costs, and the costs are different
in each setting of the parameters, wpg and wig. We followed a
similar approach in cosines function to determine the cost, using
the average gain when the agent reaches a local optimum, which
is 6th, 18th, and 25th, as shown in Fig. 9. With this cost-setting
strategy, the MAS consistently reached its convergence at the
13th step for all values of wpg and wg, as shown in Table 7. In
this design space, we noticed sampling patterns and collaboration
between agents similar to those in the cosine function. A significant
observation from our research involved some agents stopping their
sampling earlier than anticipated. For example, agent 1 stopped

Journal of Mechanical Design

sampling around the 8th step. However, this early stopping did
not hinder the system’s performance. Interestingly, MAS converged
faster, reaching its goal at the 13th step compared to the 18th step in
the scenario without the stopping criterion. This indicates not only
potential savings in sampling costs relative to strategies without a
stopping criterion but also a more efficient route to convergence
with fewer sampling iterations.

Strategy B. Agents have the same cost, but the costs are different
in each setting of the parameters, wpg and wyg. To determine the
costs, we utilized an approach in which each agent was assigned
the same cost. This method appears beneficial, as the MAS consis-
tently achieves convergence for every combination of wpg and wjg,
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Table 6 Cosines function

wpG WG Cost 1 Cost 2 Cost 3 Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.159 0.288 0.288 8 2 4 No
0.9 0.1 0.159 0.288 0.288 7 2 4 No
0.8 0.2 0.159 0.288 0.288 6 3 5 No
0.7 0.3 0.159 0.288 0.288 6 5 6 No
0.6 0.4 0.159 0.288 0.288 5 8 7 No
0.5 0.5 0.159 0.288 0.288 5 13 9 11
0.4 0.6 0.159 0.288 0.288 5 18 12 11
0.3 0.7 0.159 0.288 0.288 5 23 15 11
0.2 0.8 0.159 0.288 0.288 5 27 17 11
0.1 0.9 0.159 0.288 0.288 5 31 20 11
0 1 0.159 0.288 0.288 5 36 22 11

Note: Strategy C: Agents have different costs, but the costs are the same in each setting of the parameters, wpg and wig.

Table 7 Michalewicz function

WpG wiG Cost 1 Cost 2 Cost 3 Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.227 0.167 0.088 8 20 27 13
0.9 0.1 0.245 0.214 0.107 8 20 26 13
0.8 0.2 0.264 0.261 0.126 8 20 26 13
0.7 0.3 0.283 0.307 0.145 8 20 26 13
0.6 0.4 0.301 0.354 0.164 8 20 26 13
0.5 0.5 0.32 0.401 0.183 8 20 26 13
0.4 0.6 0.339 0.448 0.203 8 20 26 13
0.3 0.7 0.357 0.495 0.222 8 20 26 13
0.2 0.8 0.376 0.542 0.241 9 20 29 13
0.1 0.9 0.395 0.588 0.26 9 20 29 13
0 1 0.413 0.635 0.279 10 20 30 13

Note: Strategy A:

Agents have different costs, and the costs are different in each setting of the parameters, wpg and wig.

Table 8 Michalewicz function

wpG w16 Cost Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.161 10 21 15 18
0.9 0.1 0.189 10 23 15 18
0.8 0.2 0.217 10 24 15 18
0.7 0.3 0.245 10 25 15 18
0.6 0.4 0.273 9 25 17 13
0.5 0.5 0.301 9 26 17 13
0.4 0.6 0.33 9 26 17 13
0.3 0.7 0.358 8 27 16 13
0.2 0.8 0.386 8 28 16 13
0.1 0.9 0414 8 28 16 13
0 1 0.442 7 28 15 13

Note: Strategy B:

Agents have the same cost, but the costs are different in each setting of the parameters, wpg and wjg.

Table 9 Michalewicz function

wpG wiG Cost 1 Cost 2 Cost 3 Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.32 0.402 0.183 6 6 14 No
0.9 0.1 0.32 0.402 0.183 6 8 16 No
0.8 0.2 0.32 0.402 0.183 6 9 21 No
0.7 0.3 0.32 0.402 0.183 7 10 30 No
0.6 0.4 0.32 0.402 0.183 7 12 35 No
0.5 0.5 0.32 0.402 0.183 8 20 26 13
0.4 0.6 0.32 0.402 0.183 9 22 32 13
0.3 0.7 0.32 0.402 0.183 12 25 31 13
0.2 0.8 0.32 0.402 0.183 14 27 34 13
0.1 0.9 0.32 0.402 0.183 17 30 37 13
0 1 0.32 0.402 0.183 19 32 40 13

Note: Strategy C: Agents have different costs, but the costs are the same in each setting of the parameters, wpg and wig.
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Table 10 Eggholder function

wpG wiG Cost 1 Cost 2 Cost 3 Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.025 0.034 0.06 2 2 2 No
0.9 0.1 0.03 0.036 0.073 53 11 29 No
0.8 0.2 0.036 0.037 0.085 50 11 30 No
0.7 0.3 0.042 0.038 0.1 42 32 28 27
0.6 0.4 0.049 0.039 0.11 40 32 28 27
0.5 0.5 0.055 0.041 0.123 38 33 28 27
0.4 0.6 0.061 0.042 0.135 37 33 28 27
0.3 0.7 0.067 0.043 0.148 36 33 29 27
0.2 0.8 0.073 0.044 0.161 35 33 28 27
0.1 0.9 0.08 0.045 0.173 34 33 28 27
0 1 0.086 0.047 0.186 33 33 28 27

Note: Strategy A: Agents have different costs, and the costs are different in each setting of the parameters, wpg and wig.

as shown in Table 8. Given that the global optimum resides in area
2, agent 2 tends to accumulate substantial gains until it locates this
optimum. Using the average cost in each setting as described in
Table 7, the cost of agent 2 becomes relatively lower. Consequently,
agent 2 consistently registers a positive utility, enabling it to
perform more iterations and discover the global optimum.

Strategy C. Agents have different costs, but the costs are the same
in each setting of the parameters, wpg and wig. In this cost-setting
strategy, the search performance of the MAS is similar to that of the
cosines function, as shown in Table 9. Using this method, the
system could not achieve convergence in the first five settings of
wpg and wjg, but it succeeded in the following five. As we increased
the weight of IG, they achieved better gains locally, leading to pos-
itive utility and increased iterations of sampling.

(3) Eggholder function

Strategy A. Agents have different costs, and the costs are different
in each setting of the parameters, wpg and wic. In the experiment

based on the Eggholder function, we set different costs for each
agent based on their steps to reach their local optima: 30th, 40th,
and 27th steps, respectively. The results based on the first cost
setting are shown in Table 10. Compared to simple objective func-
tions (cosines and Michalewicz functions), the agent stopping early
would have a great impact on the convergence in a complex objec-
tive function. We can imagine that, for this complex design space,
agents need to sample more for finding the optimal design com-
pared to the simple case, and the MAS needs more information
from local regions to better understand the entire design space.
For example, in the first three settings with different wpg and
wig, the MAS is unable to achieve convergence. It is due to agent
2 stopping searching within the first ten steps. We can see from
the cumulative gain without setting a stopping criterion
(Fig. 10(c)) that agent 2, although initially showing low gains,
had the potential for greater gains as the process continued. This
means that if we establish the average gain of the agent achieved

Table 11 Eggholder function

wpG w16 Cost Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.04 2 2 2 No
0.9 0.1 0.046 19 9 45 No
0.8 0.2 0.053 27 8 31 No
0.7 0.3 0.06 34 8 86 No
0.6 0.4 0.066 39 8 100 No
0.5 0.5 0.073 24 6 100 79
0.4 0.6 0.079 26 6 93 55
0.3 0.7 0.086 32 5 38 No
0.2 0.8 0.093 33 5 39 No
0.1 0.9 0.099 33 5 44 No
0 1 0.106 33 3 44 No

Note: Strategy B: Agents have the same cost, but the costs are different in each setting of the parameters, wpg and wig.

Table 12 Eggholder function

wpG wiG Cost 1 Cost 2 Cost 3 Agent 1 Iter Agent 2 Iter Agent 3 Iter Global optimum?
1 0 0.055 0.041 0.123 2 2 2 No
0.9 0.1 0.055 0.041 0.123 23 10 12 No
0.8 0.2 0.055 0.041 0.123 29 10 14 No
0.7 0.3 0.055 0.041 0.123 35 10 16 No
0.6 0.4 0.055 0.041 0.123 38 11 27 No
0.5 0.5 0.055 0.041 0.123 38 32 28 27
0.4 0.6 0.055 0.041 0.123 41 33 31 27
0.3 0.7 0.055 0.041 0.123 43 34 34 27
0.2 0.8 0.055 0.041 0.123 46 35 37 27
0.1 0.9 0.055 0.041 0.123 49 36 40 27
0 1 0.055 0.041 0.123 51 51 42 27

Note: Strategy C: Agents have different costs, but the costs are the same in each setting of the parameters, wpg and wig.

Journal of Mechanical Design

JANUARY 2025, Vol. 147 / 011703-13

¥20z Jequiides |0 uo Jasn Ausieniun ybiys Aqipd-€02L L0 L ZPL PW/6L0G9EL/E0L L LO/L/LYLAPd-8lonie/ubisapleslueyosw/Bio swse uoyos|joofenbipswse//:dpy woly papeojumoq



(a) 1 ----= Agent 1, cost 0.159
X 4 Agent 2, cost 0.288
1 —==: Agent 3, cost 0.288
21 ‘

.

- i

X (I

R

- i

7] | .

5] i \

m \ e
0Ty

\\
| —
B
-1 N T L, S 3
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Step

(b) t -+ Agent 1, cost 0.245
" i Agent 2, cost 0.245
) -~== Agenl 3, cost 0.245
21

%1

— &

x it

frg \odeee

= l y\

©n i

5] 1 X

m ' e

i
01 !
i
i
1
L =%
=11 AN
0 5 10 15
Step
() j
t —-— Agent 1, cost 0.159
3 Agent 2, cost 0.288
’ —-=— Agent 3, cost 0.288
ol I

|3

= \

et

- i

o] 1 \

4 i a

m i e
0

i

\\

e

S S —
-1 e
‘ 0.0 25 5.0 75 10.0 12.5 15.0
Step
Fig. 11 Convergence speed based on the cosines function,

demonstrating results with a stopping criterion where
wpg = 0.5, w|g = 0.5: (a) Strategy A: agents have different costs,
and the costs are different in each setting of the parameters,
wpg and w,g. Costs for each agent in each iteration are 0.159,
0.288, and 0.288, respectively. (b) Strategy B: Agents have the
same cost, but the costs are different in each setting of the
parameters, wpg and w,g. The cost for each agent in each itera-
tion is 0.245. (c) Strategy C: Agents have different costs, but
the costs are the same in each setting of the parameters, wpg
and w\g. Costs for each agent in each iteration are 0.159, 0.288,
and 0.288, respectively.
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Fig. 12 Convergence speed based on the Michalewicz function,
demonstrating results with a stopping criterion where wpg = 0.5,
wig = 0.5: (a) Strategy A: Agents have different costs, and the
costs are different in each setting of the parameters, wpg and
wig- Costs for each agent in each iteration are 0.32, 0.401, and
0.183, respectively. (b) Strategy B: Agents have the same cost,
but the costs are different in each setting of the parameters,
wpg and w\g. The cost for each agent in each iteration is 0.301.
(c) Strategy C: Agents have different costs, but the costs are
the same in each setting of the parameters, wpg and w,g. The
costs for each agent in each iteration are 0.32, 0.402, and 0.183,
respectively.
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Fig. 13 Convergence speed based on the Eggholder function,
demonstrating results with a stopping criterion where
wpg = 0.5, wg = 0.5: (a) Strategy A: Agents have different costs,
and the costs are different in each setting of the parameters,
wpg and w|g. Costs for each agent in each iteration are 0.055,
0.041, and 0.123, respectively. (b) Strategy B: Agents have the
same cost, but the costs are different in each setting of the
parameters, wpg and w\g. The cost for each agent in each itera-
tion is 0.073. (c) Strategy C: Agents have different costs, but
the costs are the same in each setting of the parameters, wpg
and wig. The costs for each agent in each iteration are 0.055,
0.041, and 0.123, respectively.
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upon reaching the local optimum as the cost for each sample, the
cost would be too high for agent 2 at the early stage of the sampling
process. However, a turning point was observed in the fourth
setting. Here, the system can identify the global optimum, mainly
because all agents, especially agent 3, where the optimum is
located, continue to sample until the stopping criterion is satisfied,
and all agents can obtain the information from other regions consis-
tently during this process. This phenomenon illustrates that infor-
mation from all agents is crucial for identifying the global
optimum in the MAS, which shows the importance of collaboration
between agents for convergence in the complex objective function
with many local optima.

Strategy B. Agents have the same cost, but the costs are different
in each setting of the parameters, wpg and wyg. According to
Table 8, the second cost-setting strategy seems ineffective for the
convergence of the system in the Eggholder function, as agents
often fail to identify the global optimum. This outcome is mainly
due to the inconsistent gains realized by different agents. When
the same cost was applied to all agents, those with low gains and
high sampling costs, resulting in positive utility, had a propensity
to stop searching. This early stop adversely impacted the MAS’s
capability to converge to the global optimum. Such findings empha-
size the crucial role of collaboration between agents in complex
design space exploration.

Strategy C. Agents have different costs, but the costs are the same
in each setting of the parameters, wpg and wic. Referring to
Table 12, with this cost-setting strategy, the system does not con-
verge in the first five settings. However, it achieves convergence
in the subsequent five settings. A side-by-side examination of
Tables 11 and 12 indicates the important role of agent 2’s informa-
tion in system convergence. In Table 11, agent 2 stops its operation
early, sampling no more than ten steps. This early termination of
agent 2 impedes the MAS’s convergence. On the contrary, in the
last five settings of wpg and wig in Table 12, the system achieves
convergence due to agent 2 sampling until the later stages.

6 Discussion

In this article, our primary research question is: What impact
would the cost-aware stopping criteria have on the collaboration
between multiple agents in design space exploration? On the
basis of our experimental results, we have identified several key
observations that answer this RQ. In the following section, we
will dive into these observations, providing insight and drawing
takeaways from their practical scenarios.

(1) Our results confirm the findings of our previous study in
Ref. [12] that communication or information-sharing in MABO
can greatly influence the individual agent’s behavior and the team
performance. We obtain these results with the assumption that the
design task is divided into subtasks assigned to each member, and
each design iteration incurs some cost. For instance, in our first
test without stopping criteria, the cumulative gain looks like a
step function (Fig. 10(c)). If the cost was high, as the value was
set based on the average gain, some agents could stop early
because they could not achieve much improvement in the initial
search, even if they could make large improvements later.
However, stopping early affects other agents’ search performance,
as they could not continuously receive information from those
who stopped. Although certain regions of the design space do not
yield promising performance results at the beginning of the
search, spending additional resources to further explore those
regions could provide valuable insight that could help other
members of the design team achieve the global optimum. As a solu-
tion, we can consider creating an additional parameter that serves as
an initial bet (/) for all agents. For instance, the utility score, as
defined in Eq. (8), can be reformulated as U = (I + G) — Kc. This
can prevent certain “promising” or “high-potential” agents, who
may have modest gains in the beginning but are likely to see signif-
icant improvement with continued exploration, from stopping
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searching too early. Even if this may accompany the waste of addi-
tional costs on exploring agents’ local regions, this approach could
effectively guide the system toward convergence. Consequently,
there exists a trade-off between convergence/optimum achievability
and search cost incurred.

(2) Our results show that the impact of communication is more
profound in problem with higher complexity. Specifically, the com-
plexity of the objective function plays a crucial role on when agents
stop searching. For relatively simple functions, early stops in a few
local regions do not significantly influence other agents’ perfor-
mance. In particular, in the area where the global optimum is
located, if the agent in that area does not stop early, it can continue
the search of its local region even with less information acquired
from other areas where agents stop early, thus successfully converg-
ing to the global optimum. However, when dealing with more
complex objective functions, the contribution of each agent
becomes indispensable to effectiveness and the possibility of
achieving the global optimum.

As an illustration, in both the cosines and Michalewicz functions,
it appears that agent 1’s information is neglectable. When this agent
stops sampling, not only is the convergence unaffected but also it
enhances the convergence speed in certain cases. This can be
observed with the cosines function, in which the convergence
speed is improved from the 13th step to the 11th step, as presented
in Table 4. Similarly, the convergence in the Michalewicz function
is improved from the 18th step to the 13th, as shown in Table 7. In
contrast, the case of the Eggholder function with many local optima
demonstrates how vital every agent’s information is for conver-
gence. Specifically, if agent 2 stops within the first ten steps, the
system fails to converge, as highlighted in Tables 10 and 12.
However, when agent 2 continues its search, sharing its information
with other agents, the system can achieve convergence (see
Table 12). These observations shed light on the formation of a
design team. For a design team, communication mechanisms and
incentive structures for solution search shall be designed and tai-
lored according to the complexity of the problem to be solved.

(3) Our results also indicate the delicate balance between the
value of design space exploration and cost of design iterations. In
practical applications of design optimization, the concepts of
“gain” and “cost” are pivotal. “Gain” typically refers to the benefits
or improvements achieved through the design process. This could
be in terms of performance, efficiency, utility, or any other metric
of value in a specific context. For instance, in architectural design
optimization, the “gain” might be maximized living space, energy
efficiency, or aesthetic appeal. On the other hand, the “cost” in
design optimization encapsulates the resources expended to
achieve these gains. Beyond just monetary expenditures, the cost
could represent the time taken, the manpower used, the environ-
mental impact, or any other resource consumed in the process. In
our earlier architectural example, the “cost” could be construction
time, materials used, or even the environmental toll of sourcing
those materials. Understanding and measuring gain and cost
within the same unit or system is crucial. This ensures that we are
making evaluations and decisions based on a consistent frame of
reference. In real-world scenarios, this consistency assists stake-
holders in making informed choices, prioritizing where to allocate
resources, and understanding the trade-offs involved in pursuing
specific design objectives.

7 Conclusions

This article develops a model centered around a cost-aware MAS
to study the impact of search cost on collaboration between multiple
rational agents in design space exploration. This process involves
three key decisions: where to sample, where not to sample, and
when to stop. We leveraged MABO to determine optimal solutions
while enabling a global-local communication mechanism for infor-
mation exchange among agents, thus accelerating the speed of
finding the best solutions. Additionally, multi-agent reinforcement
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learning (MARL) allows agents to recognize and adapt to unfeasi-
ble regions autonomously during the sampling process. We also
propose a cost-aware stopping criterion, constructing each agent’s
utility (also known as payoff) that incorporates PG and IG. The
experimental findings reveal that cost significantly impacts the com-
munication and performance of MAS in complex design problems
more than in simpler ones. In complex scenarios, agents may
exhibit low performance initially, leading to minimal gains and
potentially terminating search efforts due to negative payoffs.
These early terminations, driven by initial negative outcomes, can
substantially affect the overall system performance. Consequently,
for a design team, it becomes essential to design and customize
incentive structures to find solutions according to the specifics of
the design problem to be solved. This insight, derived from a theo-
retical model of how rational design agents should work with a rig-
orous mathematical foundation, serves as a novel benchmark. It can
be used in empirical studies to quantitatively evaluate how humans
actually make design decisions within a team setting.

Our findings are subject to the following limitations. First, we
used the fixed number of agents in the MAS, which means that
we did not test the impact of the scalability of the MAS on the
cost-aware strategy. In future work, we plan to dive into studying
how the size of an MAS affects cost strategies, with the objective
of identifying how different team sizes can change the efficiency
and financial planning of design projects. Second, in this article,
we adopted the global evaluator in BO for information exchange,
which means that the agents in the MAS are fully connected by
the global evaluator. In our future work, we will explore the topol-
ogy of communication and team structures within distributed MAS,
trying to understand how various structures might influence system
efficiency and reliability. A key goal will be to create a model for
MAS that reflects the varied preferences of individual agents,
such as different attitudes toward risk, to model heterogeneity
within human design teams. Third, this article initiates by partition-
ing the design space, ensuring that agents operate in distinct regions
and maintaining their independence. In our future work, another
strategy could be adopted to set overlapping boundaries between
agents, using probability to choose who can sample this overlapping
region or comparing the improvement of two agents in the same
overlapping region. Fourth, we conclude that incentive structures
to find solutions should be customized according to the specifics
of the design problem to be solved. However, we did not
examine how incentive structures influence the performance of
the MAS. In future work, we intend to examine how different
initial funds or budgets impact the performance of our MAS, espe-
cially in systems that represent varied agent preferences and deci-
sions. Finally, to ensure that the insights about effective team
coordination obtained from this study are grounded in reality
beyond theoretical simulations, more validation is needed. This
involves extensive testing in real-world DSE scenarios, demonstrat-
ing the practical applicability and effectiveness of our approach in
cost management in design teams. With the aim of examining the
prescriptive feature of the proposed model, we plan to conduct
human-subject experiments to collect human behavior data in col-
laborative DSE and compare their actual behaviors (i.e., when to
stop and what the next point sampled) against those predicted by
the MABO model. One potential value of such a comparison is a
measure of design irrationality quantified by the distance between
the empirical data and the simulation results.

Funding Data

e The National Science Foundation (Grant Nos. CMMI-
2321463 and CMMI-2419423).

Conflict of Interest

There are no conflicts of interest.

Transactions of the ASME

¥20z Jequiides |0 uo Jasn Ausieniun ybiys Aqipd-€02L L0 L ZPL PW/6L0G9EL/E0L L LO/L/LYLAPd-8lonie/ubisapleslueyosw/Bio swse uoyos|joofenbipswse//:dpy woly papeojumoq



Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.

References

[1] Kang, E., Jackson, E., and Schulte, W., 2011, “An Approach for Effective Design
Space Exploration,” Foundations of Computer Software. Modeling, Development,
and Verification of Adaptive Systems: 16th Monterey Workshop 2010, Redmond,
WA, Mar. 31-Apr. 2, Revised Selected Papers 16, Springer, pp. 33-54.

[2] Marcin, A., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T.,
Shillingford, B., and De Freitas, N., 2016, “Learning to Learn by Gradient
Descent by Gradient Descent,” Adv. Neural Infor. Process. Syst. , 29.

[3] Bottou, L., 2010, “Large-Scale Machine Learning With Stochastic Gradient
Descent”,” Proceedings of COMPSTAT’2010: 19th International Conference
on Computational Statistics, Paris France, Aug. 22-27, Keynote, Invited and
Contributed Papers, Springer, pp. 177-186.

[4] Zijun, J., 2018, “Improved Adam Optimizer for Deep Neural Networks,” 2018
IEEE/ACM 26th international Symposium on Quality of Service IWQoS), pp.
1-2. IEEE.

[5] Bajaj, 1., Arora, A., and Hasan, M. F., 2021, “Black-Box Optimization: Methods
and Applications,” Black Box Optimization, Machine Learning, and No-Free
Lunch Theorems, P. M. Pardalos, V. Rasskazova, and M. N. Vrahatis, eds.,
Springer, Cham, Switzerland, pp. 35-65.

[6] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N., 2015,
“Taking the Human Out of the Loop: A Review of Bayesian Optimization,”
Proc. IEEE, 104(1), pp. 148-175.

[7] Gelbart, M. A., Snoek, J., and Adams, R. P., 2014, “Bayesian Optimization With
Unknown Constraints,” 30th Conference on Uncertainty in Artificial Intelligence,
UAI 2014, AUALI Press, pp. 250-259.

[8] Panchal, J. H., Sha, Z., and Kannan, K. N., 2017, “Understanding Design
Decisions Under Competition Using Games With Information Acquisition and
a Behavioral Experiment,” ASME J. Mech. Des., 139(9), p. 091402.

[9] Cao, F., Zhu, M. M., and Ding, D., 2013, “Distributed Workflow Scheduling
Under Throughput and Budget Constraints in Grid Environments,” Workshop
on Job Scheduling Strategies for Parallel Processing, Boston, MA, May 24,
Springer, pp. 62-80.

[10] Yu, J., and Buyya, R., 2006, “A Budget Constrained Scheduling of Workflow
Applications on Utility Grids Using Genetic Algorithms,” 2006 Workshop on
Workflows in Support of Large-Scale Science, Paris, France, June 19, IEEE,
pp. 1-10.

[11] Zhu, H., 2017, “Maximizing Group Performance While Minimizing Budget,”
IEEE. Trans. Syst. Man. Cybernet.: Syst., 50(2), pp. 633-645.

[12] Chen, S., Bayrak, A. E., and Sha, Z., 2023, “Multi-agent Bayesian Optimization
for Unknown Design Space Exploration,” International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, Boston, MA, Aug. 20-23, American Society of Mechanical
Engineers, Vol. 87318, p. VO3BT03A047.

[13] Lowe, R., Wu, Y. L, Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, 1.,
2017, “Multi-agent  Actor-Critic  for Mixed Cooperative-Competitive
Environments,” Advances in Neural Information Processing Systems, Long
Beach, CA, Dec. 4-9, Vol. 30, pp. 6379-6390.

[14] Snoek, J., Larochelle, H., and Adams, R. P., 2012, “Practical Bayesian Optimization
of Machine Learning Algorithms,” Advances in Neural Information Processing
Systems, Lake Tahoe, NV, Dec. 3-6, Vol. 25, pp. 2951-2959.

[15] Kontar, R., Shi, N., Yue, X., Chung, S., Byon, E., Chowdhury, M., Jin, J., Kontar,
W., Masoud, N., Nouiehed, M., and Okwudire, C. E., 2021, “The Internet of
Federated Things (IoFT),” IEEE Access, 9(1), p. 156071.

[16] Peralta, F., Reina, D. G., and Toral, S., 2023, “Water Quality Online Modeling
Using Multi-objective and Multi-agent Bayesian Optimization With Region
Partitioning,” Mechatronics, 91, p. 102953.

[17] Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K., Ranjan, P., Wells, G.,
and Wild, S. M., 2014, Modeling an Augmented Lagrangian for Improved
Blackbox Constrained Optimization, GERAD HEC Montréal, Canada.

[18] Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K., Ranjan, P., Wells, G.,
and Wild, S. M., 2016, “Modeling an Augmented Lagrangian for Blackbox
Constrained Optimization,” Technometrics, 58(1), pp. 1-11.

[19] Tran, A., Eldred, M., McCann, S., and Wang, Y., 2020, “stMO-BO-3GP: A
Sequential Regularized Multi-objective Constrained Bayesian Optimization for

Journal of Mechanical Design

Design Applications,” International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, Vol. 83983,
Virtual Online, Aug. 17-20, American Society of Mechanical Engineers,
p. VO09T09A015.

[20] Letham, B., Karrer, B., Ottoni, G., and Bakshy, E., 2019, “Constrained
Bayesian Optimization With Noisy Experiments.” Bayesian Analysis, 14(2),
pp. 495-519.

[21] Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and
West, M., 2011, “Optimization Under Unknown Constraints,” Bayesian
Statistics, 9(9), p. 229. .

[22] Freriks, H., Heemels, W., Muller, G., and Sandee, J., 2006, “5.3. 2 on the
Systematic Use of Budget-Based Design: Sixteenth Annual International
Symposium of the International Council on Systems Engineering (INCOSE),”
INCOSE International Symposium, Orlando, FL, July 8-14, Vol. 16, Wiley
Online Library, pp. 788-803.

[23] Wertz, J. R., Larson, W. J., Kirkpatrick, D., and Klungle, D., 1999, Space Mission
Analysis and Design, Vol. 8, Springer, Torrance, CA.

[24] Jones, D. R., Schonlau, M., and Welch, W. J., 1998, “Efficient Global
Optimization of Expensive Black-Box Functions,” J. Global Optim., 13(4),
pp. 455-492.

[25] Pandita, P., Bilionis, I., and Panchal, J., 2016, “Extending Expected Improvement
for High-Dimensional Stochastic Optimization of Expensive Black-Box
Functions,” ASME J. Mech. Des., 138(11), p. 111412.

[26] Moore, R. A., Romero, D. A., and Paredis, C. J., 2014, “Value-Based Global
Optimization,” ASME J. Mech. Des., 136(4), p. 041003.

[27] Lorenz, R., Monti, R. P., Violante, I. R., Faisal, A. A., Anagnostopoulos, C.,
Leech, R., and Montana, G., 2015, “Stopping Criteria for Boosting Automatic
Experimental Design Using Real-Time FMRI With Bayesian Optimization,”
arXiv preprint arXiv:1511.07827.

[28] McLeod, M., Roberts, S., and Osborne, M. A., 2018, “Optimization, Fast and
Slow: Optimally Switching Between Local and Bayesian Optimization,”
International Conference on Machine Learning, Stockholm, Sweden, July 10—
15, PMLR, pp. 3443-3452.

[29] Chaudhari, A. M., Bilionis, I., and Panchal, J. H., 2018, “How Do Designers
Choose Among Multiple Noisy Information Sources in Engineering Design
Optimization? An Experimental Study,” International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, Vol. 51753, Quebec, Canada, Aug. 26-29, American Society of
Mechanical Engineers, p. VO2AT03A021.

[30] Frazier, P. I, 2018, “Bayesian Optimization,” Recent Advances in Optimization
and Modeling of Contemporary Problems, Informs, pp. 255-278.

[31] Rasmussen, C. E., 2003, “Gaussian Processes in Machine Learning,” Summer
School on Machine Learning, B. Scholkopf and M. K. Warmuth, eds.,
Springer, Berlin, Germany, pp. 63-71.

[32] Chaudhari, A. M., Bilionis, I., and Panchal, J. H., 2020, “Descriptive Models of
Sequential Decisions in Engineering Design: An Experimental Study,” ASME
J. Mech. Des., 142(8), p. 081704.

[33] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M., 2009, “Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design,”
Proceedings of the 27th International Conference on Machine Learning,
Omnipress, pp. 1015-1022.

[34] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller,
M., 2014, “Deterministic Policy Gradient Algorithms,” International
Conference on Machine Learning, Beijing, China, June 21-26, PMLR,
pp. 387-395.

[35] Agrawal, A., and McComb, C., 2023, “Reinforcement Learning for Efficient
Design Space Exploration With Variable Fidelity Analysis Models,” ASME
J. Comput. Inf. Sci. Eng., 23(4), p. 041004.

[36] Gonzélez, J., Dai, Z., Hennig, P., and Lawrence, N., 2016, “Batch Bayesian
Optimization via Local Penalization,” Artificial Intelligence and Statistics,
Cadiz, Spain, May 9-11, PMLR, pp. 648-657.

[37] Kaipa, K. N., and Ghose, D., 2017, “Multimodal Function Optimization,”
Glowworm Swarm Optimization. Studies in Computational Intelligence, vol
698. Springer, Cham.

[38] Floudas, C. A., Pardalos, P. M., Adjiman, C., Esposito, W. R., Giimiis, Z. H.,
Harding, S. T., Klepeis, J. L., Meyer, C. A., and Schweiger, C. A., 2013,
“Certified Global Minima for a Benchmark of Difficult Optimization
Problems,” Handbook of Test Problems in Local and Global Optimization.
Vol. 33. Springer Science & Business Media.

JANUARY 2025, Vol. 147 / 011703-17

¥20z Jequiides |0 uo Jasn Ausieniun ybiys Aqipd-€02L L0 L ZPL PW/6L0G9EL/E0L L LO/L/LYLAPd-8lonie/ubisapleslueyosw/Bio swse uoyos|joofenbipswse//:dpy woly papeojumoq



	1  Introduction
	2  Bayesian Models of Design Decision-Making
	2.1  Team-Based Decisions
	2.2  Design Constraints
	2.3  Cost of Design Search

	3  Preliminaries
	3.1  Bayesian Optimization
	3.1.1  Gaussian Process
	3.1.2  Acquisition Function

	3.2  Multi-Agent Reinforcement Learning

	4  Methods
	4.1  Problem Setup
	4.2  Three Decisions for Design Space Exploration
	4.2.1  Decision 1: Where to Sample
	4.2.2  Decision 2: Where Not to Sample
	4.2.3  Decision 3: When to Stop

	4.3  Cost-Aware Multi-Agent System for Design Space Exploration

	5  Experiments
	5.1  Experimental Setups
	5.1.1  MARL Settings
	5.1.2  MABO Settings

	5.2  Experimental Results
	5.2.1  Results Without a Stopping Criterion
	5.2.2  Results With Stopping Criterion


	6  Discussion
	7  Conclusions
	 Funding Data
	 Conflict of Interest
	 Data Availability Statement
	 References

