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Abstract

To repair a program does not mean to make it (absolutely) correct; it only means to make it
more-correct than it was originally. This is not a mundane academic distinction: given that
programs typically have about a dozen faults per KLOC, it is important for program repair
methods and tools to be designed in such a way that they map an incorrect program into
a more-correct, albeit still potentially incorrect, program. Yet in the absence of a concept
of relative correctness, many program repair methods and tools resort to approximations
of absolute correctness; since these methods and tools are often validated against programs
with a single fault, making them absolutely correct is indistinguishable from making them
more-correct; this has contributed to conceal/obscure the absence of (and the need for) relative
correctness. In this paper, we propose a theory of program repair based on a concept of relative
correctness. We aspire to encourage researchers in program repair to explicitly specify what
concept of relative correctness their method or tool is based upon; and to validate their method
or tool by proving that it does enhance relative correctness, as defined.

1 Introduction

As a field of research and development, the discipline of program repair has achieved great
strides over the past decades, producing a continuous stream of increasingly sophisticated
engineering solutions spanning several programming languages and several categories of
faults [10, 11, 18, 19, 23, 28, 34, 36, 39-43, 45, 51, 53, 57, 60, 63-71, 74, 74, 76, 77, 79].
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In [19], Gazzola et. al. present a sweeping survey of program repair, spanning more than
two decades and encompassing more than 100 papers, and conclude that “it is important to
improve the maturity of the field and obtain a better understanding of useful strategies and
heuristics”.

To repair a program does not mean to make it (absolutely) correct; it only means to
make it more-correct (in some sense) than it was originally. This is not a mundane academic
distinction: given that typical software products have thousands of KLOC, and about a dozen
faults per KLOC, it is rather critical that program repair methods and tools be designed in
such a way that they transform an incorrect program into a more-correct, while still possibly
incorrect, program. Hence, the validation test in program repair ought to be based on relative
correctness (the property of a program to be more-correct than another with respect to a
specification) rather than absolute correctness. Yet, in the absence of a concept of relative
correctness, program repair methods and tools have resorted to various approximations of
absolute correctness; some of the criteria used to select candidate repairs may sound/look
like relative correctness, but we reserve the term relative correctness to ordering relations
between programs that satisfy specific litmus conditions, which we discuss in Sect. 4.1. The
failure to distinguish between absolute correctness and relative correctness is concealed by
the fact that many (though not all: [18, 57, 68, 69]) program repair methods and tools are
tested against programs seeded with a single fault at a time; so that making them absolutely
correct is indistinguishable from making them more-correct.

In this paper, we propose a theory of program repair based on the following premises:

— To repair a program P with respect to a specification R means to transform it into a
program P’ that is strictly more-correct than P with respect to R (in a sense to be
defined).

— Actheory of relative correctness ought to play for program repair the same role that theories
of absolute correctness [16, 22, 25] play for program derivation: In the same way that the
derivation of a program P from a specification R is judged by whether P is absolutely
correct with respect to R, the transformation of a program P onto a program P’ in the
context of program repair ought to be judged by whether P’ is strictly more-correct than
P with respect to R.

— Any program repair method or tool ought to be based on an explicit definition of rel-
ative correctness, and ought to be validated by proving that it does enhance (relative)
correctness as defined.

In Sect. 2, we present a brief/cursory survey of program repair, then we discuss why we
feel that the absence of theoretical foundations for this discipline yields gaps/loopholes in
its efficiency and effectiveness. In Sect. 3, we present simple mathematical foundations for
program semantics, which we use in Sect. 4 to introduce a theory of program repair, based
on a definition of relative correctness. In Sect. 5, we present a generic algorithm for program
repair whose main thrust is to achieve absolute correctness by stepwise increments of relative
correctness; we prove the correctness of this algorithm in Sect. 6 using Hoare’s logic [25] and
we illustrate its performance in Sect. 7 using common program repair benchmarks [30]. We
conclude in Sect. 8 by summarizing our results, commenting on their potential to enhance
the practice of program repair, discussing their shortcomings/ threats to their validity, then
outlining some venues for further research.
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2 State of the art: why do we need a theory?

In this section, we briefly survey some of the most representative program repair methods
and tools, then we discuss in what way and to what extent a theory of program repair may
enhance the effectiveness and efficiency of this discipline. For a detailed survey of this field,
see [19]; following Gazzola et al. we distinguish between two broad families of program repair
methods, which we review in turn below: Generate-and-Validate methods, and Semantics-
Based methods.

2.1 Generate-and-validate methods

Generate-and-Validate methods of program repair proceed in two phases: in the first
phase several modified versions of the program are generated according to various crite-
ria/assumptions; in the second phase, these versions are tested against prespecified test suites
to ensure that the correct behavior of the original program is preserved and incorrect behavior
is corrected.

In [43, 73], Weimer at al. present GenProg, a program repair tool that generates candidate
repairs using genetic programming. This tool uses three artifacts, namely the faulty program,
a set of (positive and negative) test cases and (in some versions) a fitness function that is used
to rank repair candidates. GenProg manipulates programs at different levels of abstraction,
including the abstract syntax tree and the source code, and it uses quantitative/semantic
criteria as well as qualitative/ syntactic criteria to select repair candidates; it favors repairs
that involve minimal patches.

In[35], Kim et al. argue that because of its random mutation operators, GenProg is prone to
generate too many non-viable patches, which impede its performance and its precision. Also,
they propose a catalog of common faults, along with corresponding repair templates, which
they have compiled from an analysis of more than 60 000 human-generated patches. Kim et
al. implement their method in an automated tool, called PAR, for Pattern-based Automatic
Program Repair.

In [48,50], Long and Rinard present a program repair method (called SPR: Staged Program
Repair), whose patch generation method relies on three techniques to reduce the search space:
the first deploys a set of fault-specific parameterized transformation schemas. The second
derives parameter values of the transformation schemas to ensure successful repair. The third
technique aims to fine-tune the parameters of the transformation schemas. In [47], Long and
Rinard integrate the staged program repair (SPR) method into a tool they call Prophet, which
learns patch generation by analyzing a database of past successful patches.

In [39], Le et al. argue that semantic-based repair techniques suffer from weak specifica-
tions, and that repair methods are prone to overfitting because their patches are too specific to
the test data. To enhance the generality of patches, they propose a three-pronged approach: a
domain-specific language; an efficient search strategy; and favoring functions that are most
likely to generalize. They validate their approach on standard benchmarks and on real-world
programs.

In [76], Xin and Reiss introduce a program repair technique (ssFix) that retrieves patches
from a code database, which includes segments from the program under repair as well as an
auxiliary code repository. Once a suspicious statement is identified, ssFix performs syntactic
code search to find candidate code segments that are structurally similar and conceptually
related to the target statement and its local context (refered to as a chunk). The tool selects a
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patch by matching repair candidates against the relevant chunk, then selecting the candidate
that passes the validation test while minimizing discrepancies with the target chunk.

In [74], Wen et al. use empirical data from past research to fine-tune a program repair
method that is based on two premises: first, that patch generation is better carried out at a
fine level of granularity; second, that context information can be used to steer the mutation
operators to patches that are most likely to be correct. They test their prototype, called
CapGen, on the Defects4J benchmark.

In [70], Saha et al. introduce a program repair tool, called Hercules, whose distinguishing
characteristic is its ability to repair faults that span multiple sites in the code, albeit under the
special condition that the sites represent similar contexts and are repaired with similar code
patches.

In [68], Rothenberg and Grumberg introduce a mutation-based program repair algorithm
that is proved to be sound and complete, in the sense that it is guaranteed to return repairs
that are minimal (in the number of mutations) and bounded-correct (i.e., correct within user-
specified bounds in the number of iterations and the depth of recursion). The search space
is reduced by limiting the search to unsatisfiable sets of constraints, using SAT and SMT
solvers.

2.2 Semantics-based methods

The main difficulty with Generate-and-Validate methods is their predisposition to combina-
torial explosion: they tend to generate too many candidate patches, without a commensurate
gain in recall; it may be advantageous to push the validation step upstream, into the generation
phase; this is the focus of semantics-based methods of program repair.

In [63], Nguyen et al. introduce SemFix, a method that proceeds in three steps: first it uses
fault localization techniques to identify suspicious program locations. Then, it considers
these faults by order of decreasing probability, and infers a local specification by deriving
constraints on its behavior from controlled symbolic execution. Then, it deploys program
synthesis techniques to derive a substitute for the faulty statement. Because SemFix relies
on symbolic execution, it can only be applied to small programs that have no loops, a clear
obstacle to scalability.

To overcome this shortcoming, Mechtaev et al. [57] introduce Angelix, a tool that relies
on fault localization and program synthesis but uses a new artifact to represent the semantic
constraints on the search space of patches: a set of execution traces of the program in which
expressions are associated with constraints that ensure the successful execution of the pro-
gram. They claim that this artifact is independent of the size of the program, hence it supports
scalability.

In [39], Le et al. introduce JFix, a semantics-based program repair method that extends
Angelix to deal with Java programs, using Symbolic PathFinder, a symbolic execution engine
for Java programs. Though it extends Angelix, it is designed to support other repair methods
as well.

In[12, 78], DeMarco et al. present a tool, called Nopol, that focuses on repairing conditions
in if-statements and unguarded statements. This tool proceeds by instrumenting the program,
executing it on the test data and keeping track of the values that the program state takes at
different locations. This trace information is compiled into a SMT problem; if a solution
exists, it is translated into a patch in the form of a modified if-condition or a newly generated
guard.
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In [23], Gupta et al. aim to fix common C language errors, which are syntactic faults
that compilers are supposed to detect. But while a compiler merely declares that there is a
fault, DeepFix attempts to fix it. Gupta et al. model the problem as a mapping from an input
sequence (the erroneous program) to an output sequence (the fixed program), and design a
neural net to solve it. A C compiler is used for patch validation.

In [72], Tan and Roychodhoury propose ReliFix, an automated tool for repairing software
regressions that may result from program changes. They propose five criteria to guide the
repair operation, which are: limit repairs to small changes; produce readable code; pass
progression tests; pass previously failed regression tests; and ensure that no new regression
is introduced.

In [31], Ke et al. propose a method, SearchRepair, which relies on software reuse tech-
nology. This method is based on a repository of human-generated code fragments that are
mined from open source software. When a program fragment is suspected of being faulty, a
specification of the desired behavior is derived as SMT constraints on local input behavior.
Then, a constraint solver is invoked to find a match for the search key in the repository.

In [18], Frenkel et al. present an integrated method which combines attempts to prove
that a program satisfies some properties with attempts to repair the program in case the
proof fails. This method, called the Assume-Guarantee-Repair framework, is implemented
on the basis of assume-guarantee reasoning, and applies to C-like programs extended with
synchronous communication primitives. The Assume-Guarantee approach to the verification
of composite systems proves the correctness of a composite system M 1|| M2 with respect to
some property P by proving the correctness of M 1 with respect to P under some assumption
A, then proving that M2 satisfies A. The Assume-Guarantee-Repair approach of Frenkel et
al. applies the Assume-Guarantee rule, and while seeking a suitable assumption A (through
a learning-based method), deploys an incremental repair algorithm that seeks to repair the
program if the verification attempt fails; Frenkel et al. characterize the effect of the repair
algorithm as bringing the system closer to satisfying the specification, which sounds very
similar to the idea of relative correctness put forth in this paper.

2.3 Afocus on faults

Some recent approaches to program repair do not fall neatly into the characterization of
Gazzola et al. [19] but have in common their focus on a formal analysis of faults and fault
repair [6, 17, 29, 69, 75]. In [69], Rothenberg and Grumberg introduce the concept of Must
Location Set, which is a set of program locations that includes at least one program location
from each repair for an observed failure. A fault localization technique is said to be a Must
Algorithm if it returns a must location set for each observed program failure. Rothenberg and
Grumberg develop a fault localization algorithm and use it in a program repair algorithm to
help reduce the search space without loss of recall. The concept of must location is reminiscent
of the concept of definite fault introduced by Mili et al. [58]: a definite fault in an incorrect
program is a program part that must necessarily be modified if the program is to be corrected.

In [51], Lou et al. critique the separation between two lines of research, namely fault
localization and fault repair, and the fact that traditionally fault localization has been viewed
as a means to achieve fault repair ends. They argue for a unified debugging approach, where
fault repair is used to refine fault localization. They implement their approach in a tool, called
ProFL, and highlight its performance on test benchmarks and on real software products.

In [9], Christakis et al. present a static technique that analyzes an error trace in a program
and identifies a small set of statements within the trace that may be modified to satisfy
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correctness conditions. Suspicious statements are ordered according to their likelihood of
being the source of the observed failure.

2.4 Why do we need a theory?

Given that the discipline of program repair has been successful in producing a continuous
stream of increasingly sophisticated methods and tools, it is legitimate to ask the question:
Why do we need a theory?

Whereas they vary widely by how they perform patch generation, program repair methods
differ fairly little in terms of how they perform patch validation. Most of them use a com-
bination of the following techniques (see Table 1 for a brief/partial/cursory representative
survey): search space pruning; test set reduction; fitness function ranking; testing for absolute
correctness; and regression testing. We argue that all these techniques are flawed, as they are
prone to loss of precision and loss of recall.

— Search Space Pruning. In the face of massive search spaces, some program repair methods
renounce to analyze all the candidates delivered by the patch generation step, and prune
out large swaths of the search space; unless extreme caution is applied in ensuring that
excluded candidates are non-viable repairs, search space pruning carries the risk of loss
of recall.

— Test Set Reduction. In the face of massive search spaces, program repair methods have
an incentive to shorten the test of each candidate, so as to inspect the largest possible set
of candidates. Short test suites increase the likelihood that a candidate patch passes the
test while being incorrect, hence leading to loss of precision.

— Absolute Correctness Test. Absolute correctness is a sufficient condition of relative cor-
rectness, but not a necessary condition. Hence, testing candidate repairs for absolute
correctness rather than relative correctness causes a loss of recall.

— Fitness Function Ranking. Program repair methods use a wide range of fitness functions,
typically a combination of the number of passing tests and failing tests. Regardless of
how they are defined, fitness functions define a total ordering to reflect what is essentially
a (vastly) partial ordering: fitness functions cannot possibly provide sufficient conditions
of relative correctness because any two programs can be ranked by fitness functions, even
when they are not ranked by relative correctness. Consequently, regardless of how they
are defined, fitness functions are prone to cause a loss of precision.

— Regression Testing Regression testing consists in ensuring that repair candidates preserve
the correct behavior of the program under repair; because correct behavior is not unique,
a program may preserve correctness without preserving correct behavior (see Fig.3).
Hence, regression testing defines a sufficient but unnecessary condition of relative cor-
rectness; as such, it is prone to cause a loss of recall.

While existing methods and tools suffer from inadequate precision and recall of their patch
validation, we prove in Sect. 6 by means of Hoare logic that the generic algorithm presented
in Sect. 5 has perfect precision and perfect recall. The theory that we present in this paper
gives us the ontology that we need to specify what it means to have perfect precision and
perfect recall, as well as the reasoning framework that enables us to prove precision and
recall properties.

Note that while we advocate for a correctness-based approach to program repair (more
specifically, an approach based on relative correctness), we are not offering a correctness
verification method, as we do not know of a general method to prove that a program P’ is
more-correct than a program P with respect to a specification R (the relative correctness
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216 B. Khaireddine et al.

equivalent of methods such as [25, 52, 59]). In [20], Ghardallou et al. present a method for
program repair whose steps are all carried out by static analysis: verification that there is a
fault; localization of the fault; repair of the fault; verification that the resulting program is
more-correct than the original. Whereas all these steps are carried out by static analysis, the
scope of the method is very narrow, hence it cannot be used as a general method for proving
relative correctness.

3 Mathematics of relative correctness
3.1 Relational mathematics

We assume the reader familiar with elementary relational algebra [8], hence this section is not
a tutorial on relations as much as it is an introduction of some terminology and notations. We
represent sets in a program-like notation by writing variable names and associated data types;
if we write S as: X x; Y y; then we mean to let S be the cartesian product § = X x Y;
elements of S are usually denoted by s and the X- (resp. Y-) component of s is denoted
by x(s) (resp. y(s)). When no ambiguity arises, we may write x for x(s), and x’ for x(s’),
etc. A relation R on set S is a subset of S x S. Special relations on S include the universal
relation L = § x S, the identity relation I = {(s, s)|s € S} and the empty relation ¢ = {}.
Operations on relations include the set theoretic operations of union, intersection, difference
and complement; they also include the domain of a relation defined by dom(R) = {s|3s’ :
(s,s’) € R}, and the product of two relations R and R’ defined by: R o R’ = {(s, s")|3s” :
(s,8") € RA(s",s") € R'}; when no ambiguity arises, we may write RR’ for R o R'.
The pre-restriction of relation R to set T is the relation denoted by 7\ R and defined by:
R ={(s,s)|s € T A(s,s") € R}. The converse of relation R is the relation denoted by R
and defined by R = {(s, s)|(s', s) € R}.

A relation R is said to be reflexive if and only if / € R, symmetric if and only if R = R,
antisymmetric if and only if R N R C I, and transitive if and only if RR € R. A relation
R is said to be deterministic (or: a function) if and only if RR C I, and total if and only if
RL = L. A relation R is said to be a vector if and only if RL = R; vectors have the form
R = A x S for some subset A of S; we use them as relational representations of sets. In
particular, note that R L can be written as dom(R) x S; we use it as a relational representation
of the domain of R. We may sometimes, for the sake of convenience, use the same symbol to
represent a set (say 7') and the vector (T x §) that represents the same set, in relational form.
Hence, for example, the restriction of relation R to set T can be written as 7 N R, where we
interpret T as a vector. We admit without proof (a well-known property of functions) that if
F and G are functions then ' = G ifandonly if F € G and GL C FL.

3.2 Program semantics

Definition 1 Given two relations R and R’, we say that R’ refines R (abbrev: R J R or
RC R')ifandonlyif RLNR'LN(RUR') =R.

Intuitively, this definition means that R’ has a larger domain than R and that on the domain of
R, R’ assigns fewer images to each argument than does R. See Fig. 1. This relation is known
to be a partial ordering, i.e., it is reflexive, transitive and antisymmetric [7]; also, if R and
R’ are deterministic then R’ refines R if and only if R’ is a superset of R. The refinement
relation has lattice-like properties, which are discussed in [7].
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R R’
0 0 O > 0
1 11\1
2 2 2\2
3 3 3\3

Fig.1 R IR

R P

3 3 3 3

Fig.2 Program P is correct with respect to R

Proposition 1 Given two relations R and R’, R’ refines R if and only if for any relation Q,
RIJIQ0=R 20

Proof Necessity stems from the transitivity of the refinement relation [7]; sufficiency can be
inferred by taking Q = R, which yields R O R = R’ O R, which is equivalent to " J R
since R I R is a tautology (by reflexivity of the refinement relation). O

Given a program p on space S written in a C-like notation, we define the function of p
(denoted by P) as the set of pairs (s, s’) such that if program p starts execution in state s it
terminates in state s’; it stems from this definition that dom(P) is the set of states on which
execution of P terminates. We may, when no ambiguity arises, refer to a program and its
function by the same name, P.

Definition 2 A deterministic program p on space S is said to be correct with respect to
specification R on § if and only if its function P refines R.

This definition is illustrated in Fig.2: program P is correct with respect to R because for all
the elements in the domain of R ({1, 2}), P is defined (terminates normally) and returns an
output (2 for input 1, 3 for input 2) among those ({0, 1, 2} for input 1, {1, 2, 3} for input 2) that
R mandates. The following Proposition, due to [59], helps set the context for Definition 3.
We refer to the domain of (R N P) as the competence domain of P with respect to R.

Proposition 2 Due to [59]. Given a specification R and a deterministic program P, program
P is correct with respect to R if and only if (R N P)L = RL.

Although it looks very different, our definition of correctness is actually identical, modulo
differences in the form of specifications, to traditional definitions of total correctness [22,
24, 52]. In [22, 24, 52], a program P is said to be totally correct with respect to a (pre/post)
specification (¢, v) if and only if:

Vs :¢(s) = s € dom(P) Ay (P(s)),
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218 B. Khaireddine et al.

(since s € dom(P) means that program P terminates for initial state s). A relational specifi-
cation R corresponds to the following (pre/post) specification:

— ¢(s) =s e dom(R) A s = s0.
- ¥(s) = (s0,5) € R.

The following proposition provides that our definition of correctness is equivalent to tradi-
tional definitions of total correctness (modulo the difference in specification representation).

Proposition 3 Given a specification R and a program P on space S, program P is correct
with respect to R if and only if the following condition holds:

Vs :¢(s) = s € dom(P) Ay (P(s)),

where ¢(s) =5 € dom(R) As = s0and Yy (s) = (s0, s) € R for some sO0.

Proof Proof of Sufficiency. By replacing ¢ () and v () by their expressions, we can simplify
the condition of the proposition into:
Vs :s € dom(R) = s € dom(P) A (s, P(s)) € R.
Since (s, P(s)) is by definition an element of P, this can be written as:
Vs :s € dom(R) = s € dom(P) A (s, P(s)) € (RN P).
By definition of domains, we can infer:
Vs :s € dom(R) = s € dom(P) As € dom(RN P).
Since dom(R N P) C dom(P), we infer:
Vs :s € dom(R) = s € dom(R N P).
By set theory, we infer: RL € (RN P)L; since the inverse inclusion is a tautology, we infer
(RNP)L=RL.
Proof of Necessity. Since (RN P)L € RL is a tautology, the condition (RN P)L = RL
is equivalent to RL C (R N P)L, which we interpret as follows:
Vs :s € dom(R) = s € dom(R N P)

= {Interpreting the definition of domain}
Vs :s € dom(R) = 3s’ : (s,s') € (RN P)
= { P is deterministic}
Vs:s €dom(R) = 3s":s' = P(s)A(s,s') € R
= {substitution }
Vs :s € dom(R) = 3s" : s = P(s) A (s, P(s)) € R
= {Interpreting the definition of domain}
Vs :s € dom(R) = s € dom(P) A (s, P(s)) € R
= {substituting ¢ () and ¥ ()}
Vs :¢p(s) = s € dom(P) AY(s) € R. O

4 A logic of relative correctness

4.1 Criteria for relative correctness

Before we propose a definition of relative correctness, we consider the question: What con-
stitutes a sound definition of relative correctness? We have identified four properties we feel

relative correctness ought to satisfy; for the sake of this discussion, we use the symbol Jp
to represent the relation of relative correctness with respect to R.
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— Reflexivity and Transitivity, but not Antisymmetry. We clearly want relative correctness
to be reflexive and transitive; we do not want it to be antisymmetric because we want
to admit that two programs be mutually more-correct while being distinct; in particular,
we want to admit that two programs be both absolutely correct while being distinct
(since correct behavior is not unique). Note that a more faithful name for this ordering
is: more-correct-than-or-as-correct-as; for the sake of convenience we use the shorter
version; whenever we want to exclude the clause as-correct-as we use the term strictly
more-correct.

— Culmination in Absolute Correctness. We want relative correctness to culminate in abso-
lute correctness, in the sense that if we keep making a program increasingly more-correct
it will eventually become absolutely correct. In other words, an absolutely correct pro-
gram with respect to some specification R ought to be more-correct than (or as correct
as) any program with respect to the same specification. We write this property as:

P IR (YP: P Jg P).

— Relative Correctness and Reliability. We define the reliability of a program in terms of two
parameters, namely the specification with respect to which correct behavior is judged, and
the probability distribution of the possible inputs (aka the program’s operational profile
[62]); for simplicity, we consider discrete probability distributions. Given a specification
R, and a probability distribution 6 () on the domain of R, the reliability of a program P
with respect to R and 6 (), denoted by pﬁ’e(P), is the probability that the execution of P on
an element s of dom(R) picked according to 8() succeeds, where successful execution
of P on s with respect to R is defined as: s € dom(P) A (s, P(s)) € R. We want to think
that if P’ is more-correct than P with respect to specification R then for any operational
profile 6, P’ is more reliable than P with respect to the same specification. But the
opposite is not true, i.e., P’ may be more reliable than P without being more-correct
(P’ is more reliable than P by virtue of satisfying the specification for inputs that occur
more often): relative correctness is a logical property whereas reliability is a stochastic
property; also we certainly do not want to think of more-correct as being just another
name for more reliable. We write this as:

P O P = (VOO : p2)(P)) = p50(P)).

— Relative Correctness and Refinement. According to Proposition 1 and Definition 2, P’
refines P if and only if for any specification R, if P is correct with respect to R, then
so is P’. We want to use relative correctness to formulate a property between P’ and P
that expresses a relationship between P and P’ even if P is not absolutely correct with
respect to R: we want to define relative correctness in such a way that the following two
statements are equivalent:

— For any specification R, if P is correct with respect to R, then P’ is correct with
respect to R.
— For any specification R, P’ is more-correct than P with respect to R.

Quantifying these properties over R, we write:
VR:(PJR= P OIR)& (P Oy P).
Using Proposition 1, we can simplify this condition as:

P'OP & (YR: P Jg P).
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This formula is intuitively appealing, in the following sense: (P’ Jg P) means that P’
is more-correct than P for the specific purposes of specification R, whereas P’ J P can
be interpreted to mean that P’ is more-correct than P regardless of what specification
we consider.

We introduce a definition of relative correctness in the next section, and we prove in Sect. 4.3
that this definition meets all the conditions listed above.

4.2 Definitions and properties

The following definition, due to [58], applies to deterministic programs; it is a special case
of definitions given in [13, 14] for non-deterministic programs.

Definition 3 Given a specification R and two deterministic programs P and P’, we say
that P’ is more-correct (resp. strictly more-correct) than P with respect to R if and only if
(RNPHL D (RN P)L (resp. (RN P)L D (RN P)L).

We denote relative correctness (resp. strict relative correctness) with respectto Rby P’ Jg P
(resp. P’ Jg P). To contrast relative correctness with correctness (Definition 2), we may
refer to the latter as absolute correctness. The formula of relative correctness can be slightly
simplified, as per the following proposition.

Proposition 4 Program P’ is more-correct than program P with respect to specification R
ifand only if (RN P')L 2 (RN P).

Proof Sufficiency can be proved by multiplying the two sides of the equation (R N P')L D
(R N P) by L on the right hand side and using the identity LL = L. Necessity stems from
the identity (RN P)L D (RN P). ]

See Fig.3. Specification R is shown in the middle. To the left, we show two programs,
Q and Q’, such that Q’ is more-correct than Q with respect to R; to the right, we show two
programs P and P’ such that P’ is more-correct than P with respect to R; the competence
domain of each program is indicated by the ovals. Notice that Q' is more-correct than Q by
virtue of imitating the correct behavior of Q, whereas P’ is more-correct than P by virtue of
a different correct behavior.

Proposition 5 If Q' duplicates the correct behavior of Q with respect to R then Q' is more-
correct than Q with respect to R.

Proof The correct behavior of Q with respect to R is represented by (R N Q). That Q'
duplicates this behavior means (R N Q) € Q’. Since by definition (R N Q) is also a subset
of R, we infer: (R N Q) € (RN Q"), from which we infer: (RN Q)L € (RN Q')L. O

Q Q R
Fig.3 (Q' O 0Q), (P’ Jg P): preserving correctness (R N P)L C (R N P’)L) versus preserving correct
behavior (RN Q) € (RN Q"))

NS
W N = O
W — O
W N = O
W N = O
w N = O
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W N = O
W N =)o
W N = O
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Of course, the reverse implication does not hold: Fig.3 shows a simple counter-example
(programs P and P’). This proposition justifies our claim (Sect. 2) that using regression
testing in patch validation leads to a loss of recall.

To illustrate this definition, we consider the following example, due to [15]: we let space
S be defined by two nonnegative integer variables x and y, and we let R be the following
specification on S:

R ={(s,s")x* <x'y <2x%.

We consider the following candidate programs, denoted pg through p7. Next to each program
pi, werepresent its competence domain (C D; ). Figure 4 shows how these candidate programs
are ranked by relative correctness with respect to R; this graph merely reflects the inclusion
relationships between the competence domains.

po: {x=1; Y:—l } CDy = 0.

pi1: {x=2*x; y=0;}.CD; = {s|x =0}.

p2: {x=x*x; y=0;}. CDy = {s|x =0}.

p3: {x=2*x; y=1;}.CD3={s]0 <x <2}.

pa: {x=2*x%x; y=2;}.CDs={slx =0Vv2<x <4}
ps: {x=2*x; y=x/2;}.CDs=S.

De: {y=(x+1)/2, x=2*x;}.CDg = S.

p7: {x=x*x; y=2;}.CD;=S.

This example illustrates a number of properties:

— Note that this relation is not antisymmetric; so that two programs may be mutually related
and still be distinct (such is the case for P; and P,, for example).

— The top of the graph represents the programs that are (absolutely) correct with respect to
specification R: Ps5, Ps and P7.

— A program may be more-correct than another without imitating its correct behavior. For
example, p3 is more-correct than p; and yet it does not behave as p; on the competence
domain of pj.

— Whereas absolute correctness divides the set of candidate programs into two classes
(correct, shown in green in Fig.4 and incorrect, shown in red in Fig.4), relative correct-

(P 71 —n)

Fig.4 Relative correctness relations
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ness ranks candidate programs on a partial ordering, whose maximal elements are the
absolutely correct programs.

4.3 Validation

In this section, we check that our definition of relative correctness meets the four conditions
listed in Sect. 4.1.

— Reflexivity and Transitivity, but no Antisymmetry. Relative correctness is indeed reflexive
and transitive (due to reflexivity and transitivity of set inclusion) but it is not antisym-
mertic, since (R N P)L = (RN P’)L does not necessarily imply P = P’.

— Relative Correctness and Absolute Correctness. Relative correctness culminates in
absolute correctness, since an absolutely correct program P satisfies the condition
(RN P)L = RL (according to Proposition 2), hence its competence domain is maximal
(hence a superset of the competence domain of any candidate program).

— Relative Correctness and Reliability. Relative correctness logically implies enhanced
reliability; this is the subject of Proposition 6.

— Relative Correctness and Refinement. Propgram P’ refines program P if and only if
P’ is more-correct than P with respect to any specification R; this is the subject of
Proposition 7.

Proposition 6 Given a specification R and two programs P and P’, if program P’ is more-
correct than P with respect to R, then P’ has a higher reliability than P with respect to R
for any probability distribution 6 () on dom(R).

Proof We consider a specification R and discrete probability distribution 6() on dom(R);
we let s be a random element of dom(R) selected according to probability distribution 6 ().
Execution of a program P on s is successful if and only if s is in the competence domain of
P with respect to R. Hence, the reliability of P with respect to R and 6() can be written as:

0
P2 (P) = Sscdomrnp)0(s).

Clearly, larger competence domains yield greater values for Xscqom(rnp)0(s), regardless of
how 6 () is defined. Hence:

P Jg P = (¥ : p2(P") = 5 (P)).
O

Proposition 7 Program P’ refines program P if and only if P’ is more-correct than P with
respect to any specification R.

(P32 P)< (YR: P g P).

Proof Proof of Necessity. If P’ 3 P then (because P and P’ are both functions) P’
whence (by monotonicity of intersection and domain) (R N P')L 2 (RN P)L.
Proof of Sufficiency. From (VR : (RN P')L 2 (RN P)L), we infer, by letting R = P,
(PN P")L 2 PL. This, in conjunction with the set theoretic identity (P N P’ € P), yields
(because (P N P’) and P are both functions), P’ N P = P; from which we infer, by set
theory P’ D P; given that P’ and P are both function, this yields P’ 3 P. |

U

P,
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4.4 Faults and fault repairs

Given that program repair is the art of diagnosing and removing faults, then surely it is
worthwhile to ponder the question of what is a fault and what is a fault repair (i.e., when
do we consider that we have removed a fault?). In [5, 38], Laprie et al. define a fault as
the adjudged or hypothesized cause of an error [5]. Also, the IEEE Standard IEEE Std 7-
4.3.2-2003 [27] defines a software fault as An incorrect step, process or data definition in a
computer program. In [21], Gopinath et al. define a fault as an erroneous part of a program,
the syntactic source of a semantically wrong behavior. We feel that these definitions fall
short of providing us a sound basis for reasoning about faults and fault repairs: the IEEE
definition does not even try; the definition of Laprie et al. [S] depends on the definition of an
error, which in turn depends on the availability of a specification of correct states at each step
of a computation, clearly an unrealistic assumption; notwithstanding that it fails to define
what is meant by semantically wrong behavior, the definition of Gopinath et al. assumes
that each semantically wrong behavior has a unique syntactic source, clearly an unfounded
assumption. In [6], Bergstra surveys some definitions of faults and compares them in terms
of their relevance to the practice of debugging.

Following [15], we use the concept of relative correctness to define faults and fault repairs.
The first observation we make in this regard is that any definition of fault must refer implicitly
to a level of granularity at which we want to isolate faults. This typically varies in scale
from the lexeme (variable name, operator, operand, etc.) to the expression, the elementary
statement, or a subtree of the abstract syntax tree [19]. Following Gazzola et al., we adopt
two definitions that determine the scale of our faults:

— A syntactic atom (or: atom) in program P is a fragment of source code of P at the selected
level of granularity (lexeme, expression, statement, etc.).

— An atomic change in program P is a pair of source code fragments (a, a’) such that a
is a syntactic atom in P and &’ is a code fragment that we can substitute for a without
violating the syntactic correctness of P (i.e., the new program is syntactically correct).

We use the term feature in a program P to refer to one or more syntactic atoms in P; this
concept is needed because some faults may involve more than one atom.

Definition 4 Due to [15]. Given a program P on space S and a specification R on S, a feature
f of P issaid to be a fault in P with respect to specification R if and only if there exists a
substitute f derived from f by atomic changes such that program P’ obtained from P by
replacing f with f” is strictly more-correct than P with respect to R. The pair (f, f”) is said
to be a fault repair of f in P with respect to R.

Note that according to this definition, if f; and f> are disjoint faults in P with respect to
R, then (due to the transitivity of relative correctness) so is the aggregate (f1, f2). This
observation highlights the need to define a concept of unitary fault; this concept will, in turn,
be used to quantify a program’s degree of faultiness.

Definition 5 A fault f in program P with respect to specification R is said to be an unitary
fault if and only if it includes a single atom, or it includes more than one atom but no subset
of the atoms is a fault. The number of atoms in a unitary fault is called the multiplicity of the
fault.

When we apply several atomic changes to a program to enhance its correctness, it is important
to tell whether we are executing a single fault repair with higher multiplicity, or several fault
repairs (with lower multiplicities). As an illustration, we consider the following space:
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float x; float a[N+1];

We let Sum and P be, respectively, the following specification and program on space S:
Sum = {(s, s")|x' = ZlNzl alil}.
P={int i=0; x=0; while (i <N) {x=x+alil;i=1i+1;}}

We consider the following feature f = (0, <), wheren"0" is the initialization of variable
i and “<” is the comparison operator in the loop’s condition; the substitution f' = (I, <)
of f makes P strictly more-correct, hence f is a fault. To determine whether we are looking
at two separate faults or a single two-atom fault, we consider the following programs:

P/={int i=1; x=0; while (i<N) {x=x+alilii=1i+1;}}
P2/={int i=0; x=0; while (i<=N) {x=x+al[il;i=1+1;}}

Pl’ is obtained from P by the atomic change (0, 1) in the initialization of i, and Pz’ is
obtained from P by the atomic change (<, <) in the loop condition. In order to determine
whether f = (0, <) is a unitary fault, we must check whether O (in the initialization of i)
alone is a fault, and whether < (in the loop condition) alone is a fault. To this effect, we must
check whether P| is strictly more-correct than P, and whether Pj is strictly more-correct
than P. The functions of P, P| and P; are:

N-1

P ={(s,s)d =anx'= > alkl}.
o

Pl ={(s,s)la" =anx" =73 alk]}.
k=1
N

Py ={(s,s)|a' =anx' =7} alk]}.
k=0

The competence domains of P, P| and P, with respect to Sum are, respectively:
CD = {s|a[0] = a[N1]}.
CD| = {sla[N] = 0}.
CD} = {s|a[0] = 0}.

Since no inclusion relation holds between C D and C D/l, Pl/ is not more-correct than P
with respect to Sum; since no inclusion relation holds between C D and C D}, P; is not more-
correct than P with respect to R. If we let P’ be the program derived from P by applying
both atomic changes, then its is clear that P’ is absolutely correct with respect to R, hence it
is more-correct than P, P and P;. See Fig.5.

Now, we consider the following example: we let the space S of the program be defined
by the following program variable:

int a[N+1];
and we let the specification Reset and program Q be defined as follows:
Reset = {(s, s)|a[0] =a’'[0]AVk :1 <k < N :d'[k] =0}.

Fig.5 A single unitary fault, of P’
multiplicity 2

@ Springer



Toward a theory... 225

Fig.6 Two unitary faults, of
multiplicity 1

Q={int i=0; while (i <N) {a[i]=0;i=1i+1;}}
The function of Q is:

0 ={(s,8)|d'[N]=a[N]JAVk:0<k <N —1:d[k] =0}.
The competence domain of Q with respect to Reset is:

CD = {s|al0] =0 Aa[N] = 0}.
Because this is not the same as the domain of Reset (which is all of §), program Q is
not correct with respect to R. We consider the following programs, obtained from Q by,
respectively, changing the initialization of i to 1, changing the condition of the loop to <,
and performing both changes.

1 ={(s,8)al0] =ad'[01AVk:1 <k <N —1:d[k]=0Aa[N]=d'[N]}.

0, ={(s,s\Vk:0<k <N —1:d[k]=0Aa[N]=d[N]}.

Q' ={(s,s)]al0l =a’'[0] AVk: 1 <k < N :d'[k] =0}.
The competence domains of these programs with respect to Reset are given below:

CD| ={sla[N] = 0}.

CD), = {s|a[0] = 0}.

CD =S§.
Considering the inclusion relations between C D, C D}, C D} and C D', we infer that Q) and
Q/, are more-correct than Q, and that Q' is more-correct than all of @, Q) and QY. This is
illustrated in Fig. 6. The contrast between Figs.5 and 6 illustrates the difference between a
single unitary fault of multiplicity 2 and two unitary faults of multiplicity 1.

4.5 Fault density and fault depth

If a program P has N faults with respect to specification R and we repair one of them, we
do not necessarily end up with (N — 1) faults: Let fi and f> be two faults in program P
with respect to specification R, let (f, f{) be a fault repair for fi and let P be the program
obtained from P following this repair; just because f> is a fault in P does not necessarily
mean that f> is a fault in P’; in addition, a feature f3 may well be a fault in P’ whereas it is
not a fault in P. This discussion leads us to consider two distinct metrics of faultiness in a
program.
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Definition 6 Given a program P and a specification R on space S, the fault density of P with
respect to R is the number of unitary faults in P; the fault depth of P with respect to R is the
minimal number of unitary fault repairs that separate P from a correct program.

Below are noteworthy remarks about these metrics:

— These two metrics are distinct; just because we have N unitary faults does not mean we
need to perform N unitary fault repairs to obtain a correct program.

— These two metrics are subject to different rules. For example, if P’ stems from P by a
unitary fault repair then we have the equation:

depth(P) < depth(P') + 1.

Equality holds if P’ is on a minimal path from P to a correct program. By contrast, fault
density varies arbitrarily after a unitary fault repair.

— We find that fault depth is a more meaningful measure of faultiness than fault density
(even though in the literature fault depth is not used and fault density is used routinely
as a measure of faultiness).

For a detailed discussion of the contrast between fault density and fault depth, the reader
is referred to [33]. In this paper, we content ourselves with an illustrative example:

We consider the following space S, program P, specification Sum, set of syntactic atoms
SA, and set of atomic changes AC:

S: float x; float al[N+1];
N

Sum = {(s, s)|x" = > ali]}.
i=1
P={int i=0; x=0; while (1 <N) {x==x+alili=1+1;}}
={0, <, i}.
AC ={0,1),(<,2), 0, i+ D}
We leave it to the reader to check that this program has two unitary faults:

— f1 = (0, <) (where 0 is the value assigned to variable i and < is the comparison operator
that appears in the loop condition), a unitary fault of multiplicity 2, for which a possible
repair is f| = (1, <).

— f» = (i) (the index of the array a [] in the loop body), a unitary fault of multiplicity 1,
for which a possible repair is f; = (i + 1).

Figure 7 shows the relative correctness properties between P, P| obtained by repairing f,
P; obtained by repairing f, and P” obtained by applying both transformations. Notice that
P has a fault density of 2, but a fault depth of 1; just because it has two faults does not mean
it is two unitary fault repairs away from absolute correctness; actually if both fault repairs
are applied, we end up with another program, P”, which has a fault density of 2 and a fault

Fig.7 Fault density (= 2) versus
fault depth (= 1) /
P 1
/

| ) ery)
(fl,f1 A (fl,fl)

| ~}

P/I
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depth of 1. If anything, having two faults means that we have two opportunities to repair P;
it does not mean that we have to apply two fault repairs.

To illustrate how density and depth vary as a function of granularity, atomic changes, and
specifications, we consider the two programs P (sum of an array) and Q (initialize an array)
discussed above. Also,

— For program P, we consider specification Sum.
— For program Q, we consider two specifications: specification Reset, presented above;
and specification D defined as:
D ={(s,s)]a[0] #0Aa’'[0] #0A (Vk:1 <k < N :d'[k] =0)}.
— For atomic changes, we consider two sets:

- ACo ={(0, 1), (<, D)}
- ACI = {(O! 1)7 (<7 S)v (l, i + 1)}

Figure 8 shows the fault depth and fault density of programs P and Q for each combination of
specification/atomic change set. The (program, specification) pairs are given in columns and
the atomic change sets are given in rows. Note that fault density and fault depth are attributes
of the (program/specification) pairs, whereas fault multiplicity is an attribute of individual
faults. Hence, we represent the density and depth alongside each program/specification pair,
and we represent multiplicity (function w) alongside each individual fault.

The graphs drawn in the first and second column of Fig. 8 stem from the calculations of
Sect. 4.4. The graphs drawn in the third column stem from the following analysis: First, we
compute the competence domain of Q with respect to D.

0 ={(s,s)|a'[Nl=a[N]AVk:0 <k < N :d'[k] =0}.

Program P Q Q
Specifi-
cation Sum Reset

ACy=
on |C_ )

Faultiness density=1, depth=1

5% 77 / "
j2 P Q
X 4

(0, <), (1, <)) (6,i+1)

pn=2 p=1
AC, =
{(0,1),
N e
(ii+ 1)} .
Faultiness density=2, depth=1 density=3, depth=1 density=2, depth=1

Fig. 8 Density, depth and multiplicity
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Hence,

OND={(s,s)al0] #0Ad'[0] #0AVk:0 <k <N :d'[k] =0}

= ¢.
Hence, the competence domain of Q with respect to D is empty. Since the domain of D
(= {s|a[0] # 0}) is not empty, we infer that Q is not correct with respect to D, hence it
has faults. We consider programs Q}, Q) and Q' obtained from Q by applying the atomic
changes of ACy, and we compute their competence domains:

1 ={(s,8)[al0] =ad'[01AVk:1 <k <N —1:d[k]=0Aa[N]=d'[N]}.

Q' N D ={(s,5)al0] #0Aal0] =d'[0]AVk:1 <k <N :d'[k]=0Aa[N]=
a'[N1}.

={(s,5)al0] #0Aa[N]=0Aa[0] =a’'[0)AVk:1 <k <N :d[k] =0}.
Hence, the competence domain of Q) with respect to D is:

CD| ={s|a[0] # 0 Aa[N]=0}.
This is a superset of the competence domain of Q with respect to D, hence O (in the initial-
ization of i) is a fault in Q with respect to D; because this fault has a single syntactic atom,
it is a unitary fault; and because the competence domain of Q is not equal to the domain of
D, Qf is not correct with respect to D. We now consider Q5:

0, ={(s,5)IVk: 0 <k < N :d'[k] =0}.

0,N D ={(s,5)al0] #0Aa'[0] #0AVk:0 <k <N :a'[k] =0}.

=¢.
Hence, the competence domain of Q/, with respect to D is empty. We now consider Q'

Q' ={(s,sNal0l =a’[0]AVk :1 <k < N :d'[k] =0}.
Hence,

0'ND={(s,5)]al0] Z#0Aa[0] =a’[0] AVk: 1 <k < N :d'[k] = 0}.
Hence, the competence domain of Q’ is:

CD' = {sla[0] # O},
which is the same as the domain of D, hence Q’ is absolutely correct with respect to D. The
transformation from Q to Q] is a unitary fault repair but the transformation from Q to Q" is
not, hence the fault density of Q is 1. Since Q' is absolutely correct, the fault depth of Q is
2.
If we now consider the same program Q and the same specification D, but the new (larger)
set of atomic changes AC|, we can add a new candidate repair to Q, namely program Q"
obtained from Q by replacing the array reference a[i] by a[i+1]. We find:

Q" ={(s,s)]a[0] = a@’[0] AVk : 1 <k < N :d'[k] = 0}.
The competence domain of Q” with respect to D is:

CD" = {s]a[0] # 0},
which is the same as the domain of D, hence Q" is absolutely correct with respect to D. With
the set of atomic changes AC, we now have two programs that stem from Q by unitary fault
repair (namely, Q) and Q”), hence the fault density of Q with respect to D is 2; its fault
depth is 1 since Q" (obtained from Q by one unitary fault repair) is absolutely correct.

5 A generic algorithm for program repair

Once we define the concepts of absolute correctness and relative correctness, the outlines
of a program repair algorithm become clear: enhance relative correctness until absolute
correctness is achieved. Also, now that we understand the concept of unitary fault, it may be
advantageous, for the sake of controlling combinatorial explosion, to design program repair
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algorithms in such a way as to repair one unitary fault at a time; so that if we apply multiple
mutations, it is not to repair several faults at once, but rather to repair one fault that has higher
(than 1) multiplicity. Hence, we may have to apply several atomic changes at a time, but
the number of simultaneous atomic changes is limited by the maximum fault multiplicity
we want to consider (4 = 2 or 3 at most, in practice) rather than the program’s fault depth
(which is usually unknown and unbounded). The goal of this section is to write code for
the proposed program repair algorithm, starting with the oracles that test for absolute and
relative correctness.

5.1 Absolute correctness

An oracle takes the form of a binary predicate that refers to the initial state and the final state
of the program, as in the following generic pattern:

{inits = s; //save the initial state
P(); // under test, modifies s, but preserves inits
assert (oracle(inits,s));}

It may be tempting to think that if we are testing a program for absolute correctness with
respect to specification R then the oracle takes the form (s, s”) € R. But that would be wrong,
for the following reason: let s be a test datum outside the domain of R; then regardless of
what P (s) is, the predicate (s, P(s)) € R returns false (since by hypothesis s is not in the
domain of R); as a result, P will be deemed incorrect, when in fact it should not be held
accountable for its behavior outside the domain of R. Oracle £2 (s, s’), defined below, ensures
that P is tested only for inputs that are in the domain of R.

Definition 7 Given a specification R on space S, the oracle of absolute correctness derived
from R is denoted by £2(s, s”) and defined by:

2(s,s) = (s € dom(R) = (s,s") € R).

We say that program P satisfies oracle §2(s, s”) on state s if and only if £2(s, P(s)) is true.
Also, we say that program P satisfies oracle §2 (s, s”) for test suite T if and only if it satisfies
the oracle for all elements s € T. The following proposition, where 7\ R represents the
pre-restriction of relation R to set 7', confirms that this definition is sound.

Proposition 8 Ler $2(s, s") be the oracle of absolute correctness derived from specification
R on space S and let T be a subset of S. A program P is absolutely correct with respect to
7\ R if and only if execution of P on every element of T satisfies oracle §2(s, s").

The proof of this Proposition is given in “Appendix A”. Based on this proposition, we
derive the following oracle:

bool absoluteCorrectness (testData T) // 1
{statetype inits,s; Dbool abscor=true; // 2
while (moretestdata(T)) // 3

{inits =gettestdata(T);//load test datum 4

s = inits;p();// modifies s, preserves inits 5

abscor= abscor&&absoracle(inits,s);}// 6
return abscor}// 7

bool absoracle(statetype s, sprime)// 8
{return (!domR(s) || R(s,sprime))}//re: Definition 7 9
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We assume that gettestdata (T) retrieves in turn all the elements of 7' at successive
calls, until moretestdata (T) returns false. For each element s of T, this program saves
the initial state in variable ini ts and calls program p () , which modifies s butkeeps inits
intact. Upon execution of program p () (line 5), the pair (inits, s) isready to be checked
for correctness; the Boolean function absoracle (inits, s) checks the correctness of P
for a single execution and absoluteCorrectness (T) checks the correctness of P for
all the elements of T'; according to Proposition 8, if and only if a program P runs successfully
on all the elements of set 7', it is absolutely correct with respect to 7\ R. We assume that we
have at our disposal the unary predicate domR () and the binary predicateR (, ) thatrepresent
the specification R and its domain. Line 9 reflects the proposed formula and line 6 cumulates
this assertion over set 7.

Since we are testing P only on set 7, we cannot hope to prove more than the absolute
correctness of P with respect to 7\ R; Proposition 8 provides that we can prove no less.

5.2 Relative correctness

Given a space S, a specification R on S and a program P on S, we consider the execution
of some program P’ on some initial state s, and we assume that this execution terminates
normally and returns a final state s’. We want to derive an oracle that analyzes the pair
of states (s, s”) and determines whether it is consistent with the premise that P’ is more-
correct than P with respect to R. Relative correctness of a program P’ over program P with
respect to specification R means, according to Definition 3, that wherever program P satisfies
specification R (i.e., 2(s, P(s)) holds), so does the program under test (£2(s, s”)). Hence,
the following definition.

Definition 8 Given a specification R on space S and a program P on S, the oracle of relative
correctness over P with respect to R is denoted by w(s, s”) and defined by:

w(s,s") = (2(s, P(s)) = 2(s,5)).
The following proposition provides that this definition is sound.

Proposition 9 Let w (s, s') be the oracle of relative correctness over program P with respect
to specification R and let T be a subset of S. A program P’ is more-correct than P with
respect to 7\ R if and only if execution of P’ on every element of T satisfies oracle w (s, s").

The proof of this Proposition is given in “Appendix B”. Based on this proposition, we
derive the following oracle of relative correctness over program P with respect to specification
R:

bool relativeCorrectness (testData T)// 1
{statetype inits, s; bool relcor=true;//
while (mortestdata(T))//
{inits = gettestdata();// load test datum
s = inits; p(); // modifies s, preserves inits
bool abscor = absoracle(inits,s);//
s = inits; Pprime();//
relcor =relcor && //
(tabscor| |absoracle(inits,s));}//re: Definition 8
return relcor}//

O W oo Jo U W

[y

According to Definition 8, program Pprime is more-correct than program P if and only
if whenever Pprime runs successfully on some element of test suite 7', so does P. Line 4
generates a test datum into inits, and line 5 moves inits into s and invokes program
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P, which modifies state s but keeps inits intact. Line 6 records into variable abscor
whether or not execution of P on s was successful, and line 7 reinitializes the state and runs
program Pprime on it. Line 9 checks the relative correctness formula of Definition 8 for
the current test data and line 8 cumulates the outcome of the current execution with those of
past executions. Line 10 returns the combined outcome of all the tests in 7. According to
Proposition 9, if and only if a program P’ runs successfully on all the elements of set 7, it is
more-correct than P with respect to 7\ R.

Since we are testing P’ only on set T, we cannot hope to prove more than the relative
correctness of P’ over P with respect to 7\ R; Proposition 9 provides that we can prove no
less.

Predicate abscor represents the absolute correctness of P on inits and predicate
absoracle(inits,s) represents the absolute correctness of the program under test
on the same input. Line 9 represents the formula of w() and line 8 cumulates this formula
over T.

5.3 Strict relative correctness

We are given a specification R on space S and a program P on S. We consider a program P
on S and we want to write an oracle that checks whether a program P’ is strictly more-correct
than P with respect to R. P’ is strictly more-correct than P if and only if it is more-correct
than P and there exists at least one input s on which P fails and P’ succeeds; whence the
following formula.

Definition 9 Given a specification R on space S and a program P on S, the oracle of strict
relative correctness over P with respect to R is denoted by o7 (P’) and defined by:
or(PY=NseT :w(s, PP(s)A@seT:=2(, P(s)) A2, P(s))).

The following proposition provides that this definition is sound.

Proposition 10 Ler o7 (P') be the oracle of strict relative correctness over program P with
respect to specification R and let T be a subset of S. A program P’ is strictly more-correct
than P with respect to 7\ R if and only if oracle o1 (P') returns true.

The proof of this Proposition is given in “Appendix C”. The test driver for strict relative
correctness is written as:

bool StrictRelCor (testData T)// 1

{statetype inits, s;// 2
bool strict,relcor;strict=false;relcor=true;// 3
while (mortestdata())// 4
{inits = gettestdata();// load test datum 5

s = inits; p(); // modifies s, preserves inits 6
bool abscor = absoracle(inits,s);// 7

s = inits; Pprime();// 8
relcor =relcor && // 9
(tabscor || absoracle(inits,s));// 10

strict =strict || // 11
(labscor && absoracle(inits,s))}//re: Definition 9 12

return (strict && relcor)}// 13

Line 10 reflects the condition of relative correctness, and line 9 reflects the universal
quantification over T'; line 12 reflects the condition of strict relative correctness, and line 11
reflects the existential quantification over 7.
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Program Pprime is strictly more-correct than program P if and only if Pprime is more-
correct than P, and there exists at least one instance where Pprime runs successfully and
P fails. Hence to test for strict relative correctness, it suffices to test for relative correctness,
and check if any test datum causes P to fail while Pprime succeeds; this is exactly what
lines 11 and 12 are keeping track of.

Since we are testing P’ only on set 7, we cannot hope to prove more than the strict relative
correctness of P’ over P with respect to 7\ R; Proposition 10 provides that we can prove no
less.

5.4 Unitary fault repair

The oracles derived in the previous sections give us means to recognize valid repairs, but
do not give us means to generate valid repairs. Hence, all we can do for now is to derive
an algorithm that, given a function to generate plausible repair candidates, can select those
that are indeed valid repairs, i.e., are strictly more-correct than the original. The purpose of
this section is to write code that performs a unitary increment of relative correctness; as we
have seen in Sect. 4.4, this amounts to repairing a unitary fault. To this effect, we assume the
availability of a patch generator that applies a set of atomic change operators, and we seek
to enhance correctness by attempting to identify faults of increasing multiplicity, starting at
1, and not exceeding a user-specified maximum, M. For the sake of argument, we assume
that candidate patches are organized as a set of patch streams of increasing multiplicities,
which we name, respectively, PS(1), PS(2),..., PS(M). Each patch stream PS(m) is an
ordered sequence, to which we may apply sequence operators head() and tail(), referring,
respectively, to the first element, and the remainder of the sequence. We assume that the patch
generator puts at our disposal the following functions:

— MorePatches (P, m), a Boolean function that returns true if and only if there remains
more patches of P of multiplicity m.
— NextPatch (P, m), which returns the next element of PS(m), for 1 <m < M.

Using these functions, and assuming that R (the specification) and T (the test data set) are
global variables, we write the following code:

void UnitIncCor (programType P, int M, //1
bool& inc, programType& Pp) //2

{//attempts to return in Pp a correctness enhancement of P, //3
//using m atomic changes, l<=m<=M //4
//inc=true iff Pp strictly more-correct than P. //5
int m=1; inc=false; Pp=P; //6
while (not inc && m<=M) /717
{//increase correctness with m changes //8
while (not smc(Pp,P) && MorePatches (P,m)) //9
{//smc: Pp strictly more-correct than P //10

Pp = NextPatch(P,m);} //11

if smc (Pp,P) {inc=true;} //12
else {m=m+1;}}//try higher multiplicity //13

} //14

This algorithm is written in C-like pseudo-code, though it takes great liberties with its
syntax (assuming the existence of aprogramType data type, using programs as parameters,
etc.). This algorithm takes as input a program P and maximum multiplicity M and attempts
to return a program P’ (Pp) that is strictly more-correct than P without exceeding M atomic
changes to P. Variable inc tells whether a strictly more-correct program was found.
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5.5 Stepwise correctness enhancement

Now that we have a routine to perform unitary increments of correctness enhancement, we
use it to repair program P by applying this routine repeatedly until we find an absolutely
correct program or (due to the imperfection of patch generation) we stall before we reach an
absolutely correct program (i.e., we find a program that is not absolutely correct but whose
correctness we cannot enhance).

void ProgramRepair (programType& P, //1
specification R, testdata T, int M) //2

{bool inc=true; //3
while (inc && not abscor (P)) //4
{UnitIncCor (P, M, inc, Pp); //5

if inc {P=Pp;}}} //6

The while loop iterates as long as we keep incrementing the correctness of the program,
and it is not yet absolutely correct. In line 5, we attempt to place in Pp a (stepwise) repair of
P, and if successful, we set inc to true. In line 6, if we find that we have enhanced correctness,
then we let P be the enhanced program, and we check for absolute correctness, else resume
correctness enhancement on P.

6 Algorithm analysis

In this section, we analyze the functional and performance attributes of the program repair
algorithm proposed in the previous section, using analytical and empirical means.

6.1 Big Oh complexity

To estimate the Big Oh complexity of UnitIncCor (), we assume that the patch generation
has a fixed fan-out for program P, say F(P), when the multiplicity is 1; we also assume
that for a greater multiplicity, say m, the fan-out is F(P)™. Then, the Big Oh complexity
of UnitIncCor () is bounded by the following formula: O(F(P)M x |T|). Indeed, this
algorithm is made up of two nested loops: the number of iterations of the innermost loop is
bounded by F(P)M and each iteration runs || tests to check for strict relative correctness
of Pp over P; the number of iterations of the outer loop is bounded by F(P)M. As for the
Big Oh performance of ProgramRepair (), it depends on the number of iterations of the
outer loop, which is unbounded; though we would like to think that the number of iterations
of this loop is the fault depth of the program, we have no way to ensure that. The fault depth
of the program is the minimal number of unitary fault removals that separate the program
from correctness; we have no way to ensure that the algorithm follows a minimal path.

6.2 Correctness properties

In this section, we use Hoare logic [25, 52] to prove partial correctness and termination prop-
erties of the proposed algorithm with respect to specifications formulated as (precondition/
postcondition) pairs. The formulation of these specifications as well as the conduct of the
proofs are made possible by the vocabulary of concepts of the proposed theory.
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6.2.1 Specifications

For the sake of simplicity, we focus in this paper on the function that performs a unitary
increment of correctness, i.e., UnitIncCor () ; the generic algorithm is merely the iterative
application of this function until correctness enhancement ends, either because we have
reached absolute correctness, or because patch generation is unable to generate a valid patch
(i.e., a mutant that is strictly more-correct than P) within the maximum multiplicity (M). We
can consider any number of specifications for UnitIncCor () ; we present a sample below,
where we represent 7\ R by R’. All claims of correctness (absolute or relative) are implicitly
understood to be with respect to R’.

— UnitIncCor () does no harm.

— Precondition: true .
— Postcondition: Pp Jp/ P.

— Ifthe patch generator can generate a strictly more-correct program, then UnitIncCor ()
will enhance correctness.

— Precondition: (Im : 1 <m <M :3Q € PS(m) : Q O P).
— Postcondition: Pp Jg' P.

— If upon execution of UnitIncCor () inc is true, then Pp is strictly more-correct than
P with respect to R’.

— Precondition true .
— Postcondition: (inc = Pp g P).

6.2.2 Partial correctness: perfect recall

Proposition 11 Function UnitIncCor () has perfect recall, in the sense that if the patch
stream has a program that is strictly more-correct than P, then UnitIncCox () will return
in Pp a program that is strictly more-correct than P.

Proof We must prove that the following formula is valid in Hoare’s deductive logic [25].
vi{@m:1<m<M:30 € PS(m): Q Jpr P)}

m=1; inc=false; Pp=P;
while (! inc && m<=M)
{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity

{Pp 3 R’ P}.
The proof of this formula is given in the appendix, Sect. D. O

Note that UnitIncCor () does not retrieve all the patches that are strictly more-correct
than P; it only retrieves the first patch that it encounters. Hence, all we can say is that if there
exists a patch Q in the patch stream that is strictly more-correct than P, then UnitIncCor ()
will necessarily return in Pp a program that is strictly more-correct than P (this could be Q
or it could be another patch that it encounters before Q).
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6.2.3 Partial correctness: perfect precision

Proposition 12 Function UnitIncCor () has perfect precision, in the sense that if inc is
set to true then Pp is strictly more-correct than P.

Proof We must prove the validity of the following formula in Hoare logic [25]:
V: {true }
m=1; inc=false; Pp=P;
while (! inc && m<=M)
{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity

{inc = Pp Jp P}.
The proof of this formula is given in the appendix, Sect. E. O

Note that Pp is initialized to P and it is modified only if the patch stream includes a
program that is strictly more-correct than P; in that case, inc is set to true.

6.2.4 Termination

A while loop of the formw: {while (t) {b}} onspace S can be proved to terminate
for precondition true if we can prove that the transitive closure of (7' N B) is well founded,
i.e., it admits no infinite chains. This, in turn, can be proved by finding a superset of the
transitive closure of (7' N B) that is well founded (any transitive superset of (7' N B) is a
superset of the transitive closure of (7 N B)). One way to do so is to find a variant function
f on space S that satisfies the following condition:

t(s) As € dom(B) = f(B(s)) < f(s),

for some well-founded relation < on S.

In light of this, we find that function UnitIncCor () terminates for precondition true
for the following reason: the inner loop can be proved to terminate using the function f() =
length(P S(m)), which decreases by 1 at each iteration and is bounded by 0. The outer loop
can be proved to terminate using the function g() = (M — m, inc), where each iteration
either increases m (hence decreases M — m) or preserves m but decreases inc (if we consider
true < false).

As for function ProgramRepair (), we have no assurance that it terminates in general,
but we do have a simple sufficient condition: if dom(R) is finite then each iteration of the
loop of ProgramRepair () reduces the function

F0O = dom(R) \ dom(R N P),

by at least one element, and is bounded by the empty set.

7 Instances of the generic algorithm
The generic algorithm is not a program repair tool; it is merely a template for repairing

programs by relative correctness, assuming we are provided the patch generation functions
NextPatch (P, m) and MorePatches (P, m). The algorithm is generic in the sense that
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it specifies how candidate patches are selected/ validated, but does not specify how they are
generated, hence we can create an instance thereof for each patch generator. In this section,
we present two instances of this algorithm, which use patch generators from two existing
tools:

— GRCFix (GenProg-based Relative Correctness Fix), an instance of the generic algorithm
derived from GenProg’s patch generator [40, 41, 43]. This is the subject of Sect. 7.1.

— CRCFix (Cardumen-based Relative Correctness Fix), an instance of the generic algorithm
derived from Cardumen’s patch generator [56]. This is the subject of Sect. 7.2.

For each experiment, we present the following data in tabular form:

— Unitary Faults in the order in which they are repaired by our algorithm.

— Mutations that make up the unitary fault. Whereas UnitIncCor () repairs one unitary
fault at a time, this may involve more than one mutation since some unitary faults have
higher than 1 multiplicity. We may, in such cases, add a column in which we specify the
value of m that was set by UnitIncCor ().

— Number of Passing Tests. These are test data where the program behaves correctly; this
number typically increases with each fault repair.

— Number of Failing Tests. These are test data where the program fails; this number typically
decreases with each fault repair.

— Repair. In this column we present brief details about the execution of UnitIncCor ()
on each fault.

— Number of Variants. In this column, we report on the number of variants that
UnitCorInc () inspected before finding a valid repair.

— Execution Time in seconds.

— Outcome of the Original Program Repair Tool. In this column, we report on the outcome
of running the original program repair tool (jGenProg, Cardumen) on the same benchmark
program seeded with the indicated benchmark mutations. Note that the isolation of faults,
and their successive repairs, is the result of executing the generic algorithm in its various
instances (GRCFix, CRCFix), hence in the last column (which reports on jGenProg and
Cardumen) we merge the rows, and show the outcome of executing the original program
repair tools on the program seeded simultaneously with all the mutations.

7.1 GRCFix: implementation

We consider Astor [54, 55], a program repair framework that contains five Java-specific tools
(jGenProg, jKali, jMutRepair, DeepRepair and Cardumen) and offers researchers/ developers
the ability to override, replace or combine their functionality to produce new tools. Specifi-
cally, Astor provides twelve extension points that form the design space of program repair;
novel repair approaches can be implemented by choosing an original component for each
extension point. For the purposes of our research, we choose to adapt jGenProg as follows:

— Fault Localization: Astor/jGenProg uses an existing fault localization technique called
GZoltar [1].

Scale: jGenProg analyzes programs at the statement level.

Patch Generation: we adopt three types of atomic changes: removing, inserting, and
replacing statements.

Navigation: For the sake of recall, we adopt an exhaustive navigation approach. By
applying function UnitIncCor (), which seeks to performs a unitary increment of
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correctness, we ensure that we repair one unitary fault at a time, thereby controlling the
combinatorics of the search space.

— Patch Validation: Astor provides an extension point named EP PV, to specify the patch
validation process. We adopt the patch validation depicted in Sect. 5.

We execute GRCFix on programs on which we have applied several changes; these may
correspond to multiple faults, or to fewer (than the number of changes) faults with higher (than
1) multiplicities. GRCFix repairs them one (unitary) fault at a time, producing increasingly
more-correct programs, until it achieves absolute correctness or stalls (is unable to enhance
correctness). The outer loop of GRCFix (re: ProgramRepair () ) repairs several faults, one at a
time, by calling unitIncCor () iteratively; UnitIncCor () repairs a single fault by attempting
single atomic changes, else double atomic changes, else triple atomic changes, etc., until it
achieves strict correctness enhancement or reaches the maximum allowed multiplicity (M).

We consider the Math project of Defects4J [30], and we run four experiments that con-
sist in seeding the program with several changes then deploying GRCFix and showing its
performance; we refer the interested reader to [32] for more experiments.

7.1.1 Math70, Math73, Math95

For this experiment, we select faults Math70, Math73 and Math90; for each fault we show
the original (faulty) code and the patch that GRCFix identifies for it (using JGenProg’s patch
generator).

— Math70. Fault: return solve (min,max). Patch: return solve (f,min,max).

— Math73. Fault: return solve(f,min,yMin,max,yMax, initial,yInitial).
Patch: return solve(f, min, max).

— MathI2. Fault: double real = 4.0*real;.Patch: double real = 2.0*real;.

We deploy GRCFix with the following parameters:

— Fault localization threshold: 0.5.

— Number of modification points: 12.
Maximum multiplicity of unitary faults, M: 1.
— Maximum execution time: 9h.

The outcome of this experiment is summarized in Table 2, where the faults are listed in
the order in which they are repaired by GRCFix.

All three faults were repaired within 14 min; each fault was repaired by a single call to
UnitCorInc (), with m=1. In this experiment, the fault density and the fault depth of the
program were 3, and all faults had a multiplicity of 1. Exceptionally in this case, we start
with 3 failing tests, and decrement by 1 after each fault repair; generally we advocate for a
much larger test suite, including a larger set of failing tests.

Table 2 Benchmark mutations: Math70, Math73, Math95

Faults Mutations Pass tests Fail tests Repair operations Number of variants Time (s) JGenProg
Fault] Math70 3599 3 Return solve (f,min,max) 1 24
Fault2 Math73 3600 2 Return solve (f, min, max) 1 23 Timeout
Faul3 Math95 3601 1 ret = d/(d - 2.0) 112 797

+ret =0.0

@ Springer



238 B. Khaireddine et al.

We run jGenProg on the same program seeded with all three faults, using the following
parameters:

— Maximum number of generations: 500.
Population size: 40.

Fault localization threshold: 0.1.

— Maximum Execution time: 9h.

Execution of jGenProg times out after 9 h without success; inspection of the variants shows
that it did generate one of the patches that enhances correctness, but since it is testing for
absolute correctness, that variant was discarded. Whenever one fault is repaired, GRCFix
uses the new repaired program as the base, runs fault localization on the new program, and
is poised to target the next fault with greater precision.

7.1.2 Math50, Math53, Mathl

The selected faults and their patches are:

— Math50.Fault: i f (x==x1) {x0=0.5* (x0+x1- FastMath.max (rtol*FastMath.abs (x1),

atol)); fO0=computeObjectivevValue (x0);}. Patch: Code deletion.

— Math53. Fault: A Missing Statement.
Patch: if (isNaN|| rhs.isNaN){return NaN;}.

— Mathl. Fault: d=FastMath.cos (real2)- MathUtils.cosh (imaginary2);.
Patch: Code deletion.

We deploy GRCFix with the same parameters as the first experiment. The results of the
experiment are summarized in Table 3.

All three faults are removed within approximately two and a half hours, in the order shown
in Table 3. As in the previous example, the number of failing tests decreases with each fault
repair, and as in the previous example, we are looking at a program with fault density of 3,
fault depth of 3, and fault multiplicity of 1 for each fault.

We run jGenProg on the same program seeded with all three faults, using the following
parameters:

— Maximum number of generations: 500.
— Population size: 40.

— Fault localization threshold: 0.5.

— Maximum execution time: 9h.

Execution of jGenProg times out after 9 h without success. We try running jGenProg again by
changing several of its parameters, increasing the number of generations to ten million, to no
avail. The Defects4J benchmark has a prespecified patch for each of its faults; in two cases in
our experimentation (Math95 in the first experiment and Math50 in the second experiment)

Table 3 Benchmark mutations: Math50, Math53, Mathl

Faults Mutations Pass tests Fail tests Repair operations  Number of variants Time (s) JGenProg

Faultl Mathl 3598 4 Code deletion 329 7245 Timeout
Fault2 Math50 3599 3 Code deletion 2 428
Fault3 Math53 3600 2 Missing statement 24 1785
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the patch generated by GRCFix is not the same as the patch listed by Defects4J. There are
two reasons why this may arise:

— What is listed as a patch in the Defects4) benchmark is just the original code that was in
the program before the fault was seeded; it is one possible patch, it is not the only patch.

— GRCFix is guaranteed, by Proposition 8, to produce a program that is absolutely correct
with respect to R =7\ R; it may still be incorrect with respect to R.

7.1.3 Complex1, Complex2

Whereas the cases we have seen so far (in [32] and in the examples above) involve single-
site faults, this and the next case involve multi-site unitary faults; in such cases, we need
to perform more than one atomic change before we can achieve strict relative correctness.
Below are the changes we introduced, along with their repairs.

— Complexl: Fault: double real2 = 2.0*real;
Patch: double reald=4.0*real; double imaginary2=2.0*imaginary; double d
= Math.cos(real2)+MathUtils.cosh (imaginary2) ;

— Complex2: Missing statement.
Patch: d = Math.cos(real2)*2.0 *MathUtils.cosh(imaginary2); return
createComplex (Math.sin(real2)/d,MathUtils.sinh(imaginary2)/d) ;

GRCFix calls UnitIncCor () which generates 462 repair candidates through single muta-
tion, and finds that none of them enhances (strict relative) correctness; it then considers these
mutants in turn and generates mutants thereof; the first mutant yields 462 secondary mutants,
none of which is strictly more-correct than the original program; the second was used in a
double mutation, and the 344th mutant thereof proved to be strictly more-correct than the
original, and is in fact absolutely correct. The repair concludes successfully in less than
46 min; we are dealing here with a single two-site fault, since it stems from two mutations,
none of which was found to enhance correctness by itself. Table 4 summarizes the outcome
of this experiment.

We run jGenProg on the same program with the same mutations using the parameters
discussed in the previous sections; it times out after 9h of execution time, without repairing
any fault.

Table 4 Benchmark mutations: Complex 1, Complex2

Faults Mutations m = Pass Fail tests ~ Repair Number of Time (s) JGenProg
tests operations  variants
Fault 1 Complex1 1 3600 2 Single 462 962 Timeout
and Com- mutation
plex2
Fault 1 Complexl 2 3600 2 Double 462 1065
and Com- mutation 1
plex2
Fault 1 Complex] 2 3600 2 Double 334 712
and Com- mutation 2
plex2
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Table 5 Benchmark mutations: Complex 1, Complex2, Math70, Math73

Faults ~ Mutations m= Pass Fail Repair Number of Time JGenProg
tests tests operations variants (s)
Fault1 Complexl 2 3598 4 Double 1268 2739
and mutation
Com-
plex2
Fault2 Math 70 1 3600 2 Return solve 1 24 Timeout
(f,min,max)
Fault3 Math 73 1 3601 1 Return solve 1 23

(f, min, max)

7.1.4 Complex1, Complex2, Math70, Math73

Whereas the first two examples illustrate the operation of GRCFix on programs with greater
fault depth, and the third example illustrates the operation of GRCFix on faults with greater
fault multiplicity, this example illustrates the operation of GRCFix with greater fault depth and
greater fault multiplicity. We seed the benchmark program with four mutations: Complex1,
Complex2, Math70 and Math73. the outcome of the experiment is shown in Table 5.

The four changes represent three faults: a two-site fault and two single-site faults. GRCFix
repairs the two-site fault in less than 46 min then repairs the other two in less than a minute.
Note that we perform fault localization after each fault repair, so that each fault repair helps
us target the next fault with greater precision.

We run jGenProg on the same program with the same mutations using the parameters
discussed in the previous sections; it times out after 9h of execution time, without repairing
any fault.

7.2 CRCFix: implementation

CRCFix is an instance of the generic algorithm, using the patch generation functionality of
Cardumen [56], which is an element of the Astor framework of Martinez and Monperrus
[55]. The CRCFix tool can be accessed at [4] and the data presented in this section can be
accessed at [3]; the procedure we followed to derive CRCFix is the same as that depicted in
Sect. 7.1, substituting Cardumen for GenProg.

Whereas in Sect. 7.1 we used benchmark programs and benchmark mutations (aka faults),
in this section we use a program taken from [44], and some mutations taken from the same
source, but we use different experimental parameters, including:

— A Different Specification. Whereas the benchmark uses the unseeded program as the
specification against which repair is sought, we derive our own specification, ensuring
that the unseeded program is correct with respect to it.

— A Non-Deterministic Specification. We purposefully select a non-deterministic specifi-
cation, so as to illustrate how one can repair a program by preserving correctness without
preserving correct behavior; in other words, the repaired program is more-correct than
the original program with respect to the specification, even though it does not imitate the
correct behavior of the original program. This is possible only if correct behavior is not
unique, whence the need for non-determinacy.
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— Arbitrary Test Data. Whereas benchmark data comes with a fixed test suite, we generate
our own, so as to be able to illustrate the (positive) impact of larger test suites on the
efficiency and precision of the repair operation.

7.2.1 The program and specification

We consider a binary search program on space S defined by an array a, a variable x, and an
index k. The specification is:

R = {(s, s")|sorted(a) A a[k'] = x}.
The domain of this relation is:
dom(R) = {s|sorted(a) A x € a}.

R and dom(R) are represented by, respectively, a binary predicate and unary predicate, which
we use to derive oracles as per definitions 7, 8 and 9. The program, due to [44], is written as:

{int 1lo0=0; int hi=a.length; int k=-1; //1
while (lo<hi) //2
{int mid=(lo+hi) /2; //3
if (x==a[mid]&&(mid==0||x!=a[mid-1]))//4
{k=mid; break;} //5
else //6
if (x<=a[mid]) {hi=mid;} /77
else {lo=mid=1;}} //8
return k;} //9

Some of the modifications we seed are taken from the QuixBugs benchmark [44], although
we seed more than one modification at a time, and we use R as the specification; we use the
test data provided in the benchmark, though we may enlarge it as needed. Unless we specify
otherwise, Cardumen is limited to 500 generations and a run-time of 120 min.

7.2.2 Two modifications

In this example, we make two modifications to the code:

— Mod 1: k=mid in line 5 — k=mid-1.
— Mod 2: hi=mid in line 7 — hi-hi-1.

Table 6 Two faults, Mod1 and Mod2

Faults Mutations Pass  Fail = Repair operations Number of genera- Time (s)  Cardumen
tests  tests tions
Fault 1 Mod 1 3 4 k=hi+k 24 59 Aborted
k=hi+k
Fault 2 Mod 1 4 3 — 104 516 Max generations
k = (mid + mid)/2
Fault 3 Mod 2 5 2 hi =hi + k 24 91
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Table 7 Preserving correctness

Faults Mutations Pass Fail Repair Number of  Time Cardumen
tests tests operations generations  (s)
Fault 1 Mod 2 5 2 hi = hi-1 25 121 Aborted max generations

The outcome of this experiment is summarized in Table 6. To repair this program, CRCFix
went through three iterations of Unit IncCox () : Two iterations are needed to repair Mod1
and one to repair Mod2. The whole operation takes about 11 min and uses no more than 104
generations.

When we execute Cardumen on the same data, it runs for 1090s (18 min) and aborts,
because it has reached the maximum number of generations allowed (500).

7.2.3 Preserving correctness

In this example, we show how we can preserve correctness without preserving correct behav-
ior, since correct behavior is not unique. We make two modifications:

— Mod 1: mid=(lo+hi) /2 inline 3 — mid=h-1.
— Mod 2: hi=mid in line 7 — hi-mid-1.

The outcome of this experiment is given in Table 7. This example is interesting because
even though we applied two mutations, Mod1 and Mod2, CRCFix made the program abso-
lutely correct with respect to R” =7\ R by repairing Mod2 alone, hence the fault depth of
this program is 1. Whether its fault density is 2 depends on whether Modl is a fault, which
we do not know. The whole repair operation took 121 s (2min) and 25 generations.

When we execute Cardumen on the same data, it runs for 1338s (22 min) and aborts,
because it has reached the maximum number of generations allowed (500).

7.2.4 Non-determinacy

In this example, we illustrate how the use of non-deterministic specifications enables us to
enhance recall, by comparison with Cardumen.

— Mod 1: k=mid in line 5 — k=mid-1.

— Mod 2: return kinline 7 — return k-1.

The outcome of this experiment is summarized in Fig. 8. Three calls to UnitIncCor ()
were required to repair this program; the operation took a total of 642s (11 min) and the no
more than 159 generation for any call. It produces a program that is absolutely correct with
respect to R’ =7\ R, where T has a mere 7 elements. Because the size of T is so small,
absolute correctness with respect to 7\ R does not mean much, as it leaves much scope for a
program to be correct with respect to 7\ R but still incorrect with respect to R; this is why in
the next experiment we will use a large test suite.

When we execute Cardumen on the same data, it runs for 1384s (23 min) and aborts,
because it has reached the maximum number of generations allowed (500).

7.2.5 Large data set

In this experiment, we show how larger test suites enhance precision. To this effect, we seed
the program with a single mutation, and attempt to repair it with a small test suite, then
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Table 8 Non-determinacy

Faults Mutations Pass  Fail =~ Repair Operations Number of genera- Time (s) Cardumen
tests  tests tions
Fault 1 Mod 1 4 3 k = mid 4 mid 3 10 Aborted
k = mid 4 mid
Fault 2 Mod 1 5 2 — 34 90 Max generations
k = (hi +hi)/2
Fault 3 Mod1 6 1 k=mid=1 159 542

Table9 Large data set

Faults Mutations Pass  Fail = Repair operations Number of genera- Time (s)  Cardumen
tests  tests tions

X <= a[mid — 1]

mid = (hi + lo)/2 —
Fault 1 Mod 1 6 1 — 195 747 x < hi)
mid =k + hi 484generations
1400(S)
Table 10 Larger data set
Faults Mutations Pass Fail Repair Number of Time (s) Cardumen
tests tests  operations generations
Fault 1 Mod 1 92 8 x <= allo + 19 82 Aborted max
hi)/2]) generations

increase the size of the test suite and observe its impact. The mutation we choose for this
experiment is:

— Mod 1: x <= a[mid] in line 7 — x <= a[mid — 1].

The outcome of experiment for a test suite of 7 elements is summarized in Table 9.
Both CRCFix and Cardumen find a patch that satisfies the specification R’ =7\ R, but,
interestingly:

— Whereas the patch found by CRCFix is correct with respect to R, that found by Cardumen
is not correct with respect to R, even though it is correct with respect to R’.

— CRCFix finds its patch after 195 generations, whereas Cardumen requires 484 genera-
tions.

— CRCFix completes the operation in 747s (12min) whereas cardumen requires 1400s
(23 min).

When we augment the test suite size to 100 (92 pass and 8 fail) we find the results that
are summarized in Table 10. CRCFix recovers the original program, which is correct, and
does so in 82s after 19 generations. Interestingly, when we increase the size of T from 7 to
100, CRCFix converges faster, with fewer generations, and produces a better solution; the
solution it produces is in fact absolutely correct with respect to R.

When we deploy it on the same data, Cardumen runs for 2759 s (46 min) and aborts because
it reaches its maximum allowed number of generations (700 in this case).
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8 Conclusion: Summary, assessment and prospects
8.1 Summary

This paper proposes a theory of program repair based on the following premises:

— To repair a program does not necessarily mean to make it absolutely correct; rather it
means to make it more-correct than it was originally. Hence, any theory of program repair
ought to be based on some concept of relative correctness.

— Relative correctness ought to play for program repair the role that absolute correctness
plays for program derivation.

— Any definition of relative correctness ought to satisfy some litmus tests, including reflex-
ivity and transitivity, culmination in absolute correctness and being a sufficient condition
for greater reliability.

— In order to talk about a fault, we need to specify four parameters: a specification, a
definition of relative correctness, a definition of syntactic atoms, and a set of atomic
changes. In order to talk about multiple faults (as in: program P has N faults), we need
to specify a fifth parameter: the concept of unitary fault.

— For the sake of effectiveness, program repair tools ought to be designed in such a way as
to make provisions for multi-site faults; at the same time, for the sake of efficiency, they
ought to be designed in such a way that multiple mutations are attempted only to repair
multi-site faults, not to repair multiple faults simultaneously.

We argue that program repair is any transformation that results in a strict enhancement of
the program’s relative correctness, and we present a generic program repair algorithm whose
gist is to enhance relative correctness repeatedly until it achieves absolute correctness.

Using the ontology provided by our theory, we prove partial correctness and termination
properties of the generic algorithm in Hoare’s deductive logic [25]. Also, using the patch
generation capability of existing program repair tools (GRCFix, based on GenProg [43] and
CRCFix, based on Cardumen [56]), we derive instances of the generic algorithm, whose
performance we showcase using standard benchmark data pertaining to programs and faults.
To highlight the capability of GRCFix and CRCFix to handle programs with higher (than 1)
fault depth and faults with higher (than 1) fault multiplicity, we deploy them on combinations
of mutations provided in the Defects4J benchmark and original faults of varying multiplicity
and complexity.

8.2 Assessment

The approach advocated in this paper offers a number of novelties with respect to current
program repair practice (to the extent that we understand it):

— Whereas most existing program repair tools are validated by showcasing their perfor-
mance on shared benchmarks of programs and faults, we validate the generic algorithm
by means of formal proofs using Hoare logic. We also illustrate the performance of GRC-
Fix and CRCFix on benchmark programs and faults, but we do so as a complement to/
confirmation of the static verification, not as a substitute thereto.

— Whereas most existing program repair tools use patch validation criteria that are prone to
cause loss of recall and loss of precision, we use a precise criterion for patch validation,
based on relative correctness, and we prove that this criterion provides us perfect precision
and perfect recall: If patch generation produces at least one patch that is strictly more-
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correct than P then the algorithm is guaranteed to strictly enhance relative correctness;
and if inc holds on output then program P’ is assured to be strictly more-correct than P.
— The generic algorithm (and its instantiations) distinguishes between multi-site faults and
multiple single-site faults, and is designed to work at higher (than 1) fault depth and fault
multiplicity; it is fine-tuned to maximize effectiveness while controlling combinatorics.

We feel that none of these novelties would be possible without a sound theoretical foundation.

We view our paper as throwing a challenge to researchers in program repair, by encour-
aging them to specify explicitly what definition of relative correctness their method supports
(assuming that they subscribe to our premise that to repair a program means to make it
more-correct) and to prove that their method/tool enhances relative correctness as defined.
We do not claim that our definition of relative correctness is the only possible definition, nor
the best one; in the same way that the study of program derivation has given rise to several
distinct definitions of refinement [2, 22, 24, 26, 61], it is possible (even desirable) to envision
different definitions of relative correctness for different purposes or contexts.

8.3 Threats to validity

The main threats to validity are the usual concerns that arise with any attempt to formalize
software engineering processes, namely:

— Scalability. We argue that relative correctness scales as much as, or as little as, absolute
correctness; and it plays for program repair the same role that absolute correctness plays
for program derivation. One way we envision to deal with scalability is to use a general
definition of relative correctness, which applies to non-deterministic programs; this def-
inition, due to Desharnais et al. [13, 14], enables us to reason about programs without
capturing all their functional details.

— The Need to Provide Specifications. In the same way that specifications are needed to
reason about absolute correctness, they are needed to reason about relative correctness.
They are an integral part of the bargain that one strikes to achieve greater precision in
the claims one makes about software engineering processes and artifacts.

Also noteworthy is the fact that this approach is focused exclusively on program semantics,
hence it aims to generate programs that are more-correct than the original, but does not con-
cern itself with whether the repair is considered good by professional programmers/software
engineers. To integrate such concerns into the repair process requires that we define an order-
ing between repairs, based on syntactic criteria, and that we alter the repair algorithm to favor
higher ranked repairs; this is well beyond the scope of this paper.

8.4 Prospects

Our short term goal is to delpoy our generic algorithm in conjunction with other (than
GenProg, Cardumen) patch generation methods, borrowed from existing program repair
tools, and to analyze the impact on the performance of these tools. Our medium term goal
is to design an original program repair tool that integrates relative correctness concerns into
the patch generation step. Our long term goal is to explore techniques for the generation of
more-correct-by-design programs in support of program repair, similar to the techniques that
were developed in the past for the generation of correct-by-design programs [16, 22, 24, 61],
in support of program derivation.
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Our goal is to encourage researchers in program repair to specify explicitly what definition
of relative correctness they are pursuing (assuming they agree with our premises), and to
validate their methods/tools by proving that they enhance relative correctness as defined (the
way we do in Sect. 6.2).

Acknowledgements The authors are very grateful to the anonymous reviewers for their valuable feedback,
which has greatly enhanced the presentation and content of our paper. This work is partially supported by the
NSF under grant number DGE1565478.

A Proof of Proposition 8

Proof Proof of Sufficiency. Program P satisfies oracle £2 (s, s”) for test suite 7" if and only if:
Vs eT:82(s, P(s)).

By the definition of §2(s, s”), we can rewrite this as:
Vs €T :s € dom(R) = (s, P(s)) € R.
Distributing the clause (s € T), we write:
Vs:seT As edom(R)y=s €T A(s, P(s)) € R.
By set theory, we write the left hand side as:
Vs:s € (T Ndom(R)) = s €T A(s, P(s)) € R.
According to the definitions given in Sect. 3.1 we can write T Ndom(R) = dom(7\ R), hence:
Vs :s € (dom(T\R)) = s € T A (s, P(s)) € R.
Since (s, P(s)) is also, by definition, an element of P, this can be written as:
Vs :s edom(7\R) = s €T A(s, P(s) € (RNP).
If we now view T as a vector rather than a set, we can rewrite
Vs :s € dom(7\R) = (s, P(s)) € T A (s, P(s)) € (RN P).
Taking the intersection, and using associativity, we find:
Vs :s e dom(7\R) = (s, P(s)) € (TNR)NP).
Rewriting (T N R) as the pre-restriction of R to T, we find:
Vs :s € dom(7\R) = (s, P(s)) € ((R) N P).
From the right hand side, we infer that s is in the domain of (7\ R N P):
Vs :s € dom(T\R) =S € dom((T\R) N P).
Since this is true for all s, we write:
dom(7\R) C dom((1\R) N P),
which we rewrite as:
mRL S ((r\R) N P)L.
Given that the inverse inclusion is a tautology, we find:
T\RL = ((1\R) N P)L.
Hence, by proposition 2, P is absolutely correct with respect to 7\ R.
Proof of Necessity. If P is correct with respect to 7\ R, then by proposition 2 7\RL C
(7R N P)L. Interpreting this formula in logical terms, we find:
Vs :s € dom(7\R) = s € dom(7\R N P).
If this formula holds for all s in S, it holds a fortiori for all s in 7":
Vs €T : s € dom(\R) = s € dom(7\R N P).
Because 7\R can be written as T N R, where T is reinterpreted as a vector, because
dom(7\R) = T Ndom(R), we can write:
VseT:se€TNdom(R)= s eTNdom(RN P).
Isolating the clause (s € T), we get:
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VseT:seT Asedom(R)y=s €T As e€dom(RNP).
Removing the clause (s € T'), which is now redundant, we find:
Vs €T :s € dom(R) = s € dom(RN P).
Since P is deterministic,
Vs €T :s € dom(R) = (s, P(s)) € (RN P).
By the definition of the oracle of absolute correctness:
Vs €T :82(s, P(s)). m]

B Proof of Proposition 9

Proof Proof of Sufficiency. If the execution of P’ for every element of T satisfies the oracle
(s, s) then:
Vs €T : (s, P(s)) = 2(s, P'(s)).
Replacing £2(, ) by its definition, we find:
Vs €T : (s € dom(R) = (s, P(s)) € R) = (s € dom(R) = (s, P'(s)) € R).
The body of this quantified formula has the form: (¢ = b) = (a = c). If we simplify this
Boolean expression, we find that it can be written as: (a A b) = c. Given that in our case
b (which is (s, P(s)) € R) logically implies a (which is s € dom(R))), this can further be
simplified to: (b = c¢). Hence, we write:
Vs €T :((s, P(s)) € R) = ((s, P'(s)) € R).
Because P and P’ are deterministic, this can be written as:
VseT:3s":5 =P@)A((s,5) € R) = 3s": 5" = P'(s) A((s, P'(s)) € R).
By rewriting s’ = P(s) in relational form as (s, s’) € P and taking the intersection, we find:
VseT:35": ((s,s)y e RNP)=3s": ((s, P'(s)) € RNP').
By the definition of domain, we write:
VseT:s €dom(RNP)=s ecdom(RNP).
Factoring the term (s € T') into the formula, we find:
VseS:seTAscdom(RNP)=secTAs cdom(RNP.
Using the same argument as the proof of the previous proposition, we find:
Vs € S:s €dom(r\RNP) = s € dom(r\RN P').
From which we infer, by rewriting in relational form:
(nn\RNP)L C (RN P)L.
In other words, P’ is more-correct than P with respect to \R.
Proof of Necessity. If P’ is more-correct than P with respect to 7\ R then (;\R N P)L C
(r\R N P")L, which we represent by the following logic formula:
Vs € S:s €dom(r\RNP)=s €dom(r\RN P').
If this formula holds for all s in S, it holds necessarily for all s in 7.
Vs €T :s €dom(r\RN P) = s € dom(r\RN P').
By factoring out the pre-restriction from the domain, we get:
VseT:seTAsedom(RNP)=seTAs edom(RNP).
We remove the clause (s € T'), which is now redundant:
Vs €T :s €dom(RNP)=s &dom(RNP).
Because P and P’ are deterministic, this formula can be written as:
Vs €T : (s, P(s)) € (RNP)= (s, P'(s)) € (RN P).
Using the Boolean manipulations we showed in the previous proof, we find this to be equiv-
alent to:
Vs €T : (s € dom(R) = (s, P(s)) € R) = (s € dom(R) = (s, P'(s)) € R).
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Using the formula of the oracle of absolute correctness with respect to R, we find:
Vs €T : (s, P(s)) = 2(s, P'(s)). O

C Proof of Proposition 10

Proof Proof of Sufficiency. Let program P’ satisfy the oracle of strict relative correctness; then
according to the definition of this oracle, it satisfies the condition (Vs € T : w(s, P'(s))). By
proposition 9, P’ is more-correct than P with respect to n\R,ie,(nRNP)L S\ RN P)L.
To prove strict relative correctness, we must prove that there exists an element s in the domain
of (7\ R N P’) that is not in the domain of (7\ R N P). To this effect, we consider the second
clause of the oracle:

3s €T :—82(s, P(s)) A 2(s, P'(5))).

By the definition of £2(, ), we find:

3s €T :s €dom(R) A (s, P(s)) ¢ RA (s €dom(R) = (s, P'(s)) € R)).

Using Boolean identities, we simplify this to:

(3s €T :s edom(R)A (s, P(s)) ¢ RA(s, P'(s)) € R).

Since (s, P’(s)) € R logically implies s € dom(R), we write:

3seT:(s,P(s)) ¢ RA(s, P'(s)) € R).

From (s € T A (s, P'(s)) € R we easily infer s € dom(r\R N P’), following the same
argument that we used in the proofs of propositions 8 and 9. From (s, P(s)) ¢ R we infer
s ¢ dom(R N P), whence we infer s ¢ dom(r\R N P), since 7\R C R.

Proof of Necessity If P’ is strictly more-correct than P with respect to 7\ R, then it is more-
correct, hence by proposition 9, (Vs € T : w(s, P(s))). On the other hand, we know that
there exists an element of dom(r\R N P’) that is not in dom(r\R N P). Using the same
arguments cited in the proof of proposition 9, we infer: (s, P(s)) ¢7\ R A (s, P'(s)) €r\ R.
From the second clause, we infer that s is in 7, which we use to rewrite the formula as:
Is € T : (s, P(s)) ¢ R A (s, P'(s)) € R. Using the Boolean transformation alluded to
above, we find this to be equivalent to: (s € T : =82(s, P(s)) A 2(s, P'(s))). ]

D Proof of Proposition 11

We propose to prove that the following Hoare formula is valid in Hoare’s deductive logic:
v:i{@m:1<m<M:3Q € PS(m): Q Jp P)}

m=1; inc=false; Pp=P;
while (! inc && m<=M)
{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity

{Pp iy P}.

Applying the sequence rule to v, with the following intermediate predicate int:

@m:1<m<M:30€ PS(m): Q g P)
Am=1A=-incANPp=P
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yields the following lemmas:

Vo:{@m:1<m<M:3Q0 e PS(m): Q g P)}
m=1; inc=false; Pp=P;
{@m:1<m<M:3Q0€ PS(m): Q dgr P) Am=1A—incA Pp=P}.
vi:{@m:1<m<M:30 € PS(m): Q g/ P)Am =1A—inc A Pp =P}
while (! inc && m<=M)

{while (! smc(Pp,P) && MorePatches (P,m))

{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1l;}}//try higher multiplicity

{Pp g P}.

If we apply the (concurrent) assignment rule to vg, we get:
voo:(@m:1<m<M:3Q0 € PS(m): Q Jg' P)
= )
@Am:1<m<M:3Q0e€ PS(m): Q Odgr P) A1 =1Atrue A P = P}

This formula is clearly a tautology, hence we turn our attention to v, to which we apply
the while rule, with the following loop invariant inv:

inb(m) A ((inc A Pp Jg P)
V(mine A@h:m <h<M:3Q € PS(h): Q Jg P))),

where inb(m) (stands for: in bounds) is shorthand for: 1 < m < M. Application of the
while rule to vy with the selected loop invariant yields three lemmas:
vip:@m:1<m=<M:3Q0 € PS(m): Q Odgr P)Am=1A—incA Pp=P
= .
inb(m) A ((inc A Pp Jpr P)V (mine A3h:m <h <M :30Q € PS(h): Q O P)))
v11: {(minc Am < M) N inb(m) A ((inc A Pp Opr P)V (mine A(3@h :m <h <M :30 € PS(h) :
0 Jgr P}
{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity
{inb(m) A ((inc A Pp Jgr P)V (minc A(Gh:m <h <M :3Q € PS(h): Q Jgr P))}.
vy @ —(—inc Am < M) ANinb(m) A ((inc A Pp Jgr P)
V(mincA(@Gh:m<h<M:30Q0 € PSth): Q dg' P)))
N .
Pp g P

To check the validity of vig, we rewrite it by distributing inb(m) over the disjunction and
replacing m by 1 on the right hand side:

vip: @m:1<m<M:30 € PS(m): Q dpr P)Am=1A—inc A Pp=P

= .

(inb(m) ANinc A Pp Jpr P)V (inb(m) A—inc A (3h:1 <h <M :3Q € PS(h): Q Ogr P))

Now it is clear that vy is a tautology, since the left hand side logically implies the second
disjunct of the right hand side, assuming, as we do, that M > 1. As for vy, its left hand
side can be simplified into (inc A Pp Jg' P), due to the contradiction between m > M and
inb(m), and the contradiction between inc and —inc. Hence, vy is also a tautology. We turn
our attention to vy, which we first simplify as follows:

vi1: {—ine Ainb(m) A (3h:m <h <M :3Q € PS(h) : Q g/ P)}
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{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity

{inb(m) A ((inc A Pp Jgr P)V (minc A(Gh:m <h <M :30Q € PS(h): Q Ogr P))}.
We apply the sequence rule to vy, with the following intermediate predicate int’:

(Pp Jdpr PV PS(m) =¢€) A
—inc Ainb(m) A
(Pp g PV (3h:m<h<M:30 € PS(h):Q g P)).

This yields the following two lemmas:
v110: {minc Ainb(m) A(@h:m <h <M :3Q € PS(h): Q Jgr P))}

{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}

{(Pp Oy PVPS(m) = e)A—incAinb(m)AN(Pp Jpr PV(E@h:m <h <M :30 € PS(h): Q Ogr P)).}.
vi11: {(Pp Jgr PV PS(m) =€) A —inc Ainb(m) A(Pp Jgpr PV (3h:m <h <M :30 € PS(h) :
0 g P)).}

if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity

{inb(m) A ((inc A Pp Jgr P)V (minc A(Gh:m <h <M :3Q € PS(h): Q Jgr P))}.
We apply the while rule to v{1g, with the following loop invariant, inv’:

—inc Ainb(m) A (Pp Jpr PV (3h:m <h <M :3Q € PS(h): Q Jgr P)).

This yields the following three lemmas:

v1100 : inc Ainb(m) A (3h:m <h <M :3Q € PS(h): Q Jp P))

=

—inc Ainb(m) A (Pp Jpr PV (3h:m <h <M :3Q € PS(h): Q Jgr P)).

v1101 : {—ine Ainb(m) A (Pp Jgr PV 3h:m <h <M :3Q € PS(h): Q O/ P))
A=(Pp Jpr P APS(m) # €)}

{Pp = NextPatch(P,m);}

{=inc Ainb(m) A (Pp O PV 3h:m <h <M :30Q € PS(h): Q O P))}

v1102 : inc Ainb(m) A (Pp Jdpr PV 3h:m < h

<M:3Q € PS(h): Q Jpr P)) AN(Pp Oy PV PS(m) =€)

=

(Pp Jpr PV PS(m) =€) A—inc Ainb(m) A(Pp Jpr PV (3h:m <h <M :3Q € PS(h): Q Jgr P)).
To see that vy is a tautology, it suffices to distribute the A over the V on the right hand side of the implication,
and to notice that the second disjunct on the right hand side is a copy of the left hand side of the implication.
As for v1102, it is clearly a tautology, since the right hand side of = is merely a copy of the left hand side. We
turn our attention to vy19; now, and we begin by simplifying its precondition by virtue of Boolean identities:
vi101: {—inc Ainb(m) A (3h:m <h <M :3Q € PS(h): Q Jgpr P)A—(Pp Jpr P) A PS(m) # €)}

{Pp = NextPatch(P,m);}

{=inc Ainb(m) A (Pp O PV 3h:m <h <M :30Q € PS(h): Q O P))}
We consider v1101, to which we must apply the assignment statement rule; to this effect, we must analyze the
semantics of function NextPatch (P, m). We assume that this function performs the following operations:

Pp=head (PS(m)); PS(m)=tail(PS(m));

Hence, application of the assignment rule yields the following formula:
V11010 : ~inc A inb(m)
APp Jpr PV (3Bh:m <h<M:3Q € PS(h):Q g P))
A(=(Pp Opr P APS(m) # €)
=
—inc Ainb(m) A (head(PS(m)) Jgr PV
3Q €tail(PS(m)) : Q dpr PYV B3h :m+1<h<M:3Q € PS(h): Q Jp/ P))
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We consider the first two disjuncts in the parenthesized expression:

(head(PS(m)) Jpr P)V (3Q € tail(PS(m)) : Q Ops P) and we merge them into a single expression:
(3Q € PS(m) : Q Jdgr P).

Now we merge this expression with the third disjunct above: (3Q € PS(m) : Q Jpr P)Vv (3h :m+1 <

h<M:30 € PS(h): Q Op P),toobtain: Fh:m <h <M :3Q0 € PS(h): Q Jg/ P).

Replacing these in vy101(0, we find that the right hand side is a logical conclusion of the left hand side, hence

v11010 is a tautology. We now consider v111, to which we apply the if-then-else rule, which yields two lemmas:

vi110: {(Pp Jdpr PYA(Pp Jpr PV PS(m) =€) A—inc Ainb(m) A(Pp Jpr PV @h:m <h <M :

30 € PS(h) : Q Ogr P)).}

inc=true;

{inb(m) A ((inc A Pp Jgr P)V (mine A3h:m <h <M :30 € PS(h): Q Og P)))}.
vi11: {=(Pp Jgr P) A(Pp Dgr PV PS(m) =€) A—inc Ainb(m) A (Pp Jpr PV 3h:m <h <M :
3Q € PS(h) : Q Opr P)).}

m=m+1;

{inb(m) A ((inc A Pp Jgr P)V (minc A(Gh:m <h <M :3Q € PS(h): Q Jgr P))}.
We simplify vy119 and apply the assignment rule to it, yielding:

v11100 : (Pp Opr PY A—inc Ainb(m) A 3h:m <h <M :3Q € PS(h): Q Op/ P)
L=

inb(m) A (Pp Jpr P),
This is clearly a tautology. We simplify vq111 and apply the assignment rule to it, yielding:
vi1110 : ~(Pp Jgpr PYAPS(m) =€ A—inc Ainb(m) A (3h:m <h <M :30Q € PS(h) : Q O/ P)
=
inb(m 4 1) A ((inc A Pp Jgr PYV (mine AGh:m+1<h<M:3Q € PS(h): Q Jgr P)))}.
If we know that there exists Q strictly more-correct than P in one of the patch sequences PS(m), PS(m +
1), ...PS(M) but PS(m) is empty, then it must be in one of the sequence PS(m + 1), PS(m +2), ...PS(M).
For the same reason, m is necessarily strictly less than M, since Q is somewhere in PS(m + 1), PS(m +
2),...PS(M). Hence inb(m + 1) holds. We conclude that vy111g is a tautology.

Since all the lemmas generated form v are valid, so is v. Hence, UnitIncCor () is partially correct with

respect to the specification:

— Precondition: (3m : 1 <m <M :30Q € PS(m) : Q Jps P).

— Postcocndition: Pp Jpr P.

E Proof of Proposition 12

‘We must prove the validity of the following formula in Hoare logic [25]:
v: {true }

m=1; inc=false; Pp=P;
while (! inc && m<=M)
{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1l;}}//try higher multiplicity

{inc = Pp Jp/ P}.

Applying the sequence rule to v with the intermediate predicate int: inc = Pp Jg/ P yields the following
formulas:

vo: {true }

m=1; inc=false; Pp=P;
{inc = Pp Jpr P}.
vi: {inc = Pp Jp P}

while (! inc && m<=M)
{while (! smc(Pp,P) && MorePatches(P,m))
{Pp = NextPatch(P,m);}
if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity
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{inc = Pp Op/ P}.

The (concurrent) assignment rule applied to v yields:

voo: true = (false = P Jp/ P),

which is a tautology. We apply the while rule to vy with the loop invariant inv: inc = Pp Jgs P, which
yields the following formulas:

v10: (inc = Pp O/ P) = (inc = Pp Jdpr P)

vi1: {(inc = Pp Jdgr P) A (minc Am < M)}

{while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1l;}}//try higher multiplicity

{inc = Pp Jps P}

vi2: (inc = Pp gy P) A (incvm > M) = (inc = Pp Jgr P).

Formulas vy¢ and vy; are clearly tautologies; we apply the sequence rule to vy, with int: inc = Pp Jp/ P,
which yields the following formulas:

v110: {(inc = Pp Opr P) A (minc Am < M)}

while (! smc(Pp,P) && MorePatches (P,m))
{Pp = NextPatch(P,m);}

{inc = Pp Jgr P}
vi11: {(inc = Pp Opr P)}

if smc(Pp,P) {inc=true;}
else {m=m+1;}//try higher multiplicity

{inc = Pp Jdgr P}.

We apply the while rule to vy1¢ with the loop invariant inv: —inc, which yields the following formulas:
v1100: (inc = Pp Jpr P) A (minc Am < M) = —inc.

v1101: {—inc A (=Pp Jpr P A MorePatches(P,m))}

{Pp = NextPatch(P,m);}

{—inc}.

v1102: ~inc A =(=Pp Jdpr P A MorePatches(P,m)) = (inc = Pp O/ P).

Formula vy is clearly a tautology; formula vyj¢; is also a tautology because it has the form ((—a A b) =
(a = c¢)), which can be simplified as (@ vV —=b) V (—a V ¢); we focus on v1 191, to which we apply the assignment
statement rule, which yields:

v11010: (—inc A (—=Pp Jpr P A MorePatches(P,m))) = —inc.

This is clearly a tautology; we turn our attention to vy11, to which we apply the if-then-else rule, which yields:
vi110: {(inc = Pp Jgr PY A (Pp O P)}

{inc=true;}

{inc = Pp Jpr P}.
vii11: {(inc = Pp Opr P) A=(Pp g P)}

{m=m+1;}

{inc = Pp Jgr P}.

Application of the asignment statement rule to vi11g and vy yields, respectively:
v11100: (inc = Pp Jgpr PY A(Pp Jgr P) = (Pp Jgr P).

v11110: (inc = Pp Jdpr P) A—=(Pp Jdpr P) = (inc = Pp Jdgr P).

Formulas vy1100 and vy1119 are both tautologies. This concludes the proof that

v: {true }

UnitIncCor ()

{inc = Pp Op/ P}
is valid in Hoare’s logic. Hence, UnitIncCor () is partially correct with respect to the specification defined
by the following pre/post condition pair:

— Precondition: true .
— Postcondition: inc = Pp Jpr P.
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