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Today’s financial sector is characterized by strong interdependencies,
with large amounts of capital circulating among financial firms
(Craig, Karamysheva, and Salakhova 2023). For instance, Duarte and Jones
(2017) estimate that 23% of the assets of bank holding companies come from
other financial intermediaries, as well as 48% of their liabilities - almost half.1

The value of any financial firm then depends on the payments it gets from its
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claims on other firms, which might themselves depend on the values of yet
other firms, creating rich interdependencies between firms’ balance sheets.
The literature on financial contagion has investigated how interbank

obligations enable a shock in one part of the system to spread widely, and
how this contagion is magnified if banks incur costs upon default.2 What has
received less attention is how these interdependencies can lead to multiple
equilibria,3 with the defaults of some banks becoming self-fulfilling. For
instance, a bank A defaulting on its obligation to another bank B, might lead B
to default as well. This can lead to further missed payments that feed back to
bank A, making its initial default self-fulfilling.
Such self-fulfilling defaults on payments are not uncommon in practice,

especially in times of distress. For instance, Fleming and Keane (2021) find
that almost 74% of the settlement failures that occurred in the U.S. Treasury
market in March 2020 were effectively “daisy-chain” failures, which could
have been avoided had all trades been centrally netted.4 This is also a
recurring problem between small and medium-sized (nonfinancial) enterprises
that heavily rely on trade credit, as studied in Božić and Zrnc (2023). These
defaults, even if only temporary, are costly: delayed in payments can lead
counterparty risk to build up, dry up liquidity in the market, restrict or stall
investments, and even push some banks toward insolvency. The existence of
multiple equilibria therefore contributes to the fragility of the financial system:
pessimistic beliefs or uncertainty about the state of others’ balance-sheets can
become self-fulfilling and lead banks to stop payments to each other—a type
of credit freeze—even when another equilibrium exists in which payments are
all made.
In this paper, we characterize the network structures and portfolio returns

that lead to self-fulfilling defaults and how to prevent them at minimal cost
to the regulator. We consider financial networks in which banks are linked via
unsecured debt contracts.5 The value of a bank depends on the value of its assets
outside of the network, as well as of its claims on other banks. If a bank’s assets
are not enough to cover its liabilities, the bank defaults on part of its debts.
Importantly, we allow for failure costs that discontinuously depress a bank’s
balance-sheet upon default, and reduce the amount repaid to counterparties.
We take as given banks’ exposures to each other throughout the paper. Our
analysis is thus most relevant for crisis scenarios in which banks have little
leeway to adjust their interdependencies.

2 See, for instance, Kiyotaki and Moore (1998), Eisenberg and Noe (2001), Gai and Kapadia (2010),
Elliott, Golub, and Jackson (2014), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), and Jackson and Pernoud
(2021b). For a recent survey, see Jackson and Pernoud (2021).

3 We use the term “equilibrium” to keep with the literature, but here this term only reflects the mutual consistency
of banks’ values—so a fixed point in accounting balance sheets—and not any strategic behavior.

4 Settlement failures were much lower for trades that were centrally cleared (Duffie 2020).

5 The analysis extends to other sorts of contracts as we discuss in the Internet Appendix.
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There are two main applications/interpretations of our model. One is when
a bank’s default involves bankruptcy, and the failure costs are the losses
associated with filing for bankruptcy and liquidating assets.6 The other major
application of the model is to situations in which a bank’s default may only
be temporary, due to an episode of illiquidity, but can still lead to a sequence
of defaults or delayed payments. Failure costs then capture costs associated
with delayed payments, as outlined above.7 Such defaults are often avoided in
practice by short-term borrowing. However, in situations such as what occurred
in 2008, lenders often lose confidence in the market, which leads to a lack of
liquidity for short terms borrowing, and then makes a freeze self-fulfilling.
We make the following contributions.
First, we provide a comprehensive analysis of the multiplicity of equilibrium

bank values. We show that there exist multiple solutions for bank values if and
only if there exists a certain type of cycle in the network. Cycles allow costly
defaults to feedback through the financial network, generating the possibility of
self-fulfilling defaults. There exist well-defined “best” and “worst” equilibria,
ordered by banks’ values. In the best equilibrium none of the self-fulfilling
cycles of defaults occurs (there can still be some defaults, but they are not
self-fulfilling), while in the worst equilibrium they all do. There are also
intermediate equilibria that involve some, but not all, of the self-fulfilling
cycles defaulting. We then give necessary and sufficient conditions for banks’
solvency under both the best and worst equilibria, assuming that a bank cannot
make any payments until it is fully solvent. This applies in practice whenever
insolvencies lead to delays in payments, which can cascade and generate a
credit freeze.8 All banks are solvent in the best equilibrium if and only if their
portfolio satisfy an appropriate balance condition. Solvency in other equilibria
is more demanding, and we show how it is precisely characterized by cycles in
the network.
Second, we analyze the most cost efficient way to inject capital into banks

so as to avoid defaults and associated deadweight losses. Injecting capital into
a bank has consequences beyond the bank itself: by paying back its obligations
to others, it can bring some of its counterparties closer to solvency and lower
the cost of bailing them out, or even bring them back to solvency and trigger

6 Defaults involve substantial deadweight costs, including fire sales, early termination of contracts, administrative
costs of government bailouts, and legal costs, among others. Estimates of bankruptcy recovery rates can be below
60%, and even worse in a crisis. See, for example, Branch (2002), Acharya, Bharath, and Srinivasan (2007), and
Davydenko, Strebulaev, and Zhao (2012).

7 Eisenberg and Noe (2001) and most of the ensuing research assume that all payments are cleared simultaneously,
circumventing this problem. A notable exception is Csóka and Jean-Jacques Herings (2018), who show that most
decentralized clearing processes yield the lowest equilibrium for bank values, providing additional motivation
for our analysis. Although not explicit in our model, timing on payments can lead to self-fulfilling defaults: for
example if bank A must pay bank B first, and then bank B can pay bank C, and then bank C can pay bank A, but
bank A cannot make the payments until it receives the payment from bank C. We abstract from timing details in
the model given the complexity of our analysis, but they offer another interpretation.

8 The insights and main results extend when there are partial payments (a fortiori), but this case provides the most
direct intuition.

2019

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/37/7/2017/7511864 by guest on 20 June 2024



The Review of Financial Studies / v 37 n 7 2024

a repayment cascade. We show that these indirect-bailout values are critical to
understanding the minimal injections of capital needed to ensuring systemic
solvency. Building on our analysis of equilibrium multiplicity, we identify the
minimum bailout payments needed to ensure that all banks are solvent in any
given equilibrium.
The minimum bailouts to ensure systemic solvency in the best equilibrium

do not depend on the specific network structure, and only require bringing
each bank’s portfolio into balance. In contrast, the minimum bailouts ensuring
systemic solvency in any other equilibrium depend on the details of the network
structure, as they require injecting enough capital so as to clear whichever self-
fulfilling cycles are defaulting in that equilibrium. Characterizing theminimum
bailouts needed to ensure solvency in a nonbest equilibrium is thus much more
complex. In fact, we prove that it is a strongly NP-hard problem, which implies
that there are no known practical algorithms for finding approximate solutions,
evenwith relatively small numbers of banks. Part of the complexity comes from
the fact that the amount of capital the regulator has to inject in a bank to make
it solvent depends on who else is already solvent in the network—in short, the
order of bailouts matters, and every bank’s balance sheet can change with each
sequence of bailouts. Hence the number of bailout policies to consider is of the
order of n!, where n is the number of banks, and so it is already in the trillions
with just 15 banks and beyond 1018 with 20 banks, and so an exhaustive search
for the optimal policy gets infeasible very quickly.
Despite this complexity, our analysis provides intuitive insights about

optimal bailouts. In particular, indirect bailouts are part of an optimal policy:
when considering the bailout of a particular bank, instead of injecting capital
directly into it, it is often cheaper to inject smaller amounts into banks that
owe that bank money, leveraging those banks’ capital. This can be seen as
an explanation of the AIG bailout in 2008, which some argue was an indirect
bailout of Goldman Sachs and others (Bernard, Capponi, and Stiglitz 2022).9

Building on this intuition, we propose a simple algorithm that bails out banks in
decreasing order of their indirect bailout value to bailout cost ratio. Even though
this algorithm is not always optimal, we show that it guarantees systemic
solvency at a total cost that never exceeds half of the total overall shortfall.
We then consider some prominent network structures under which there

are simpler and intuitive optimal bailout policies that prevent self-fulfilling
defaults and freezes. A key example is a star network in which a core bank
is linked to peripheral banks. Since only the core bank lies on several cycles,
finding the optimal bailout policy is a more tractable problem—specifically, it
is onlyweaklyNP-hard and collapses to what is known as a Knapsack problem.
We show that it is always cheaper to start by bailing out peripheral banks as
opposed to targeting the core bank directly, as it allows the regulator to leverage

9 Roughly, one could view AIG as a peripheral node as it was mainly selling insurance and so was a major debtor
rather than creditor, whereas Goldman Sachs is a core dealer and was a major creditor of AIG.
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peripheral banks’ capital buffers.10 This again highlights the value of indirect
bailouts, and we show how some simple bailout algorithms work well in this
setting.
We then discuss more general core-periphery networks, in which a similar

intuition also holds: if peripheral banks are “small” relative to core banks, then
it is always optimal to start by bailing out the periphery. However, finding
the overall optimal bailout policy remains strongly NP-hard, as core banks are
densely connected and lie onmany overlapping cycles. Thus, althoughwe show
that finding optimal bailouts is computationally challenging, we also show that
there are many settings in which parts of the problem can be solved efficiently,
while other parts cannot. Regardless, the indirect bailout values are important
to understand and can improve over more naive bailout policies.
Finally, we use numerical simulations to compare the performance of various

bailout policies in a broader class of core-periphery networks. In line with our
analytical results, we show that policies that target peripheral banks first more
generally outperform those that target core banks directly. This is particularly
true when peripheral banks have assets of intermediate size. Furthermore, we
show that “naive” bailout policies perform particularly poorly compared to
more sophisticated ones when there are large asymmetries among core banks.
Overall, our results also identify the precise benefit of canceling

out cycles of claims—what has become known as “payment netting”
(Kahn and Roberds 1998; Martin and McAndrews 2008) and “portfolio com-
pression” (D’Errico and Roukny 2021; Schuldenzucker and Seuken 2019)—
and we end the paper with a discussion of such netting techniques.
Our model builds on the literature that followed the interbank lending

network model of Eisenberg and Noe (2001). They introduce the notion of a
clearing vector, which specifies mutually consistent repayments on interbank
loans for all banks in the network, and show that it is generically unique.
Others have pointed out that the nonnegligible failure costs that banks incur
whenever they are insolvent facilitate the existence ofmultiple clearing vectors,
and hence of multiple equilibrium for banks’ values (Rogers and Veraart
2013; Elliott, Golub, and Jackson 2014)). This multiplicity comes from the
discontinuous drop in a bank’s value at default, which can create self-fulfilling
combinations of defaults.11 This multiplicity has not been examined in any
detail, and instead previous studies restrict attention to equilibrium repayments
that lead to the least number of defaults.
One of the only papers that emphasizes the multiplicity of clearing vectors,

and hence of equilibrium values for banks, is Roukny, Battiston, and Stiglitz

10 Note how considering the network structure yields different insights from the literature on optimal bailout
policies when banks are heterogenous. In the latter, it can make sense to bail out stronger banks first as they
are closer to solvency (see, e.g., Choi 2014), but this overlooks the indirect value of bailouts.

11 This source of equilibrium multiplicity differs from bank runs à la Diamond and Dybvig (1983). Here, it stems
from reduced payments due to failure costs that become self-fulfilling, and not from the strategic behavior of
agents who, anticipating a bank’s failure, claim their assets and bring it to insolvency.
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(2018). However, the main focus of their paper differs from ours: they show
how equilibrium multiplicity makes assessing systemic risk harder, as it
means some defaults are indeterminate, and propose a method to measure this
source of uncertainty. We give a new and full characterization of equilibrium
multiplicity, which we then use to analyze and develop optimal bailout policies.
Our analysis of optimal bailouts relates to Demange (2016), who charac-

terizes the optimal cash injection policy in a network of interbank lending.
She defines an institution’s threat index as the marginal impact of an increase
in its direct asset holdings on total debt repayments in the system, assuming
the policy does not change the set of defaulting banks. Hence a bank’s threat
index captures its marginal social value of liquidity. In this paper, we instead
examine how much of an injection is needed to change and avoid defaults in
any equilibrium, show how complex that problem is, and offer insights into
solving it.12

Several papers highlight various distortions induced by bailouts in financial
networks. Erol (2019) shows that public bailouts affect banks’ choice of coun-
terparty, and hence the equilibrium structure of the financial network. Leitner
(2005) and Kanik (2019) study how linkages between banks can incentivize
private sector bailouts, whereby solvent banks bail out insolvent ones, and
how this depends on the network structure. Bernard, Capponi, and Stiglitz
(2022) analyze the interplay between public bailouts and private bail-ins.
Capponi, Corell, and Stiglitz (2022) investigate how debt-financed bailouts
increase the risk premiums on sovereign debt, and hence depress the balance
sheets of the very banks the regulator was trying to save, generating a doom
loop. Our paper is orthogonal to this literature, as we examine the structure and
complexity of bailouts ex post rather than their external effects on decisions that
are made by banks ex ante.
Finally, the literature on unique implementation in games with strategic

complementarities (e.g., Segal 2003; Winter 2004) is worth noting. Following
Eisenberg and Noe (2001), we do not model interbank repayments as a game
but simply presume that banks repay as much of their debts as they can. An
equivalent formulation would allow banks to choose how much to repay each
other, with payoffs such that banks prefer paying debts when they can. The
induced gamewould feature strategic complementarities—Bank i can pay back
(weakly) more of its liabilities if others do so as well—and be prone to multiple
equilibria. The optimal bailouts preventing defaults in the worst equilibrium are
then the minimal transfers ensuring banks coordinate on the best equilibrium.
This is in the spirit of that strand of the literature on unique implementation,
which looks for mechanisms that coordinate agents on the best equilibrium in
the eyes of the designer.

12 Since the first writing of this paper, others have also analyzed the complexity of bailouts
(Egressy and Wattenhofer 2021; Klages-Mundt and Minca 2022). They focus on the best equilibrium and
consider other objective functions, more in line with our discussion in Section 6.2 than with our main analysis.
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1. A Model of Financial Interdependencies

1.1 Financial institutions and their portfolios
Consider a set N ={0,1,...,n} of organizations involved in the network. We
treat {1,...,n} as the financial organizations, or “banks” for simplicity in
terminology. These should be interpreted as a broad variety of financial
organizations, including banks, venture capital funds, broker-dealers, central
counterparties (CCPs), insurance companies, and many other sorts of shadow
banks that have substantial financial exposures on both sides of their balance
sheets. These are organizations that can issue as well as hold debt.
We lump all other actors into node 0 as these are entities that either hold debt

in the financial organizations (for instance private investors and depositors) or
borrow from the financial organizations (for instance, most private and public
companies), but not both. Their balance sheets may be of interest as well, as the
defaults on mortgages or other loans could be important triggers of a financial
crisis. The important part about the actors in node 0 is that, although they may
be the initial trigger and/or the ultimate bearers of the costs of a financial crisis,
they are not the dominoes, becoming insolvent and defaulting on payments as
a result of defaults on their assets. In aggregate, debt may appear to both go in
and out of node 0, but none of the individual private investors that composes
node 0 has debt coming both in and out.13

Bank portfolios comprise investments in assets outside the system as well as
financial contracts within the system. Investments in primitive assets involve
some initial investment of capital and then pay off some cash flows over time,
often randomly, for instance, government securities, asset backed securities,
corporate and private loans, mortgages. This is part of a bank’s capital. We let
pi denote the current total market value of i’s investments in those assets and
p=(pi)i denote the associated vector. (Analogous bold notation is used for all
vectors and matrices.)
The book values of banks in the network are based not only on the capital in

these outside investments but also on assets from and liabilities to others in the
financial system. In this paper, we restrict attention to interbank debt contracts,
but the model extends to allow for other types of financial contracts between
banks.14 A debt contract between a creditor i and a debtor j is characterized
by its face value Dij . As a bank cannot have a debt on itself, we set Dii =0
for all i. Let D the matrix whose (i,j )-th entry is equal to Dij , and denote a

13 Of course, this is an approximation and there is a spectrum that involves a lot of gray area. For instance, Harvard
University invests tens of billions of dollars, including making large loans. At the same time it borrows money
and has issued debt of more than $5 billion. It is far from being a bank, but still has incoming and outgoing debt
and other obligations. This is true of many large businesses, and all those that could become dominoes should
be included in {1,...,n}. It is not so important for us to draw an arbitrary line through this gray area to make our
points. Nonetheless, this is something a regulator does have to take a stand on when trying to address systemic
risk, and in practice may even be dictated by jurisdictional rules.

14 See Appendix B.6 in the Internet Appendix for an extension of the model and results when banks also hold equity
claims on each other.
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bank’s total nominal debt assets and liabilities by, respectively, DA
i ≡∑

j Dij

and DL
i ≡∑

j Dji .

1.1.1 The weighted directed network. The financial network generated by
interbank lending contracts is thus represented by a weighted directed graph
on N , where a directed edge pointing from bank i to bank j means i has a debt
liability toward j with a weight of Dji , so edges point from the debtor to the
creditor.
A directed path in the network from i to j is a sequence of banks i0,...iK ,

for some K ≥2 such that: i0 = i and iK =j and Di�+1i� >0 for each �<K . Thus
a directed path is such that i owes a debt to some bank, which owes a debt to
another bank, and so forth, until j is reached.
A dependency cycle, or cycle for short, is a directed cycle in the network

which is a sequence of banks i0,...iK , for some K ≥2 such that: i0 = iK and
Di�+1i� >0 for each �<K . A directed cycle is simple if i0 is the only bank
repeated in the sequence.
Given that node 0 comprises entities that cannot be involved in cycles, to

avoid confusion with the network of debts, we set Di0 =0 for all i, and any
debts owed from outside of the network of banks are instead recorded in pi .
Outsiders can still default on a payment to a bank, but that is captured in a lower
value of pi .

1.2 Defaults and equilibrium values of banks
A main object of interest in this paper is a bank’s book value Vi . Following
Eisenberg and Noe (2001), we focus on bank values ex post, taking as given
their exposures to each other and realized portfolios. We first need to introduce
defaults and their associated costs, before characterizing bank values.
If the value of bank i’s assets falls below the value of its liabilities, the

bank is said to fail and incurs failure costs βi(V,p)≥0. These costs capture the
fact that the value of a bank’s balance sheet can be discontinuously depressed
upon insolvency, for instance because of direct costs of bankruptcy: legal and
auditors’ fees, fire sales, premature withdrawals, or other losses associated with
halted or decreased operations.
In our setting, βi can also capture some indirect costs: it is not necessary

that the bank declares bankruptcy, but simply that its insolvency causes it to
renegotiate its contracts or delay payments, leading to a freeze and imposing
costs on it and its creditors. Such failure costs can depend on the degree to
which i and others are insolvent as well as the value of their portfolios. Hence
we allow these costs to depend on the vector of bank values V and returns on
outside investments p.15

15 We have reduced the portfolios to only track their total value, but in practice the failure costs incurred could
depend on detailed information about the composition of the bank’s portfolio as well as the portfolios of others.
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With the possibility of default, the realized debt payment from a bank j to
one of its creditors i depends on the value of Vj , and thus its solution depends
ultimately on the full vector V. To make these interdependencies explicit, let
dij (V) denote the amount of debt that bank j actually pays back to i.

There are two regimes. If bank j remains solvent, it can repay its creditors
in full, and then for all i

dij (V)=Dij .

If instead j defaults, then debt holders become the residual claimants, and are
rationed proportionally to their claim on j :

dij (V)=
Dij∑
hDhj

max
(
pj +dA

j (V)−βj (V,p),0
)
, (1)

with dA
j (V)=

∑
i dji(V).

It is useful to introduce notation for a bank’s realized failure costs, bi (V,p),
which are 0 if the bank remains solvent and equal to βi (V,p) if it defaults:16

bi (V,p)=

{
0 if pi +dA

i (V)≥DL
i

βi (V,p) if pi +dA
i (V)<DL

i .
(2)

We add conditions on failure costs to avoid the possibility that these costs
per se, and not the reduced payments they imply, induce multiple equilibria
for bank values. The key assumption is that failure costs cannot increase faster
than the value of a bank’s assets. In particular, we assume that dA

i (V)−βi(V,p)
is nondecreasing in V.
Note also that we have carefully written failure costs bi (V,p) as a function

of how a bank’s assets pi +dA
i (V) compare to its liabilities DL

i , instead of as a
function of Vi directly. This avoids having defaults or freezes driven solely by
the anticipation of failure costs, even when a bank has more than enough assets,
even cash on hand, to cover its liabilities. Such a self-fulfilling default would
go beyond a bank run, since it would not be due to the bank not having enough
cash on hand to pay its debts. It would instead be due to self-fulfilling failure
costs with no interaction with the financial network or portfolio values. We rule
this out as it is a different issue than that explored in this paper. However, as
noted above, we do allow realized failure costs βi (V,p) to depend on the value
of other banks; for example a bank can incur higher costs upon default if others
are defaulting as well, because of fire sales. Such a dependency is important as
it can worsen contagion, and we include it in our analysis.
A canonical example of admissible failure costs corresponds to the case in

which
βi(V,p)=b+a

[
pi +dA

i (V)
]

(3)

16 This allows us to use the same notation for solvent and insolvent banks, and makes equilibrium bank values
easier to write down.
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with b≥0 and a∈ [0,1].17 In that case, failure costs comprise some fixed
amount (e.g., legal costs), as well as some share of the value of the bank’s
assets. This is a reasonable assumption if, for instance, the bank only recovers
some fraction of its assets upon sale (e.g., because of a markdown on a fire sale
of its assets) or has a portion of its legal costs that scales with the size of the
enterprise.18

It can be that failure costs exceed the value of the defaulting bank’s assets;
e.g., if b is large enough in the above example. These excess costs should be
interpreted as real costs, for instance, debts or legal costs that are never paid,
capital or labor that are idled, etc., which can be incurred by the bank itself if
it does not act under limited liability, or by the government or agents outside
of the network (so node 0 in our framework). What matters for our analysis is
not whether failure costs can exceed the bank’s assets, but that they crowd out
some of the debt repayments to creditors.
Failure costs are imposed on banks’ balance sheets directly, and so the book

value of a bank i is

Vi =pi +dA
i (V)−DL

i −bi(V,p), (4)

where bi(V,p) is defined by (2) and dA
i (V) by (1) whenever there are some

defaults. In matrix notation:

V=p+dA(V)−DL−b(V,p). (5)

A vector of bank valuesV is an equilibrium if it is a solution to Equation (5).
These are banks’ equilibrium values (ex post), at the time of settlement, once
returns and defaults are realized. Any shock to outside investments is already
realized, observed, and encoded into p. Equilibrium values can be negative if a
bank’s liabilities exceed the value of its assets. These can then be interpreted as
“hypothetical” values and not the values to the (limited liability) owners. If a
bank i is solvent, then its value coincides withVi . However, if its “hypothetical”
value Vi is negative then i defaults, and its equity value is zero. The extra
negative value means that a bank’s assets are not enough to cover its liabilities,
and hence that some debt payments are not made in full. Coupled with failure
costs, there are deadweight losses in the economy.

17 If b=0, these failure costs are similar to the ones considered in Rogers and Veraart (2013), who also observe that
costs of default can generate equilibrium multiplicity. They, however, do not study which network structures
generate multiple equilibria or how to prevent such multiplicity, and instead restrict attention to the best
equilibrium to study rescue consortia (see the discussion in Kanik 2019).

18 Some estimates of marginal bankruptcy costs are around 20% or 30% of the value of a bank’s assets (e.g.,
Davydenko, Strebulaev, and Zhao 2012), suggesting a should be in that range, and some estimates are larger
(Branch 2002; Acharya, Bharath, and Srinivasan 2007), particularly in times of a financial crisis. Fixed costs
associated with bankruptcies are harder to estimate, but are presumably strictly positive given the structure of
legal and accounting costs, as well as the fact that marginal cost estimates are much lower than overall costs.
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2. Multiplicity of Bank Values and Self-Fulfilling Defaults

Although the possibility of multiple equilibria for bank values in financial
networks is well-known, the conditions under which they exist and their
implications are not. In this section we characterize when there exists a
multiplicity. We also derive necessary and sufficient conditions on portfolio
values for all banks to be solvent, which depend on the equilibrium being
considered.
All of the definitions that follow are relative to some specification of p,D,

and we omit its mention.

2.1 The multiplicity of equilibrium values
Because the value of a bank is weakly increasing in others’ values, there always
exists a solution to Equation (5). Furthermore, there can exist multiple solutions
given the interdependence in values, and in fact, the set of equilibrium values
forms a complete lattice.19 Thus, there exists a “best” as well as a “worst”
equilibrium, in which bank values hit an overall maximum and minimum,
respectively. The set of defaulting banks is hence the largest in the worst
equilibrium, and the smallest in the best.
The following algorithm converges to the best equilibrium. Start from bank

values V0 that are at least as high as the best equilibrium values (e.g., V0 =
p+DA) and then compute

V1 =p+dA(V0)−DL−b(V0,p).

If any values are negative, the associated banks default and the values are
computed again accordingly. Iterating this process yields the best equilibrium.
The worst equilibrium can be found using a similar algorithm, but starting from
values that must lie below the worst equilibrium values (e.g., p−DL−b, where
b is a cap on how large failure costs can be).
Figure 1 provides a simple example, for which we compute bank values

using these two algorithms (see Section B.1 of the Internet Appendix for an
example with three different equilibria for bank values). Suppose p1 =1, p2 =
p3 =0, and βi(V,p)=0.5[pi +dA

i (V)] for i =1,2,3. So a bank loses half of the
value of its assets upon default. Let us first derive the best equilibrium for
bank values using the above algorithm. We initiate at V0 =p+DA=(2,2,1).
Since V0≥0, no failure costs are incurred b(V0,p)=0 and all debts are repaid
dA(V0)=DA. Then V1 =(1,0,0). Since V1≥0 the algorithm stops, and bank
values in the best equilibrium are V=(1,0,0).

We now derive the worst equilibrium for bank values. Note that failure costs
cannot be greater than b=0.5[p+DA]. We hence initiate the algorithm at V0 =
p−DL−b=(−1,−3,−1.5). Sincep1+dA

1 (V
0)≥p1 =DL

1 , it has to be that bank

19 This can be seen by an application of Tarski’s fixed point theorem, since banks’ values depend monotonically
on each other. They are bounded above by the maximum values of banks’ assets p+DA.
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Figure 1
An example of equilibrium multiplicity. Arrows point in the direction that debt is owed, that is, from
debtors to creditors.

1 does not default: b1(V0,p)=0 and d21(V0)=D21. Debt repayments for bank
2 and 3 solve⎧⎨
⎩

d23(V0)= D23
DL
3
0.5[p3+D31+d32(V0)]=0.5d32(V0)

d32(V0)= D32
DL
2
0.5[p2+D21+d23(V0)]=0.25[1+d23(V0)]

⇐⇒
{

d23(V0)= 1
7

d32(V0)= 2
7

.

Hence, dA(V0)=
(
2
7 ,

8
7 ,

2
7

)
, and V1 =p+dA(V0)−DL−b(V0,p)=

(
2
7 ,− 10

7 ,− 6
7

)
.

Since no new solvencies are induced—indeed pi +dA
i (V

1)<DL
i for i =2,3—

the algorithm stops, and bank values in the worst equilibrium are V=(
2
7 ,− 10

7 ,− 6
7

)
.

When there are multiple equilibria, any equilibrium other than the best
equilibrium must involve cycles of defaults that could have been avoided:
these are defaults that are triggered either by pessimistic beliefs about the
balance-sheets of others—valuing their debt at a low value—which become
self-fulfilling, or by a liquidity freeze in which debts are not paid in and thus not
paid out. These avoidable defaults are essentially coordination failures: cycles
of banks could have written-off (some) of their counterparties’ debt so as to
avoid at least some of the defaults and associated costs. Given that financial
markets are prone to runs and freezes, understanding when such self-fulfilling
cascades exist is of practical importance.
The following proposition highlights how equilibrium multiplicity depends

on the presence of cycles of liabilities, combined with failure costs.

Proposition 1. For each i, let the failure costs βi(·,p) depend only on i’s
value Vi and the values Vj of banks j on which i has a (potentially indirect)
debt claim, and be a contraction as a function of Vi (e.g., the canonical failure
costs in (3)).

(i) If there is no dependency cycle, then the worst and best (and thus all)
equilibria coincide.

(ii) Conversely, if there is a dependency cycle, then there exist failure
costs (satisfying the above conditions) and values of bank investment
portfolios p such that the best and worst equilibria differ.

(iii) Additional defaults that occur in a nonbest equilibrium must involve at
least one dependency cycle in which all banks default and include some
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banks defaulting in the nonbest, but not the best equilibrium. In addition,
other newly defaulting banks not on such dependency cycles, must lie on
outgoing paths from such dependency cycles in which all banks along the
paths default.20

We are not the first to notice that cycles are necessary to generate
multiple equilibria, as they are required for self-fulfilling feedbacks (see, e.g.,
Elliott, Golub, and Jackson 2014; Roukny, Battiston, and Stiglitz 2018), and a
similar intuition is at play here and underlies part (i). Proposition 1 however
goes beyond that as it proves that cycles are also sufficient (in that they always
enable equilibrium multiplicity for some realizations of portfolios and failure
costs, part (ii)), and it highlights the general structure of the set of equilibria
(part iii). This last observation is particularly useful, as even though there is
a lattice of equilibria, figuring out what those equilibria are could be quite
complex. This result ensures that one can find all equilibria by examining
combinations of cycles, which can greatly simplify the calculations.
Although proving part (i) is straightforward, proving part (ii) requires finding

returns p and failure costs βi(·,p) that generate multiple equilibria. The specific
failure costs we use in the proof are βi(V,p)=a(pi +dA

i (V)) for a above some
threshold; that is, a bank loses a fraction of its assets when defaulting. Hence,
we do not need to construct costs that depend on other banks’ values to generate
multiplicity: it is enough for them to only depend on the value of the defaulting
bank’s assets. It is also not necessary for banks to lose the entirety of their assets
(a=1) for the multiplicity to arise, though we assume they do in our analysis
of minimum bailouts for the sake of transparency.
Part (iii) is intuitive, but is important to state as it is very helpful in

calculating equilibria.21 Essentially, beyond the best equilibrium, all other
equilibria involve self-fulfilling cycles of defaults; and this can focus the search
for equilibria. Those cycles can also lead to additional casualties that are
on outward paths from an originally defaulting bank or an additional cycle,
but the equilibria must be based on some dependency cycles. Not just any
combination of dependency cycles will work (some banks might be strong
enough to never default), but each equilibriummust differ from other equilibria
by the inclusion/exclusion of at least one cycle.
With the restriction that failure costs can only depend on a bank’s direct and

indirect neighbors, the feedback that leads to multiple equilibria can only occur
through a dependency cycle (Proposition 1 (i)). If instead, the costs incurred
by bank i upon default are larger if j defaults as well, even though i has no

20 It is possible that the new defaults on an additional dependency cycle lead banks that defaulted in the best
equilibrium to payout even less than in the best equilibrium, which can mean that the outward paths involve
originally defaulting banks, as well as possibly some new ones.

21 Even in problems with complementarities and a complete lattice of equilibria, finding all equilibria can be very
challenging (for an algorithm, see Echenique 2007).
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Figure 2
An example of indirect cycles.

network path to j , then failure costs themselves can generate “indirect” cycles.
For example, if fire sales change bank values, then i’s value could depend on
whether j becomes insolvent even if i is not path-connected to j in the network
of debts. It is then possible to have multiple equilibria for bank values even
in the absence of any cycle in the network of debt. The following example,
depicted in Figure 2, illustrates this.
Suppose Bank 2 and Bank 1’s outside investments yield p2 =1−ε and

p1 =1, respectively. Since Bank 2 has no other assets, it must default in any
equilibrium. Bank 1’s outside investments are not quite enough to pay back
its liabilities, but a small repayment from Bank 2 would be enough to ensure
its solvency. Suppose Bank 2’s failure costs are small if Bank 1 is solvent,
β2(V,p)=ε1{V1≥0}, but large if it is not, β2(V,p)=1{V1<0}. There exist two
equilibria despite the absence of cycles in the network. In the first equilibrium,
Bank 1 remains solvent and Bank 2 incurs a small cost, and thus repays
D12(V)=1−2ε to Bank 1 (which then indeed has enough assets to be solvent).
In the second equilibrium, Bank 1 defaults and Bank 2 incurs a large cost and
repays nothing to Bank 1.
One can extend Proposition 1 to take into account such fire-sale cycles

that arise under more general failure costs. To do so, the network must be
augmented to account for all the ways a bank’s value can influence others’.
That is, it must feature an edge from bank i to j whenever j ’s failure costs
βj (·,p) vary with i’s value Vi , even if i has no obligation to j . If that augmented
network has no cycles, then there exists a unique equilibrium for bank values.
Otherwise, fire sales can generate equilibrium multiplicity even in the absence
of cycles of liabilities, as illustrated above.
For the remainder of the paper, we analyze the extreme but illuminating case

in which even if a bank has some money coming in it cannot use that money
to pay some of its debt until it is fully solvent. In particular, we assume “Full
Bankruptcy Costs:”

βi(V,p)=pi +dA
i (V) for each bank i.

Under this specification for failure costs, the worst equilibrium for bank
values arises whenever we take the timing of payments seriously. Indeed, the
algorithm that finds theworst equilibrium starts by assuming everyone defaults,
which here means that no one makes any debt payments. The only solvent
banks are then those that are able to make their payments out even without
receiving any payments in. This first wave of payments might enable other
banks to meet their obligations, etc, and iterating on this yields the worst
equilibrium for bank values. Hence this assumption applies in practice when
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insolvency leads to delays in payments, which can lead to cascading delays and
cycles, and thus at least to a temporary freeze.
These failure costs make solvency more demanding: the set of defaulting

banks can be strictly larger under this rule than when partial repayments
are allowed. Nonetheless, this case provides the basic intuitions and insights
without cluttering the calculations with partial payments. Some of our results
do not rely on this assumption, and in particular results from Section 3 on the
complexity of bailouts, which only require failure costs to be strictly positive.
Our characterizations of systemic solvency and of the optimal bailout policy in
some specific networks do leverage this assumption, and are more complicated
to state without it, even though the underlying intuitions remain.

2.2 A characterization of systemic solvency
Proposition 1 shows that cycles of debts are vital to the existence of multiple
equilibria, and that such multiplicity means the defaults of some banks can be
self-fulfilling. In this section, we investigate inmore detail which banks default,
and how it depends on the equilibrium being considered.We give necessary and
sufficient conditions on portfolio values for all banks to be solvent, which we
call systemic solvency.

2.2.1 Balance conditions. To characterize solvency, and minimal bailouts, it
is useful to define the following balance conditions.
We say that a bank i is weakly balanced if

pi +DA
i ≥DL

i ,

and that the network is weakly balanced if this holds for all i.
Weak balance requires that a bank’s assets are enough to cover its debt

liabilities, presuming its incoming debt assets are all fully valued. A network
being weakly balanced is sufficient for all banks to be solvent in the best
equilibrium. This follows since, if all banks but i honor their debt contracts,
then i can also pay back its debt fully in aweakly balanced network. Essentially,
all debts can be canceled out, regardless of the network structure. Things are
different in the worst equilibrium, as we know from Proposition 1.
We say that a bank i is exactly balanced if

pi +DA
i =DL

i ,

and that the network is exactly balanced if this holds for all i. An exactly
balanced bank has no capital buffer: its assets, if fully valued, are exactly
enough to cover its liabilities. Exact balance is a much stronger condition than
weak balance, but is very useful as a benchmark condition in characterizing
optimal bailouts, as we shall see.
We say that a bank i is critically balanced if it is weakly balanced and for

each j for which Dij >0,

pi +DA
i −Dij <DL

i .

The network is critically balanced if this holds for all i.
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Critical balance is a special case of weak balance which includes exact
balance as a special case, but is not as restrictive and is useful as a benchmark
condition in characterizing optimal bailouts. It implies that not receiving any
one of its incoming debt payments is enough to make a bank insolvent.

2.2.2 Characterizing systemic solvency. When there exist cycles of debt,
by Proposition 1, the best and worst equilibria can differ. We now fully
characterize when these cycles fail to clear.
Determining whether cycles clear at a given vector of portfolio values p

involves an iterative definition of solvency, since a bank being solvent can affect
the solvency of other banks.
We say that a bank i is unilaterally solvent if pi ≥DL

i . This means that
regardless of whether any of the other banks pay the debts that they owe to i, i
is still able to cover its liabilities.
A set of banks S is iteratively strongly solvent if it is the union of sets S =

S1∪···SK , such that banks in S1 are unilaterally solvent; and then banks in any
Sk for k∈{2,...,K} are solvent whenever they receive the debts from all banks
in sets S1,...Sk−1:

pi +
∑

j∈S1∪···Sk−1

Dij ≥ DL
i .

Note that if N is iteratively strongly solvent, then all banks are solvent in the
worst equilibrium. Proposition 2 provides weaker conditions that are necessary
and sufficient for systemic solvency. This then provides a base to understand
optimal bailout policies.

Proposition 2.
All banks are solvent in the best equilibrium if and only if the network is

weakly balanced.
All banks are solvent in the worst equilibrium if and only if the network

is weakly balanced and there exists an iteratively strongly solvent set that
intersects each directed (simple) cycle.22

An implication of Proposition 2 is that in a weakly balanced network, if there
is an iteratively strongly solvent set that intersects each cycle, then that implies
that the whole set of banks is iteratively strongly solvent. This is the crux of
the proof.
The proposition is less obvious than it appears since an insolvent bank can

lie on several cycles at once, and could need all of its incoming debts to be paid
before it can pay any out. Solvent banks on different cycles could lie at different

22 A simple cycle is such that the only repeated bank is the starting/ending bank. Note that something intersects each
cycle if and only if it intersects each simple cycle, and so the statement is correct whether or not it is restricted
to simple cycles.
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Figure 3
Arrows point in the direction that debt is owed. Letp1 =p2 =p3 =0.2, p4 =p5 =1, and p6 =p7 =p8 =p9 =0.5.
The only iteratively strongly solvent set is {{5},{4},{3},{2},{1}}.

distances from an insolvent bank, and showing that each bank eventually gets
all of its incoming debts paid before paying any of its outgoing debts is subtle.
The proof is based on how directed simple cycles must work in a weakly
balanced network and appears in the appendix.
Proposition 2 is useful for at least two reasons. First, it highlights the

structure of the set of equilibria, which is very useful in our analysis of optimal
bailouts. Second, it gives necessary and sufficient conditions to find the worst
(and other) equilibria that are easier to check than preexisting algorithms.
Figure 3 illustrates this.
As all banks have as much debt in as out, they are weakly balanced and

hence all solvent in the best equilibrium. Identifying which banks default in
the worst equilibrium requires checking the iterative condition. Bank 5 is the
only unilaterally solvent bank. Its solvency ensures the solvency of Bank 4, and
so there is at least an iteratively strongly solvent set intersecting the left and
middle cycles. However, Bank 4 paying back its debt is not enough to make
Bank 6 solvent, and so we can stop the iteration there: no iteratively strongly
solvent set intersects the right cycle, and all banks on that cycle must default in
the worst equilibrium. Interestingly, this is faster than checking that the entire
set of banks forms an iteratively strongly solvent set, as we can stop checking
banks’ solvencies once we have reached key banks that lie at the intersection of
multiple cycles (here Banks 4 and 6). It is also faster than algorithms that have
been developed to find Nash equilibria of games with strategic complements.23

The worst equilibrium is usually found by iterating on best-responses starting
from the lowest strategies for all agents (see Echenique 2007, and references
therein), which in our setting boils down to checking whether the whole set of
banks is iteratively strongly solvent.
Proposition 2 also implies that if both conditions are satisfied, then there is

a unique equilibrium. Conversely, if the network is weakly balanced but there
is no iteratively strongly solvent set intersecting every cycle, then there are
necessarily multiple equilibria. Thus, in a weakly balanced network, there is a

23 Equilibrium values for banks correspond to Nash equilibrium outcomes of an auxiliary game in which banks
choose whether or not to be solvent (si =1 or si =0), and the best responses are si =1 ⇐⇒ pi +

∑
j Dij sj ≥DL

i
.

2033

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/37/7/2017/7511864 by guest on 20 June 2024



The Review of Financial Studies / v 37 n 7 2024

unique equilibrium if and only if there exists an iteratively strongly solvent set
that intersects each directed (simple) cycle.
Clearly, without some unilaterally solvent banks, having an iteratively

solvent set is precluded, and all banks must default in the worst equilibrium.
This is not directly implied by Proposition 2, but still follows from the
reasoning behind it. To see why this is true, recall the algorithm introduced
in Section 2.1 to find the worst equilibrium. The algorithm initiates at values
V0 that lie below the worst equilibrium values; e.g., V0 =−DL. Since we here
consider full failure costs, dA(V0)=0 and b(V0,p)=(dA(V0)+p)1{dA(V0)+
p<DL}=p1{p<DL}. That is, if we start from the pessimistic assumption that
all banks are insolvent, then they get no repayments from their debtors. Thus
a bank is solvent in the following step of the algorithm if and only if pi ≥DL

i ,
that is if and only if it is unilaterally solvent. If no bank is unilaterally solvent,
the algorithm stops: assuming that all banks are insolvent is self-fulfilling.

A sufficient condition for iterative solvency. One way to ensure having an
iteratively strongly solvent set intersecting each directed cycle is to have at least
one unilaterally solvent bank on each cycle, but this is not always necessary,
and so the iterative solvency condition is important. Nonetheless, an extended
version of unilateral solvency is both necessary and sufficient whenever the
banks that lie on multiple (simple) cycles are critically balanced.
Let us say that a cycle is maximal if there is no larger cycle containing all

the banks in the original cycle.

Corollary 1. If all banks that lie on multiple (simple) cycles are critically
balanced, then all banks are solvent in the worst equilibrium if and only if
the network is weakly balanced and every (simple) cycle has at least one
unilaterally solvent bank presuming that all debts owed into each maximal
cycle are paid.

An implication of Corollary 1 is that the iterative portion of the iterative
solvency condition only matters when some of the banks that lie at the
intersection of several cycles have capital buffers, so that they only need
some of their incoming debts to be paid before they become solvent and
can make their debt payments. In that case, those banks can be part of a
repayment cascade in which payments in one cycle spread to another. As an
illustration, recall the network depicted in Figure 1. Bank 2 is the only bank at
the intersection of several (simple) cycles and is exactly balanced. In the worst
equilibrium only Bank 1 is solvent, as there is no unilaterally solvent bank on
the right cycle. Suppose instead that p2 =1. Bank 2 now has enough of a capital
buffer so that, even if it gets payments from only one cycle, it can make all of
its payments. All banks are then solvent in the worst equilibrium: though Bank
2 is not unilaterally solvent itself, it has enough buffer so that the debt payment
initiated by Bank 1 cascades and spreads to the right cycle.
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3. Minimum Bailouts Ensuring Solvency in any Given Equilibrium

The results above characterize systemic solvency in the best and worst
equilibria. Next, we leverage these results to deduce the minimum bailouts
needed to return the whole network to solvency whenever there are some
insolvencies. These bailouts are the smallest transfers that avoid all failure costs
and other inefficiencies associated with a dysfunctional financial system, and
are optimal in this sense.24 Minimum bailouts depend on the network structure:
just as losses can cascade and cycle through the network, the same operates in
reverse and well-placed bailouts can have far-reaching consequences.

3.1 The minimum bailout problem
Consider a regulator who can inject capital (t1,...,tn)∈R

n
+ into each bank in

the network, increasing the value of bank i’s balance sheet by ti . The timeline
is as follows:

First, returns on outside investments p are realized. Then, anticipating that
some banks will be insolvent absent intervention at p, the regulator can inject
capital into the network. Importantly, the capital is injected before banks
officially start bankruptcy proceedings, and hence before the associated failure
costs are incurred.
To ensure systemic solvency at minimum cost, the regulator solves

min
(t1,...,tn)∈Rn

+

∑
i

ti (OPT)

s.t. V(p+t)≥0.

Since there can be multiple equilibria for bank values, we need to be precise
about which equilibrium is selected in the constraint of (OPT). For simplicity,
we suppose that the transfers t do not affect the equilibrium selection, although
they conceivably could. Thus, to examine the minimum bailouts preventing
defaults in the best equilibrium, we always select the best equilibrium for bank
values V(p+t) in (OPT). Similarly, if the goal is to prevent defaults in the

24 If anticipated, these bailouts could distort banks’ incentives and lead them to take on more risks ex ante. Such
moral hazard problems are well-studied, and so we do not argue that the regulator should always ensure solvency
ex post. We simply acknowledge the fact that regulators often have to intervene to restore solvency when faced
with a crisis that has a potential for large cascades. This is thus an important problem, and we analyze what is
the most efficient way of doing so.
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worst equilibrium, then optimal bailouts are the minimum transfers such that
all banks are solvent if we select the worst equilibrium for V(p+t).25 Optimal
bailouts are specific to an equilibrium. For instance, it can be that all banks are
solvent in the best equilibrium but some default in the worst. Optimal bailouts
for the best equilibrium are then null t=0 since all banks are already solvent,
but are strictly positive for the worst equilibrium.
We start by noting that Proposition 2 yields a first characterization of such

minimum bailouts for both the best and the worst equilibria, as well as other
equilibria.
The best equilibrium is relatively easy to understand. If the network is not

weakly balanced then some banks must be defaulting, and each bank that is
not weakly balanced needs bailouts to be brought back to solvency. It is thus
necessary and sufficient for each bank i to receive its net imbalance ti =[DL

i −
DA

i −pi]+ (by Proposition 2).
Since the minimum injections of capital that ensure systemic solvency in

the best equilibrium are fully characterized and relatively easy to calculate, for
the remainder of the paper we focus on the additional capital needed to ensure
solvency in other equilibria.
Note that it is weakly optimal for the regulator to start by providing each bank

with its net imbalance [DL
i −DA

i −pi]+, as these payments are necessary for
solvency in all equilibria andmay trigger some repayment cascades. To analyze
minimum bailouts for an equilibrium other than the best, it is then without
loss of generality to restrict attention to the banks that remain insolvent in that
equilibrium once net imbalances have been injected, redefining their portfolio
values to account for these transfers and any debt payments they received from
solvent banks.
Proposition 2 then tells us that the additional payments needed are the

smallest ones that generate an iteratively solvent set of banks that hits each
defaulting cycle.
We first point out that even though (OPT) is written as a simultaneous choice

of payments, t∈R
n
+, it is equivalent to specify an ordered list of banks to

bailout. Indeed, any set of (simultaneous) payments t leads banks to become
solvent in a particular order: first, some banks are made unilaterally solvent
by the payments; then given their induced debt payments and the bailout
payments, some other banks become solvent, and so forth. Reciprocally, any
ordered list of bailouts can be implemented via simultaneous payments by
setting ti precisely equal to i’s shortfall given the payments it gets from already
solvent banks. Hence, just knowing which banks get payments under the

25 More generally, fix any equilibrium ofV(p). Let S the set of solvent banks in that equilibrium absent intervention,
and N \S the set of defaulting banks. To keep the equilibrium selection fixed, V(p+t) is computed by assuming
that banks in S are all solvent, and then finding the maximum set of defaults among the originally defaulting
banks.
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Figure 4
An example where the order of bailouts matters. Let p1 =0, p2 =5, and p3 =1.

optimal bailout policy is not enough to characterize minimum bailouts as the
order in which banks are brought back to solvency matters.
To illustrate this, consider the network depicted in Figure 4, in which all

banks default in the worst equilibrium. Since bank 2 lies on all cycles, bailing
it out ensures systemic solvency and costs DL

2 −p2 =5. This is however not the
optimal policy, as the regulator can significantly reduce the cost of bailing out
bank 2 if it first bails out bank 3. Indeed, bailing out bank 3 costs DL

3 −p3 =
3, and allows for the repayment of its debt to bank 2. Bailing out the latter
then only costs 1. The optimal bailout policy is then t∗=(0,1,3), which can be
equivalently expressed as a sequence of banks that are bailed out {3,2}.
Asmentioned above, the order of bailoutsmatters, because the bailout cost of

remaining banks depends on which banks have already been bailed out. Bailing
out 3 and then 2 costs less than the reverse, and both lead to systemic solvency.

3.2 The computational complexity of finding minimum bailouts
Proposition 2 implies that ensuring systemic solvency in equilibria other than
the best requires that, beyond establishing weak balance, one also needs to
inject enough capital so as to ensure the existence of an iteratively strongly
solvent set intersecting all directed cycles on which banks are insolvent. We
examine this in what follows.
We begin by showing that this problem is computationally complex, using

concepts from the computer science literature. Precisely, we prove that it is
strongly NP-hard. We provide formal definitions of such notions of complexity
in Internet Appendix B.2, but what matters is that every strongly NP-hard
problem has instances for which finding exact or even approximate solutions
involves impractically many calculations (more than polynomially many in the
size of the problem, based on known techniques).

Proposition 3. Finding whether there exists a bailout policy that ensures
systemic solvency and costs no more than some budgeted amount is strongly
NP-hard. Thus, finding a minimum cost bailout policy (OPT) is also strongly
NP-hard.26

26 Checking whether there exists a bailout policy that ensures systemic solvency and costs no more than some
budgeted amount is an “easier” problem than finding a minimum cost policy since knowing an optimal policy
enables one to answer the question of whether it can be done within some budget. Thus, showing that the decision
problem is strongly NP-hard establishes that (OPT) is as well, and working with decision problems is a standard
technique.
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The complexity comes from the fact that some of the capital that a bank needs to
become solvent can come from the debts paid by others, and so it can be cheaper
to first bail out a bank’s debtors rather than bailing it out directly. The number of
possible combinations that could be optimal explodes factorially in the number
of banks. Moreover, given that there are many cycles in interbank networks
there are no obvious starting points and so there are many situations where
it is not obvious how to focus on just a small number of those combinations.
We prove Proposition 3 by showing that for some network structures, finding
whether one can make all banks solvent at no more than a certain cost enables
one to solve the “Largest Minimal Vertex Cover Problem,” which is known to
be strongly NP-hard and hard to even approximate.27

We emphasize, however, that finding the optimal bailout policy is, in more
general networks, even more complicated than the Largest Minimal Vertex
Cover Problem. As banks are bailed out, they repay their debts and change the
balance sheets of each other, thus altering the remaining network of insolvent
banks. This adds another layer of complexity, and means that the number
of bailout policies that the regulator would have to compare absent a better
algorithm is of the order of n!, which very quickly gets too large for any
computer to handle.With just 15 banks the problem already involves trillions of
possible bailout strategies, and with 20 banks more than 1018. Furthermore, as
the order of bailouts matters, (OPT) is not easily expressed as a linear program,
and standard dynamic programming algorithms that have proved effective for
NP-hard problems do not directly extend.28

As discussed above, finding the minimum bailouts ensuring solvency in the
best equilibrium is easy, so the added complexity for nonbest equilibria comes
from the fact that bailouts need to clear all the cycles. Hence the complexity
of the problem does not scale with the number of banks in the network per se,
but with the number of cycles, which can be huge. However, if the network
happens to contain few cycles (e.g., it has a core-periphery structure with a
small core), then theminimumbailout problem remains tractable.We formalize
this intuition in Section B.3 of the Internet Appendix and provide an upper
bound on the number of calculations needed to find the optimal policy that is
exponential in the number of cycles only, but not in the number of banks.

27 Given some undirected graph, a vertex cover is a set of vertices that contains at least one endpoint of all edges
in the graph. A vertex cover is minimal if it is not the superset of another vertex cover. It turns out that, for
some networks, the optimal bailout policy consists in bailing out banks belonging to a minimal vertex cover
of maximum size. Boria, Della Croce, and Paschos (2015) show that, unless P =NP , this problem cannot be
approximated by a polynomial time algorithm within ratio nε−0.5, for any ε>0.

28 This makes the bailout problem an interesting class of problems for further study in complexity. This problem is
strongly NP-complete as it is easy to check whether a given bailout policy costs no more than a certain amount.
Yet it provides an interesting twist on well-studied problems given that combinations of bailouts changes the cost
and value of other bailouts. One can expand the problem to have different values for every ordering, but then the
linear problem has factorially many inputs as a function of n.
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3.3 An upper bound on bailout costs
Even though finding the optimal bailout policy can be complex, we can
provide an upper bound on the total injection of capital that is necessary
to bring the network to solvency. As discussed above, we assume that net
imbalances

∑
i[D

L
i −DA

i −pi]+ have already been injected, so this is a bound
on the additional injections needed to prevent self-fulfilling defaults. We also
provide a simple algorithm that ensures systemic solvency, and leads to total
bailout costs that never exceed this bound. This is helpful since we know from
Proposition 3 that the minimum bailout problem is hard to approximate, and
that no known algorithm performs well.
The algorithm that we propose leverages the idea that bailing out a bank i

has an indirect value: it brings i’s counterparties closer to solvency, or makes
them solvent altogether.29

Define the first-step indirect bailout value of a bank i as
∑

jmin{Dji,(DL
j −

pj −∑
k solventDjk)+}. This captures by how much i’s solvency reduces the

bailout cost of other banks in the network. Indeed, the bailout of bank i induces
a liquidity inflow of Dji into bank j . If this leads to bank j ’s solvency, then
the effective liquidity inflow is only DL

j −pj −∑
k solventDjk , that is, what j

needed to be made solvent. Note that this is a near-sighted measure of indirect
bailout value as it only accounts for a bank’s direct payments, but not for the
fact that i’s solvency can induce the solvency of one of its creditors j , which
then repays its debts, and so forth.We can thus define a kth-step indirect bailout
value of bank i by all the cascades of payments that are induced by the bailout
of i up to k iterations of induced solvencies. We provide formal definitions in
the appendix, together with the proof of Proposition 4.
When deciding whether to bailout i, the regulator must trade-off a bank’s

indirect bailout value with the cost of its bailout, (DL
i −pi −∑

j solventDij )+.
Consider the greedy algorithm that bails out the defaulting bank with highest
ratio of its kth-step indirect bailout value to its bailout cost (for any 1≤k≤
n−1) until all are solvent, recomputing these values after each step to account
for all new solvencies.30 We show that this algorithm leads to total bailout costs
that never exceed the following bound.

Proposition 4. For any 1≤k≤n−1, bailing out banks in decreasing order of
the ratio of their kth step indirect bailout value over bailout cost until all are

29 The indirect bailout value differs from the concept of threat index of Demange (2016), which captures the impact
of marginally increasing a bank’s repayments on total debt repayments, assuming the set of defaulting banks
remains the same. A key difference is that our notion of indirect bailout value is not calculated on the margin,
and the value of bailing out a bank propagates further if we account for induced changes in the solvency status
of other banks.

30 If there are any ties—that is, more than one bank with the highest indirect bailout value to bailout cost ratio—then
break the ties arbitrarily.
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solvent leads to a cost of at most
1

2

∑
i

(DL
i −pi)

+.

Thus, the optimal bailout cost is no more than this, and this bound is reached
in some networks.

When following this algorithm, the regulator is guaranteed to inject at most half
of banks’ total shortfall in order to ensure solvency of all banks. This bound
holds for all equilibria, and can be made tighter by only summing over the
banks that default in the equilibrium of interest, instead of summing over all
banks. The bound is reached whenever the network comprises n/2 disjoint
cycles, no bank is unilaterally solvent, and banks are all equally costly to
bailout—so (DL

i −pi)+ =(DL
j −pj )+ for all i,j .

This upper bound is not straightforward. Consider, for instance, a clique of
critically balanced banks, such that all banks have claims on each other and
none of them has enough capital buffer to sustain the default of some of its
counterparties. Then, to ensure systemic solvency in the worst equilibrium, the
regulator has to bailout all banks but one. What Proposition 4 shows is that,
even in such a network, total bailout costs do not add to more than half of
banks’ total shortfall: the optimal policy leverages the fact that payments from
banks that have already been bailed out reduce the cost of future bailouts.
Nonetheless, Proposition 4 does not imply that following the above

algorithm always finds an optimal bailout policy. For instance, in the example
from Figure 4 it would begin by bailing out bank 2 rather than bank 3 and
would overpay. In other instances it could overpay by arbitrarily large amounts
and so does not approximate the optimal bailout policy well, as we will show
in Section 4.2. Indeed, the above algorithm could lead the regulator to bail out
the center bank in a star network in a setting where bailing out some peripheral
banks would lead to (arbitrarily) lower total bailout costs. The same is true of
an algorithm that chooses banks in the order of the indirect values that their
bailouts generate.
Similarly, algorithms that bail out banks in increasing order of their bailout

cost can also lead to total injections of capital arbitrarily larger than necessary.
For example, the network in Figure 5 illustrates how badly a greedy algorithm
based on minimizing costs can perform. The example consists of a chain of
cycles of length n. Note that banks i ≥2 have enough capital buffer to absorb
the default of their smallest debtor, that is i+1. Hence if a bank i is solvent, then
this is enough to make its follower i+1 solvent as well, which is then enough
to make i+2 solvent, and this unravels until bank n. The reverse is, however,
not true: bank i repaying its debts is not enough to make its predecessor i−1
solvent. Given this asymmetry, the optimal policy is to bailout bank 1: this
guarantees solvency of all for a total cost ofD. Now suppose the regulator uses
a simple greedy algorithm, which consists in bailing out banks in increasing

2040

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/37/7/2017/7511864 by guest on 20 June 2024



Credit Freezes, Equilibrium Multiplicity, and Optimal Bailouts in Financial Networks

Figure 5
An example where the greedy algorithm performs poorly. Let p1 =pn =0 and pi =D for all i �=1,n. Suppose
D>D>0.

order of their bailout cost. The algorithm bails out bank n first, as this only
requires injecting DL

n −pn=D<D=DL
i −pi for all i 
=n. The algorithm then

bails out bank n−1 at a cost of DL
n−1−pn−1−Dn−1n=D−D, and then bank

n−2, etc. This leads the regulator to inject a total ofD+(n−1)(D−D). Hence,
the performance of the greedy algorithm relative to the optimal policy can be
arbitrarily bad for long enough chains.
As the example helps illustrate, the complexity arises from the fact that

cycles overlap, and that a repayment cascade in one cycle can spread to another.
More generally, as banks are bailed out, they can either increase or decrease
each other’s indirect bailout values. On the one hand, their bailouts and debt
payments bring others closer to solvency and thus reduce how much they still
need, but then also make it easier to cause them to return to solvency and
induce subsequent payments. So, a bank’s bailout can affect others’ indirect
bailout values in either direction. This becomes especially complex when
cycles overlap.
The optimal bailout problem is easier in networks in which interferences

between cycles are limited. This is for instance the case if cycles do not
overlap, and we fully characterize the optimal bailout policy in such networks
in Section 4.1. This is also the case if all banks that lie on multiple cycles
are critically balanced—that is, have no capital buffer—as then a repayment
cascade cannot spread from one cycle to another (Corollary 1).31

4. Some Prominent Network Structures

We showed that finding an optimal bailout policy can be both computationally
hard and hard to approximate. In some financially relevant cases, however,
the analysis simplifies and provides insights regarding the structure of optimal
bailouts. In this section, we first consider networks in which cycles of banks do
not overlap, and then examine networks that have a core-periphery structure.
A main takeaway of our analysis is the importance of indirect bailouts: to
ensure the solvency of a large core bank, it is generally cheaper to bailout
small peripheral banks that owe money to it rather than to bailout the core
bank directly, so as to leverage the assets of more banks.

31 See Internet Appendix B.5 for an analysis of critically balanced networks.
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As in the previous section, we presume weak balance is satisfied and restrict
attention to the subnetwork of insolvent banks, accounting for all the debt
payments that they receive from solvent banks.

4.1 Disjoint cycles
The first set of networks that we examine are those in which the cycles are
disjoint, so that no bank lies on more than one cycle.
There can still be banks that lie on no cycles, but for instance lie on directed

paths coming out from some bank on a cycle. There can also exist a directed
path that goes from one cycle to another, as long as there is no directed path
that goes back (which would violate each bank lying on at most one cycle).32

Let c1,...,cK be the simple cycles in the network, where ck denotes the set
of banks in the k-th cycle. Order the cycles so that if i ∈ck and j ∈ck′ for k′ >k,
then there is no directed path from j to i.33

The optimal bailout policy is described as follows. Pick the bank on c1 that
is the cheapest to bailout:

min
i∈c1

DL
i −pi.

This then ensures that all banks on that cycle are solvent, and can also lead to
further solvencies as the banks on that cycle may owe debts to banks outside
of that cycle. Let S1 denote the set of banks that are made solvent if all banks
on c1 are solvent (which is the same regardless of which bank on c1 is bailed
out). If this includes banks on any other cycles, then that cycle will be fully
solvent as well. Consider the smallest k such that ck ∩S1 =∅. Accounting for
all the payments that have come in from S1, find the cheapest bank to bailout
on ck:

min
i∈ck

DL
i −pi −

∑
j∈S1

Dij .

As before, let S2 denote the set of banks made solvent by this bailout and its
cascade. Iteratively, after h such steps, one finds the lowest indexed insolvent
cycle kh and finds the cheapest bank on that cycle to bailout:

min
i∈ckh

DL
i −pi −

∑
j∈S1∪···Sh

Dij .

After at most K steps the full network will be solvent.

32 Note that there cannot exist banks with no incoming debts but with outgoing debts, since those are already solvent
under weak balance.

33 Given that i and j lie on different cycles, there cannot be both a directed path from i to j and one from j to
i, as that would imply that these banks lie on multiple cycles. Thus, there must exist such an order, and in fact
there can be multiple such orders. Pick any one satisfying this condition, as all such orders will lead to the same
bailout costs.
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Proposition 5. Suppose that each bank lies on at most one cycle. Then, the
optimal bailout policy consists of bailing out the bank closest to solvency on
each simple cycle, accounting for bailouts of previous cycles, in the order
described above.

4.2 Star networks
A star network comprises one center bank, bank n, that is exposed to all banks
in the periphery: i ∈{1,...,n−1}. Each bank i in the periphery is exposed only
to the center bank. A star network is then a simple example of a core-periphery
network, in which there is only one core bank. We first consider star networks
as they provide part of the intuition needed for the analysis of more general
core-periphery networks.
The optimal bailout policy is more tractable in star networks than in

some other networks as only one bank, the center bank, lies on multiple
(simple) cycles. This reduces the complexity of the problem: finding the
optimal bailout policy is no longer strongly NP-hard and becomes equivalent
to the Knapsack Problem.34 The Knapsack Problem is still an NP-hard
problem, but there exist several algorithms that approximate it arbitrarily
well. Hence our analysis suggests that these types of algorithms should be
considered when deciding which peripheral banks to bailout in core-periphery
networks.
If the star network also satisfies some symmetry conditions, then the optimal

bailout policy can be fully characterized and needs not be approximated. Let
all peripheral banks be symmetrically exposed to the center bank: they all have
a debt claim of Din=Dout on the center bank, and a liability Dni =Din to it. So
the total debt assets and liabilities of the center bank equalDA

n =(n−1)Din and
DL

n =(n−1)Dout , respectively. As before, let the network be weakly balanced,
and suppose none of the banks is unilaterally solvent. If the center bank were
unilaterally solvent, the whole network would always clear, and regulatory
intervention would be unnecessary. Similarly, if some peripheral banks were
unilaterally solvent, then they could pay back their debt to the center bank for
sure, and we could redefine the network to account for these payments. See
Figure 6 for an example of a star network.
Bailing out the center bank costs (n−1)Dout −pn and clears the whole

system, as the center bank lies on all cycles. However, unless all peripheral
banks have pi =0, this is not optimal and can be much costlier than
optimal.

34 A Knapsack Problem consists of n items that each have a weight and a value, and a knapsack that has some
limit on the total weight it can hold. The goal is to select which items to pack so as to maximize the total value,
while not exceeding the weight limit. Our problem is similar as, intuitively, each peripheral bank has a value
(the amount of liquidity flow into the core induced by its solvency), and a cost (how much capital the regulator
needs to inject to make it solvent). The goal is then to minimize the total cost of bailed out peripheral banks
while inducing sufficient liquidity flow into the core to ensure its solvency.
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Figure 6
A star network with three peripheral banks, Din =2, and Dout =1.

To understand the optimal bailout policy, let

m∗=
(n−1)Dout −pn

Din
.

Without loss of generality, let the peripheral banks be indexed in decreasing
order of pi .

The optimal policy always involves first bailing out the �m∗� peripheral
banks with the highest portfolio values. This leverages their pi’s and gets an
amount of liquidity �m∗�Din into the center bank at a potentially much lower
cost than paying it directly to the center. This then just leaves a comparison
between the marginal shortfall of the center bank

(n−1)Dout −pn−�m∗�Din

and the cost of bailing out the �m∗�+1st peripheral bank
Din−p�m∗�+1.

It is optimal to do the remaining bailout via the center bank instead of the
�m∗�+1st peripheral bank if and only if35

(n−1)Dout −pn−�m∗�Din ≤Din−p�m∗�+1.

Proposition 6. The optimal bailout policy is: to bailout the first �m∗�+1
peripheral banks if

(n−1)Dout −pn−�m∗�Din >Din−p�m∗�+1,

and otherwise to bail out the first �m∗� peripheral banks, and then inject (n−
1)Dout −pn−�m∗�Din into the center bank.

35 Note that if m∗ happens to be an integer, then the center bank is already solvent.
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The proposition implies that it is always best to start by bailing out peripheral
banks, so as to leverage their outside assets and reduce the overall cost of
bailouts. Then, once only one more peripheral bank’s payment is needed to
return the center bank to solvency, the regulator either injects the center bank’s
marginal shortfall or bails out one last peripheral bank, depending on which is
cheaper.
An implication of Proposition 6 is that mistakenly bailing out the center bank

when the optimal policy is to target peripheral banks can bemuch costlier to the
regulator than the reverse. Indeed, this can lead the regulator to waste the value
of the outside assets owned by peripheral banks. In contrast, the only reason
bailing out peripheral banks may not be optimal is if this leads the regulator to
bailout “one too many” of them due to the integer constraint, which implies a
waste of capital of at most Din.

Corollary 2. Bailing out only peripheral banks leads the regulator to inject at
most an extraDin compared to the total amount required by the optimal bailout
policy.
Bailing out the center bank leads the regulator to inject at most an extra∑�m∗�
i=1 pi compared to the total amount required by the optimal bailout policy.

Thus, in situations where the portfolio values among the needed peripheral
banks (

∑�m∗�
i=1 pi) is much larger than the amount any one of them owes to the

center bank (Din), bailing out the periphery is a much safer policy in terms of
wasted capital.

4.3 Core-periphery networks and cliques
Many financial systems are well-approximated by a core-periphery structure:
they can be decomposed into a set of densely connected core banks and a set
of more sparsely connected peripheral banks. In core-periphery networks, the
above approach of beginning with peripheral banks carries over, but then the
remaining bailout problem of the core itself can be substantially more complex.
We begin with cases in which there is some symmetry in the core, and in
which intuitions can be drawn and optimal bailouts fully characterized. We
then investigate the asymmetric case in numerical simulations.
LetNC andNP be the set of core and peripheral banks, respectively, withN =

NC ∪NP and NC ∩NP =∅. The nC =#NC banks in the core form a clique and
are symmetrically exposed to each other: Dij =Dcore for all i 
=j ∈NC . Each
core bank i ∈NC is also exposed to a different subset of the peripheral banks
Ni

P ⊆NP , and each of these peripheral banks are only exposed to the core bank
i. HenceNP =∪i∈NC

Ni
P and∩i∈NC

Ni
P =∅. Specifically, peripheral banks inNi

P

have a debt claim ofDout on i, and a debt liability ofDin to i. Suppose also that
each core bank i is exposed to the same number of peripheral banks nP =#Ni

P

for all i.
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The portfolio values of core banks are heterogeneous and denoted by pi and,
for simplicity, the smaller peripheral banks all have portfolios valued at pP .

If the network is a clique, so that there is no peripheral banks and nP =0, then
the optimal bailout policy is straightforward: it simply consists in bailing out
banks in decreasing order of their portfolio value pi until they are all solvent.
The added complication from the periphery comes from the fact that

peripheral banks change the bailout costs of core banks. However, note that
we can combine the logic from star networks, as in Proposition 6, with the
logic from cliques. In particular, consider the following bailout policy.
First, pick the core bank with the highest portfolio of outside assets pi , and

let

m∗
i =

(nC −1)Dcore+nP Dout −pi

Din
.

We can then follow the logic of Proposition 6 to return this bank to solvency.
Start by bailing out �m∗

i � of its peripheral banks, and then bail out one more of
its peripheral banks if

(nC −1)Dcore+nP Dout −pi −�m∗
i �Din >Din−pP ,

and inject the remaining (nC −1)Dcore+nP Dout −pi −�m∗
i �Din directly into

bank i otherwise.36

Iteratively, if x >0 core banks have already been returned to solvency and
the system is not yet at full solvency, then next consider the core bank with the
highest pi among those still insolvent. Define

m∗
i (x)=

(nC −1−x)Dcore+nP Dout −pi

Din
.

Start by bailing out �m∗
i (x)� of its peripheral banks, and then bail out one more

of its peripheral banks if

(nC −1−x)Dcore+nP Dout −pi −�m∗
i (x)�Din >Din−pP ,

and otherwise inject the remaining (nC −1−x)Dcore+nP Dout −pi −
�m∗

i (x)�Din directly into bank i.37 Continue until all banks are solvent.

Proposition 7. If m∗
i (x) is an integer for all i and x, then the above policy is

optimal.

Hence the intuition from Proposition 6 extends to more general core-periphery
networks: it is always optimal to start by bailing out a core bank’s peripheral

36 If �m∗
i
�≥np , then first bail out all of i’s peripheral banks and then inject the remaining amount into i that is

needed to make it solvent.

37 Again, if �m∗
i
(x)�≥np , then bail out all of i’s peripheral banks, and then inject the remaining amount into bank

i needed to make it solvent.
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counterparties instead of targeting it directly. If m∗
i (x) is not always an integer,

then the optimal order of core banks can differ from the order of their portfolio
values.
For tractability, we imposed a symmetry assumption on the network: the only

heterogeneity came from the outside assets of core banks, and the difference
between core and peripheral banks. When banks are heterogenous within
the core, then finding the optimal order in which to bring core banks to
solvency can be quite complex, and in fact can again nest a vertex covering
problem. Nevertheless, as long as core banks are sufficiently large compared
to peripheral banks, it remains optimal to first target a core bank’s peripheral
banks instead of bailing it out directly. Hence one part of the optimal bailout
policy is simple, but the other part is not.38

5. Comparing Bailout Policies: Simulations on Random Core-Periphery
Networks

To illustrate how various bailout policies perform in realistic settings, we
focus on core-periphery networks, as many real-world financial networks have
such a structure. We show that results from the previous section, and in
particular the cost efficiency of bailing out some peripheral banks first, hold
in a broader class of networks with various asymmetries that make analytical
results challenging, but can be handled via simulations. They also hold when
we relax the assumption of full failure costs. Finally, we derive new insights as
to when “naïve” bailout policies perform particularly poorly compared to more
sophisticated ones.

Simulated random networks. As in Section 4.3, the network comprises nC

core banks, which are all exposed to each other. Each core bank is also exposed
to nP peripheral banks.

Even though the structure of the network is fixed, we randomly select
the magnitude of cross-bank exposures as well as the value of core banks’
outside assets. Each simulated network is constructed by randomly drawing
the liabilities (Dij s) and core banks’ outside assets (pis) from a uniform
distribution between zero and one. We vary how correlated these are across
banks to explore how such asymmetries, which were precluded in Section 4.3,
affect our results. We also explore how the size of the periphery affects our
results. To that end, we set the outside assets of all peripheral banks equal to
some parameter pP that we vary deterministically.
In each simulation, we construct the network (D,p) as follows:

1. We first construct one benchmark network (Dsym,psym) in which
core banks are perfectly symmetric: they have the same portfolio

38 See Section B.4 of the Internet Appendix for an example of an asymmetric core-periphery network that highlights
the tractability challenges of such networks.
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Figure 7
Sample networks with nC =6 core banks, each exposed to nP =4 peripheral banks, when asymmetries
across core banks are α=0 (left panel), α=0.5 (middle), and α=1 (right).
To keep the graph readable, we only draw one link between any two counterparties, though there should be two
(one pointing from i to j and one from j to i). The size of a node i captures the size of that bank’s outside assets
pi and the width of an edge ij captures the associated exposure Dij .

of outside assets (psym
i =p

sym
j ∀i,j ∈NC), the same exposures to

each other (Dsym
ij =D

sym
kl ∀i,j,k,l∈NC) and isomorphic peripheries

((Dsym
ik ,D

sym
ki ,p

sym
k )k∈Ni

P
=(Dsym

jk ,D
sym
kj ,p

sym
k )

k∈N
j
P

∀i,j ∈NC).39

2. We then construct a second benchmark network (Dasym,pasym) in which
all the exposures (Dij s) and core banks’ outside assets (pis) are drawn
independently across banks.

3. Finally, we construct our network of interest by taking a convex
combination of the two benchmark networks: (D,p)=α(Dasym,pasym)+
(1−α)(Dsym,psym).

The weight α thus captures the level of asymmetries across core banks, as
illustrated in Figure 7.
For each constructed network, we first inject the net imbalances ti =[DL

i −
DA

i −pi]+ that guarantee solvency in the best equilibrium. Since we are mostly
interested in the additional transfers needed to guarantee solvency in the worst
equilibrium, we focus on those in what follows. Effectively, it is as if we
had redefined banks’ outside assets to be p̂i =pi +[DL

i −DA
i −pi]+. Finally,

we relax the assumption of full failure costs and consider βi(V,p)=a[pi +
dA

i (V)].
40 As discussed previously, rough estimates in noncrisis times is that

the recovery rate on a defaulting bank’s assets is around 75%, so we set a=25%
for this exercise.We also show the results for a=1 (full bankruptcy costs), since
this benchmark plays an important role in our analysis.
The simulations focus on two key parameters—peripheral banks’ outside

assets pP and asymmetries within the core α,—so it is useful to have a
sense of their magnitudes in practice. Using data on U.S. financial firms,
Duarte and Jones (2017) decompose each firm’s balance sheet into claims

39 All these are still drawn from a uniform distribution over [0,1]; for example, we draw one number and set psym
i

equal to that number for all core banks i, etc.

40 Fixed legal costs seem negligible compared to the losses associated with depreciated assets, so we focus on those
for this exercise.
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on other financial firms and assets from outside the financial system.
In 2016, the six largest bank holding companies had outside assets ranging
from $380 billion (Goldman Sachs) to $1,727 billion (Bank of America), with
an average around $1,200 billion (table 3 of Duarte and Jones (2017)). They
also derive a measure of financial connectivity for each bank, which captures
how much of a bank’s total liabilities is held by other banks in the network.
This measure ranges from 48% to 58% for the six largest BHCs. There is
thus heterogeneity among these largest banks, in terms of both outside assets
and exposures to others, which suggests that α might be high in practice. The
outside assets of the following 30 largest BHCs average around $200 billion.
In the simulations, core banks’ outside assets are set to 0.5 on average, so a
reasonable value for those of peripheral banks would be around 0.1.

Targeting the core directly versus starting with the periphery. We revisit
and illustrate the key insight from Sections 4.2 and 4.3 that bailing out (some)
peripheral banks first is often cost efficient. For each simulated network, we
compute the total bailout costs associated with four policies:

Core First, by Size: We bail out core banks in decreasing order of the size
of their assets.

Core First, by IBV
BC : We bail out core banks in decreasing order of their

Indirect-Bailout- Value-over-Bailout-Cost ratio, recal-
culating ratios after each bailout.41

Periphery First: We bring core banks back to solvency in the same
order as under Core First, but, at each step, we
check whether bailing out a subset of the core bank’s
periphery is cheaper than targeting that core bank
directly.

Optimum: We derive the optimal bailout policy.42

The first policy is perhaps the most “naïve” as it simply targets largest
banks first. Even though this is clearly not optimal, the regulator might face
political/lobbying pressure to prioritize larger banks. The second policy still
focuses on the core, but is somewhat less naïve in that it accounts for the fact
that each bailout has a value in terms of induced liquidity as well as a cost. It
is still naïve in that it focuses on core banks without considering the value of
indirect bailouts from the periphery. We examine how these “naïve policies”
that target core banks first perform relative to a more sophisticated policy that
targets the periphery first, and how they all compare to the optimum. The

41 We use the first-step indirect bailout value for simplicity.

42 Because finding the optimal bailout policy is computationally hard, we only consider networks of modest size
in the simulations.

2049

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/37/7/2017/7511864 by guest on 20 June 2024



The Review of Financial Studies / v 37 n 7 2024

Figure 8
How bailout policies perform as a function of the size of peripheral banks (averaged over 1,000
simulations).
All peripheral banks have the same portfolio of outside assets pP , which is not drawn randomly but varied
deterministically so as to plot total bailout costs as a function of pP . Interbank exposures and core banks’ outside
assets are drawn i.i.d. from U (0,1). (nC =6, nP =4, α=1.)

optimal policy also targets the periphery first but following an optimal ordering
over the core as discussed in Proposition 7. We compare these four policies as a
function of the size of the periphery. For this analysis, we impose no symmetry
on the core and set α=1.
Under full bankruptcy costs, the answer depends nonmonotonically on the

size of peripheral banks’ asset holdings, as depicted in Figure 8 (left panel).
Indeed, Periphery First offers the largest relative improvement over Core
First policies when peripheral banks have assets of intermediate size. When
peripheral banks have large outside assets, they are most likely solvent already,
and there is little to no gain in considering them carefully in the bailout policy.
When they have almost no outside assets, then they have nothing that the
regulator can leverage to reduce bailout costs. It is in the intermediate case that
the regulator can gain a lot by targeting peripheral banks first. Here these gains
are of the same order of magnitude as the average size of a core bank: interbank
claims and outside assets are drawn from U[0,1], so the expected assets of a
core bank (if its interbank claims are fully valued) is 0.5+(nP +nC −1)0.5=5.
This brings the regulator much closer to the optimal policy, and the remaining
gap with Optimum comes from the fact that Periphery First might bring core
banks back to solvency in a suboptimal order.
Most of the intuitions persist when banks only lose a quarter of the value

of their assets upon default. Total bailout costs are lower now that defaulting
banks make partial payments. In addition, if the assets of peripheral banks are
sufficiently high (above .5 in the figure), all banks are often solvent in the worst
equilibrium and bailout costs are close-to null. The main difference is that, with
partial failure costs, it might still be cost efficient to bail out some peripheral
banks first even when they have no outside assets. That is because peripheral
banks receive partial payments from the core that the regulator can leverage by
targeting the periphery.
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Figure 9
How the Periphery First bailout policy compares to the optimum as a function of the asymmetry among
core banks.
The parameter α captures how asymmetric core banks are. At one extreme (α=1), all interbank exposures and
outside assets are drawn independently. At the other extreme (α=0), core banks are identical: they have the same
exposures, assets, and peripheries. (nC =6, nP =4, pperi =0.1.)

Next, we examine the remaining gap between Periphery First and the
optimal bailout policy, as a function of how much asymmetry there is among
core banks. From now on, we set peripheral banks’ outside assets to be pP =
0.1.43 As discussed above, there is no systematic way of finding the optimal
order in which to bail out the core. Core banks form a clique comprising many
overlapping cycles, and absent strong symmetry, the many cycles lead to a
complex problem. Periphery First is somewhat “naïve” in that it decides
which core bank to bring back to solvency in a myopic way: it simply uses
the greedy algorithm proposed in Section 3.3 and brings core banks back
to solvency in decreasing order of their indirect bailout value to bailout cost
ratio.44 The performance of such a policy very much depends on asymmetries
across core banks, as depicted in Figure 9.
If core banks are symmetric, there is no gain in ordering the bailouts of

core banks in sophisticated ways, and the simple Periphery First is optimal.
However, when core banks are nontrivially asymmetric, the optimum bailout
policy exploits these asymmetries and simpler bailout policies perform worse.

6. Discussion

6.1 Recovery of capital injections
Our analysis distinguishes between the minimum bailouts needed to ensure
systemic solvency in the best equilibrium and those needed to avoid additional

43 As explained above, this is a reasonable calibration to match the size of peripheral banks’ assets relative to
that of core banks on average. However, the number of peripheral banks in practice is much larger than in
our simulations, so setting pP =0.1 should, if anything, underestimate the gains associated with targeting the
periphery first.

44 Periphery First is still more sophisticated than Core First as, before each core bank’s bailout, it checks
whether bailing out a subset of that bank’s periphery is cheaper than targeting that core bank directly.
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self-fulfilling defaults in nonbest equilibria. We showed that the former are
easy to characterize as they do not depend on the specific network structure
and only require rebalancing each bank’s portfolio, whereas the latter depend
on network cycles in complex ways. Another feature that distinguishes bailing
out the best equilibrium versus others is that payments made to achieve weak
balance cannot be recovered by whomever intervenes in the bailout, at least
in the short run. In contrast, additional payments made to ensure solvency in
other equilibria can be recovered, at least theoretically, once they have cycled
through the network. These could thus be offered, for instance, as short-term
loans.
Even though these additional bailouts can, in theory, be recovered, doing so

may be infeasible in practice for a variety of reasons. Furthermore, even if the
regulator does manage to recoup a large fraction of the bailout money, injecting
it requires a lot of capital ex ante, which can be costly in itself. Hence finding
the minimum bailouts that ensure systemic solvency in the worst equilibrium
is policy relevant, even though some of the funds used in these bailouts can
eventually be recuperated.45 An extension of our analysis is to assess the risks
of recovering funds from different banks, and accounting for those differences
in the cost of a bailout, so that each bank has an adjusted cost of funds injected
into it.

6.2 Bailouts with a limited budget
We considered the problem of ensuring solvency of all banks at minimum
cost to the regulator. We showed that ensuring systemic solvency in the best
equilibrium is fairly simple, and hence focused on studying nonbest equilibria.
In some settings, however, the regulator faces a related but distinct problem: it
has a fixed bailout budget W to allocate across banks and wants to minimize
defaults and deadweight losses in some equilibrium of interest. If the budget
W is low enough such that not all defaults can be avoided, then many of
the results and intuitions that we derived for nonbest equilibria also apply
to the best equilibrium. In particular, finding a bailout policy that minimizes
defaults in the best equilibrium is (strongly) NP-hard when there is a limited
budget. Indeed, because of the budget constraint, there is a trade-off between
the indirect value associated with a bank’s bailout and its cost, that parallels the
analysis above. Finding optimal bailouts is again challenging since the order
of bailouts matters, and becomes similar to the above problem of finding the
minimum amounts of payments that bring, in this case the most, banks back to
solvency.
The intuition underlying Proposition 6 and 7 also extends to the best

equilibrium. Indirect bailouts are generally the most cost efficient: bailing out a

45 See Lucas (2019) for a detailed look at the total bailout money injected and the amount that was not recovered
in the 2008 crisis.
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bank’s creditors first instead of targeting it directly leads to lower total bailout
costs for the same set of induced solvencies.

6.3 Ex-post renegotiations and mergers
Ex post interventions, such as renegotiations and mergers, can attenuate the
risk of miscoordination and associated inefficiencies (see, e.g., Kanik 2019).
If, instead of defaulting, a bank can renegotiate its payments down to what it
can actually repay, or even merge with its counterparties, then at least some
failure costs can be avoided. For instance, if banks can merge costlessly, then
coordination on the best equilibrium can be trivially achieved by having all
banks merge to form a single entity such that no cycle remains. Such ex post
interventions are however unlikely to be frictionless. Contracts would have to
be renegotiated multilaterally, to ensure each bank repays as much as possible
given others’ renegotiated contracts. In practice, efficient renegotiations also
can be impeded by other frictions, such as asymmetric information, as in
Glode and Opp (2023).

Importantly, the extent to which efficient renegotiations and mergers
occur depends on banks’ incentives to intervene ex post, which are
shaped by the bailout policy chosen by the regulator. In particular, public
bailouts might crowd out private bail-ins, as banks might not be willing
to undertake costly negotiations if they anticipate the regulator to step in
(Bernard, Capponi, and Stiglitz 2022). The regulator might then benefit from
committing to less extensive bailouts to reduce such crowding out.

6.4 The benefits of netting, compression, and CCPs
Our analysis has made clear the role of cycles in generating multiple equilibria
for bank values. This highlights potential gains from clearing cycles in the
network, as this can eliminate the possibility of a market freeze and reduce
this form of systemic fragility. In practice, this resonates with liquidity-saving
mechanisms as well as portfolio compression. Liquidity-saving mechanisms
are settlement systems that allow banks to condition their payment on the
receipt of another payment (Martin and McAndrews 2008). When offsetting
payments are in the queue, the system can clear them, thus preventing a
potential freeze in which none of the parties pays back the others. Portfolio
compression, which has become increasingly popular since the 2008 financial
crisis, allows banks to eliminate offsetting obligations with other organizations,
exploiting cycles in the financial network.46

Nevertheless, portfolio compression is still limited in practice. Compression
services are currently only available for certain securities, mostly derivatives,
and do not encompass multilateral nettings of all types of obligations between

46 In some cases, portfolio compression can however worsen the default cascade triggered by a shock, if failure
costs are low and banks heterogeneous enough (Schuldenzucker and Seuken 2019).
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financial institutions. Even within markets for which compression services are
available, some large opportunities for compression are not currently exploited.
For instance D’Errico and Roukny (2021) estimate that up to three quarters
of the notional value in the CDS contracts traded by European institutions
could be compressed. This is all the more surprising as the complexity and
entanglements of CDS contracts contributed to the turmoil and freeze of
interbank debt markets in 2007.47

Several reasons help explain why financial markets are far from being
fully compressed. The network is complex, with many overlapping and
long cycles, and so offsetting obligations requires participation of many
parties, with full opening of their books to a common entity, and banks
may fail to coordinate as needed. Contracts also have staggered maturities,
covenants, and priorities that further complicate netting since they are not
fully comparable, and thus have to each be priced and closed out. Finally,
banks may not want some positions to be fully compressed or others to be
created in the netting process, as they may prefer maintaining relationships
with specific counterparties (D’Errico and Roukny 2021). For instance, these
relationships provide incentives for counterparties to monitor each other,
which can disappear with netting. Furthermore, banks may prefer to hold
offsetting long-term debts with others, as such cycles allow them to insure
against un-contractable liquidity shocks (Donaldson and Piacentino 2017).
Such preferences matter in practice: for example, some of the current
providers of compression services ask participants their tolerance to portfolio
reconfiguration beforehand and, naturally, this restricts the extent to which the
network can be compressed.
In any case, our analysis provides a base to estimate the systemwide gains

associated with netting: for any distribution over returns to outside investments,
one can compute by how much compressing the network reduces overall
expected bailout costs, for any given equilibrium. As discussed above, there
are benefits associated with having cycles in the network that would have to be
valued and then would account for the other side of the calculation.
Finally, the use of Central Counterparty Clearing Houses (CCPs) can

also help mitigate some of these issues, as the resultant star-like network
eliminates many cycles.48 More generally, considering regulations that change
the network is an important topic for further research, but requires modeling
the endogenous formation and benefits from the network, which is beyond the
scope of our analysis (see, e.g., Erol and Vohra 2018; Erol 2019). Regardless
of the precise policy that one undertakes, developing and maintaining a more

47 See The Economist (2008).

48 Depending on the details, one may have to worry about the CCPs’ extreme centrality and size. See for instance,
Duffie and Zhu (2011). Large government-sponsored enterprises that process huge amounts of securities have an
uneven history of success, especially if one examines Fannie Mae and Freddie Mac’s failures in the 2008 crisis.
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complete picture of the network, and the portfolios of banks together with those
of their counterparties, is a necessary first step to improving crisis management.

Code Availability Statement: The replication code is available in the Harvard
Dataverse at https://doi.org/10.7910/DVN/5LDZ9U.

Appendix A Proofs
Before beginning the proofs, we note that using (4) we can rewrite the expressions for the debt
value (1) in a single equation:

dij (Vj )=
Dij

DL
j

min
(
DL

j ,max
{
Vj +DL

j ,0
})

, (A.1)

which accounts for both possible regimes: either j is solvent and creditors share the promised
payment DL

j , or it is not and they share the book value of j ’s assets net of failure costs Vj +DL
j ,

if positive. (A.1) makes it more transparent that i’s debt assets can be written as a function of only
V−i , so that we can write dA

i (V−i ) and then rewrite (4) as

Vi =pi +dA
i (V−i )−DL

i −bi (V,p). (A.2)

Proof of Proposition 1: (i) Let V and V be the best and worst equilibrium values of banks,
respectively. Since there is no dependency cycle, it has to be that a subset of banks, denoted X0,
only derive value from their outside investments: DA

i =0 for all i ∈X0. Thus, by the assumption
on failure costs, βi (Vi,p) only depends on Vi for i ∈X0. Therefore, the values of these banks are
determined solely by their investments, can be written as:

Vi =pi −DL
i −βi (Vi,p)1{pi<DL

i
} ∀i ∈X0.

Since βi (·,p) is a contraction, there exists a unique solution to this equation by the Contraction
Mapping Theorem. Therefore, V i =V i for all i ∈X0. Next, let X1 be the set of banks whose debt
assets only involve banks in X0. Thus, their value is independent of that of banks outside X0, and
so by (A.1) and (A.2) we can write

Vi =pi +
∑
j∈X0

dij (Vj )−DL
i −βi

(
(Vj )j∈X0∪{i},p

)
1{pi+

∑
j∈X0

dij (Vj )<DL
i

} ∀i ∈X1.

Since V i =V i for all i ∈X0 and βi (·,p) is a contraction as a function of Vi , it follows that the best
and worst equilibrium values of banks in X1 are also the same: V i =V i for all i ∈X1. Iteratively
defining Xk to be the set of banks that have debt claims on banks in ∪j<kXj only, the same
argument applies by induction. For some integer K ≤n, ∪K

k=0Xk =N , and thus it follows that
V i =V i for all banks.

(ii) Next, we prove that if there is a dependency cycle in the network, then there exists p and
failure costs such that V 
=V . In particular, we first show that under failure costs from (3) with full
failure costs (i.e., when a bank loses all of its assets upon default, a=1, b=0), then there exists
returns p such that this is true. We then show that this also holds for a below 1 (and above some
threshold).

Let c be the set of all banks belonging to a dependency cycle. All other banks either (i) owe
debts that have value (directly or indirectly) flowing into a dependency cycle; (ii) get value from
debts coming out of a dependency cycle; or (iii) none of the above. Equilibrium values of banks in
c is independent from that of banks in categories (ii) and (iii), because there are no directed paths
of debts from such banks that are eventually owed to any bank in c. The values of banks in (i) can
affect those of banks in c, but we set their portfolio values (pis) to zero and thus banks in c get no
value from them.49 Thus, equilibrium values of banks in c depend only on portfolios and values

49 Note that none of these banks is part of a cycle, and so by the argument above their values are uniquely tied
down, and since they have no debts coming from any banks in (ii) or (iii), it is direct that they have no assets
with which to pay any of their debts.
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of banks in c, and each one of them has a debt liability to at least one other and a debt asset from
at least one other.

Therefore, we redefine DA
i ≡∑

j∈cDij for all i ∈c. We set portfolio values (pi )i∈c to be as low
as possible, while ensuring all banks in c remain solvent in the best equilibrium. In particular, when
all banks in c are solvent their equilibrium values are

Vi =pi +DA
i −DL

i ,

and therefore the smallest (pi )i∈c that ensure they all remain solvent in the best equilibrium are
given by

pi =[D
L
i −DA

i ]
+.

Thus, by using these portfolio values all banks in c are solvent in the best equilibrium: V i ≥0 for
all i ∈c.

Next, consider what happens in the worst equilibrium with these portfolio values, under full
failure costs, that is under (3) with a=1, b=0. Recall that all banks in c must have some debt
liability and some debt claim, that is, DA

i >0, and DL
i >0 for all i ∈c. Let us suppose that they all

default so that dA
i (V−i )=0 for all i. Then given that pi =[DL

i −DA
i ]

+

Vi =pi −DL
i =[DL

i −DA
i ]

+−DL
i =−min{DA

i ,DL
i }<0 ∀i ∈c,

and assuming all banks in c default is self-fulfilling. Then given these failure costs bi (V,p)=pi ,
and so dA

i (V−i )=0 is self-fulfilling, and the best and worst equilibrium values differ.
To complete the proof, we note that the same is true for some a<1, with a sufficiently close to

one. Presuming all banks default:

Vi =(pi +dA
i (V−i ))(1−a)−DL

i ,

with dA
i (V−i ) continuous inV−i , as any discontinuity arises onlywhen new defaults occur. This has

a unique fixed point when a=1 of Vi =−DL
i , and given that the righthand-side above is continuous

in V−i and a, then the fixed points converge to the limit fixed point as a→1. So under the
presumption that all banks default there is a solution for a close enough to one with all Vi <0,
justifying that all banks default in the worst equilibrium and have values below 0, differing from
the best equilibrium.

(iii) First, we know that the set of equilibria forms a complete lattice, and so banks that default in
the best equilibrium must be defaulting in all other equilibria. Second, we make a key observation:
any bank that defaults in the new equilibrium, but not in the best equilibrium, must have a directed
path of defaulting banks pointing into it that involves at least one bank that is defaulting in the new
equilibrium, but not the best equilibrium (possibly itself, via a cycle). Without this, the payments
made along any path into it cannot have changed. From this observation, it follows directly that
there must exist at least one dependency cycle in which all banks default and that involves some
newly defaulting banks. Moreover, this also implies that all newly defaulting banks lie either on
such dependency cycles or on paths of defaulting banks emanating from such cycles. �

Proof of Proposition 2: First, note that weak balance is a necessary condition for a bank to
be solvent in any equilibrium. That is, pi +DA

i <DL
i for some i, then it must default in every

equilibrium, since it then defaults even if it gets all its incoming debts paid, and thus regardless of
the solvencies of other banks.

Next, note that if pi +DA
i −DL

i ≥0 for all i—that is, the network is weakly balanced—then it is
an equilibrium for all banks to be solvent, and so the best equilibrium has all banks solvent. Thus,
weak balance is necessary and sufficient for solvency of all banks in the best equilibrium.

The characterization of solvency in the worst equilibrium requires more work. First, weak
balance of the network is also a necessary condition for full solvency in the worst equilibrium, as
argued above. Weak balance is, however, no longer sufficient. Thus, for the following, we suppose
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that the network is weakly balanced, and show that all banks are solvent in the worst equilibrium
if and only if there is an iteratively strongly solvent set intersecting each directed cycle.

We first show that having an iteratively strongly solvent set intersecting each directed cycle (in
addition to weak balance) implies all banks are solvent.

Suppose there is an iteratively strongly solvent set that intersects each directed cycle, and call
it B. By the definition of an iteratively strongly solvent set, all banks in B must be solvent in the
worst equilibrium, which means that there is at least one solvent bank on each cycle. We prove
that this implies all banks in the network are solvent by induction on the number of cycles in the
network K .

If there are no cycles, then the best and worst equilibrium coincide (see the proof of
Proposition 1), and then by the arguments above weak balance alone guarantees solvency of all
banks (in fact, then it is easy to check that B =N along the iterative arguments discussed above).
If there is exactly one cycle, then consider some bank i on that cycle that is in B. This bank i is
solvent in the worst, and thus in every, equilibrium given that all of B is solvent. So, consider the
following modified network. For each j reset pj to be pj +Dji , so presume that all debts from i

are paid. Then reset Dji to be 0. Note that we have not changed the structure of any equilibrium
since i would have been solvent in every equilibrium, and also that weak balance still holds. The
new network has no cycles, and thus all banks are solvent in all equilibria. More generally, consider
a network with n cycles and some bank i ∈B that lies on some cycle. Via the same argument, we
end up with a modified network that has the same equilibria and fewer cycles, and so by induction
all banks are solvent in all equilibria.

Finally, we argue that if there does not exist an iteratively strongly solvent set that intersects
every cycle, then some banks default in the worst equilibrium. First note that the union of iteratively
strongly solvent sets is also an iteratively strongly solvent set: hence there exists a maximum one
which, by assumption, does not intersect every cycle and hence does not include all banks. One
can then check that the maximum iteratively strongly solvent set is actually the set of solvent banks
in the worst equilibrium: presuming those banks are all solvent and none of the others is solvent is
self-fulfilling, and so N \B are not solvent in the worst equilibrium. �

Proof of Corollary 1:We first show necessity by contrapositive. Suppose there is a simple cycle ck

that has no unilaterally solvent bank on it, after all the debts have been paid into the maximal cycle
in which it is embedded. The defaults of all banks on ck is self-fulfilling, even if we assume that all
other banks in the network are solvent. Indeed, banks that only lie on cycle ck only have one debt
claim, on their predecessor in the cycle. Since they are not unilaterally solvent by assumption—
that is DL

i >pi—they cannot be solvent unless they get their debt back from their predecessor.
Furthermore, all banks that lie on several cycles are critically portfolio balanced, so they cannot
be solvent unless they get all their debt payments from within the cycle. Hence assuming all banks
are ck default is self-fulfilling, as each one of them defaults if its predecessor in the cycle defaults.
Banks on ck must hence default in the worst equilibrium if there is no unilaterally solvent bank on
the cycle given payments in from outside of the maximal cycle.

We next prove sufficiency. Note that any network can be partitioned into a hierarchy of banks:

• N0: banks that are not in any cycle but lie on a sequence of debts flowing into some
(maximal) cycle.

• N1: banks that are not in any cycle and but lie on a sequence of debts flowing out from
some (maximal) cycle.

• N2: banks that are not in any cycle and and not in N0 or N1.
• C1: banks on maximal cycles that have no inflows from any other maximal cycle.
• Ck: iteratively in k, banks on maximal cycles not already classified that have inflows from
maximal cycles in level Ck-1 or above, but not any other cycles.

Let us say that a bank in level Ck is k−1-unilaterally solvent if it is solvent presuming that all
banks in N0 and C1 through Ck-1 make their debt payments, but no other banks.
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Banks that are in N0 and N2 are solvent under weak balance. This implies that all debts into
banks in C1 are paid from banks outside of those maximal cycles. Thus, there exists an iteratively
strongly solvent set that intersects all simple cycles involving banks in C1. Iteratively, this applies
to banks in Ck, and then in a final step to banks in N1. �

Proof of Proposition 3: We show that finding the size of the largest minimal vertex cover, which
is known to be a strongly NP-hard problem,50 can be reduced to the decision problem associated
with (OPT) for some specific network structures.

The largest minimal vertex cover problem is stated as follows: Given a graph, a vertex cover
is a set of vertices that includes at least one endpoint of all edges in the graph. A vertex cover is
minimal if it is not a superset of another vertex cover. The problem is to find the maximum size of
a minimal vertex cover.

We show that if we can solve the decision version of the bailout problem for some specific
network structures, then we can solve any instance of the decision version of the largest minimal
vertex cover problem.

For any undirected graph, build an interbank network as follows: all vertices are banks, and all
edges represent bilateral claims of size 1, that is, if ij is an edge thenDij =Dji =1. Hence any edge
ij ∈E in the network generates a cycle of claims between Banks i and j . Finally suppose pi =0.5
for all i.

Note that the network is critically balanced: each bank’s total liabilities equal its total debt assets
DA

i =DL
i , and their outside assets are not enough to compensate one missing payment since pi <1.

Hence all banks default in the worst equilibrium.
We first argue that an optimal bailout policy has to bailout all banks in a minimal vertex cover.

One bank on each cycle must be bailed out to ensure systemic solvency, so the set of bailed out
banks must form a vertex cover. If it does not, then it means one edge, that is, one cycle, is not
cleared by the policy as none of the banks involved in the cycle is bailed out. For the bailout policy
to be optimal, the vertex cover must be minimal. If it isn’t, then there exists a bank that is bailed
out and whose counterparties are all bailed out as well. Bailing out this bank is not necessary since
it is made solvent by receiving payments from all of its counterparties.

We next show that bailing out a minimal vertex cover of cardinality m costs |E|−0.5m, where
|E| is the number of edges, and hence that a bailout policy must bailout a minimal vertex cover of
maximum size to be optimal. The bailout policy cannot cost less than |E|−0.5m, since all cycles
must be cleared, which requires injecting at least 1 into all |E| cycles, and that the total value of
banks’ assets that the regulator leverages is 0.5m. Furthermore, the bailout policy cannot cost more
than |E|−0.5m. If it did, the regulator would be injecting more than 1 in some cycle, which cannot
be optimal as injecting 1 in all cycles ensures systemic solvency. Let W be the minimum total
bailout costs. Hence there exists a minimal vertex cover of size m if and only if W ≤|E|−0.5m:
if we can solve the bailout problem, then we can solve any instance of the largest minimal vertex
cover problem. �

Proof of Proposition 4:Weprove—by induction on the number of banks n—that the total injection
of capital needed to ensure systemic solvency is no greater than 0.5

∑
i (D

L
i −pi )+. We provide

the proof for the worst equilibrium, which then ensures that the injection of capital works for any
equilibrium.We assume that net imbalances have already been injected and focus on the remaining
subnetwork of defaulting banks (accounting for all the inflows to them). By construction, all banks
in that redefined network are weakly balanced, and they all default in the worst equilibrium, that
is, DL

i >pi for all i. We also provide the proof for the first-step indirect value over cost ratio, and
then discuss how it extends to the kth step indirect value over cost ratio, for k≥2.

50 This is slightly different from the usual minimum (rather than largest minimal) cover problem, but is still strongly
NP-hard. See Boria, Della Croce, and Paschos (2015).
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Given the set of banks S that are already solvent, let xij ≡min
{(

DL
i −pi −∑

k∈S Dik

)+
,Dij

}
be the liquidity flow that j ’s solvency induces in bank i. Let xj ≡∑

i xij be the overall indirect
bailout value of bank j , that is the overall liquidity flow of interest that j ’s solvency induces in the
network. Finally, let ci ≡ (DL

i −pi −∑
j∈S Dij )+ be the cost of bailing out bank i. Consider the

algorithm that bails out the defaulting bank with highest ri ≡xi/ci , recomputing these values after
each step to account for all new solvencies.51

It is simple to show that the claim holds for n=2, as there is then a single network configuration
to consider in which each bank has a claim on the other.52 Bailing out any of the two banks is
enough to clear the cycle, and so x1 =DL

2 −p2 and x2 =DL
1 −p1. Then the algorithm bails out the

bank closest to solvency, which costs min{DL
1 −p1,D

L
2 −p2}≤0.5[DL

1 −p1 +DL
2 −p2].

Now suppose the induction hypothesis holds for a network of n banks, and consider a network
with n+1 banks. Let i∗ =argmini ri be the first bank picked by the algorithm, such that i∗ is the
bank with highest indirect bailout to bailout cost ratio. We give a bound on total bailout costs if
the regulator starts by bailing out i∗.

The regulator first bails out i∗ at a cost of ci∗ . Since all banks are initially defaulting, ci∗ =
DL

i∗ −pi∗ . We can then restrict attention to the remaining network of n banks, but we need to
account for the payments they got from i∗. Each bank j receives a payment of Dji∗ from i∗. In
that remaining subnetwork of n banks, the induction hypothesis tells us that the optimal bailout
policy costs at most

0.5
∑
j 
=i∗

(DL
j −pj −Dji∗ )+ =0.5

∑
j 
=i∗

(Dj −pj )−min{Dj −pj ,Dji∗ }=0.5
⎡
⎣∑

j 
=i∗
(Dj −pj )

⎤
⎦−xi∗ .

In total, accounting for the cost of i∗’s bailout, ensuring solvency then costs at most

0.5

⎡
⎣∑

j 
=i∗
(Dj −pj )

⎤
⎦−xi∗ +ci∗ .

A sufficient condition for our claim to hold is that xi∗ ≥ci∗ . To argue by contradiction, suppose
that xi∗/ci∗ <1. By definition of i∗, this means xi/ci <1 for all i. However, we know that, since
the network is weakly balanced, each banks getting its payments back in full has to be solvent. So∑

i

xji =
∑

i

min{DL
j −pj ,Dji}≥min{DL

j −pj ,D
A
j }≥cj .

Hence
∑

j

∑
i xji ≥∑

j cj , or equivalently
∑

j xj ≥∑
j cj . There must then be at least one bank

with xj ≥cj , and so xi∗ ≥ci∗ . The overall cost is then at most

0.5
∑
i 
=i∗

(DL
i −pi )≤0.5

∑
i

(DL
i −pi )

+,

and the claim is true.

Extension to any kth step indirect bailout value. As mentioned in the body of the paper,
indirect bailout values can be defined at various levels to accounts for cascades of indirect payments
induced by a bank’s solvency, not only in terms of its payments but also in terms of further levels

51 For the sake of completeness, set ri =0 for all solvent banks i ∈S at each step. Note that S =∅ at the first step
since all banks are defaulting.

52 If not, then there is no cycle in the network and all banks are already solvent as the network of interest is assumed
to be weakly balanced.

2059

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/37/7/2017/7511864 by guest on 20 June 2024



The Review of Financial Studies / v 37 n 7 2024

of solvencies and subsequent payments that its payments induce. Let I 0i ≡{i} and, taking as given
some set of banks S that are already solvent, i’s bailout induces the solvency of banks in

I 1i ≡{j /∈S∪I 0i |DL
j −pj ≤

∑
�∈S∪I0

i

Dj�}.

These banks paying back their debts leads to the following additional “indirect” solvencies

I 2i ≡{j /∈S∪I 0i ∪I 1i |DL
j −pj ≤

∑
�∈S∪I0

i
∪I1

i

Dj�}.

Define recursively the set of banks made indirectly solvent at step k as

I k
i ≡{j /∈S∪I 0i ∪···∪I k−1

i |DL
j −pj ≤

∑
�∈S∪I0

i
∪···∪I

k−1
i

Dj�}.

This process must terminate at some step k≤n−1, given the finite number of banks. A bank i’s
K-th step indirect bailout value, for 2≤K ≤n−1, is then∑

j /∈S∪I0
i

min{Dji,D
L
j −pj −

∑
l∈S

Djl}

+
K−1∑
k=1

∑
h∈Ik

i

∑
j /∈S∪I0

i
∪···∪Ik

i

min{Djh,DL
j −pj −

∑
m∈S∪I0

i
∪···∪I

k−1
i

Djm}.

The proof of Proposition 4 works similarly for any kth-step indirect bailout value. The case with
n=2 is unchanged as these notions of indirect bailout value are all equivalent with only two banks.
Note that a bank’s kth-step indirect bailout value is always at least as high as the k−1th-step
indirect value, and so if it is impossible that xi/ci <1 for all i under the first-step indirect value
definition of xi , then it is also impossible if we weakly increase the xi ’s. �

Proof of Proposition 5: Given that banks lie on at most one cycle, cycles can be partitioned into
tiers. First, there are cycles that have no directed path coming in from any other cycle—call these
C0. Next, there are cycles that only have directed paths coming in from C0, call these C1. Then there
are cycles that only have directed paths coming in from C0 and C1, and so forth. Remaining banks
either lie on directed paths between cycles or on dead-end paths that come out of some cycle(s).
Given that at least one bank must be made solvent on each directed cycle, it follows that finding
the cheapest bank on each cycle in C0 is necessary for solvency, and cannot be made cheaper by
any further bailouts. Under the ordering, these cycles will all be listed first and none affects the
bailout of any other within this tier. Iterating on this logic, the result is easily verified, noting that
any bank i that is not on any cycle will be cleared once all banks that have directed paths leading
to it are bailed out, which necessarily has to be done before any cycles that lie on directed paths
that point out from bank i are bailed out. �

Proof of Proposition 6: First note that since the network is weakly balanced, and the center bank
lies on all cycles, all banks are solvent in the worst equilibrium if and only if the center bank is.
Hence the optimal bailout policy is the one ensuring the solvency of the center bank at minimum
cost.

The center bank needs an amount of liquidity (n−1)Dout −pn ≤ (n−1)Din to be brought back
to solvency. Bailing out a peripheral bank i costs Din −pi and leads to a liquidity flow of Din into
the center bank. Hence it is always weakly cheaper (strictly if pi >0) to do so instead of injecting
Din directly into the center bank.

The only time at which it may not be optimal to bail out a peripheral bank is then when the
center bank is less than Din-close to solvency. This is the case if and only if �m∗� peripheral banks
have already been bailed out. Then the regulator can either bail out one additional peripheral bank,
which costs Din −p�m∗�+1, or inject the center bank’s marginal shortfall directly into it. �
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Proof of Proposition 7: Let x ∈{0,1,...nC} be the number of solvent core banks. The following
reasoning holds for any x. Without loss of generality, suppose there are still some insolvent core
banks.

Core banks are completely identical except for the value of their outside assets. Hence bailing
out any core bank induces the same liquidity flow into the network, but the cost of such bailout
can differ across core banks. If m∗

i (x) is an integer, the cost of bringing core bank i to solvency is
m∗

i (x)(D
in−pP ), where m∗

i (x) is smaller at every step for banks with higher pi . It is then always
optimal to bring core banks back to solvency in decreasing order of their pi .

What is the cheapest way to bring a core bank i back to solvency? By the previous argument,
it cannot be cost efficient to bailout its core counterparties, as these are more expensive to bailout
than i. So the optimal way must only involve bank i’s peripheral banks, or injecting capital into i

directly. This is the same problem as studied in Section 4.2, and Proposition 6 applies. The only
slight difference is that, for some parameter values, bailing out all of i’s peripheral banks may not
be enough to ensure its solvency, that is, m∗

i (x)>nP . The same logic however still holds: it is still
optimal to leverage the peripheral banks’ outside assets, and the optimal policy is then to bailout
all of i’s peripheral banks, and then inject whatever additional capital is needed directly into i. �
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