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Abstract—This paper explores the use of optimization methods
to estimate thicknesses of subcutaneous tissues using a non-
invasive near-field antenna with microwave low-power reflec-
tometry from 2-13.5 GHz. The initial simple model assumes a
planar tissue stack and is implemented with a Long Short-
Term Memory (LSTM) neural network trained on full-wave
electromagnetic simulation data. A stack of tissue phantoms for
skin, fat and muscle with 2 and 3 layers is used for experimental
validation. The application for the work presented in this paper
is non-invasive internal body temperature measurement using
microwave radiometry, where knowledge of tissue thicknesses
and electrical parameters is required to solve the inverse problem.
These parameters vary based on body composition and type, as
well as the specific placement of the sensor on the body. For
example, the outermost layer of the forearm epidermis varies by
4.9mm and upper abdominal fat can vary by 15mm between
people. The model developed for this paper predicts thicknesses
of a stackup of Playdough, Rogers Duroid 6010 and a commercial
skin phantom within 7%, 42%, and 24% respectively, with
a neural network loss value of 0.29. This preliminary model
demonstrates the prediction of thicknesses of a more general
N-layer stackup and serves as a proof of concept for a higher
fidelity model that can be used to additionally predict dispersive
permittivity and conductivity of layered tissues.

Index Terms—Neural networks, RNN, LSTM, custom loss
function, electromagnetics, tissue properties, core body temper-
ature, radiometry, noninvasive, wearables.

I. INTRODUCTION

As the size and computational demands of biological data
has increased, the application of machine learning optimization
methods to biological problems has proliferated in the last
decade. In this paper we address the specific problem of in-
situ measurement and estimation of sub-cutaneous tissue layer
properties. The thicknesses, as well as other parameters such as
permittivity, conductivity, mechanical and thermal properties
of tissue layers are needed for design of e.g. antennas for
body-area communication networks [1], wireless powering
of implants [2], and wearable textile antennas [3]. All of
these applications benefit from the understanding of tissue
parameters as they directly affect the electromagnetic fields.

An application that is the motivation for the work in this
paper is core body thermometry, illustrated in Fig. 1. There ex-
ists a demand for accurate, non-invasive core body temperature
(CBT) monitoring. CBT differs from skin temperature, which
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Fig. 1: Illustration of internal body thermometry setup with
tissue estimation. The thermometer is a radiometer, in which
a narrowband antenna and sensitive receiver measure total
noise power proportional to temperature. Tissue-dependent
weighting factors W, are used to estimate individual layer
temperatures 7;. To determine the layer properties (d;, €,;, 0;)
a wideband antenna collects reflectometry data from a vector
network analyzer (VNA) from 2 to 13.5 GHz, fed into a LSTM
algorithm. The focus of this paper (indicated in green) is to
determine the tissue layer thicknesses d;.

undergoes fluctuations as a direct result of the environment.
Typically, CBT is measured using invasive surgical probes,
rectal or oesophageal sensors, which are generally expensive
and are not solutions for continous, long-term monitoring [4].
Having the means to noninvasively and continuously capture
fluctuations in core temperature can enable diagnostics of e.g.
sleep disorders [5], and soldiers and athletes at the threshold of
hyperthermia or heatstroke in extreme environments [6]. The
current methods to noninvasively measure internal temperature
are MRI [7] which is expensive and large, and heat-flux probes
[8] which do not measure deep tissue temperature. A method
to non-invasively determine sub-cutaneous temperature is mi-
crowave radiometry. Previous work in this field includes the



use of a 1.4 GHz near-field radiometer of a Dicke architecture
for centimeter penetration of tissues for blackbody radiation
retrieval in conjuction with tissue weighting functions that
were obtained using full wave simulation [4], [9]. In [10],
a radiometer for breast cancer detection in hospitals is shown.
Lower frequencies need to be used for centimeter-sensing
depth in tissues, e.g. the 27-MHz wide radioastronomy band
at 1.4 GHz.

Fig. 1 shows the fundamental principle of a wearable ra-
diometer integrated with a device that calibrates the tissue
layers. The thermometer is a radiometer, in which a narrow-
band antenna and sensitive receiver measure total noise power
proportional to temperature. Tissue-dependent weighting fac-
tors W, are used to estimate individual layer temperatures 7;.
To determine the layer properties (d;, relative permittivity €,
and conductivity ;) a wideband antenna collects reflectom-
etry data from a vector network analyzer (VNA) from 2 to
13.5 GHz, which is then fed into a LSTM algorithm described
in detail below. The focus of this paper is to determine the
tissue layer thicknesses d;.

This paper is organized as follows. Section II introduces the
significance of the tissue thickness prediction and the method-
ology implemented to solve the problem. Section III provides
a brief review of the effect that tissues parameters have on
electromagnetic characteristics and the need for calibration.
Next, Section IV reviews the configuration of the antenna
in a full-wave electromagnetic simulator, describing how the
training data is obtained. The neural-network architecture is
described in Section V, while Section VI gives the performance
results and experimental validation. Finally, some conclusions
and avenues for future work are given.

II. MOTIVATION AND APPROACH

A narrow-band, near-field antenna placed on the skin re-
ceives the total noise power from all tissues under it, which
is proportional to the bandwidth of the receiver, B, and the
temperatures of all the layers under the antenna:

N
P=kB) Wi, (M

i=1

where k is the Boltzmann constant, and W;, T; are the weight-
ing factor and temperature of the ith layer [4]. The weighting
factors define the contributions that the tissue layers have to
the overall power and are a direct function of tissue thickness
d, frequency f, conductivity o, and permittivity e:

N
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The weight W; of each layer is found from reciprocity as
the power dissipated in a particular layer normalized to the
total dissipated power when 1 W of power is incident from
the antenna:
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where Py; is the power dissipated in the ¢th layer and P,
is the power dissipated in the entire volume. The size of
the volume is bound by the power loss density values below
10 W/m?3, which captures more than 99% of the incident 1 W.
This is determined in the full-wave electromagnetic solver by
simulating the fields under the antenna [4].

In order to calculate the weighting factors, having a process
for determining thickness, permittivity and conductivity is
critical because they are required by the full-wave solver HFSS
from Ansys [11]. These parameters are different across body
compositions and body types, requiring “model calibration”.
Permittivity and conductivity are frequency-dependent while
thickness is frequency-independent, and therefore we start the
calibration using a neural network model to solve for tissue
thickness of each layer in a 2-layer and 3-layer stackup, shown
in Fig.2. The training data from HFSS are first collected
using a simulation of the complex reflection coefficient (S71)
of a broadband (2-13.5 GHz) near-field bow-tie antenna [12]
against a stackup that is parameterized for varying layer
thicknesses. The LSTM model is composed in Python using
the Keras library [13]. The validation step occurs when the
model is used to make a prediction on the reflection coefficient
data collected from a VNA connected to the physical antenna
placed on a comparable stackup.
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Fig. 2: Proposed workflow for applying a LSTM model to
determine weighting factors. Areas highlighted in blue show
the steps covered by the research presented in this paper. The
reflection coefficient S1; amplitude and phase data from 2—
13 GHz is acquired using a wideband antenna that is placed
against a tissue stackup and the probe is connected to a VNA.
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Avg.
Tissue Thickness € o(S/m)
[mm]
Skin 1.2 39.60 1.04
Fat 4 11.15 0.15
Cortical Bone 2 12.05 0.21
Cancellous Bone 4 19.90 0.47
Cortical Bone 2 12.05 0.21
Heart 50 57.54 1.51

conductivity for each tissue layer at the sternum [14],
[15] and [16].

Tables I, II, and III.

Avg.
Tissue Thickness € o(S/m)

[mm]
Scalp 4 39.60 1.04
Skull (Cortical) 2.2 12.05 0.21
Skull (Cancellous) 1.8 19.90 0.47
Skull(Cortical) 14 12.05 0.21
Brain 50 47.30 1.50

TABLE I: (Region 1) Average thickness, permittivity
and conductivity for each tissue layer at forehead [14], [15]

and [16].
Avg.
Tissue Thickness € o(S/m)
[mm]
Skin 2-4 39.66 1.04
Fat 10-30 54 0.07
Linea Alba 3 44.90 0.96
Muscle 9-11 54.11 1.14
Liver 10-21 45.12 1.08
Stomach 110 63.94 1.44
Pancreas 30-90 58.76 1.27

TABLE II: (Region 2) Average thickness, permittivity and TABLE III: (Region 3) Average thickness, permittivity and
conductivity for each tissue layer at the upper abdominal
region of the body [17], [15] and [16].

[Fig. 3: Top left shows a graphic representation of which body locations are described by their electromagnetic properties in|

A. Need for Calibration

Factors including age, race, gender, and genetic history all
affect the composition of muscle, fat, and tissue in the human
body. In order for the internal thermometry tool to be effective
across the general population, calibration for body composition
should be accurately performed. Limited data exists in the
literature on body composition across a diverse population.
For example, [18] reports that although research groups have
attempted to cover the variation in skin structure and function
across diverse groups, these studies remain limited in their
sample size or they focus on interindividual variations in skin
quality and overlook racial differences. For skeletal muscle,
which is the largest adipose tissue-free body mass in humans,
[19] endeavors to close the gap by studying the differences
across a racially diverse sample of 2000 people over an age
range of 60 years.

A well-known experimental and theoretical study of electro-
magnetic tissue properties including conductivity and permit-
tivity [20] includes variation across a broad frequency range in
the microwave part of the spectrum, but does not include the
diversity in the sample size. Other sources for electromagnetic
tissue properties in the microwave range include [16] and full-
body models are available from [21]. Although this data can

be helpful, a practical application requires a fast measurement
of tissue properties at a specific place where temperature data
is acquired for a one-time calibration. In order to provide a
non-invasive internal body thermometry tool that can be used
inclusively across a population, the intent is to train the neural
network across a wide range of thicknesses and frequency-
dependent conductivities and permittivities to determine the
weighting factors for different body compositions. The deter-
mination of tissue layer thicknesses described in this work is
an important step toward bridging this gap.

III. NATURE OF DATA

The data involved in the training for the calibration process
of the noninvasive thermometer are the reflection coefficient,
S11, of the test antenna and thicknesses of the tissue layers
under the antenna. The reflection coefficient, or scattering
parameter, is defined as:

Zy, — 2o
I+ Zy
where Z is the effective impedance of the antenna on the
tissue stack, and Zy = 50 () is the characteristic impedance of
the coaxial cable connected to the antenna. This parameter
is complex because the lossy tissues are described with a
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complex impedance. Therefore, both amplitude and phase
need to be characterized. The thicknesses of the tissue layers
impact the effective impedance seen by the antenna, and
these vary across different regions of the body as well as
between humans. Fig. 3 shows the electromagnetic properties
across the sternum, forehead, and upper abdomen regions.
This figure demonstrates the significant variability in tissue
thickness across the body e.g. the difference in fat thickness
between the sternum and the upper abdominal can be as much
as 26 mm [14], [17].

IV. HFSS MODEL SETUP

Training data is obtained from HFSS simulations of a near
field wideband antenna against an analog tissue stackup. We
use reciprocity and model the antenna as a transmitter with
1 W of transmitted power. An image of the antenna numerical
model is shown in Fig. 4, and an example electric field vector
magnitude distribution of the probe at 2.45 GHz is presented
in Fig.5. This demonstrates electric field penetration into all
of the layers, where limitation exists in Playdough due to skin
depth. The field distribution looks similar at all frequencies
where the antenna is well matched.

The near-field antenna is simulated against two tissue stack-
ups. The first stackup is composed of a commercial skin
phantom manufactured by Speag [22], a low-loss microwave
substrate (Rogers Duroid 6010) simulating fat, and Playdough
simulating muscle. The second stackup is composed of the
Speag skin phantom and Playdough. Frequency-dependent
permitivity and conductivity are defined in the model for
skin phantom and Playdough as they are dispersive. The
permittivity and conductivity values over frequency are used
from [12] and are shown in Fig. 6 and Fig. 7. The materials
are modeled as impedance boundary layers in HESS since they
represent resistive layers that experience losses when fields
and currents pass through the layers. Average permittivity,
conductivity and thickness values of the materials used in this
model are included in Table IV.

Simulations are executed for the two-layer and three-layer
stackups over a range of thicknesses. The results include
|S11] and £Sp; per iteration of thickness, per layer over
the frequency range of 2—13.5 GHz. The training data set is
composed of 447 permutations of layer thicknesses. The data
is exported from HFSS to CSV files to be used as training
data for the LSTM code.

A. Justification for Material Selection

In this preliminary phase of this research, it was necessary
to utilize materials whose electromagnetic properties have
been characterized in a lab environment and that are read-
ily available to ensure reproducibility of results. Hence, the
selection of Playdough and the Rogers Duroid 6010 substrate.
Playdough is known in the bio-electromagnetic community
to be a reasonable muscle phantom. The skin phantom was
purchased from Speag. Fig. 8 shows a subset of the complex
reflection coefficient curves that are used for the training
data. The image shows significant variations when thicknesses
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Fig. 4: Computational model of near-field, wideband probe
model in HFSS.
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Fig. 5: Plot of magnitude of the electric field vector at
2.45 GHz for the broadband nier-field probe against a three
layer stackup of 2.25 mm thick skin phantom, 1.91 mm thick
Rogers 6010 substrate, and 30 mm thick Playdough.

of Rogers Duroid 6010 and skin phantom are iterated over,
however insignificant changes when Playdough is updated
since skin effect must be considered because Playdough is
at 30 mm. Fig. 9 and Fig. 10 exhibit a comparison between an
iteration of simulation data with the corresponding benchtop
data, demonstrating that simulation data is a valid method for
training the LSTM model.

TABLE IV: Stackup materials and corresponding average
electromagnetic properties and thickness ranges for simulation.

Tissue € o(S/m) | Thickness Range (mm)
Skin Phantom (Speag) | 24.3 1.98 1to3
Duroid (Rogers 6010) 10.2 - 1to3
Playdough 27 7 25 to 35

V. NEURAL NETWORK ARCHITECTURE
A. Neural Network Type Selection

Multi Level Perceptron (MLP) and Recurrent Neural Net-
works (RNN) were both considered when determining the
architecture to apply to the internal thermometry calibration
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Fig. 7: Relative permittivity and conductivity over frequency
for Playdough used in HFSS for simulation setup.

problem. Commonly, MLPs are applied to biomedical prob-
lems, however they are used when the predictions are based
off static data. In the case of this project, the training data
is frequency-dependent reflection coefficient and the predicted
data for this preliminary step is number of layers and thickness
of each layer in the tissue stackup. Future work involves
additionally predicting frequency-dependent conductivity and
permittivity of each tissue layer. Since the goal is to predict
frequency-dependent data and the training data is over fre-
quency, the neural network must capture sequential patterns
to make predictions [23]. LSTMs are a specific type of RNN
that are used to recognize long-term dependencies in temporal
data [24].

B. Pre-processing Training Data

The input data is composed of three features: frequency,
|S11] and Z£S11. Thickness is changed for each layer in the
stackup and for each thickness, the resulting Z/.S7; and |Si|
are measured over the 2GHz to 13.5GHz frequency range
by the solver. The data needs to be restructured and scaled
appropriately prior to using it in the LSTM model. The X
training data set is composed of frequency, |S11|, and ZSi;.
The Y data is composed of the number of layers and their
thicknesses. A graphic representation of the X and Y dataset
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Fig. 8: (a) A subset of the simulation results from HFSS
for a 2 layer stackup. The curves demonstrate that varying
the Playdough thickness does not cause variation in the Si;
curves, unlike variation in the skin phantom. This effect is
due to skin depth. (b) A subset of the simulation results from
HFSS for a 3 layer stackup.

division is presented in Fig. 11. Each feature is scaled by the
minimum and maximum values of that feature. In the model,
70 % of the data is used for training and 30 % is used for test.
The sequences of data were randomly shuffled when training
and testing datasets were configured.

C. Neural Network Design

The initial layer of the model consists of 50 units accompa-
nied with the *Tanh’ activitation function, which offers larger
gradients around its zero center, which can capture minor
changes in the sequential data. Tanh was chosen over Rectified
Linear Unit (ReLU) to avoid the “dying ReLU” problem, when
ReLU neurons become inactive and output zero in turn no
longer contributing to the model learning process [25]. This
must be avoided in order for intricacies of the temporal data
to be detected by the LSTM.

Dense layers follow the initial layer, concluding with the
final dense layer consisting of four units, addressing the four
output parameters: number of layers, Playdough thickness,
Rogers 6010 thickness, and Speag skin phantom thickness.
Dropout layers were additionally incorporated for regulariza-
tion and to prevent overfitting [26] and [27]. The architecture
of the data flow for both the LSTM model and the experimen-
tal data validation process is shown in Fig. 12.
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Fig. 9: (a) Experimental reflection coefficient magnitude plot-
ted against simulated reflection coefficient magnitude over
frequency for a two-layer stackup composed of Playdough and
commercial tissue phantom, Speag. (b) Experimental reflection
coefficient phase plotted against simulated reflection coeffi-
cient phase over frequency for a two-layer stackup composed
of Playdough and commercial tissue phantom, Speag.

D. Custom Loss Function

A custom loss function is devised to address the physical
constraints of the problem as well as minimize prediction
errors [28]. The loss function incorporates the requirements
that the number of layers prediction must be an integer and
that thickness values are non-negative and within a reasonable
band corresponding to the material nature of that layer. For
example, the Speag skin phantom prediction is constrained to
be on an order of a millimeter, but can be further constrained.

The loss function is composed of a mean squared error
(MSE) term with penalty terms for conditions including non-
integer values for number of layers and negative values for
layer thicknesses [29]. The penalty for non-integer values
is determined by calculating the absolute difference between
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Fig. 10: (a) Measured and simulated reflection coefficient mag-
nitude (a) and phase (b) for a three-layer stackup composed
of Playdough, Rogers Duroid 6010, and commercial skin
phantom from Speag. (b) Experimental reflection coefficient
phase plotted against simulated reflection coefficient phase
over frequency for a three-layer stackup composed of Play-
dough, Rogers 6010 Duroid, and commercial tissue phantom,
Speag.

the number of predicted layers and the closest integer value.
Then penalties are calculated for negative thicknesses, which
cannot physically exist. The penalties are further combined
with coefficients that are used as weights to prioritize different
facets of the problem. Combining all the coefficients with the
penalties provided a total loss function that is used by the
model to modify weights during training.

In the case that the experimental data is not over the
complete frequency range covered in the training data, a linear
interpolation with extrapolation for data outside the given
frequency range is incorporated in the model.
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VI. PERFORMANCE RESULTS AND EXPERIMENTAL
VALIDATION

When evaluating the performance of the model, a few
metrics are observed including the loss obtained as well as the
predictions that the model made for benchtop measurements.

Fig. 13 shows the learning curve for both training and
validation loss, as defined in [30] and [31]. Validation split
of 0.3 is used, therefore 30% of the training data is used
for validation. This curve shows how the performance of the
model improves over the number of epochs. Over a training
process of 200 epochs, the final training loss is 0.25, the final
validation loss is 0.31 and the model test loss is 0.29. These
loss values indicate that the model is performing at an adequate
standard, however there remain opportunities for improvement,
e.g. using more training data.

In addition to evaluating the performance of the model from
simulation data for training and testing, it was imperative to
use the model to make predictions on physical data obtained
from a benchtop setup. A 10 MHz to 13.5 GHz VNA was used
with the near field bow tie antenna that has been modeled in
HFSS against a stackup of Playdough, Rogers 6010 and Speag
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Fig. 13: Learning curve of the training and validation losses
over epochs. This graph demonstrates that the model is neither
underfitting nor overfitting the data since the validation and
training loss curves follow one another closely and their
respective values decrease over the training period.

skin phantom. Two physical stackup setups are used for this
preliminary verification phase. The first is a two-layer model
composed of the skin phantom and Playdough and the second
uses all three materials. The resulting |S1;| and £S7; values
from the VNA are used to make predictions on the thickness
of each layer as well as the number of layers. The comparison
between the benchtop values and the values predicted by the
neural network model are shown in Table V.

TABLE V: Actual parameters of the experimental setup com-
pared to the LSTM predictions of the experimental setup.

Test Predicted Layer True Predicted
Type No. of Layers Type Thickness | Thickness
[mm] [mm]
Playdough 30 28.10
2 Layer 2.32 Rogers 6010 0 0.56
Speag 2.25 1.71
Playdough 30 29.783
3 Layer 2.75 Rogers 6010 1.91 1.109
Speag 2.25 1.86

Variation between the true values and predicted values are
likely a result from the deviation between the benchtop S11
curves compared to those outputted from HFSS as shown in
Fig. 9 and Fig. 10. This could be from a number of factors
such as the materials are not exact to their datasheets, the
Playdough experienced drying from when it was fitted etc.

VII. CONCLUSIONS AND DISCUSSION

In summary, this paper presents the use of an LSTM model
trained on full-wave electromagnetic simulation data to esti-
mate thicknesses of subcutaneous tissues using a non-invasive
near-field antenna with microwave low-power reflectometry
from 2-13.5 GHz. The application for the work presented in
this paper is non-invasive internal body temperature measure-
ment using microwave radiometry, where knowledge of tissue



thicknesses and electrical parameters are required to solve
the inverse problem. These parameters vary based on body
composition and type, as well as the specific placement of the
sensor on the body.

This research shows that thickness for 2 and 3-layer ex-
perimental stackups of Playdough, Rogers Duroid 6010, and
commercial skin phantom can be predicted within 7%, 42%,
and 24% respectively, using the LSTM model described in
this paper. This tolerance is satisfactory for the limited stackup
presented here, however in the next phase of this study, this
model will be extended to N = 4, 5, and 6 layers. Having
established a method for predicting tissue thickness, the next
phase of the research will extend the model to predict per-
mittivity and conductivity across frequency and with variance
among people. The high-level methodology for incorporating
these parameters is shown in Fig. 1. The HFSS PyAedt API
will be utilized to connect with HFSS to efficiently update
conductivity and permittivity per frequency point. This must
be done utilizing the API since these frequency-dependent
parameters cannot be parameterized in HFSS itself. To reduce
computational overhead, the permittivity and conductivity will
be fitted to the Cole-Cole model, which will reduce complexity
and eliminate the need for arbitrary values per frequency point
[32].

Future work will incorporate validation with finite-
difference time-domain electromagnetic simulations that will
be performed using the Sim4Life tool [21]. Additionally,
materials with well documented properties, including various
tissue phantoms as well as animal models, can be used to
improve the training data.
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