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Abstract — This paper explores the use of optimization
methods to estimate thicknesses of subcutaneous tissues using
a non-invasive near-field antenna with microwave low-power
reflectometry from 2–13.5 GHz. An application is in breast
cancer detection at microwave frequencies. The initial model
assumes a planar tissue stack and is implemented with a
Long Short-Term Memory (LSTM) neural network trained
on full-wave electromagnetic simulation data. Tissue phantoms
for skin, fat and muscle with 2 and 3 layers are used for
experimental validation. The model developed for this paper
predicts thicknesses of a stackup of Playdough, Rogers Duroid
6010 and a commercial skin phantom within 7%, 41%, and
24% respectively, with a neural network loss value of 0.29. This
preliminary model is a proof of concept for a higher fidelity
model that can additionally predict dispersive permittivities and
conductivities of layered tissues.

Keywords — Neural networks, RNN, LSTM, custom loss
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I. INTRODUCTION

In this paper we address the problem of in-situ
measurement and estimation of sub-cutaneous tissue layer
electrical properties at microwave frequencies. The knowledge
of thicknesses, permittivities and conductivities of tissue
layers is needed for design of e.g. antennas for body-area
communication networks, wireless powering of implants and
wearable textile antennas, e.g. [1], [2]. The motivation for the
work in this paper is breast cancer detection using microwaves,
illustrated in Fig. 1, researched worldwide in the past few
decades [3]. All the methods addressing this application use the
same underlying hypothesis: due to the different water content,
there is an inherent dielectric contrast between healthy and
cancerous breast tissues at microwave frequencies [4]. Hence,
when a low-power microwave signal is launched at the skin
surface, the backscattered signal collected on the skin surface
contains information on the subcutaneous dielectric structure,
including any tumorous anomalies.

This promising approach encounters a number of
well-documented challenges. First, the variation in the
dielectric properties directly implies the variation in the
detectability levels, as the signal must be low-power for safety
considerations. Second, women’s tissue densities vary, and
this medically-categorized variation implies a subtle change of
dielectric properties from one individual to another. Finally, the
lossy and high-permittivity skin, the first layer through which
the wave propagates, must be properly accounted for, both
at the level of hardware design and at the signal-processing
stage [6]. Having an accurate estimate of near-surface tissue

Fig. 1. Illustration of breast tissue estimation that can assist breast cancer
detection. By nature of low-power, safe detection of breast cancer, microwaves
do not reach the muscle of the chest wall. To determine the layer properties
(di, ϵri, σi) a wideband antenna collects reflectometry data from a vector
network analyzer (VNA) from 2 to 13.5 GHz, fed into a LSTM algorithm.
The focus of this paper (indicated in green) is to determine the tissue
layer thicknesses di, and muscle is included for general tissue estimation
proof-of-concept [5].

layers will help in calibrating the microwave imaging process
to each particular patient. Factors including age, race, gender,
and genetic history affect the composition of tissues in the
human body and limited data exists in the literature on body
composition across a diverse population. For example, [7]
reports that although research groups have attempted to cover
the variation in skin structure and function across diverse
groups, these studies remain limited in their sample size or
they focus on interindividual variations in skin quality and
overlook racial differences.

In [8], broadband 0.5–20 GHz characterization of breast
tissue is performed using a coaxial probe. Although this
data can be helpful, a practical application requires a
fast measurement of tissue properties at a specific place
where breast-cancer imaging data is acquired for a one-time
calibration. To determine the layer properties (thickness di,
relative permittivity ϵri and conductivity σi) a wideband
near-field antenna collects 2–13.5 GHz reflectometry data with
a vector network analyzer (VNA), which is then fed into a
Long Short-Term Memory (LSTM) model. Layer properties
are different across body types, requiring “model calibration”.
Permittivity and conductivity are frequency-dependent while
thickness is frequency-independent, and therefore we start the
calibration using a neural network model to solve for tissue



thickness of each layer in a 2-layer and 3-layer stackup. The
training data from HFSS are first collected using a simulation
of the complex reflection coefficient (S11) at the port of a
broadband (2–13.5 GHz) near-field bow-tie antenna [9] against
a stackup that is parameterized for varying layer thicknesses.
The LSTM model is composed in Python using the Keras
library. The validation step occurs when the model is used
to make a prediction on the VNA reflection coefficient data
collected from the antenna placed on a comparable tissue
phantom stackup. An example electric field vector magnitude
distribution of the near-field antenna at 2.45 GHz is presented
in Fig. 2, for 1 W of incident power. An image of the antenna
numerical model is shown in the same figure. The near-field
distribution does not change significantly across frequencies
where the antenna is well matched.

Fig. 2. Top is a plot of electric field magnitude at 2.45 GHz for the broadband
probe against a three layer stackup of 2.25 mm thick skin phantom, 1.91 mm
thick Rogers 6010, and 30 mm thick Playdough. Numerical model of the probe
is shown in the bottom right corner. Bottom is a table of the electromagnetic
properties and thickness ranges used in simulation.

For the phantoms, we used materials whose
electromagnetic properties have been characterized in a
lab environment and that are readily available to ensure
reproducibility of results. The near-field antenna is simulated
with two phantom tissue stackups: (1) a commercial skin
phantom manufactured by Speag [10], a low-loss microwave
substrate (Rogers Duroid 6010) simulating fat, and Playdough;
and (2) the skin phantom and Playdough, known in the
bio-electromagnetic community to be a reasonable muscle
phantom. Frequency-dependent permitivity and conductivity
are defined in the model for skin phantom and Playdough.
The dispersive permittivity and conductivity values are used
from [9]. Simulations are executed for the two-layer and
three-layer stackups over a range of thicknesses. The results
include |S11| and ̸ S11 per iteration of thickness, per layer
over the frequency range of 2–13.5 GHz. The training data
set is composed of 447 permutations of layer thicknesses.
The data is exported from HFSS to CSV files to be used as
training data for the LSTM code. Fig. 3 exhibits a comparison
between an iteration of simulation data with the corresponding

(a)

(b)

Fig. 3. (a) Experimental and simulated |S11| and ̸ S11 for a
two-layer stackup of Playdough and commercial tissue phantom, Speag. (b)
Experimental and simulated |S11| and ̸ S11 for a three-layer stackup of
Playdough, Rogers Duroid 6010, and commercial skin phantom from Speag.
Orange lines represent HFSS data and blue lines represent experimental data.

experimental data, demonstrating that simulation data is a
valid method for training the LSTM model.

II. NEURAL NETWORK ARCHITECTURE

Prior to selecting LSTM, both Multi Level Perceptron
(MLP) and Recurrent Neural Networks (RNN) were
considered when determining the architecture to apply to the
internal thermometry calibration problem. Commonly, MLPs
are applied to biomedical problems, however they are used
when the predictions are based off static data. Since the goal
is to predict frequency-dependent data and the training data
is over frequency, the neural network must capture sequential
patterns to make predictions [11]. LSTMs are a specific type
of RNN that are used to recognize long-term dependencies in
temporal data [12]. The X training data set is composed of
frequency, |S11|, and ̸ S11. The Y data is composed of the
number of layers and their thicknesses. Each feature is scaled
by the minimum and maximum values of that feature. In the
model, 70% of the data is used for training and 30% is used
for test. The sequences of data are randomly shuffled when
training and testing datasets were configured.

The initial layer of the LSTM model consists of 50
units accompanied with the ’Tanh’ activitation function, which
offers larger gradients around its zero center, which can capture
minor changes in the sequential data. Tanh is chosen over
Rectified Linear Unit (ReLU) to avoid the “dying ReLU”
problem, during which negative inputs can lead to zero
gradients resulting in inactive neurons [13]. This must be



avoided in order for intricacies of the temporal data to be
detected by the LSTM.

Three dense layers follow the initial layer, concluding with
the final layer consisting of four units, addressing the four
output parameters: number of layers; Playdough thickness;
Rogers 6010 thickness; and Speag skin phantom thickness.
Dropout layers are additionally incorporated for regularization
and to prevent overfitting [14].

A custom loss function addresses the physical constraints
of the problem as well as minimizes prediction errors. The
loss function incorporates the requirements that the number of
layers prediction must be an integer and that thickness values
are non-negative and within a reasonable band corresponding
to the material nature of that layer. The loss function is
composed of a mean squared error (MSE) term with penalty
terms for conditions including non-integer values for number
of layers and negative values for layer thicknesses [15]. The
penalty for non-integer values is determined by calculating
the absolute difference between the number of predicted
layers and the closest integer value. Then penalties are
calculated for negative thicknesses, which cannot physically
exist. Multiplying the penalty values with coefficients allows
the model to prioritize penalties between the layer predictions.
Coefficients were determined by trial and error. Combining the
coefficients with the penalties provides a total loss function that
is used by the model to modify weights during training. In
cases when the experimental data does not cover the complete
frequency range of the training data, a linear interpolation with
extrapolation for data outside the given frequency range is
incorporated in the model.

III. RESULTS AND EXPERIMENTAL VALIDATION

When evaluating the performance of the model, a few
metrics are observed including the loss obtained as well as the
predictions that the model makes for benchtop measurements.
A model loss of 0.29 is obtained over the training process
of 200 epochs, indicating that the model is performing at an
adequate standard.

In addition to evaluating the performance of the model
from simulation data, we used the model to make predictions
on physical data obtained from a benchtop setup. A
10 MHz–13.5 GHz VNA is used with the near-field bow-tie
antenna modeled in HFSS against a stackup of Playdough,
Rogers 6010 and Speag skin phantom. Two physical stackup
setups are used for this preliminary verification phase. The
first is a two-layer model composed of the skin phantom
and Playdough and the second uses all three materials. The
resulting |S11| and ̸ S11 values from the VNA are used to
make predictions on the thickness of each layer as well as
the number of layers. The comparison between the benchtop
values and the values predicted by the neural network model
are shown in Table III. Here rounding to an integer is used for
the number of layer prediction.

Variation between the true values and predicted values are
likely a result from the deviation between the benchtop S11

data compared to that obtained from HFSS as shown in Fig.

Table 1. Actual parameters of the experimental setup compared to the LSTM
predictions of the experimental setup.

Test Predicted Layer True Predicted
Type No. of Layers Type Thickness Thickness

[mm] [mm]

2 Layer 2.32 → 2
Playdough 30 28.10

Rogers 6010 0 0.56
Speag 2.25 1.71

3 Layer 2.75 → 3
Playdough 30 29.783

Rogers 6010 1.91 1.109
Speag 2.25 1.86

3. This could be due to a number of factors, e.g., the materials
are not exact to their datasheets, or the Playdough experienced
some drying from the time when it was fitted.

In summary, this research shows that thickness for 2 and
3-layer experimental stackups of Playdough, Rogers Duroid
6010, and commercial skin tissue phantoms can be predicted
within 7%, 41%, and 24% respectively, using the LSTM model
described in this paper. Future work will extend the model to
predict dispersive permittivity and conductivity.
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