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Abstract— This paper presents a method for cancelling
external interference in a passive medical sensor for internal
body temperature measurements. In microwave thermometry, a
radiometric receiver measures the black-body radiation emitted
by tissues inside the body. At room temperature and with
a few tens of MHz bandwidth, black body radiation has a
power around -100dBm. With such low signal strengths, any
transmitter (intentional or not) in the environment becomes a
source of RFI. To reduce error in radiometric measurements, a
simple and computationally inexpensive method for interference
cancellation based on an auxiliary antenna and receiver is
presented. Using this technique, temperature fluctuations due to
RFI are significantly improved, which have a standard deviation
in the error temperature of 3.5K and max of 56 K, down to
0.38K and a max of 2K.
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I. INTRODUCTION

Internal body temperature is an important metric for both
medical diagnostics [1], [2], [3] and treatment [4]. Fig.1
illustrates radiometric brain temperature measurements, which
are useful for monitoring temperature during, e.g. cardiac
surgery [5] or traumatic brain injury. The temperature of
internal organs or layers of tissue can be measured by
amplifying and detecting their radiated black body power.
Previous work used various higher microwave frequencies,
e.g. between 3 and 4 GHz in a portable radiometer [6], or as
high as 45 GHz, where a radiometer with a horn antenna was
used to obtain temperature body images reported to show the
heart location [7]. The low giga-hertz frequencies (1.4 GHz)
for tissue penetration, over a bandwidth of about 60 MHz [8]
are a good compromise between depth of sensing and size
of the near-field antenna probe used to receive the thermal
noise. For a few tens of MHz receiving bandwidth, the total
received power is about -100 dBm. At these low power levels,
practically all wireless applications as well as unintentional
RF radiators in the environment become a significant source
of radio frequency interference (RFI). In Fig.1, a single
interfering signal is shown as an illustration.

Interference makes deploying microwave thermometry
outside of shielded environments challenging [9]. For a
wearable thermometer used for monitoring, the hardware
is limited in power, size, and cost. This in turn limits
computational resources allocated to suppressing interfering
signals. Here we present a simple technique for interference
cancellation inspired by spatial filtering commonly used in
radio astronomy. In section II, we present a model for
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Fig. 1. Radiometer measuring brain temperature with an interferer transmitting
a pulse train. Pulses are received by the radiometer as RFI. The RFI reference
antenna is placed within the coherence wavelength of the temperature probe,
which is inversely proportional to the bandwidth of the receiver.

estimating the correlation between two signals and validate the
model using simulation. In section III, the model is validated
in a simple simulated experimental scenario.

II. INTERFERENCE MODELLING

For this work, a 1.4-GHz radiometer is chosen as a
compromise between antenna size and sensing depth. Although
this is a quiet band, the surrounding spectrum is densely
allocated, and example measurements in an urban environment
can be found in, e.g., [10]. In-band interference can be
due to harmonics from transmitters at lower frequencies,
transmitters in the adjacent bands, or unintentional radiators
in the environments. For wearable applications, a technique to
mitigate interference is desired which is real-time and can run
on modest compute resources (such as a micro-controller).

Numerous techniques already exist for interference
detection, suppression, and cancellation. For interference
detection, statistical tests such as a kurtosis or the
Shapiro-Wilk test are preferred [11], [12]. Once RFI detection
is performed, time and/or frequency blanking can be used
to completely remove an interferring signal, at the cost of
increasing integration time. Interference can be suppressed
using tuneable filters, but these are lossy and the rejection
is relatively weak [13]. Techniques which use additional
“auxiliary” antennas have also been implemented. Spatial
filtering is used extensively in radio astronomy [14], and
an adaptive filter has been demonstrated for interference
cancellation in microwave thermometry [9]. Spatial filtering
for interfering emitters that are spatially separated from the
desired signal source can be effective when a large number



of phased antenna elements are used, but is complex and
computationally expensive. This prohibits implementation in
embedded systems. While adaptive filters are relatively simple,
they suffer from similar computation issues. Here, we take
inspiration from spatial filtering and propose a new technique
for estimating the amount of interference in a radiometric
signal using a reference antenna and receiver, and then
subtracting it.

A. Model for Thermal Noise with Super-Imposed RFI

Referring to Fig. 1, we assume a single interfering signal,
an auxiliary antenna matched to free space, and a near-field
antenna matched to human tissue on the forehead. As viewed
from the output of a total power radiometer, the interferer
produces pulses of RFI according to a statistical process,
each pulse resembling a box-car function of variable width
and height. The interfering statistical process is received by
both the auxiliary antenna and the temperature sensing probe.
Because the temperature sensing probe is matched to a lossy
medium which has significantly higher permittivity than air, we
assume that a fraction of the signal received by the auxiliary
antenna is received by the probe. The temperature probe is
measuring the temperature of the medium by receiving and
detecting the noise power of black-body radiation.

We denote the measured signal from the temperature probe
as S¢, which is the sum of a statistical thermal noise signal 7,
plus the RFI reference signal S; (also statistical in this case)
multiplied by a coupling coefficient c:

Sy = ¢Si +n, ey

where n and S; are assumed to be uncorrelated. The
distribution of n depends on the radiometer architecture, but
does not impact the following calculations. Our goal is to find
an expression for c. This expression should take in to account
the correlation of the signals S; and S;. A simple approach
computes the covariance of S; and S; as:

Cov [S“ St] =E [(Sz -
=FK [(SZ

fs;) (St — s, )]
= ps,)(eSi +n — ps,)]
=c(B[S7] —pd). @
We identify the coupling coefficient [15]:
_ Cov [S;, 54
Var [S;]

Using (3) and (1), we can write estimate the original thermal
signal as n’ = S; — ¢S;. This approach is independent
of sampling frequency and relies only upon synchronous
sampling of the auxiliary and thermal signals and can
be applied to any system where synchronous sampling is
guaranteed. It is assumed that both reference and signal
antennas receive RFI with no information delay, which implies
they are physically separated by a distance much shorter than
the coherence length ~ ¢o/Af, where ¢ is the speed of light
in vacuum and A f the receivers’ instantaneous bandwidths.
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Fig. 2. Simulated radiometer output with a perfectly matched, 270K load
when a single interferer is present, with interference cancellation and low
pass filtering applied. Here, the coupling coefficient between the interferer
and radiometer is constant in time, however similar results can be obtained
when the coupling coefficient varies by adjusting the rate at which the coupling
coefficient is estimated.

B. Simulated Results

A simulation model for RFI is developed using MATLAB
to test the technique. Seen by a radiometer, RFI appears as
an effective temperature increase for some duration of time.
A rectangular pulse with a uniformly distributed duration and
amplitude is assumed. The arrival of each pulse is modeled
using an exponential random process with rate A [16]. In our
simulation, the interfering random signal follows (1), where
the coupling coefficient is constant. Note that for multiple
and moving sources the coupling coefficient is not constant.
The thermal noise signal is picked from N (Ty, Ty /v/2BT) for
each sample and receiver bandwidth B, integration time 7, and
mean antenna temperature 7. Note that the exact distribution
of the noise does not matter, as shown in (2). To estimate the
correlation coefficient, we split the data set into a series of
"windows" with adjustable widths. The coupling coefficient is
then estimated using (2) over each finite window.
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Fig. 3. Measured raw data from the receivers connected to the thermometer
antenna and the auxiliary RFI sensing antenna (Fig.1). Note that the
radiometric signal contains interference which is highly correlated with the
reference signal. The auxiliary signal dc offset is corrected.
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Fig. 4. Measured radiometer output with and without post processing. Simple RFI subtraction is shown for comparison and does not help significantly. A low
pass filter applied on the radiometer output produces a fluctuating signal, which corresponds to tens of degrees, see Fig.5. Compared to the RFI subtraction
technique with a low pass filter, the output is nearly constant. The coupling coefficient defined by (3) is also shown.

A simulation of a desired signal infected by RFI is shown
in Fig.2. RFI pulse arrival rates of A = 10Hz and pulse
widths in the range 0—50 ms with amplitudes corresponding
to 20 K-900K are chosen. The coupling coefficient for each
pulse is chosen to be ¢ = 0.1. The simulated sampling rate is
150kHz (A f = 75kHz video bandwidth). The window width
of 5000 samples (33.3ms) is used for this simulation. The
temperature of the thermal source is 270 K. In this simulated
case, the subtraction algorithm works well to eliminate RFI,
producing a steady 270K at the output.

III. MEASUREMENT

Measurements are performed in an anechoic chamber
using two shielded 1.4-GHz receivers, each with 44-dB gain
followed by filters to select the band of interest. The signal
is then detected using a biased diode detector. Post detection
gain of the dc signal is performed using a trans-impedance
amplifier, followed by a difference amplifier. The receivers are
powered using a battery and a linear regulator.

A cell phone interferer is placed in the chamber. One of the
receivers is connected to a near-field radiometric probe antenna
on a stack of Play-Doh, which has been found experimentally
to be a good analog for human muscle tissue [8]. The other
receiver is connected to a 1.4 GHz patch antenna pointed
towards the interferer, with some attenuation to prevent the
detector from saturating. The output of the detector is captured
by an oscilloscope over a period of 12sec with a sample
rate of 154 ksps. The raw data from the auxiliary and thermal
probe is shown in Fig.3. We observe that the RFI reference

signal is highly correlated with the interference observed in
the radiometric measurement.

As in the simulation, the correlation coefficient is estimated
by splitting the data into windows, each 5000 samples wide.
It is important to note that (2) implicitly assumes that the dc
level of the auxiliary receiver, when no interference is present,
is zero since (2) cannot account for dc offsets. To correct for
the dc offset of a real receiver in the auxiliary antenna, it is
subtracted during data processing. Practically, the offset can
be obtained using a Dicke switching circuit.

A digital low-pass filter with a 1-Hz knee is used to average
the results and is implemented following:

Vn = IBanl + (1 - B)vl (4)

where v; is the input signal, V,,_; is the previous filtered
signal, 3 = e “0Ts wy is the knee frequency, and T is
the sampling period [17]. The knee of the low pass filter is
also a free variable and can be tuned. The result of the RFI
subtraction and filtering is shown in Fig. 4.

To estimate the temperature error, the RFI-free dc signal
is subtracted from the signal of interest. The resulting
voltage variation is then multiplied by the receiver sensitivity,
estimated in each case as (300K) / (dc level in V). Since
each signal displays variation in the RFI-free dc level —which
we attribute to LNA gain fluctuations —a different sensitivity
is calculated in each case. The temperature error of the
unprocessed thermal signal and signal with subtracted RFI are
plotted in Fig.5. To compare with the RFI-free fundamental
radiometric uncertainty, measurements with the receiver input
connected to a room-temperature matched termination are
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Fig. 5. Temperature error comparison for a measurement over about 12 sec.
The highest error reported is 56 K, which occurs at about 8 sec. Each signal
has been processed with a 1 Hz knee low-pass filter. The thermal probe has
a standard deviation of 3.5K, while the subtracted signal shows a standard
deviation of 0.38 K. This is comparable to the reference case which has a
standard deviation 0.22 K calculated from 2—12 seconds.

included. Without RFI subtraction, we can see that the
unprocessed thermal probe signal displays significant jumps in
temperature, with the peak occurring at about 8 seconds with
a delta of 56 K. The standard deviation of the unprocessed
signal is 3.5 K. With RFI subtraction, we obtain better than
a 2 K variation over 12 seconds, and a standard deviation of
0.38 K; which is comparable to the variation in the terminated
case which displays at most 1 K variation over 12 seconds,
and a standard deviation of 0.22 K.

IV. CONCLUSION

We present and validate a simple technique for
interference cancellation for passive microwave thermometry,
using an auxiliary RFI reference antenna. The efficacy of
the approach is demonstrated by comparison to baseline
thermal measurements. The proposed interference cancellation
algorithm can almost completely remove the effects of an
interferrer, while performing only amplitude correlations of the
received signals. We are able to achieve a standard deviation
in the subtracted signal of 0.38 K, which is comparable to
the fluctuations of a radiometer with a reference load with a
corresponding standard deviation of 0.22 K. This is a dramatic
improvement compared to the unprocessed signal which shows
a standard deviation of 3.5 K.

Due to the directional nature of RFI, it is desirable to
extend equation (2) to multiple auxiliary antennae. This can be
done by recursive RFI subtraction for each of n antennae. The
corresponding signals are .S; ; for j € [1,n] and a recurrence
relation to estimate the noise signal can be formed as:

!/ !/
’ij = nj71 - CjSi,j 5 (5)

where the final estimate for the noise signal is 7 = n. The
coupling coefficient c; is then calculated between the estimate
n371 and the auxiliary signal S; ;. It is important to note
that one cannot simply calculate a coupling coefficient for
each auxiliary signal, and then subtract. This would have the
consequence of potentially "double counting" an interfering
source. Thus, subtraction should be done recursively.
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