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Abstract

Since the dawn of programming, several developments in programming language design and programming methodology have
been hailed as the end of the profession of programmer; they have all proven to be exaggerated rumors, to echo the words
attributed to Mark Twain. In this short paper, we ponder the question of whether the emergence of large language models
finally realizes these prophecies? Also, we discuss why even if this prophecy is finally realized, it does not change the job of

the researcher in programming.
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1 The recurring obituary of programming

In May 1897, while he was on a speaking tour in London,
American author Samuel Clemens, known by his pen name
Mark Twain, was contacted by an English journalist of the
New York Journal, who wanted to confirm rumors that were
circulating in New York to the effect that he was gravely ill or
even dead. Mark Twain wrote a response, part of which was
published in the New York Journal of June 2, 1897: "I can
understand perfectly how the report of my illness got about,
1 have even heard on good authority that I was dead.... The
report of my death was an exaggeration”. Mark Twain is
the only person known to history who had the privilege of
commenting on the announcement of his death.

Whereas Mark Twain survived rumors of his death only
once, the professional programmer keeps dealing with such
rumors on a regular basis, as we discuss in this paper.
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2 Automatic programming

As preposterous as it may sound today, the emergence of
high-level programming languages such as Cobol, Fortran
and Algol in the late fifties of the twentieth century was
hailed as the advent of automatic programming and the end of
the need for programmers. Of course, for programmers who
were accustomed to writing software in the form of instruc-
tion codes and binary addresses, programming in high-level
languages does sound like writing specifications; the rudi-
mentary compilers of the time did sound like they were
generating code automatically. Also the development of com-
pilers for these high-level languages prior to the emergence
of compiler design theory, syntax directed translation, and
modern compiler generation tools did represent a significant
technical achievement.

But the era of spectacular software failures of the sixties
and seventies was a sobering experience: It quickly dispelled
any fantasy anyone had about automatic programming, and
led to the realization that programmers, analysts and design-
ers, far from being an endangered species, are actually needed
more than ever [1]. It also led to the realization that the very
idea of automatic programming is a fleeting concept, that is
relative to current technology and current market demands;
as both of these evolve, so does the characterization of auto-
matic programming. This is best articulated by David Parnas
in [2]: "In short, automatic programming always has been
a euphemism for programming with a higher-level language
than was available to the programmer. Research in auto-
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matic programming is simply research in the implementation
of higher-level programming languages".

3 Knowledge based software engineering

The decade of the eighties brought a fresh, multi-pronged
assault to the programmer’s job security, through several dis-
tinct but interdependent initiatives:

e The emergence of logic programming as a viable pro-
gramming paradigm and its implication that logic pro-
gramming languages such as Prolog (Programming in
Logic) enable us to formulate specifications as relation-
ships between inputs and outputs, and let the interpreter
figure out how to derive the output from the input. With
logic programming, we no longer need programmers to
map inputs to output, and Prolog-like interpreters can do
it automatically, using SLD (Selective Linear Definite
clause) resolution.

e The emergence, with great fanfare, of the initiative of
Fifth Generation Computing [3]. This initiative was
launched by the Japanese government, with the aim of
revolutionizing the field of computing, and caused other
jurisdictions (The USA, Canada, Europe) to scramble to
catch up with similar initiatives, whose focus was arti-
ficial intelligence, knowledge-based systems, and expert
systems. Many of these jurisdictions were sensitive to the
possibility that after dominating the auto industry then
the electronics industry, Japan was poised to dominate
the computing industry.

e Much of the focus of the fifth generation computing
initiative is on knowledge-based engineering, including
knowledge-based software engineering, whose premise
is that we can support software engineering by captur-
ing, storing and deploying programming knowledge and
domain knowledge in knowledge bases.

e The advent of the personal computer, along with the
emergence of the Microsoft DOS operating system, led
to the democratization of programming, in the sense that
anyone who can afford a personal computer can be a pro-
grammer; implicit in this premise is the subtle suggestion
that we no longer need professional programmers.

By the end of the decade, it was becoming clear that logic
programming is no match for the requirements of the soft-
ware industry: Prolog has limited means for data modeling
and representation, so that most problems cannot be modeled
as logic programs, and most of those that could were beyond
the capability of Prolog interpreters. Also, most of the claims
and hype of fifth generation computing did not materialize,
leading to a loss of interest and a decline in funding. Further-
more, while there were some research advances in artificial
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intelligence, they did not translate into significant advances in
the state of the practice. Finally, the expectations and claims
of knowledge-based software engineering were getting dra-
matically scaled down: far from replacing programmers and
software engineers, the focus was becoming to offer them
apprenticeship support [4, 5].

In the meantime, as the demand for software products con-
tinued unabated, notwithstanding all the hype around logic
programming, most software was developed in C and C-like
languages; when the US DoD launched an international com-
petition for the design of a programming language to use
across its wide range of platforms, it is reported that virtu-
ally all the competing proposals were variations on a C-like
language (Pascal), as is the selected language Ada [6].

4 Reuse based software engineering

The decade of the 1990s brought about another set of threats
to the profession of the programmer, and associated claims
that we would soon be able to do without programmers.

4.1 Software reuse as a storage and retrieval
paradigm

Whereas the 1970s was the decade of the structured dis-
ciplines (structured programming, structured design, struc-
tured analysis, etc) and the 1980s was the decade of the
knowledge-based disciplines (knowledge-based program-
ming, knowledge-based design, knowledge-based software
engineering, etc), the 1990s was the decade of reuse-based
disciplines: this includes primarily reusing source code; but
it also includes specification reuse, design reuse, cost esti-
mation reuse, etc. There is a sound rationale for evolving and
refining a discipline of software reuse: reuse is an integral part
of all engineering disciplines, and no engineering discipline
needs the gains in productivity and quality that stem from
reuse as much as software engineering does; indeed, soft-
ware engineering is typically characterized by poor product
quality and low productivity.

Software reuse was all the rage during the 1990s, with the
proliferation of specialized conferences, workshops, confer-
ence tracks, special issues, etc. Wild claims were made about
the impact that software reuse would have on programmer
productivity and program quality, and how we would need
much less code to be written from scratch. Much of the
research on software reuse was focused on the question of
storage and retrieval of software components, a question that
turned out to be of limited significance, in practice. But when
governmental agencies created repositories of free software,
set up sophisticated retrieval procedures of software compo-
nents, and encouraged software engineers to avail themselves
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of this free resource, they were utterly disappointed by the
outcome: there were no takers.

Throughout the decade, a number of premises were emerg-
ing to explain the lack of reuse in software engineering
practice:

e The Unlikelihood of Functional Match. The functional
specification of a software component is typically a very
detailed artifact, and so is the specification of a user
query/requirement. As a result, the likelihood of a match
is very low.

e The Not Invented Here Syndrome. Even if a functional
match succeeds, programmers may be reluctant to inte-
grate a component in their code if they do not entirely
trust how it was developed and by who.

e Architectural Match. Functional match is a necessary
condition for software reuse, but not a sufficient con-
dition: Architectural match is also necessary. In other
words, in order for a software component to be reused, the
architecture within which the component can be reused
must be compatible with the architecture within which it
was developed. Hence not only is functional match rare,
but even when it occurs, it does not ensure success; we
also need architectural match.

e The Need for Planning. The idea that one can develop
a software product by scavenging through a repository
of free software has proven to be unrealistic. The most
realistic scenario for reusing a software component is a
scenario where the developer of the component intends
for it to be reused, prepares it for reuse, and specifies the
terms and conditions of its reuse.

As a consequence, a consensus started to emerge around the
recognition that the idea of opportunistic reuse, whereby one
picks software components from random repositories and
integrates them into a cohesive software product, is a naive
pipe dream. Instead, it was becoming increasingly clear that
in order for software reuse to happen, a number of conditions
must be met: the person producing reusable software and the
person reusing it must have a shared software architecture
in mind; the jointly adopted software architecture must stem
from a thorough effort in domain engineering; in addition to
defining a reference architecture, domain engineering must
also define the Application Engineering protocol, which is
the carefully choreographed process of selecting, adapting,
and composing reusable components from specific applica-
tion requirements. These premises are in effect the tenets of
the discipline of Software Product Lines, which emerged as
the sole form of viable/practical software reuse. Software
product lines made their way into several sectors of the soft-
ware industry, and rather than put an end to the profession of
programming, they redefined it. Much of the domain engi-
neering activity of product line engineering revolves around

data modeling and data representation, hence benefits from
advances in model engineering and data engineering.

4.2 Design for reuse: object oriented programming

With its emphasis on encapsulation and genericity, object
oriented programming is a natural fit for software reuse:
encapsulation supports software storage and retrieval and
genericity supports software adaptation in the context of
whitebox reuse. Hence, object oriented programming pros-
pered alongside software reuse during the 1990s, initially
driven by the interest in Smalltalk [7], and subsequently lead-
ing to the development of object oriented languages or the
expansion of existing languages with object oriented features
[8].

At its core, object oriented programming is a discipline
of modular programming, and object oriented languages are
designed to support modularity. But modular programming
is 90% programming discipline and 10% programming lan-
guage use; so that it is possible to write modular programs
in non-object oriented languages and non-modular programs
in object oriented languages. Be that as it may, the focus on
object oriented languages pervaded academia and industry; a
consequence of the pervasiveness of object oriented practice
in academia is that generations of students were trained to
be fluent in all the concepts (and buzzwords) of object ori-
ented programming (inheritance, genericity, polymorphism,
encapsulation, etc) but were not adequately trained in the
simple skill of writing a straight domain-to-range function
or designing a simple algorithm. Also, the obsession of
modeling everything as objects (when simple data types are
adequate) often leads to unnecessarily complex and opaque
code.

4.3 Design with reuse: component-based software
engineering

Concurrent with the interest in reusing software compo-
nents was the interest in building systems from reusable
components. This discipline was focused on systems inte-
gration and systems validation issues, and is technically
indistinguishable from application engineering. But in prac-
tice component-based software engineering (CBSE) is most
effective when it is carried out according to the application
engineering protocol of a product line initiative.

5 Product line engineering

By the first decade of the millennium, a consensus emerged
about the premise that product line engineering is a (the
only?) viable technology that synthesizes much of the
research of the previous decade and much of its best prac-
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tices. The practice of product line engineering became the
standard modus operandi of sophisticated/specialized soft-
ware development organizations that develop applications
within a limited application domain for special market seg-
ments, by investing a significant amount of resources into
developing corporate expertise in the domain knowledge of
the market they are serving. Rather than mark the end of the
programming profession, software reuse/product line engi-
neering marked its evolution into an efficient, streamlined
process that makes optimal use of programming talent and
domain-specific expertise.

6 Large language models

By the end of the 1980s, artificial intelligence was thor-
oughly discredited, as much of its promises, which were
over-hyped and over-sold through the decade, failed to be
fulfilled. Yet some hardcore believers pursued work in neural
nets and machine learning, and produced increasingly sophis-
ticated machine learning algorithms; as training data became
increasingly abundant, the performance of these algorithms
became increasingly convincing, culminating recently in
Large Language Models, and increasingly confident talk of
Al-generated code. But opinion on the potential of this tech-
nology to alter the business of software development remains
sharply divided.

6.1 The hopeful vision

Nowadays, the announcements of the programmer’s demise
are not even subtle. In an article titled The End of Pro-
gramming [9], Matt Welsh declares colorfully: "The end of
classical computer science is coming, and most of us are
dinosaurs waiting for the meteor to hit". Welsh presents a
very attractive vision of a future where, rather than devel-
oping systems through programming, we will develop them
through training. To this effect, we do not need an origi-
nal algorithm for each new application, we just need one
highly specialized learning algorithm, one that can analyze
massive amounts of learning data and synthesize behavioral
rules therefrom. Because of its critical dependency on data,
generative Al depends critically on our ability to model and
represent data. Welsh argues that the new atomic unit of
computation is not a predictable, static process governed
by instruction sets but rather massive, pre-trained, highly
adaptive Al models. Welsh acknowledges that along with the
massive potential of this new computation paradigm, comes
an equally significant level of risk that stems from the real-
ity that nobody actually understands how large Al models
work. Welsh describes Al models, the new building blocks
of future computation, as temperamental, mysterious, and
adaptive agents.
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6.2 The reasoned skepticism

In an equally self-assured paper titled The Premature Obitu-
ary of Programming [10], Daniel Yellin pours cold water on
Welsh’s prediction by pointing to several flaws in the Deep
Learning approach to programming, which he calls Deep
Programming (DP):

e Lack of Adaptability. Because it is based on legacy code,
Al-generated software suffers from intrinsic limitations,
including:

— Inadequacy with respect to new machine and network
architectures.

— Inadequacy with respect to new programming frame-
works for solving problems.

— Inadequacy with respect to new types of problems
and concerns.

Operating Cost. The models built by Deep Program-
ming are huge, as they involve billions of parameters
and require massive computational power.

Specifying Requirements. Deep Programming is worth-
while only if it is much easier to write the requirements
specification of a program than to write the program;
writing precise, complete, minimal requirements speci-
fications is an intractable problem.

Stalled Innovation. If all new code is produced from syn-
thesizing existing code bases, then the diversity of the
global software repository will stall. What makes the
current pool interesting is the diversity that comes from
a vast set of programmers populating these repositories,
each with its own unique problem-solving techniques and
programming styles.

e Programming as a Social Endeavor. Large-scale soft-
ware development is not a straightforward transformation
from a specification to a finished software product; rather
it involves complex social interactions within develop-
ment teams, such that the final product specification may
be significantly different from the original intent. Such
an interaction, that often leads to a better product, is not
possible with Al-driven development.

We recognize some further obstacles to the wide use of Al-
driven software development methods:

e Opacity. The generation of software products from Al
prompts bridges two massive gaps:

— Prompt Generation: The gap between what the user
means and what the user writes.

— Prompt Interpretation: The gap between what the
user writes and what the Al model understands.
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Add to that the gap between what the user means and
what the user actually needs, but that is not specific to
Al-generated code.

e Requirements Specification. One of the most intractable
issues in software engineering is the issue of requirements
engineering and requirements specification, including the
tasks of data modeling, data representation, and model
validation. This question has mobilized researchers for
decades, yielding the design of several specification mod-
els, theories, and languages, for little impact on the
state of the practice. Al-based code generators give little
thought to this massive problem, and assume that user
prompts are sufficiently precise to capture requirements
in a complete and minimal manner.

e Scale. Whether software is developed by human pro-
grammers or by Al models, the problem of specifying
the requirements is the same. In practice, this is feasible
under two possible circumstances:

— Either the targeted program is small, so that it is pos-
sible to write short, simple specifications for it.

— Or the targeted program is an instance of product line,
where a large portion of the requirements is implicit,
and the specification involves pinning down some
minor options in the form of pre-codified variabili-
ties.

In either case, the contribution of Al is limited in scale:
in the first case (cited above), it consists of generating a
limited-size program; in the second case, it consists of a
limited-scale adaptation and integration task.

e Quality Concerns. Because it is based on legacy code,
Al-generated software is likely to be as flawed as the
legacy code it is based on.

In summary, the role of Deep Programming is best artic-
ulated by Yellin [10]: DP will not replace programming. Its
aim should be to increase the productivity of software devel-
opment and thereby make up for the significant shortage of
programmers today. This sounds like a verbatim echo of the
spirit of the Programmer’s Apprentice [4] articulated three
decades earlier.

7 Conclusion
7.1 The grandmother’s wisdom

In a painting published in 1947, titled The Outing (Fig.1),
Norman Rockwell depicts an American post-war family
going to the lakeshore in the morning, and returning home
in the afternoon. Rockwell emphasizes the contrast between
the expression of excitement, enthusiasm and expectation
that radiates on everyone’s face in the morning, and the sub-

dued expression of apathy, exhaustion and perhaps a tinge
of disappointment (it was not such a big deal after all). The
only person who displays the same facial expression on the
way out and on the way back is the grandmother: Rockwell
took her picture in the morning, turned it around and copied
in the afternoon’s version.

The contrast between the grandmother’s detached/
skeptical attitude and everyone else’s is a good metaphor for
the community’s diversity of reactions to successive software
engineering trends that we can observe through the decades:
whereas many researchers and practitioners get carried away
by the prospect of fundamental /radical breakthroughs that
will change the state of the art and state of the practice in
software engineering, not everyone subscribes to the hype.
So far the grandmother’s skepticism has proven to be the
more rational attitude, as most past trends have led to modest
incremental changes in the business of software engineering,
rather than the radical transformations that were originally
envisioned. The question that arises naturally is then: is Al-
based code generation just another fad, or is it different this
time? The fact that some top universities have already altered
the way they teach programming may suggest that this time
the hype of the new trend may be justified [11]; but to the
extent that programming-in-the-small and programming-in-
the-large are two distinct paradigms (rather than two sizes
of the same paradigm) suggests that the success of Al-based
code generation in a classroom setting does not necessarily
translate into successful deployment in an industrial context.

7.2 Research implications

In the meantime, the practice of software engineering
remains relatively unchanged. Two of the most intractable
issues in software engineering are as follows:

e Software Specification. This includes stakeholder iden-
tification, requirements elicitation, collection and com-
pilation, data modeling and validation, requirements
specification and specification validation. Faulty require-
ments specification remains the cause of the vast majority
of software failures [12].

e Program Verification. This involves ensuring that the pro-
gram meets its specification, through a combination of
methods: testing, static analysis, process controls, etc.

Al-based code generation has no impact on any of these
two aspects of software engineering; if anything, it proba-
bly makes verification more complex because it precludes
process controls, since Al operation is notoriously opaque.
As far as the issue of software specification is concerned, the
emergence of generative Al has given rise to a new engineer-
ing discipline, namely prompt engineering, which deals with
formulating queries to generative Al tools. Until and unless
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Fig.1 The Outing, Norman
Rockwell, 1947

prompt engineering reaches the scale and expressive power
of requirements engineering (which has been the subject of
research for decades), Al-based code generation may remain
limited to small scale software development.

Be that as it may, much of the code developed, evolved
and maintained nowadays is written in C-like languages. The
five top-ranked languages in the April 2023 Tiobe classifi-
cation of programming languages (https://www.tiobe.com/)
are derived from C or inspired by it:

1. Python: 14.51%.
2. C: 144 %.

3. Java 13.23 %.

4, C++:12.96 %.
5. C#: 8.21 %.

The Tiobe Index of a programming language measures the
frequency of internet searches of the programming language
in the main search engines, normalized to the total number of
searches of programming languages; these indices are inter-
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preted as proxies for the frequency of use of each language.
These five languages account for a total of 63.31 % of pro-
gramming language use worldwide, and all five are trending
upward by comparison with April 2022.

Hence, the problem of ensuring the correctness, reliabil-
ity, safety and security of software artifacts has changed little
since the nineteen seventies: we are still considering pro-
grams written in C-like syntax and pondering the question of
whether they are correct, reliable, safe or secure. One way to
answer these questions is to capture the full domain-to-range
function that programs define between their input space and
their output space. But doing so may be too costly, and not
very effective: programs are complex artifacts, whose func-
tion may be hard to express in closed form; also, not all the
functional details of a program are worth extracting (what
value a program assigns to auxiliary variables may be of
little interest to the user, or may be irrelevant to the spec-
ification). Hence, we may leverage the ability to compute
program function, not only to compute the function of the
program in full detail, if needed, but also to answer queries
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about the state of the program at selected labels, or about
the function of program parts. To this effect, we propose a
vocabulary of functions that enable a user to query a C-like
program about its semantic properties [13]:

e Assume(). This function takes a condition as a parameter
and declares an assumption about the state of the pro-
gram at some label or the function of some program part.
This function may be used, in particular, to specify the
precondition of a program or routine.

e Capture(). This function refers to a program label or to
a program part, and returns a characterization of the pro-
gram state at the selected label or a characterization of
the function of the selected program part.

e Verify(). This function takes a condition as a parameter
and tells whether the condition holds at some state of
the program, or about the function of a program part.
This function may be used, in particular, to verify the
postcondition of a program or routine.

e Establish(). This function takes a condition as a param-
eter and uses program repair technology [14] to modify
the program so as to make the function Verify() return
true, while originally it returned false.

A brief demo of a protype that implements these functions is
available at http://web.njit.edu/~mili/acvedemo.mp4.
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