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Aims

Methods
and results

Conclusion

Age-related changes in cardiac structure and function are well recognized and make the clinical determination of abnormal
left ventricular (LV) diastolic dysfunction (LVDD) particularly challenging in the elderly. We investigated whether a deep
neural network (DeepNN) model of LVDD, previously validated in a younger cohort, can be implemented in an older popu-
lation to predict incident heart failure (HF).

A previously developed DeepNN was tested on 5596 older participants (66—90 years; 57% female; 20% Black) from the
Atherosclerosis Risk in Communities Study. The association of DeepNN predictions with HF or all-cause death for the
American College of Cardiology Foundation/American Heart Association Stage A/B (n=4054) and Stage C/D (n=
1542) subgroups was assessed. The DeepNN-predicted high-risk compared with the low-risk phenogroup demonstrated
an increased incidence of HF and death for both Stage A/B and Stage C/D (log-rank P < 0.0001 for all). In multi-variable ana-
lyses, the high-risk phenogroup remained an independent predictor of HF and death in both Stages A/B {adjusted hazard
ratio [95% confidence interval (Cl)] 6.52 [4.20-10.13] and 2.21 [1.68-2.91], both P <0.0001} and Stage C/D [6.51
(4.06-10.44) and 1.03 (1.00-1.06), both P < 0.0001], respectively. In addition, DeepNN showed incremental value over
the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging (ASE/EACVI) guidelines
[net re-classification index, 0.5 (Cl 0.4-0.6), P < 0.001; C-statistic improvement, DeepNN (0.76) vs. ASE/EACVI (0.70), P <
0.001] overall and maintained across stage groups.

Despite training with a younger cohort, a deep patient-similarity—based learning framework for assessing LVDD provides a
robust prediction of all-cause death and incident HF for older patients.

* Corresponding author. E-mail: partho.sengupta@rutgers.edu
Study work was performed at Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.

© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

$20Z 1snBny Gz UO Jasn 8ouUsI0S pue aupIpal\ aAnonpoiday Joj Jslua) ayl Aq §/6009./.E6/L/Sz/aPe/buiBewiolys/woo dnooiwapese//:sdiy woll papeojumod


https://orcid.org/0000-0001-7260-6800
https://orcid.org/0000-0003-3036-4131
https://orcid.org/0000-0002-3030-7236
https://orcid.org/0000-0001-8420-2168
https://orcid.org/0000-0003-0680-8011
https://orcid.org/0000-0003-1639-6110
https://orcid.org/0000-0003-2291-5001
mailto:partho.sengupta@rutgers.edu

938 R. Shah et dl.

Structured Graphical Abstract

Key Question

Can a deep neural network (DeepNN) model of left ventricular diastolic dysfunction (LVDD), previously validated in a younger cohort, be
implemented for the prediction of all-cause death and heart failure (HF) incidence in an older adult population?

Key Finding

In an analysis of 5596 participants enrolled in the echocardiographic substudy of the Atherosclerosis Risk in the Communities (ARIC) Study,
the DeepNN phenogroups independently predicted all-cause death and incident HF with incremental benefit over current guidelines.

Take-home Message

Despite being trained with a younger cohort, the DeepNN accounts for the age-related changes in diastolic function and can predict adverse
events. The study’s results suggest readiness to implement DeepNN in future HF clinical trials.
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Echocardiographic parameters from the ARIC Study included ejection fraction (EF), left ventricular mass index (LVMi), early diastolic transmitral flow
velocity (E), late diastolic transmitral flow velocity (A), E/A ratio, septal early diastolic relaxation velocity (e'), E/e’ ratio, left atrial volume index (LAVi),
and tricuspid regurgitation peak velocity (TRV). These parameters were inputted into the classifier that extracts age-related echocardiographic data
(and therefore able to predict age based on echo parameters alone) to batch predict the high-risk and low-risk phenogroups, and time-to-event
outcomes were predicted.

Keywords left ventricular diastolic dysfunction e elderly e risk stratification ® machine learning ® phenogrouping
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Introduction

Heart failure (HF) with preserved ejection fraction (HFpEF) affects
greater than 64 million adults worldwide, with an increase of 50% pre-
dicted by 2035 in aging populations.” Echocardiography (echo) is the
primary modality of risk stratification and prediction of incident HF,
morbidity, and mortality. However, the increased prevalence of
age-associated changes in left ventricular (LV) diastolic function makes
risk stratification and grading of LV diastolic dysfunction (LVDD) espe-
cially difficult in older patients.”™* Moreover, HF is a heterogeneous dis-
ease, and differentiating the relative contribution of LVDD and other
extra-cardiac co-morbidities in the pathophysiology is challenging.>®

Age-adjusted thresholds for defining abnormalities in LVDD are not
incorporated in the existing guidelines.” Moreover, univariable cut-offs
in a linear decision tree may limit the assessment of age-dependent,
highly non-linear relationships between LVDD variables. Additionally,
not all LVDD variables may be measurable, which results in indetermin-
ate or inaccurate grading.s_10

There is mounting evidence that deep neural networks (DeepNNs)
can improve risk prediction by incorporating age-related changes dir-
ectly as latent traits from the analysis of the imaging data.'"™'* We pre-
viously validated a DeepNN (https:/wvu-model.herokuapp.com/) that
integrates echo variables to determine whether an unknown patient
is similar or dissimilar to patients at high risk for developing future
adverse cardiac events."* We investigated this DeepNN in an older
population with varying demographics using the multi-centric
Atherosclerosis Risk in the Communities (ARIC) echo substudy.'®
We hypothesized that the deep learning echo models of LVDD would
predict the future risk of incident HF even in the older population.

Methods
Study population

We investigated the application of a DeepNN framework for assessing
LVDD in the individual-level data of the ARIC Study, a prospective epide-
miologic cohort study started in 1987 investigating the aetiology of athero-
sclerosis and its clinical sequelae. The study initially enrolled 15792
participants aged 45-64 from four US communities."®'” In the present
study, we analysed all 5596 participants aged 76 +5 years (45% above
the age of 75, 57% females, and 19.7% Black) who underwent a previously
described echo substudy during the fifth visit between 2011 and 2013 with
follow-up data until 2017 available from the National Heart Lung and Blood
Institute’s (NHLBI) BioLINCC database (Figure 1)."® All available patients in
the echo substudy, including those with coronary artery disease, atrial fib-
rillation, HFpEF, HF with reduced ejection fraction (HFrEF), right HF, and
pulmonary hypertension (HTN), were included.

Outcomes of interest

The primary outcome of interest for the present study was incident HF,
with all-cause death as secondary. The cohorts were followed from the
time of their echo at the fifth visit to their last documented follow-up in
the NHLBI BioLINCC data set. Incident HF events were identified by the
first hospitalization event with HF as standardized by the coordinating study
institutions and documented within the BioLINCC data set. HF was further
classified into HFpEF and HFrEF based on the LV ejection fraction (LVEF)
meas1tir1esd by echo. HFpEF was defined as > 50% and HFrEF as LVEF <
50%."
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Figure 1 Study outline. (A) The age distribution of the training and the ARIC echocardiographic substudy used in the present external validation
study. (B) Echocardiographic parameters used in DeepNN training included ejection fraction (EF), LV mass index (LVMi), early diastolic trans-
mitral flow velocity (E), late diastolic transmitral flow velocity (A), E/A ratio, septal early diastolic relaxation velocity (e'), E/e’ ratio, left atrial vol-
ume index (LAVi), and tricuspid regurgitation peak velocity (TRV). These parameters were inputted into the classifier and the 2016 ASE guidelines
to batch predict the high-risk and low-risk phenogroups and ASE grades in the ARIC. (C) Model-predicted phenogroups and ASE grades were

then compared.
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Development of the deep patient-similarity
learning framework

The deep patient-similarity learning framework makes its predictions (high-
and low-risk) using a DeepNN model derived from a patient-similarity net-
work that predicted the presence of LVDD by defining clusters of participants
labelled high-risk and low-risk from the derivation cohort as previously
published.”” To keep it comparable with the 2016 American Society of
Echocardiography/European Association of Cardiovascular Imaging (ASE/
EACVI) guidelines, the model was developed using the nine echocardiographic
variables used in the guidelines (Table 7). The model and its incremental value
over 2016 ASE/EACVI LVDD guideline recommendations have been previ-
ously validated and outlined in Supplementary data online, Section 51.'*

Model evaluation in older adults

We divided the ARIC cohort into Stage A/B or Stage C/D HF, based on the
American College of Cardiology Foundation/American Heart Association
(ACCF/AHA) guidelines to explore the significance of LVDD phenogroup-
ing. We compared the model-predicted age with the actual chronological
age to show a correlation and the ability of the DeepNN model to extract
latent age-related data. We explored whether DeepNN-derived cut-offs
could improve the 2016 ASE/EACVI guidelines’ performance in outcomes
prediction.

Statistical analysis

We explain in detail the model input features, the inclusion of ARIC data with
missing values (see Supplementary data online, Table S7), model evaluation,
outcomes comparisons, predicted and chronological age correlation, the in-
cremental benefit of the DeepNN model over the ASE/EACVI LVDD guide-
line, and predicted cut-offs in Supplementary data online, Section S3. This
manuscript used the ACC Proposed Requirements for Cardiovascular
Imaging-Related Machine Learning Evaluation reporting checklist to describe
the study as noted in Supplementary data online, Table $2."> The following
software solutions were used for analyses: Ayasdi workbench and SDK
v7.9 (Ayasdi, Inc, Menlo Park, CA, USA, since acquired by SymphonyAl
Sensa, Palo Alto, CA, USA) for the similarity network and phenogroup label
generation, Stata v14.2 (StataCorp, College Station, TX, USA),and Rv3.6.3 (R
Foundation for Statistical Computing), and MedCalc® Statistical Software
v20.027 (MedCalc Software Ltd, Ostend, Belgium). Statistical significance
was tested with a two-sided P-value of <0.05.

Results
Study populations

The overall ARIC population’s demographic, echo, and past medical his-
tory data are shown in Table 1. The ARIC population has a significantly
higher average age than the DeepNN training cohort (ARIC: 76 + 5 vs.
DeepNN: 62 + 17 years, P < 0.0001). Furthermore, ARIC had a higher
percentage of participants aged over 65 and 75 compared with
DeepNN’s training data (see Supplementary data online, Figure S1
and Table S3).

A total of 4054 (72.4%) and 1542 (27.6%) were at ACCF/AHA Stage
A/B and Stage C/D, respectively. Of the 3635 (65.0%) participants pre-
dicted to be in the low-risk phenogroup, 2927 (80.5%) had Stage A/B,
and 708 (19.5%) had Stage C/D HF. Of the 1961 (35.0%) participants in
the high-risk phenogroup, 1127 (57.5%) had Stage A/B, and 834 (42.5%)
had Stage C/D HF. A total of 359 participants (6.6%) met the HF hos-
pitalization outcome and 811 (14.5%) participants met the all-cause
death outcome (see Supplementary data online, Table $4).

In the Stage A/B group, the high-risk phenogroup included participants
who were older, included more African Americans, and had a higher
body mass index (BMI), body surface area (BSA), and blood pressure.
The high-risk phenogroup also had higher baseline troponin T and

N-terminal pro b-type natriuretic peptide (NT-ProBNP) levels. This
group also had a higher rate of co-morbidities such as HTN, diabetes mel-
litus (DM), dyslipidaemia, anaemia, and chronic kidney disease (CKD).
There were significant differences in the nine echo parameters used as
input for the DeepNN model and in meeting the primary and secondary
outcomes between the two the low- and high-risk phenogroups.
Average peak longitudinal and average peak circumferential strain were
statistically significant between the two phenogroups, with the low-risk
group exhibiting higher strain magnitude than the high-risk group
(Table 1 and Supplementary data online, Table $4).

In the Stage C/D group, the high-risk phenogroup included the oldest
subgroup of participants, more males, elevated BMI, BSA, and pulse
pressure. Like the Stage A/B group, the high-risk phenogroup also
had higher troponin T and NT-ProBNP levels. There were significant
differences between eight of the nine parameters used for model train-
ing, with E/A ratio as the only variable with no difference between the
two risk phenogroups (P = 0.06). There was also a larger percentage of
those who met the primary and secondary outcomes in this HF group.
Moreover, average peak longitudinal and average peak circumferential
strain also remained statistically significant between the two phe-
nogroups, with low-risk group showing higher strain magnitude than
the high-risk group (Table 1 and Supplementary data online, Table $4).

Model associations with outcomes

predictions in older adults

In Kaplan—Meier analysis, the DeepNN model predicted a higher prob-
ability of incident HF and death in the high-risk phenogroup for both
endpoints for both stage groups (all log-rank test P < 0.0001) (Figure 2).
Diastolic parameters used as input to the DeepNN correlated with
age (see Supplementary data online, Table S5), and the addition of age,
gender, or race to the DeepNN high-risk phenogroup provided no im-
provement in HF event prediction in multi-variable Cox analysis
(C-statistic: both 0.76, P < 0.0001) (Table 2) and minimal improvement
in predicting all-cause death (C-statistic: 0.64 vs. 0.68, both P < 0.0001)
and the composite endpoint (C-statistic: 0.67 vs. 0.70, both < 0.0001).
In Cox univariable analysis across both endpoints and stage groups,
high-risk phenogrouping, age, DM, anaemia, HTN, chronic obstructive
pulmonary disease, and CKD remained significant covariates, with BMI
remaining significant primarily in the Stage A/B cohorts. The high-risk
phenogroup predicted an increased hazard ratio (HR) [confidence inter-
val (CI)] for incident HF [11.84 (8.76—15.98), P < 0.0001], death [3.64
(3.04-4.36), P<0.0001], and the composite endpoint [4.76 (1.04—
5.60)] (Table 3; Supplementary data online, Tables S6 and S7). In multi-
variable analysis adjusted for underlying co-morbidities, the high-risk
group continued to predict higher HRs for incident HF [7.92 (5.76—
10.89), P<0.0001], death [2.51 (2.06-3.05), P<0.0001], and the
composite endpoint [3.30 (2.76-3.93), P < 0.0001]. The high-risk phe-
nogroup’s predictive capability was upheld in both stage groups for
each outcome (Table 3; Supplementary data online, Tables S6 and S7).

Re-classification of diastolic function
grading

The 2016 ASE/EACVI guidelines identified 3499 (62%) normal patients,
432 (8%) with Grade 1 LVDD, 305 (6%) with high grade (2 or 3)
LVDD, and 1360 (24%) with indeterminate grade LVDD (Figure 3).
The cumulative risk for the composite outcome was higher in patients
with high grade vs. Grade 1 and indeterminate LVDD (event rates:
26% vs. 13% vs. 10%). Among participants identified with high-grade
LVDD, 277 (91%) were concordantly classified in the high-risk phe-
nogroup. However, only 3009 (86%) and 69 (16%) of the normal parti-
cipants and participants with Grade 1 LVDD, respectively, were
concordantly classified in the low-risk phenogroup (P <0.0001).
Moreover, 829 (61%) indeterminate participants were classified as high
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Table 1 Comparison of cross-sectional demographic, clinical data, and echocardiographic diastolic parameters
between high- and low-risk phenogroups per ARIC HF stage cohorts and re-classification table of 2016 ASE/EACVI
diastolic dysfunction grading guidelines to DeepNN classifier phenogroups

ACC/AHA Stage A/B ACC/AHA Stage C/D

Overall Low risk High risk P-value Low risk High risk P-value
Demographic and clinical information
Age 756 (5.2) 74.5 (4.8) 76.5 (5.2) <0.0001 76.1 (5.3) 77.6 (5.3) <0.0001
Gender (female) 57% 63.2% 61.1% 0.21 45.1% 39.2% 0.0204
Race (Black) 19.7% 19.4% 24.6% 0.0003 15.4% 17.4% 0.29
BMI 28.5 (6.0) 28.1 (5.6) 294 (6.3) <0.0001 27.9 (6.2) 29.3 (6.6) <0.0001
BSA 1.90 (0.24) 1.87 (0.24) 1.91 (0.24) <0.0001 1.91 (0.23) 1.96 (0.25) 0.0001
Systolic Blood Pressure, mm Hg 129.5 (19.5) 128 (17) 134 (22) <0.0001 128 (18) 130 (23) 0.20
Pulse Pressure, mm Hg 63.6 (15.0) 62 (14) 67 (16) <0.0001 63 (15) 66 (17) 0.0009
Lab values
Troponin T, ng/mL 0.014 (0.016) 0.011 (0.008) 0.015 (0.013) <0.0001 0.015 (0.012) 0.023 (0.033) <0.0001
NT-ProBNP, pg/mL 308 (933) 139 (138) 286 (518) <0.0001 302 (417) 940 (2186) <0.0001
C-reactive protein, mg/L 4.06 (7.43) 3.8 (6.5) 40 (6.2) 0.21 43 (9.5) 5.0 (9.5) 0.17
Past medical history (at Visit 5)
Hypertension 3872 (69.2%) 1802 (61.6%) 859 (76.2%) <0.0001 521 (73.6%) 690 (82.7%) <0.0001
Diabetes mellitus 1599 (28.7%) 687 (23.6%) 337 (30.0%) <0.0001 197 (28.0%) 378 (45.5%) <0.0001
Dyslipidaemia 2749 (50.7%) 1696 (57.9%) 562 (49.9%) <0.0001 266 (37.6%) 262 (31.4%) 0.0112
Current smoking 317 (5.7%) 166 (5.7%) 65 (5.8%) 0.91 44 (6.2%) 42 (5.0%) 0.32
Chronic obstructive pulmonary disease 305 (5.6%) 137 (4.8%) 39 (3.6%) 0.15 53 (7.6%) 76 (9.4%) 0.054
Anaemia 1366 (25.0%) 561 (19.6%) 280 (25.7%) <0.0001 182 (26.2%) 343 (42.1%) <0.0001
Chronic kidney disease 1141 (20.5%) 455 (15.6%) 38 (21.2%) <0.0001 174 (24.8%) 274 (33.0%) 0.0004
Atrial fibrillation 494 (8.8%) — — — 194 (27.4%) 300 (36.0%) 0.0003
Coronary artery disease 823 (14.7%) — — — 358 (50.6%) 465 (55.8%) 0.0418
Heart failure 290 (5.2%) — — — 60 (8.5%) 230 (27.6%) <0.0001
Echocardiographic parameters (used for model development)
Ejection fraction, % 65.0 (6.9) 67.1 (4.8) 63.0 (15.9) <0.0001 66.5 (5.3) 59.0 9.9) <0.0001
E-wave velocity, cm/s 0.68 (0.19) 0.65 (0.16) 0.68 (0.20) 0.0001 0.67 (0.18) 0.77 (0.26) <0.0001
A-wave velocity, cm/s 0.80 (0.20) 0.78 (0.17) 0.86 (0.22) <0.0001 0.76 (0.17) 0.84 (0.25) <0.0001
E/A ratio 0.86 (0.30) 0.86 (0.24) 0.81 (0.28) <0.0001 0.89 (0.33) 0.93 (0.44) 0.057
Septal €', cm/s 5.68 (1.48) 6.11 (1.44) 4.65 (0.99) <0.0001 6.30 (1.56) 4.99 (1.31) <0.0001
E/e' ratio 10.28 (4.06) 9.14 (2.66) 12.48 (4.45) <0.0001 8.83 (2.72) 12.57 (5.91) <0.0001
Left atrial volume index, mL/m? 26.32 (9.33) 22.94 (6.05) 29.31 (848) <0.0001 2533 (7.14) 35.17 (13.62) <0.0001
Tricuspid regurgitation velocity, cm/s 2.40 (0.30) 2.34 (0.25) 246 (0.32) <0.0001 2.36 (0.26) 2.52 (0.36) <0.0001
Left ventricular mass index, g/m> 80.24 (21.12) 71.1 (13.0) 91.7 (20.0) <0.0001 744 (14.2) 101.8 (26.9) <0.0001
Strain measurements (not used for model development)
Average peak longitudinal strain, %* —17.9 (2.6) —18.6 (2.1) -17.2(25) <0.0001 —18.0 (23) —15.9 (3.6) <0.0001
Average peak circumferential strain, %* =277 (3.9) -284(3.3) =275 (4.3) <0.0001 —27.8 (3.6) —25.6 (4.9) <0.0001
2016 ASE/EACVI LVDD grading
Normal 3499 2152 (88%) 291 (12%) 493 (78%) 137 (22%)
Indeterminate 1360 378 (50%) 383 (50%) 99 (22%) 355 (78%)
Grade 1 432 53 (22%) 191 (78%) 8 (6%) 134 (94%)
Grade 2 236 18 (15%) 106 (85%) 6 (5%) 106 (95%)
Grade 3 31 0 (0%) 6 (100%) 1 (4%) 24 (96%)

*Not used in model training or development.
Depicted as mean (standard deviation), count (percentage), or percentage of whole.
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risk, with an adjusted HF event rate of 14% vs. 10% or 13% in the inde-
terminate and Grade 1 groups, respectively. The model provides clinical
value as it accounts for age-related changes in this population and can as-
sign an informative risk profile for those that were typically deemed ‘low
risk’ (normal and Grade 1) or when there was no risk profile associated at
all (indeterminate).

The DeepNN model had an increased Harrell's C-statistic in Cox
proportional hazard modelling for the prediction of incident HF

Heart Failure Incidence
Risk Group and HF Stage Group

100
—— Low Risk, Stage A/B
----- Low Risk, Stage C/D
—— High Risk, Stage A/B
----- High Risk, Stage C/D

20

80

N=5596, Logrank p<0.0001

70
0 1 2 3 4 5

Follow-up (Years)

2925 2902 2854 2796 2735 2362

Event-Free Survival probability (%)

Low Risk,
stage A/B

Low Risk,
Stage /D 673 666 639 613 588 489

High Risk,

5 p 1119 1086 1044 999 942 783
wage A/B

High Risk

bl 724 680 615 557 497 400

Figure 2 The risk of developing HF. This Kaplan—Meier analysis in
the overall population by DeepNN phenogrouping (low- and high-
risk) and HF stage groups (A/B and C/D) indicates that if a subject is
classified as high risk, then they have a significantly higher risk for future
events. Individual comparison between high- and low-risk phe-
nogroups for each stage group log-rank P < 0.0001.

[DeepNN (0.76) vs. ASE/EACVI (0.70), P <0.001], all-cause death
[DeepNN (0.63) vs. ASE/EACVI (0.60), P =0.001], and the composite
endpoint [DeepNN (0.66) vs. ASE/EACVI (0.62), P <0.001] (Table 4).
When combined, the prediction benefits persist [combined model
(HF incidence: 0.76; all-cause death: 0.63; composite endpoint: 0.67)
vs. ASE/EACVI alone (as above); all P <0.001]. This prediction per-
formance is persistent within the stage groups as well. However,
when combined, the C-statistic increase with the combined model
was significant (0.60, P=0.002). The addition of DeepNN pheno-
grouping to the 2016 ASE/EACVI guidelines also improved the re-
classification [continuous net re-classification index (NRI) 0.50, 95%
Cl 0.39-0.62, P<0.0001] for HF-free survival at 5-6 years after
echo. The improved re-classification was maintained in both HF stage
groups (Table 5).

DeepNN-adjusted cut-off values

With the DeepNN model’s improvement in classifying risk and pre-
diction of future outcomes, we explored the possibility of adjusted
cut-offs based on the DeepNN phenogrouping using the model’s
Youden index for each variable (see Supplementary data online,
Table S8). Each DeepNN-derived adjusted cut-off is decreased com-
pared with the 2016 ASE/EACVI guidelines and in more accordance
with other proposed age-related cut-offs’ and with published ex-
plorations in normal cardiac aging®® (see Supplementary data online,
Figure S2). However, there is a large amount of overlap between
the different sets of cut-offs, and there was minimal difference in
the change in HR when assessed using Cox proportional hazard mod-
elling after adjustment of age, sex, and race. Only the adjusted septal e
" velocity remained a unique independent predictor of incident HF to
the DeepNN-derived cut-offs {adjusted cut-off HR 1.29 [95% CI
1.14-1.47], P <0.0001 vs. ASE/EACVI 2016 cut-off HR 1.17 [95%
Cl 09 (0.98-1.40)], P=0.08} (see Supplementary data online,
Table S$9). DeepNN-adjusted cut-offs, when used in the traditional lin-
ear decision tree format, however, showed no additive benefit over
the conventional grading methods.

Table 2 Cox proportional hazards regression model with univariate and multi-variate analysis of HF incidence in the

overall ARIC Study using DeepNN model

Univariable analysis

Covariates

Heart failure incidence

High risk phenogroup 0.762 (0.735-0.789) 11.84 (8.76-15.98)

Multi-variable analysis

Age (years)

Gender

Race

All-cause death
High-risk phenogroup
Age (years)

Gender

Race

Composite endpoint
High-risk phenogroup
Age (years)

Gender

Race

0633 (0.604-0.662)
0.559 (0.533-0.585)
0.503 (0.482-0.524)

0642 (0.622-0.663)
0.638 (0.618-0.658)
0.553 (0.535-0.570)
0.507 (0.493-0.522)

0.672 (0.654-0.690)
0.646 (0.628-0.663)
0.548 (0.532-0.563)
0.501 (0.489-0.514)

1.09 (1.07-1.11)
1.62 (1.31-1.99)
092 (0.71-121)

3.64 (3.04-436)
1.11 (1.09-1.12)
1.51 (1.32-1.74)
1.05 (0.88-1.24)

476 (1.04-5.60)
1.11 (1.09-1.12)
1.46 (1.29-1.65)
1.01 (0.87-1.18)

P-value C-index HR P-value
<0.0001 0.761 (0.735-0.787) 9.68 (7.13-13.16) <0.0001
<0.0001 1.06 (1.04-1.08) <0.0001
<0.0001 1.38 (1.12-1.70) 0.0024
0.5583 — —
<0.0001 0.681 (0.662-0.700) 2.69 (2.24-3.24) <0.0001
<0.0001 1.09 (1.07-1.10) <0.0001
<0.0001 1.36 (1.18-1.56) <0.0001
0.5827 — —
<0.0001 0.704 (0.687-0.720) 3.63 (3.07-4.29) <0.0001
<0.0001 1.09 (1.07-1.10) <0.0001
<0.0001 1.29 (1.14-1.46) <0.0001
0.8749 — —
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Table 3 Univariate and multi-variate Cox regression models for risk factors associated with probability of the high-risk
phenogroup for the prediction of the HF incidence in the overall, AHA Stage A/B, and Stage C/D population at ARIC

Visit 5
Univariable Multi-variable
Covariate HR (CI) P HR (CI) P
Overall (n=5596)
ML probability of high-risk phenogroup 11.84 (8.76-15.98) <0.0001 7.92 (5.76-10.89) <0.0001
Age (years) 1.09 (1.07-1.11) <0.0001 1.05 (1.03-1.08) <0.0001
Male 1.615 (1.31-1.99) <0.0001 1.31 (1.05-1.64) 0.015
Black 0.92 (0.71-1.21) 0.56 — —
Current smoking 1.45 (0.98-2.13) 0.06 — —
Hypertension 212 (1.62-2.77) <0.0001 1.45 (1.08-1.95) 0.0122
BMI (kg/m?) 1.02 (1.00-10.4) 0.0169 1.00 (0.98-1.02) 0.76
Diabetes mellitus 1.91 (1.55-2.36) <0.0001 1.34 (1.06-1.68) 0.0132
Chronic obstructive pulmonary disease 2.55 (2.07-3.15) <0.0001 224 (1.61-3.11) <0.0001
Anaemia 2.15 (1.73-2.68) <0.0001 1.57 (1.24-1.97) 0.0001
Chronic kidney disease 0.47 (0.36-0.62) <0.0001 144 (1.14-1.82) 0.0025
AHA/ACC Stage A/B (n =4054)
ML probability of high-risk phenogroup 8.63 (5.72-13.01) <0.0001 6.52 (4.20-10.13) <0.0001
Age (years) 1.10 (1.07-1.14) <0.0001 1.07 (1.04-1.11) <0.0001
Male 1.25 (0.92-1.70) 0.16 — —
Black 1.16 (0.81-1.70) 0.42 — —
Current smoking 1.6 (0.92-2.75) 0.1 — —
Hypertension 1.83 (1.28-2.63) 0.001 1.31 (0.88-1.95) 0.19
BMI (kg/m?) 1.04 (1.01-1.06) 0.0032 1.02 (0.99-1.05) 0.17
Diabetes mellitus 1.82 (1.33-2.49) 0.0003 1.35 (0.95-1.90) 0.09
Chronic obstructive pulmonary disease 246 (1.45-4.19) 0.0009 242 (1.40-4.19) 0.0017
Anaemia 2.52 (1.84-3.44) <0.0001 1.92 (1.37-2.70) 0.0001
Chronic kidney disease 2.059 (1.47-2.88) <0.0001 1.26 (0.88-0.18) 0.21
AHA/ACC Stage C/D (n=1542)
ML probability of high-risk phenogroup 8.89 (5.60-14.13) <0.0001 6.51 (4.06-10.44) <0.0001
Age (years) 1.05 (1.03-1.08) 0.0002 1.03 (1.00-1.06) <0.0498
Male 1.30 (0.97-1.75) 0.0749 — —
Black 0.87 (0.58-1.30) 0.589 — —
Current smoking 129 (0.75-2.22) 0.3765 — —
Hypertension 1.75 (1.16-2.62) 0.0041 1.40 (0.91-2.16) 0.12
BMI (kg/m?) 1.00 (0.97-1.02) 0.8234 — —
Diabetes mellitus 1.57 (1.18-2.09) 0.0021 1.15 (0.85-1.55) 0.3716
Chronic obstructive pulmonary disease 2,06 (1.37-3.11) 0.0014 1.83 (1.21-2.75) 0.0041
Anaemia 1.95 (1.47-2.60) <0.0001 1.35 (1.00-1.82) 0.0475
Chronic kidney disease 1.70 (1.27-2.28) 0.0006 1.40 (1.03-1.90) 0.0318

‘— indicates the non-significant parameters in the univariate analyses that were omitted from the multi-variate analysis

Discussion

The primary aim of the study was to validate a previously developed and
published machine learning (ML)-based model to predict the 5-year risk
of incident HF in the older adult population using the ARIC echo substudy
where over 45% of patients were above 75 years of age. Moreover, the
diversity of the cohorts (57% females and 19.7% Black) enrolled from
four communities in the USA is important for understanding model

generalizability. First, the study demonstrates the ML model’'s added pre-
dictive value over the ASE/EACVI guidelines, especially for Stage A/B pa-
tients, evidenced by the improved Harrel's C-statistic in Cox modelling
and NRI. Second, a key strength of the DeepNN classifier is its ability to
classify and re-classify even in those with indeterminate grades or pre-
clinical conditions like Grade 1 LVDD or Stage A/B HF. A total of 61%
of the indeterminate grade and 84% of Grade 1 participants were re-
classified as high risk per the ML model. Finally, the phenogroups remained
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2016 ASE/EACVI Guideline DeepNN Model Classifier
Normal .
N=3499 (62%) Low—Rlsko
HF Rate = 3% N=3635 (65%)

HF Rate = 3%

Indeterminate /

N=1360 (24%)
HF Rate = 10%

High Risk
Left Ventricular N=1961 (35%)
Diastolic Grade 1 HF Rate = 14%
Dysfunction N=432 (8%)
HF Rate = 13%
Grade 2/3

N=305 (6%)
HF Rate = 26%

Figure 3 Alluvial plot demonstrating the re-classification of diastolic dysfunction clinical grades to DeepNN model classifier phenogroups. Most of
the patients were deemed normal by the 2016 ASE guidelines. However, 14% of those patients were re-classified as high risk. Strikingly, 61% of inde-
terminate patients and 84% of Grade 1 patients were re-classified as high risk in this age group. Therefore, the biggest benefit of the classifier was in its
ability to re-classify patients who may seem indeterminate or low grade using guideline-based grading but are high risk with a higher risk of incident HF.

Table 4 Comparison of Harrell’s C-statistic in Cox proportional hazards modelling of the ASE/EACVI 2016 LVDD
guideline classifications in comparison to the DeepNN for HF incidence, all-cause death, and composite endpoints in the
overall, Stage A/B, and Stage C/D subgroups

Model HF incidence All-cause death Composite endpoint
Overall

ASE/EACVI 0.70 0.60 0.62

DeepNN 0.76 (<0.001) 0.63 (0.001) 0.66 (<0.001)
Combined 0.76 (<0.001) 0.63 (<0.001) 0.67 (<0.001)
Stage A/B

ASE/EACVI 0.66 0.58 0.60

DeepNN 0.72 (0.0004) 0.60 (0.03) 0.63 (0.0006)
Combined 0.72 (0.0002) 0.60 (0.002) 0.64 (<0.0001)
Stage C/D

ASE/EACVI 0.69 0.60 0.63

DeepNN 0.74 (0.001) 0.61 (0.50) 0.65 (0.047)
Combined 0.74 (<0.001) 0.61 (0.02) 0.65 (<0.001)

Presented as model C-statistic (P-value when compared to C-statistic of ASE model alone).

$20Z 1snBny Gz UO Jasn 8ouUsI0S pue aupIpay aAnonpoiday Joj Jsluad) ayl Aq §/6009./.E6/./Sz/ePNe/buiBewidlys/woo dnooiwspese//:sdny woll papeojumod



A deep patient-similarity learning framework

945

Table 5 Continuous NRI and IDI for the addition of
DeepNN phenogrouping to 2016 ASE/EACVI grading for
incident HF

Continuous net re-classification index
Reference: 2016 ASE/EACVI grade
Addition: DeepNN Phenogrouping

Cohort NRI 95% CI P-value
Overall 0.504 0.392-0.617 <0.0001
Stage A/B 0.422 0.258-0.587 <0.0001
Stage C/D 0.404 0.248-0.560 <0.0001
Integrated discrimination index

Reference: 2016 ASE/EACVI grade

Addition: DeepNN phenogrouping

Cohort IDI 95% CI P-value
Overall —0.0094 —0.0182t0 0 0.04
Stage A/B —0.0034 —0.0114 to —0.0047 0.4
Stage C/D —-0.0271 —0.0418 to —0.0125 0.0003

independent predictors of HF incidence and all-cause death risk in Stage A/
B and Stage C/D cardiomyopathy in the 5- to 8-year follow-up window
after the echo. Notably, the high-risk phenogroup also predicted elevated
NT-pro-BNP and troponin values and higher peak strain magnitudes fur-
ther confirming the consistency of the model for providing individualized
risk prediction.

The use of ML in HF risk prediction

Previous artificial intelligence (Al)/ML studies employed clustering algo-
rithms, including K-means and hierarchical clustering, to identify novel
diastolic dysfunction phenotypes.m’25 However, our similarity-based
approach is based upon a mathematical approach (topological data ana-
lysis) that extracts meaningful information by studying the shape and
structure of the data. The algorithms are more robust to noise and out-
liers, can detect and represent the data structure at multiple scales, can
handle missing data, and do not require a lot of tuning or prior knowl-
edge to assess intricate data patterns.’® This capability reduces the re-
liance on individual parameters and minimizes sensitivity to noise. We
used a cluster-then-predict approach, in which a DeepNN model
then predicts the cluster incorporated ASE/EACVI 2016 echocardio-
graphic variables. The DeepNN model outperformed guideline-based
classification while predicting HF hospitalization.

DeepNNis are labelled as ‘black boxes’ because of their opaque pre-
diction processes. Nevertheless, these data-driven algorithms enhance
classification by capturing non-linear relationships, rendering ML mod-
els more adaptable than conventional linear decision trees from trad-
itional statistics. This flexibility enables risk prediction even with
missing data, as demonstrated by the DeepNN model’s re-classification
of the indeterminate group.

Association of biological age with neural

network activations

The relationship between diastolic function and biological age is well es-
tablished.?® There has been growing interest recently in using ML tech-
niques to understand cardiovascular aging.'"™ 327 For example, arecent
investigation using the UK Biobank database explored cardiovascular
aging biomarkers derived from vascular function, cardiac motion, and
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Figure 4 Correlation between model-predicted age vs. chrono-
logical age. Pearson correlation coefficient (r=0.69) between the
model-predicted and chronological ages.

myocardial fibrosis imaging.>’ It found that a fibrosis imaging marker,
a key contributor to diastolic dysfunction, predicted accelerated aging.
Additionally, 3D imaging analysis revealed uneven heart remodelling
during aging, impacting LV contractility and relaxation patterns. Given
this known relationship between biological age, LV remodelling, con-
tractility, and diastolic function parameters, one can speculate that
the DeepNN model used in the study may include some latent
age-related information. To this end, in another technical study (see
Supplementary data online, Section $2),”® we dissected and isolated hid-
den nodes whose activation revealed that some of these nodes had
learned to automatically regress age from echocardiography data
(Figure 4). However, a bias is observed. This bias is consistent with pre-
vious studies that have explained the ability of the deep learning model
to predict the biological age rather than the chronological age.n“‘zgf31
A model relying on functional traits that are both disease dependent
and age dependent, however, may share the same latent features and
have a confounding effect on model predictions. For example,
age-related bias, as observed in this occasion, may lead to inherent
weakness in distinguishing between a younger person with impaired
function and an older person with preserved function. This bias could
also be related to the characteristics of the training data set in which
patients had a pre-existing indication for performing echocardiograms
and thus may be sicker. Future use of a larger data set and new research
approaches will be necessary to validate these concepts.

Clinical implications and future directions

The DeepNN model is superior to a linear decision tree models used
previously and may improve age-related risk profiling in a muilti-
dimensional disease process such as LVDD.

Accurate risk stratification of the older population and therapeutic
interventions may potentially diminish progression to HF, resulting in
decreased hospitalizations and associated healthcare costs while main-
taining the quality of life and exercise capacity. The DeepNN model has
undergone external validation in various large study data sets and is
prognostic of the risk of LVDD, increased LA pressures, worsening ex-
ercise performance, biomarker profiles, and incident HF. The current
study reinforces the readiness of a publicly available model for identify-
ing high-risk LVDD patients and warrants further prospective and lon-
gitudinal investigation and implementation for patient selection in
clinical trials.
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The current study has several limitations. First, the age of the training
cohort of the DeepNN model was younger than the ARIC validation
cohort, yet the DeepNN model still demonstrated a robust predictive
performance. Further training of the model in an elderly cohort could
further improve the predictive performance. Second, model perform-
ance can likely be improved by using a higher granularity of risk deter-
mination (i.e. more than two risk groups). Third, there is mounting
evidence of the utility of strain or other biomarkers that reflect inflam-
mation, cardiac remodelling, vascular changes, and physical perform-
ance markers (including exercise echocardiography and imaging) in
determining cardiac functional capacity, and future investigations should
explore the integration of these parameters. Finally, the strength of
DeepNNs in the prediction of cardiovascular events in older patients
opens up new opportunities in using such models for developing nomo-
grams of cardiovascular aging in health and disease.

Supplementary data

Supplementary data are available at European Heart Journal -
Cardiovascular Imaging online.
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