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Aims Age-related changes in cardiac structure and function are well recognized and make the clinical determination of abnormal 
left ventricular (LV) diastolic dysfunction (LVDD) particularly challenging in the elderly. We investigated whether a deep 
neural network (DeepNN) model of LVDD, previously validated in a younger cohort, can be implemented in an older popu
lation to predict incident heart failure (HF).

Methods 
and results

A previously developed DeepNN was tested on 5596 older participants (66–90 years; 57% female; 20% Black) from the 
Atherosclerosis Risk in Communities Study. The association of DeepNN predictions with HF or all-cause death for the 
American College of Cardiology Foundation/American Heart Association Stage A/B (n = 4054) and Stage C/D (n =  
1542) subgroups was assessed. The DeepNN-predicted high-risk compared with the low-risk phenogroup demonstrated 
an increased incidence of HF and death for both Stage A/B and Stage C/D (log-rank P < 0.0001 for all). In multi-variable ana
lyses, the high-risk phenogroup remained an independent predictor of HF and death in both Stages A/B {adjusted hazard 
ratio [95% confidence interval (CI)] 6.52 [4.20–10.13] and 2.21 [1.68–2.91], both P < 0.0001} and Stage C/D [6.51 
(4.06–10.44) and 1.03 (1.00–1.06), both P < 0.0001], respectively. In addition, DeepNN showed incremental value over 
the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging (ASE/EACVI) guidelines 
[net re-classification index, 0.5 (CI 0.4–0.6), P < 0.001; C-statistic improvement, DeepNN (0.76) vs. ASE/EACVI (0.70), P <  
0.001] overall and maintained across stage groups.

Conclusion Despite training with a younger cohort, a deep patient-similarity–based learning framework for assessing LVDD provides a 
robust prediction of all-cause death and incident HF for older patients.
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Key Question
Can a deep neural network (DeepNN) model of left ventricular diastolic dysfunction (LVDD), previously validated in a younger cohort, be
implemented for the prediction of all-cause death and heart failure (HF) incidence in an older adult population?

Key Finding

Take-home Message
Despite being trained with a younger cohort, the DeepNN accounts for the age-related changes in diastolic function and can predict adverse
events. The study’s results suggest readiness to implement DeepNN in future HF clinical trials.

In an analysis of 5596 participants enrolled in the echocardiographic substudy of the Atherosclerosis Risk in the Communities (ARIC) Study,
the DeepNN phenogroups independently predicted all-cause death and incident HF with incremental bene!t over current guidelines.

Echocardiographic parameters from the ARIC Study included ejection fraction (EF), left ventricular mass index (LVMi), early diastolic transmitral flow 
velocity (E), late diastolic transmitral flow velocity (A), E/A ratio, septal early diastolic relaxation velocity (e′), E/e′ ratio, left atrial volume index (LAVi), 
and tricuspid regurgitation peak velocity (TRV). These parameters were inputted into the classifier that extracts age-related echocardiographic data 
(and therefore able to predict age based on echo parameters alone) to batch predict the high-risk and low-risk phenogroups, and time-to-event 
outcomes were predicted.

Keywords left ventricular diastolic dysfunction • elderly • risk stratification • machine learning • phenogrouping

938                                                                                                                                                                                               R. Shah et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/25/7/937/7600578 by The C

enter for R
eproductive M

edicine and Science user on 29 August 2024



Introduction
Heart failure (HF) with preserved ejection fraction (HFpEF) affects 
greater than 64 million adults worldwide, with an increase of 50% pre
dicted by 2035 in aging populations.1 Echocardiography (echo) is the 
primary modality of risk stratification and prediction of incident HF, 
morbidity, and mortality. However, the increased prevalence of 
age-associated changes in left ventricular (LV) diastolic function makes 
risk stratification and grading of LV diastolic dysfunction (LVDD) espe
cially difficult in older patients.2–4 Moreover, HF is a heterogeneous dis
ease, and differentiating the relative contribution of LVDD and other 
extra-cardiac co-morbidities in the pathophysiology is challenging.5,6

Age-adjusted thresholds for defining abnormalities in LVDD are not 
incorporated in the existing guidelines.7 Moreover, univariable cut-offs 
in a linear decision tree may limit the assessment of age-dependent, 
highly non-linear relationships between LVDD variables. Additionally, 
not all LVDD variables may be measurable, which results in indetermin
ate or inaccurate grading.8–10

There is mounting evidence that deep neural networks (DeepNNs) 
can improve risk prediction by incorporating age-related changes dir
ectly as latent traits from the analysis of the imaging data.11–13 We pre
viously validated a DeepNN (https://wvu-model.herokuapp.com/) that 
integrates echo variables to determine whether an unknown patient 
is similar or dissimilar to patients at high risk for developing future 
adverse cardiac events.14 We investigated this DeepNN in an older 
population with varying demographics using the multi-centric 
Atherosclerosis Risk in the Communities (ARIC) echo substudy.15

We hypothesized that the deep learning echo models of LVDD would 
predict the future risk of incident HF even in the older population.

Methods
Study population
We investigated the application of a DeepNN framework for assessing 
LVDD in the individual-level data of the ARIC Study, a prospective epide
miologic cohort study started in 1987 investigating the aetiology of athero
sclerosis and its clinical sequelae. The study initially enrolled 15 792 
participants aged 45–64 from four US communities.16,17 In the present 
study, we analysed all 5596 participants aged 76 ± 5 years (45% above 
the age of 75, 57% females, and 19.7% Black) who underwent a previously 
described echo substudy during the fifth visit between 2011 and 2013 with 
follow-up data until 2017 available from the National Heart Lung and Blood 
Institute’s (NHLBI) BioLINCC database (Figure 1).16 All available patients in 
the echo substudy, including those with coronary artery disease, atrial fib
rillation, HFpEF, HF with reduced ejection fraction (HFrEF), right HF, and 
pulmonary hypertension (HTN), were included.

Outcomes of interest
The primary outcome of interest for the present study was incident HF, 
with all-cause death as secondary. The cohorts were followed from the 
time of their echo at the fifth visit to their last documented follow-up in 
the NHLBI BioLINCC data set. Incident HF events were identified by the 
first hospitalization event with HF as standardized by the coordinating study 
institutions and documented within the BioLINCC data set. HF was further 
classified into HFpEF and HFrEF based on the LV ejection fraction (LVEF) 
measured by echo. HFpEF was defined as  ≥ 50% and HFrEF as LVEF <  
50%.16,18

Figure 1 Study outline. (A) The age distribution of the training and the ARIC echocardiographic substudy used in the present external validation 
study. (B) Echocardiographic parameters used in DeepNN training included ejection fraction (EF), LV mass index (LVMi), early diastolic trans
mitral flow velocity (E), late diastolic transmitral flow velocity (A), E/A ratio, septal early diastolic relaxation velocity (e′), E/e′ ratio, left atrial vol
ume index (LAVi), and tricuspid regurgitation peak velocity (TRV). These parameters were inputted into the classifier and the 2016 ASE guidelines 
to batch predict the high-risk and low-risk phenogroups and ASE grades in the ARIC. (C ) Model-predicted phenogroups and ASE grades were 
then compared.
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Development of the deep patient-similarity 
learning framework
The deep patient-similarity learning framework makes its predictions (high- 
and low-risk) using a DeepNN model derived from a patient-similarity net
work that predicted the presence of LVDD by defining clusters of participants 
labelled high-risk and low-risk from the derivation cohort as previously 
published.19 To keep it comparable with the 2016 American Society of 
Echocardiography/European Association of Cardiovascular Imaging (ASE/ 
EACVI) guidelines, the model was developed using the nine echocardiographic 
variables used in the guidelines (Table 1). The model and its incremental value 
over 2016 ASE/EACVI LVDD guideline recommendations have been previ
ously validated and outlined in Supplementary data online, Section S1.14

Model evaluation in older adults
We divided the ARIC cohort into Stage A/B or Stage C/D HF, based on the 
American College of Cardiology Foundation/American Heart Association 
(ACCF/AHA) guidelines to explore the significance of LVDD phenogroup
ing. We compared the model-predicted age with the actual chronological 
age to show a correlation and the ability of the DeepNN model to extract 
latent age-related data. We explored whether DeepNN-derived cut-offs 
could improve the 2016 ASE/EACVI guidelines’ performance in outcomes 
prediction.

Statistical analysis
We explain in detail the model input features, the inclusion of ARIC data with 
missing values (see Supplementary data online, Table S1), model evaluation, 
outcomes comparisons, predicted and chronological age correlation, the in
cremental benefit of the DeepNN model over the ASE/EACVI LVDD guide
line, and predicted cut-offs in Supplementary data online, Section S3. This 
manuscript used the ACC Proposed Requirements for Cardiovascular 
Imaging-Related Machine Learning Evaluation reporting checklist to describe 
the study as noted in Supplementary data online, Table S2.15 The following 
software solutions were used for analyses: Ayasdi workbench and SDK 
v7.9 (Ayasdi, Inc, Menlo Park, CA, USA, since acquired by SymphonyAI 
Sensa, Palo Alto, CA, USA) for the similarity network and phenogroup label 
generation, Stata v14.2 (StataCorp, College Station, TX, USA), and R v3.6.3 (R 
Foundation for Statistical Computing), and MedCalc® Statistical Software 
v20.027 (MedCalc Software Ltd, Ostend, Belgium). Statistical significance 
was tested with a two-sided P-value of <0.05.

Results
Study populations
The overall ARIC population’s demographic, echo, and past medical his
tory data are shown in Table 1. The ARIC population has a significantly 
higher average age than the DeepNN training cohort (ARIC: 76 ± 5 vs. 
DeepNN: 62 ± 17 years, P < 0.0001). Furthermore, ARIC had a higher 
percentage of participants aged over 65 and 75 compared with 
DeepNN’s training data (see Supplementary data online, Figure S1
and Table S3).

A total of 4054 (72.4%) and 1542 (27.6%) were at ACCF/AHA Stage 
A/B and Stage C/D, respectively. Of the 3635 (65.0%) participants pre
dicted to be in the low-risk phenogroup, 2927 (80.5%) had Stage A/B, 
and 708 (19.5%) had Stage C/D HF. Of the 1961 (35.0%) participants in 
the high-risk phenogroup, 1127 (57.5%) had Stage A/B, and 834 (42.5%) 
had Stage C/D HF. A total of 359 participants (6.6%) met the HF hos
pitalization outcome and 811 (14.5%) participants met the all-cause 
death outcome (see Supplementary data online, Table S4).

In the Stage A/B group, the high-risk phenogroup included participants 
who were older, included more African Americans, and had a higher 
body mass index (BMI), body surface area (BSA), and blood pressure. 
The high-risk phenogroup also had higher baseline troponin T and 

N-terminal pro b-type natriuretic peptide (NT-ProBNP) levels. This 
group also had a higher rate of co-morbidities such as HTN, diabetes mel
litus (DM), dyslipidaemia, anaemia, and chronic kidney disease (CKD). 
There were significant differences in the nine echo parameters used as 
input for the DeepNN model and in meeting the primary and secondary 
outcomes between the two the low- and high-risk phenogroups. 
Average peak longitudinal and average peak circumferential strain were 
statistically significant between the two phenogroups, with the low-risk 
group exhibiting higher strain magnitude than the high-risk group 
(Table 1 and Supplementary data online, Table S4).

In the Stage C/D group, the high-risk phenogroup included the oldest 
subgroup of participants, more males, elevated BMI, BSA, and pulse 
pressure. Like the Stage A/B group, the high-risk phenogroup also 
had higher troponin T and NT-ProBNP levels. There were significant 
differences between eight of the nine parameters used for model train
ing, with E/A ratio as the only variable with no difference between the 
two risk phenogroups (P = 0.06). There was also a larger percentage of 
those who met the primary and secondary outcomes in this HF group. 
Moreover, average peak longitudinal and average peak circumferential 
strain also remained statistically significant between the two phe
nogroups, with low-risk group showing higher strain magnitude than 
the high-risk group (Table 1 and Supplementary data online, Table S4).

Model associations with outcomes 
predictions in older adults
In Kaplan–Meier analysis, the DeepNN model predicted a higher prob
ability of incident HF and death in the high-risk phenogroup for both 
endpoints for both stage groups (all log-rank test P < 0.0001) (Figure 2).

Diastolic parameters used as input to the DeepNN correlated with 
age (see Supplementary data online, Table S5), and the addition of age, 
gender, or race to the DeepNN high-risk phenogroup provided no im
provement in HF event prediction in multi-variable Cox analysis 
(C-statistic: both 0.76, P ≤ 0.0001) (Table 2) and minimal improvement 
in predicting all-cause death (C-statistic: 0.64 vs. 0.68, both P < 0.0001) 
and the composite endpoint (C-statistic: 0.67 vs. 0.70, both < 0.0001).

In Cox univariable analysis across both endpoints and stage groups, 
high-risk phenogrouping, age, DM, anaemia, HTN, chronic obstructive 
pulmonary disease, and CKD remained significant covariates, with BMI 
remaining significant primarily in the Stage A/B cohorts. The high-risk 
phenogroup predicted an increased hazard ratio (HR) [confidence inter
val (CI)] for incident HF [11.84 (8.76–15.98), P < 0.0001], death [3.64 
(3.04–4.36), P < 0.0001], and the composite endpoint [4.76 (1.04– 
5.60)] (Table 3; Supplementary data online, Tables S6 and S7). In multi- 
variable analysis adjusted for underlying co-morbidities, the high-risk 
group continued to predict higher HRs for incident HF [7.92 (5.76– 
10.89), P < 0.0001], death [2.51 (2.06–3.05), P < 0.0001], and the 
composite endpoint [3.30 (2.76–3.93), P < 0.0001]. The high-risk phe
nogroup’s predictive capability was upheld in both stage groups for 
each outcome (Table 3; Supplementary data online, Tables S6 and S7).

Re-classification of diastolic function 
grading
The 2016 ASE/EACVI guidelines identified 3499 (62%) normal patients, 
432 (8%) with Grade 1 LVDD, 305 (6%) with high grade (2 or 3) 
LVDD, and 1360 (24%) with indeterminate grade LVDD (Figure 3). 
The cumulative risk for the composite outcome was higher in patients 
with high grade vs. Grade 1 and indeterminate LVDD (event rates: 
26% vs. 13% vs. 10%). Among participants identified with high-grade 
LVDD, 277 (91%) were concordantly classified in the high-risk phe
nogroup. However, only 3009 (86%) and 69 (16%) of the normal parti
cipants and participants with Grade 1 LVDD, respectively, were 
concordantly classified in the low-risk phenogroup (P < 0.0001). 
Moreover, 829 (61%) indeterminate participants were classified as high 
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Table 1 Comparison of cross-sectional demographic, clinical data, and echocardiographic diastolic parameters 
between high- and low-risk phenogroups per ARIC HF stage cohorts and re-classification table of 2016 ASE/EACVI 
diastolic dysfunction grading guidelines to DeepNN classifier phenogroups

ACC/AHA Stage A/B ACC/AHA Stage C/D

Overall Low risk High risk P-value Low risk High risk P-value

Demographic and clinical information

Age 75.6 (5.2) 74.5 (4.8) 76.5 (5.2) <0.0001 76.1 (5.3) 77.6 (5.3) <0.0001

Gender (female) 57% 63.2% 61.1% 0.21 45.1% 39.2% 0.0204

Race (Black) 19.7% 19.4% 24.6% 0.0003 15.4% 17.4% 0.29

BMI 28.5 (6.0) 28.1 (5.6) 29.4 (6.3) <0.0001 27.9 (6.2) 29.3 (6.6) <0.0001

BSA 1.90 (0.24) 1.87 (0.24) 1.91 (0.24) <0.0001 1.91 (0.23) 1.96 (0.25) 0.0001

Systolic Blood Pressure, mm Hg 129.5 (19.5) 128 (17) 134 (22) <0.0001 128 (18) 130 (23) 0.20

Pulse Pressure, mm Hg 63.6 (15.0) 62 (14) 67 (16) <0.0001 63 (15) 66 (17) 0.0009

Lab values

Troponin T, ng/mL 0.014 (0.016) 0.011 (0.008) 0.015 (0.013) <0.0001 0.015 (0.012) 0.023 (0.033) <0.0001

NT-ProBNP, pg/mL 308 (933) 139 (138) 286 (518) <0.0001 302 (417) 940 (2186) <0.0001

C-reactive protein, mg/L 4.06 (7.43) 3.8 (6.5) 4.0 (6.2) 0.21 4.3 (9.5) 5.0 (9.5) 0.17

Past medical history (at Visit 5)

Hypertension 3872 (69.2%) 1802 (61.6%) 859 (76.2%) <0.0001 521 (73.6%) 690 (82.7%) <0.0001

Diabetes mellitus 1599 (28.7%) 687 (23.6%) 337 (30.0%) <0.0001 197 (28.0%) 378 (45.5%) <0.0001

Dyslipidaemia 2749 (50.7%) 1696 (57.9%) 562 (49.9%) <0.0001 266 (37.6%) 262 (31.4%) 0.0112

Current smoking 317 (5.7%) 166 (5.7%) 65 (5.8%) 0.91 44 (6.2%) 42 (5.0%) 0.32

Chronic obstructive pulmonary disease 305 (5.6%) 137 (4.8%) 39 (3.6%) 0.15 53 (7.6%) 76 (9.4%) 0.054

Anaemia 1366 (25.0%) 561 (19.6%) 280 (25.7%) <0.0001 182 (26.2%) 343 (42.1%) <0.0001

Chronic kidney disease 1141 (20.5%) 455 (15.6%) 238 (21.2%) <0.0001 174 (24.8%) 274 (33.0%) 0.0004

Atrial fibrillation 494 (8.8%) — — — 194 (27.4%) 300 (36.0%) 0.0003

Coronary artery disease 823 (14.7%) — — — 358 (50.6%) 465 (55.8%) 0.0418

Heart failure 290 (5.2%) — — — 60 (8.5%) 230 (27.6%) <0.0001

Echocardiographic parameters (used for model development)

Ejection fraction, % 65.0 (6.9) 67.1 (4.8) 63.0 (15.9) <0.0001 66.5 (5.3) 59.0 (9.9) <0.0001

E-wave velocity, cm/s 0.68 (0.19) 0.65 (0.16) 0.68 (0.20) 0.0001 0.67 (0.18) 0.77 (0.26) <0.0001

A-wave velocity, cm/s 0.80 (0.20) 0.78 (0.17) 0.86 (0.22) <0.0001 0.76 (0.17) 0.84 (0.25) <0.0001

E/A ratio 0.86 (0.30) 0.86 (0.24) 0.81 (0.28) <0.0001 0.89 (0.33) 0.93 (0.44) 0.057

Septal e′, cm/s 5.68 (1.48) 6.11 (1.44) 4.65 (0.99) <0.0001 6.30 (1.56) 4.99 (1.31) <0.0001

E/e′ ratio 10.28 (4.06) 9.14 (2.66) 12.48 (4.45) <0.0001 8.83 (2.72) 12.57 (5.91) <0.0001

Left atrial volume index, mL/m2 26.32 (9.33) 22.94 (6.05) 29.31 (8.48) <0.0001 25.33 (7.14) 35.17 (13.62) <0.0001

Tricuspid regurgitation velocity, cm/s 2.40 (0.30) 2.34 (0.25) 2.46 (0.32) <0.0001 2.36 (0.26) 2.52 (0.36) <0.0001

Left ventricular mass index, g/m2 80.24 (21.12) 71.1 (13.0) 91.7 (20.0) <0.0001 74.4 (14.2) 101.8 (26.9) <0.0001

Strain measurements (not used for model development)

Average peak longitudinal strain, %* −17.9 (2.6) −18.6 (2.1) −17.2 (2.5) <0.0001 −18.0 (2.3) −15.9 (3.6) <0.0001

Average peak circumferential strain, %* −27.7 (3.9) −28.4 (3.3) −27.5 (4.3) <0.0001 −27.8 (3.6) −25.6 (4.9) <0.0001

2016 ASE/EACVI LVDD grading

Normal 3499 2152 (88%) 291 (12%) 493 (78%) 137 (22%)

Indeterminate 1360 378 (50%) 383 (50%) 99 (22%) 355 (78%)

Grade 1 432 53 (22%) 191 (78%) 8 (6%) 134 (94%)

Grade 2 236 18 (15%) 106 (85%) 6 (5%) 106 (95%)

Grade 3 31 0 (0%) 6 (100%) 1 (4%) 24 (96%)

*Not used in model training or development. 
Depicted as mean (standard deviation), count (percentage), or percentage of whole.
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risk, with an adjusted HF event rate of 14% vs. 10% or 13% in the inde
terminate and Grade 1 groups, respectively. The model provides clinical 
value as it accounts for age-related changes in this population and can as
sign an informative risk profile for those that were typically deemed ‘low 
risk’ (normal and Grade 1) or when there was no risk profile associated at 
all (indeterminate).

The DeepNN model had an increased Harrell’s C-statistic in Cox 
proportional hazard modelling for the prediction of incident HF 

[DeepNN (0.76) vs. ASE/EACVI (0.70), P ≤ 0.001], all-cause death 
[DeepNN (0.63) vs. ASE/EACVI (0.60), P = 0.001], and the composite 
endpoint [DeepNN (0.66) vs. ASE/EACVI (0.62), P ≤ 0.001] (Table 4). 
When combined, the prediction benefits persist [combined model 
(HF incidence: 0.76; all-cause death: 0.63; composite endpoint: 0.67) 
vs. ASE/EACVI alone (as above); all P < 0.001]. This prediction per
formance is persistent within the stage groups as well. However, 
when combined, the C-statistic increase with the combined model 
was significant (0.60, P = 0.002). The addition of DeepNN pheno
grouping to the 2016 ASE/EACVI guidelines also improved the re- 
classification [continuous net re-classification index (NRI) 0.50, 95% 
CI 0.39–0.62, P < 0.0001] for HF-free survival at 5–6 years after 
echo. The improved re-classification was maintained in both HF stage 
groups (Table 5).

DeepNN-adjusted cut-off values
With the DeepNN model’s improvement in classifying risk and pre
diction of future outcomes, we explored the possibility of adjusted 
cut-offs based on the DeepNN phenogrouping using the model’s 
Youden index for each variable (see Supplementary data online, 
Table S8). Each DeepNN-derived adjusted cut-off is decreased com
pared with the 2016 ASE/EACVI guidelines and in more accordance 
with other proposed age-related cut-offs7 and with published ex
plorations in normal cardiac aging20 (see Supplementary data online, 
Figure S2). However, there is a large amount of overlap between 
the different sets of cut-offs, and there was minimal difference in 
the change in HR when assessed using Cox proportional hazard mod
elling after adjustment of age, sex, and race. Only the adjusted septal e 
′ velocity remained a unique independent predictor of incident HF to 
the DeepNN-derived cut-offs {adjusted cut-off HR 1.29 [95% CI 
1.14–1.47], P < 0.0001 vs. ASE/EACVI 2016 cut-off HR 1.17 [95% 
CI 0.9 (0.98–1.40)], P = 0.08} (see Supplementary data online, 
Table S9). DeepNN-adjusted cut-offs, when used in the traditional lin
ear decision tree format, however, showed no additive benefit over 
the conventional grading methods.

Figure 2 The risk of developing HF. This Kaplan–Meier analysis in 
the overall population by DeepNN phenogrouping (low- and high- 
risk) and HF stage groups (A/B and C/D) indicates that if a subject is 
classified as high risk, then they have a significantly higher risk for future 
events. Individual comparison between high- and low-risk phe
nogroups for each stage group log-rank P < 0.0001.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 2 Cox proportional hazards regression model with univariate and multi-variate analysis of HF incidence in the 
overall ARIC Study using DeepNN model

Univariable analysis Multi-variable analysis

Covariates C-index HR P-value C-index HR P-value

Heart failure incidence

High risk phenogroup 0.762 (0.735–0.789) 11.84 (8.76–15.98) <0.0001 0.761 (0.735–0.787) 9.68 (7.13–13.16) <0.0001

Age (years) 0.633 (0.604–0.662) 1.09 (1.07–1.11) <0.0001 1.06 (1.04–1.08) <0.0001

Gender 0.559 (0.533–0.585) 1.62 (1.31–1.99) <0.0001 1.38 (1.12–1.70) 0.0024

Race 0.503 (0.482–0.524) 0.92 (0.71–1.21) 0.5583 — —

All-cause death

High-risk phenogroup 0.642 (0.622–0.663) 3.64 (3.04–4.36) <0.0001 0.681 (0.662–0.700) 2.69 (2.24–3.24) <0.0001

Age (years) 0.638 (0.618–0.658) 1.11 (1.09–1.12) <0.0001 1.09 (1.07–1.10) <0.0001

Gender 0.553 (0.535–0.570) 1.51 (1.32–1.74) <0.0001 1.36 (1.18–1.56) <0.0001

Race 0.507 (0.493–0.522) 1.05 (0.88–1.24) 0.5827 — —

Composite endpoint

High-risk phenogroup 0.672 (0.654–0.690) 4.76 (1.04–5.60) <0.0001 0.704 (0.687–0.720) 3.63 (3.07–4.29) <0.0001

Age (years) 0.646 (0.628–0.663) 1.11 (1.09–1.12) <0.0001 1.09 (1.07–1.10) <0.0001

Gender 0.548 (0.532–0.563) 1.46 (1.29–1.65) <0.0001 1.29 (1.14–1.46) <0.0001

Race 0.501 (0.489–0.514) 1.01 (0.87–1.18) 0.8749 — —
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Discussion
The primary aim of the study was to validate a previously developed and 
published machine learning (ML)-based model to predict the 5-year risk 
of incident HF in the older adult population using the ARIC echo substudy 
where over 45% of patients were above 75 years of age. Moreover, the 
diversity of the cohorts (57% females and 19.7% Black) enrolled from 
four communities in the USA is important for understanding model 

generalizability. First, the study demonstrates the ML model’s added pre
dictive value over the ASE/EACVI guidelines, especially for Stage A/B pa
tients, evidenced by the improved Harrel’s C-statistic in Cox modelling 
and NRI. Second, a key strength of the DeepNN classifier is its ability to 
classify and re-classify even in those with indeterminate grades or pre- 
clinical conditions like Grade 1 LVDD or Stage A/B HF. A total of 61% 
of the indeterminate grade and 84% of Grade 1 participants were re- 
classified as high risk per the ML model. Finally, the phenogroups remained 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3 Univariate and multi-variate Cox regression models for risk factors associated with probability of the high-risk 
phenogroup for the prediction of the HF incidence in the overall, AHA Stage A/B, and Stage C/D population at ARIC 
Visit 5

Univariable Multi-variable

Covariate HR (CI) P HR (CI) P

Overall (n = 5596)

ML probability of high-risk phenogroup 11.84 (8.76–15.98) <0.0001 7.92 (5.76–10.89) <0.0001

Age (years) 1.09 (1.07–1.11) <0.0001 1.05 (1.03–1.08) <0.0001

Male 1.615 (1.31–1.99) <0.0001 1.31 (1.05–1.64) 0.015

Black 0.92 (0.71–1.21) 0.56 — —

Current smoking 1.45 (0.98–2.13) 0.06 — —

Hypertension 2.12 (1.62–2.77) <0.0001 1.45 (1.08–1.95) 0.0122

BMI (kg/m2) 1.02 (1.00–10.4) 0.0169 1.00 (0.98–1.02) 0.76

Diabetes mellitus 1.91 (1.55–2.36) <0.0001 1.34 (1.06–1.68) 0.0132

Chronic obstructive pulmonary disease 2.55 (2.07–3.15) <0.0001 2.24 (1.61–3.11) <0.0001

Anaemia 2.15 (1.73–2.68) <0.0001 1.57 (1.24–1.97) 0.0001

Chronic kidney disease 0.47 (0.36–0.62) <0.0001 1.44 (1.14–1.82) 0.0025

AHA/ACC Stage A/B (n = 4054)

ML probability of high-risk phenogroup 8.63 (5.72–13.01) <0.0001 6.52 (4.20–10.13) <0.0001

Age (years) 1.10 (1.07–1.14) <0.0001 1.07 (1.04–1.11) <0.0001

Male 1.25 (0.92–1.70) 0.16 — —

Black 1.16 (0.81–1.70) 0.42 — —

Current smoking 1.6 (0.92–2.75) 0.1 — —

Hypertension 1.83 (1.28–2.63) 0.001 1.31 (0.88–1.95) 0.19

BMI (kg/m2) 1.04 (1.01–1.06) 0.0032 1.02 (0.99–1.05) 0.17

Diabetes mellitus 1.82 (1.33–2.49) 0.0003 1.35 (0.95–1.90) 0.09

Chronic obstructive pulmonary disease 2.46 (1.45–4.19) 0.0009 2.42 (1.40–4.19) 0.0017

Anaemia 2.52 (1.84–3.44) <0.0001 1.92 (1.37–2.70) 0.0001

Chronic kidney disease 2.059 (1.47–2.88) <0.0001 1.26 (0.88–0.18) 0.21

AHA/ACC Stage C/D (n = 1542)

ML probability of high-risk phenogroup 8.89 (5.60–14.13) <0.0001 6.51 (4.06–10.44) <0.0001

Age (years) 1.05 (1.03–1.08) 0.0002 1.03 (1.00–1.06) <0.0498

Male 1.30 (0.97–1.75) 0.0749 — —

Black 0.87 (0.58–1.30) 0.589 — —

Current smoking 1.29 (0.75–2.22) 0.3765 — —

Hypertension 1.75 (1.16–2.62) 0.0041 1.40 (0.91–2.16) 0.12

BMI (kg/m2) 1.00 (0.97–1.02) 0.8234 — —

Diabetes mellitus 1.57 (1.18–2.09) 0.0021 1.15 (0.85–1.55) 0.3716

Chronic obstructive pulmonary disease 2.06 (1.37–3.11) 0.0014 1.83 (1.21–2.75) 0.0041

Anaemia 1.95 (1.47–2.60) <0.0001 1.35 (1.00–1.82) 0.0475

Chronic kidney disease 1.70 (1.27–2.28) 0.0006 1.40 (1.03–1.90) 0.0318

‘—’ indicates the non-significant parameters in the univariate analyses that were omitted from the multi-variate analysis
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Figure 3 Alluvial plot demonstrating the re-classification of diastolic dysfunction clinical grades to DeepNN model classifier phenogroups. Most of 
the patients were deemed normal by the 2016 ASE guidelines. However, 14% of those patients were re-classified as high risk. Strikingly, 61% of inde
terminate patients and 84% of Grade 1 patients were re-classified as high risk in this age group. Therefore, the biggest benefit of the classifier was in its 
ability to re-classify patients who may seem indeterminate or low grade using guideline-based grading but are high risk with a higher risk of incident HF.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Comparison of Harrell’s C-statistic in Cox proportional hazards modelling of the ASE/EACVI 2016 LVDD 
guideline classifications in comparison to the DeepNN for HF incidence, all-cause death, and composite endpoints in the 
overall, Stage A/B, and Stage C/D subgroups

Model HF incidence All-cause death Composite endpoint

Overall

ASE/EACVI 0.70 0.60 0.62

DeepNN 0.76 (<0.001) 0.63 (0.001) 0.66 (<0.001)

Combined 0.76 (<0.001) 0.63 (<0.001) 0.67 (<0.001)

Stage A/B

ASE/EACVI 0.66 0.58 0.60

DeepNN 0.72 (0.0004) 0.60 (0.03) 0.63 (0.0006)

Combined 0.72 (0.0002) 0.60 (0.002) 0.64 (<0.0001)

Stage C/D

ASE/EACVI 0.69 0.60 0.63

DeepNN 0.74 (0.001) 0.61 (0.50) 0.65 (0.047)

Combined 0.74 (<0.001) 0.61 (0.02) 0.65 (<0.001)

Presented as model C-statistic (P-value when compared to C-statistic of ASE model alone).
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independent predictors of HF incidence and all-cause death risk in Stage A/ 
B and Stage C/D cardiomyopathy in the 5- to 8-year follow-up window 
after the echo. Notably, the high-risk phenogroup also predicted elevated 
NT-pro-BNP and troponin values and higher peak strain magnitudes fur
ther confirming the consistency of the model for providing individualized 
risk prediction.

The use of ML in HF risk prediction
Previous artificial intelligence (AI)/ML studies employed clustering algo
rithms, including K-means and hierarchical clustering, to identify novel 
diastolic dysfunction phenotypes.21–25 However, our similarity-based 
approach is based upon a mathematical approach (topological data ana
lysis) that extracts meaningful information by studying the shape and 
structure of the data. The algorithms are more robust to noise and out
liers, can detect and represent the data structure at multiple scales, can 
handle missing data, and do not require a lot of tuning or prior knowl
edge to assess intricate data patterns.19 This capability reduces the re
liance on individual parameters and minimizes sensitivity to noise. We 
used a cluster-then-predict approach, in which a DeepNN model 
then predicts the cluster incorporated ASE/EACVI 2016 echocardio
graphic variables. The DeepNN model outperformed guideline-based 
classification while predicting HF hospitalization.

DeepNNs are labelled as ‘black boxes’ because of their opaque pre
diction processes. Nevertheless, these data-driven algorithms enhance 
classification by capturing non-linear relationships, rendering ML mod
els more adaptable than conventional linear decision trees from trad
itional statistics. This flexibility enables risk prediction even with 
missing data, as demonstrated by the DeepNN model’s re-classification 
of the indeterminate group.

Association of biological age with neural 
network activations
The relationship between diastolic function and biological age is well es
tablished.26 There has been growing interest recently in using ML tech
niques to understand cardiovascular aging.11–13,27 For example, a recent 
investigation using the UK Biobank database explored cardiovascular 
aging biomarkers derived from vascular function, cardiac motion, and 

myocardial fibrosis imaging.27 It found that a fibrosis imaging marker, 
a key contributor to diastolic dysfunction, predicted accelerated aging. 
Additionally, 3D imaging analysis revealed uneven heart remodelling 
during aging, impacting LV contractility and relaxation patterns. Given 
this known relationship between biological age, LV remodelling, con
tractility, and diastolic function parameters, one can speculate that 
the DeepNN model used in the study may include some latent 
age-related information. To this end, in another technical study (see 
Supplementary data online, Section S2),28 we dissected and isolated hid
den nodes whose activation revealed that some of these nodes had 
learned to automatically regress age from echocardiography data 
(Figure 4). However, a bias is observed. This bias is consistent with pre
vious studies that have explained the ability of the deep learning model 
to predict the biological age rather than the chronological age.12,13,29–31

A model relying on functional traits that are both disease dependent 
and age dependent, however, may share the same latent features and 
have a confounding effect on model predictions. For example, 
age-related bias, as observed in this occasion, may lead to inherent 
weakness in distinguishing between a younger person with impaired 
function and an older person with preserved function. This bias could 
also be related to the characteristics of the training data set in which 
patients had a pre-existing indication for performing echocardiograms 
and thus may be sicker. Future use of a larger data set and new research 
approaches will be necessary to validate these concepts.

Clinical implications and future directions
The DeepNN model is superior to a linear decision tree models used 
previously and may improve age-related risk profiling in a multi- 
dimensional disease process such as LVDD.

Accurate risk stratification of the older population and therapeutic 
interventions may potentially diminish progression to HF, resulting in 
decreased hospitalizations and associated healthcare costs while main
taining the quality of life and exercise capacity. The DeepNN model has 
undergone external validation in various large study data sets and is 
prognostic of the risk of LVDD, increased LA pressures, worsening ex
ercise performance, biomarker profiles, and incident HF. The current 
study reinforces the readiness of a publicly available model for identify
ing high-risk LVDD patients and warrants further prospective and lon
gitudinal investigation and implementation for patient selection in 
clinical trials.
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Table 5 Continuous NRI and IDI for the addition of 
DeepNN phenogrouping to 2016 ASE/EACVI grading for 
incident HF

Continuous net re-classification index 
Reference: 2016 ASE/EACVI grade 
Addition: DeepNN Phenogrouping

Cohort NRI 95% CI P-value

Overall 0.504 0.392–0.617 <0.0001

Stage A/B 0.422 0.258–0.587 <0.0001

Stage C/D 0.404 0.248–0.560 <0.0001

Integrated discrimination index 
Reference: 2016 ASE/EACVI grade 
Addition: DeepNN phenogrouping

Cohort IDI 95% CI P-value

Overall −0.0094 −0.0182 to 0 0.04

Stage A/B −0.0034 −0.0114 to −0.0047 0.4

Stage C/D −0.0271 −0.0418 to −0.0125 0.0003

Figure 4 Correlation between model-predicted age vs. chrono
logical age. Pearson correlation coefficient (r = 0.69) between the 
model-predicted and chronological ages.
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The current study has several limitations. First, the age of the training 
cohort of the DeepNN model was younger than the ARIC validation 
cohort, yet the DeepNN model still demonstrated a robust predictive 
performance. Further training of the model in an elderly cohort could 
further improve the predictive performance. Second, model perform
ance can likely be improved by using a higher granularity of risk deter
mination (i.e. more than two risk groups). Third, there is mounting 
evidence of the utility of strain or other biomarkers that reflect inflam
mation, cardiac remodelling, vascular changes, and physical perform
ance markers (including exercise echocardiography and imaging) in 
determining cardiac functional capacity, and future investigations should 
explore the integration of these parameters. Finally, the strength of 
DeepNNs in the prediction of cardiovascular events in older patients 
opens up new opportunities in using such models for developing nomo
grams of cardiovascular aging in health and disease.

Supplementary data
Supplementary data are available at European Heart Journal - 
Cardiovascular Imaging online.
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